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Historical perspective: A few pieces of the puzzle (= Paul’s contributions in the 1990s)
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Identification: determine a model that gives a good prediction of the output
» G,: true system
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Identification: determine a model that gives a good prediction of the output
» G,: true system

» G: model 1

» G: model 2

Best model?
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lllustrative identification example
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Identification: determine a model that gives a good prediction of the output
» G,: true system
> G:model 1 Best model?

~

» G: model 2 ... bad model can be good! (and vice versa...)
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Original idea Van den Hof & Schrama (1995):
important dynamics are revealed when you get closer to the ‘optimal’ controller

R - JR— [

In general terms the model and the controller are
obtained according to (indexes refer to step number
in the iteration):

P= argmin |/ (Py, Ci) - J(B,CHI (12)
Civ1 = argmin 17 (B, Ol 13

where P, C vary over appropriate model/controller
classes, and in the control design one takes account
of the constraint:

TPy, Cis1) =T (Bisr, Coadll << 1T (Prer, Crand1.(14)

There are a couple of important observations to
make here.

+ The identification criterion that is reflected in
(12), is completely determined by the control
performance function J(