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Historical perspective: A few pieces of the puzzle (= Paul’s contributions in the 1990s)

A ‘small-scale’ multivariable application

Putting the ideas together

Why is this important?

Final remarks



2/22Back to a very specific ‘network’ Van den Hof & Schrama (1995)



3/22Idea 1: obtaining good models for control

Illustrative identification example
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I Go : true system
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Original idea Van den Hof & Schrama (1995):
important dynamics are revealed when you get closer to the ’optimal’ controller



5/22Idea 1: obtaining good models for control

When is a model good?
I if Ĝ is exact: Ĝ = Go , then model is good for any purpose
I in practice: model errors

I bias: model structure not flexible enough
I variance: only finite time and noisy data available

I if Ĝ 6= Go , then quality depends on goal

Control goal
I select criterion J(G ,K ) = ‖N(G ,K )‖
I ‖.‖: a norm, e.g., H2, H∞

I example: sensitivity minimization

: N(G ,K ) = (I + GK )–1
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I if Ĝ is exact: Ĝ = Go , then model is good for any purpose
I in practice: model errors

I bias: model structure not flexible enough
I variance: only finite time and noisy data available
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Basic idea in identification for control [> 1990s]
I apply triangle inequality

J(Go ,K )︸ ︷︷ ︸
achieved performance

= ‖

N(Ĝ ,K ) +

N(Go ,K )

– N(Ĝ ,K )

‖

≤ J(Ĝ ,K )︸ ︷︷ ︸
model-based control

+ ‖N(Go ,K ) – N(Ĝ ,K )‖︸ ︷︷ ︸
performance degradation

Classical procedure
1. for a reasonable controller K exp, identify arg min

Ĝ
‖N(Go ,K exp) – N(Ĝ ,K exp)‖

⇒ matches the closed-loop response

2. model-based control Kopt = minK (Ĝ ,K )
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⇒ matches the closed-loop response

2. model-based control Kopt = minK (Ĝ ,K )
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?

The need for robustness

J(Go ,K )︸ ︷︷ ︸
achieved performance

= ≤ J(Ĝ ,K )︸ ︷︷ ︸
model-based control

+ ‖N(Go ,K ) – N(Ĝ ,K )‖︸ ︷︷ ︸
performance degradation

is only valid for a single K

Robust control design
1. identify a model set G, where Go ∈ G(Ĝ , ∆)

2. robust control: performance guarantee J(Go ,K ) ≤ sup
G∈G

J(G ,K )

Identification of G for robust control [2000s - now]
I traditional structures:

I how to guarantee Go ∈ G(Ĝ , ∆)? (idea 2)

I (Later, idea 3: sup
G∈G

J(G ,K exp) unbounded?)
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2. robust control: performance guarantee J(Go ,K ) ≤ sup
G∈G

J(G ,K )

Identification of G for robust control [2000s - now]
I traditional structures:

I how to guarantee Go ∈ G(Ĝ , ∆)? (idea 2)
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Example revisited
I Go = 1

s+1
I K exp = 1000 (optimal)
I Ĝ = 1

s–1 (‘control-relevant’)

I Additive H∞-bounded uncertainty
Go︸︷︷︸

stable

/∈ Ĝ︸︷︷︸
unstable

+ ∆︸︷︷︸
stable

Solution: coprime factor perturbations
I Ĝ = N̂D̂–1, with N̂, D̂ ∈ H∞
I Go ∈ (N̂ + ∆N)(D̂ + ∆D)–1 for some stable ∆N , ∆D

I mechanism: now an RHP pole can be created by ∆D

I this is fairly abstract, what does this mean?
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More on coprime factor perturbations
I Ĝ = N̂D̂–1, with N̂, D̂ ∈ H∞
I Go ∈ (N̂ + ∆N)(D̂ + ∆D)–1 for some stable ∆N , ∆D

I think of this as two closed-loop transfer functions

N̂ =
Ĝ

1 + ĜK exp

D̂ =
1

1 + ĜK exp

I If K exp ∈ H∞, then this is actually also a coprime factorization, since the Bezout identity

XN̂ + Y D̂ = 1

holds for X = K exp, D = 1 (indeed, S + T = 1!)
I You can easily parameterize all by {N̂Q, D̂Q}, with Q,Q–1 ∈ H∞
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Idea Van den Hof et al. (1993):
go from control-relevant id (idea 1) to iteratively finding ’normalized’ RCFs
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I (N̂ + ∆N)(D̂ + ∆D)–1 guarantees Go ∈ G for some ∆N , ∆D ∈ H∞
I however: JWC(G,K exp) can become unbounded

I no guarantees that all candidate models in G stabilized by K exp. . .

Recall: Youla parameterization (1970s)
Let K exp be a stabilizing controller for Ĝ = N̂D̂–1, with K exp = NcD

–1
c . Then all stabilizing

controllers for Ĝ are given by

K = (Nc + D̂Q)(Dc – N̂Q)–1,Q ∈ H∞

Dual-Youla: switch role of K exp and Ĝ !
All models stabilized by K exp are given by

(N̂ + Dc∆)(D̂ – Nc∆)–1, ∆ ∈ H∞
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Why does this lead to a robust-control-relevant model set?
I general LFT uncertainty:
JWC(G,K exp) = sup

∆∈∆
‖M̂22 + M̂21∆(I – M̂11∆)–1M̂12‖∞

I dual-Youla result for any coprime factorization:
JWC(G,K exp) = sup

∆∈∆
‖M̂22 + M̂21∆M̂12‖∞



12/22Idea 3: non-careful robustness may induce conservatism

Why does this lead to a robust-control-relevant model set?
I general LFT uncertainty:
JWC(G,K exp) = sup

∆∈∆
‖M̂22 + M̂21∆(I – M̂11∆)–1M̂12‖∞

I dual-Youla result for any coprime factorization:
JWC(G,K exp) = sup

∆∈∆
‖M̂22 + M̂21∆M̂12‖∞



Historical perspective: A few pieces of the puzzle (= Paul’s contributions in the 1990s)

A ‘small-scale’ multivariable application

Putting the ideas together

Why is this important?

Final remarks



13/22A 3× 3 wafer stepper application (de Callafon & Van den Hof 2001)



14/22A 3× 3 wafer stepper application (de Callafon & Van den Hof 2001) - the details



15/22

Don’t even think about trying this on our 26× 52 system (= 1352 elements!)

/ Mechatronics 00 (2023) 1–9 6

Figure 3. Experimental test setup with (a) sensor bracket, (b) 6 capac-
itive sensors and the DM1 deformable mirror designed by TNO.

to an heavy testbench. The deformation of the mir-
ror facesheet can be measured by 6 capacitive sensors
which are mounted to an aluminum bracket which can
be moved to measure the deformation on di↵erent loca-
tions.

5.2. Frequency Response Function Estimation

In this section, the frequency response function of the
experimental deformable mirror is estimated. The es-
timation is performed using the local rational method
introduced in Section 3.2. Also, the estimation results
are compared and analyzed to the conventional spectral
analysis.

The experiments are conducted in an open-loop set-
ting with a sampling frequency of Fs = 4000Hz. The
measurement setup is shown in Figure 3. From the ex-
citation signals, uex, and the noisy outputs, y, the FRF
of the system, Go, can be determined through the di-
rect method, e.g. spectral analysis and LRM. The data
used in this paper is from an open-loop experiment with
random non-periodic excitation signals. The system is
excited by na = 52 independently generated Gaussian
white noise signals with zero mean and a variance of
?. In total this measurement is 60 seconds long. The
frequency response function is determined by the LRM
introduced in Section 3.2.

The sensor bracket that measures the deformation of
the reflective surface is repositioned three times to en-
hance the spatial resolution of the position measure-
ment. Also, a separate measurement is performed to
measure the response of the backplate with the acceler-
ation sensors. For this reason, four independent experi-
ments are conducted and the LRM executed four times
to construct the frequency response estimation. The re-

sulting 52 ⇥ 18 element-wise Bode plot is depicted in
Figure 4, and a subset is depicted in Figure 5.

Interestingly, Figure 4 and 5 reveal first-order rolo↵
at approximately ? Hz. This e↵ect is caused by the
electromagnetic behavior of the actuators. Also, the re-
sulting Bode plot indicates strong collocated and non-
collocated behavior. The magnitude in the noncollated
case is relatively large. In sharp contrast, the magnitude
in the non-collocated case is generally low. However, at
the resonance frequencies, a high response can be rec-
ognized.

5.3. Comparison

Spectral analysis vs. local rational method
The aim of the comparison is to show the main bene-

fits of the local rational method for frequency response
measurements of the deformable mirror compared to the
traditional spectral analysis method. The main chal-
lenge for the frequency response measurement of the
deformable mirror are the large amount of inputs and
outputs. For this reason, the key point is to handle
the available data as e�ciently as possible to reduce
the measurement time while still obtaining accurate fre-
quency response function estimates.

The data considered in this section is obtained from
an open-loop experiment with random excitation sig-
nals. A subset of the deformable mirror in Figure is
considered, i.e., 6 actuators and 6 sensor locations. The
longest measurement is ??? seconds long. It is investi-
gated how well the the local rational method performs
compared to the spectral analysis method for various
lengths of the experiments.

Figure depicts the cost of the traditional spectral anal-
ysis and local rational method versus the time duration
of the experiments are shown. Clearly, the local rational
method is significantly more data e�ciently compared
to the traditional spectral analysis.

5.4. Modal Models

The aim of this section is to identify a modal model
of the experimental deformable mirror based on the fre-
quency response function estimate. First, the mechan-
ical system behavior is isolated by pre-processing the
data. Second, the modal model is estimated based on
the method introduced in Section 4.

5.4.1. Pre-processing
An essential step for identifying a modal model is to

separate the modal systems dynamics. Firstly, the ac-
celeration sensor data is integrated twice to mimic po-
sition sensors. Furthermore, the computational delay

6
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Don’t even think about trying this on our 26× 52 system (= 1352 elements!)
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Figure 3. Experimental test setup with (a) sensor bracket, (b) 6 capac-
itive sensors and the DM1 deformable mirror designed by TNO.

to an heavy testbench. The deformation of the mir-
ror facesheet can be measured by 6 capacitive sensors
which are mounted to an aluminum bracket which can
be moved to measure the deformation on di↵erent loca-
tions.

5.2. Frequency Response Function Estimation

In this section, the frequency response function of the
experimental deformable mirror is estimated. The es-
timation is performed using the local rational method
introduced in Section 3.2. Also, the estimation results
are compared and analyzed to the conventional spectral
analysis.
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outputs. For this reason, the key point is to handle
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the measurement time while still obtaining accurate fre-
quency response function estimates.

The data considered in this section is obtained from
an open-loop experiment with random excitation sig-
nals. A subset of the deformable mirror in Figure is
considered, i.e., 6 actuators and 6 sensor locations. The
longest measurement is ??? seconds long. It is investi-
gated how well the the local rational method performs
compared to the spectral analysis method for various
lengths of the experiments.

Figure depicts the cost of the traditional spectral anal-
ysis and local rational method versus the time duration
of the experiments are shown. Clearly, the local rational
method is significantly more data e�ciently compared
to the traditional spectral analysis.

5.4. Modal Models

The aim of this section is to identify a modal model
of the experimental deformable mirror based on the fre-
quency response function estimate. First, the mechan-
ical system behavior is isolated by pre-processing the
data. Second, the modal model is estimated based on
the method introduced in Section 4.

5.4.1. Pre-processing
An essential step for identifying a modal model is to

separate the modal systems dynamics. Firstly, the ac-
celeration sensor data is integrated twice to mimic po-
sition sensors. Furthermore, the computational delay

6



Historical perspective: A few pieces of the puzzle (= Paul’s contributions in the 1990s)

A ‘small-scale’ multivariable application

Putting the ideas together

Why is this important?

Final remarks



16/22Idea 1 and 2 connect!

Result (Oomen & Bosgra 2012): The control-relevant identification criterion is equivalent to a coprime factor iden-
tification problem:

min
Ĝ
‖W

(
T (Go ,K exp) – T (Ĝ ,K exp)

)
V ‖∞ = min

N̂,D̂

∥∥∥∥∥∥W ([
No
Do

]
–
[
N̂

D̂

]) [
Ñe,2 Ñe,1

]
︸ ︷︷ ︸

co-inner

∥∥∥∥∥∥
∞

Resulting coprime factorization {N̂ , D̂} of Ĝ
I generally not normalized: N̂∗N̂ + D̂∗D̂ 6= I
I direct identification from data:

I reduces complexity: 4-block⇒ 2-block
I frequency domain identification algorithm

I use of non-normalized coprime factorizations also appearing in robust control theory
(Lanzon & Papageorgiou 2009)
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17/22Idea 1, 2, and 3 connect!

Why does this lead to a robust-control-relevant model set?
I general LFT uncertainty:
JWC(G,K exp) = sup

∆∈∆
‖M̂22 + M̂21∆(I – M̂11∆)–1M̂12‖∞

I dual-Youla result for any coprime factorization:
JWC(G,K exp) = sup

∆∈∆
‖M̂22 + M̂21∆M̂12‖∞

Result: If the coprime factors from (Oomen & Bosgra 2012) {N̂, D̂} and a specific factorization of K exp

are used, then:

JWC(G,K exp) ≤ ‖M̂22‖∞︸ ︷︷ ︸
nominal performance J (Ĝ ,K exp)

+ sup
∆∈∆

‖∆‖∞︸ ︷︷ ︸
model uncertainty bound γ

connects ∆ and criterion J : avoids multivariable & frequency dependent weighting
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18/22Robust controller synthesis (D-K-iteration)

old: ∆ = diag(δ1, δ2, . . . , δ9, ∆P) (F = 10)
new: ∆ = diag(∆3×3, ∆P) (F = 2)
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old: ∆ = diag(δ1, δ2, . . . , δ1352, ∆P) (F = 1353)
new: ∆ = diag(∆26×52, ∆P) (F = 2)

Always µ-simple, so nonconvervative D-K iteration, independent of input-output dimension!
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old: ∆ = diag(δ1, δ2, . . . , δ1352, ∆P) (F = 1353)
new: ∆ = diag(∆26×52, ∆P) (F = 2)

Always µ-simple, so nonconvervative D-K iteration, independent of input-output dimension!



19/22Data-driven gain estimation (no multivariable/frequency scaling!)



20/22P = (N̂ + Dc∆)(D̂ – Nc∆)–1, ∆ ∈ H∞ . . . ???
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21/22Final remarks

I three important and original ideas that are essential pieces of a larger puzzle (3x Paul in
1990s)

I they connect: control-relevant (idea 1) and coprime-factor identification (idea 2):

min
Ĝ
‖W

(
T (Go ,K exp) – T (Ĝ ,K exp)

)
V ‖∞ = min

N̂,D̂

∥∥W ([
No
Do

]
–
[
N̂

D̂

])∥∥
∞

I and ideas 1, 2, 3

JWC(G,K exp) ≤ ‖M̂22‖∞︸ ︷︷ ︸
nominal performance J (Ĝ ,K exp)

+ sup
∆∈∆

‖∆‖∞︸ ︷︷ ︸
model uncertainty bound γ

I essential for complex systems (e.g., mechatronics)
I thanks Paul! For all the fantastic interactions, I learned a lot! (Including the initial 4,5 hour

scientific discussion (June 29, 2009, Delft), invitation to ERNSI, etc. etc. etc.)
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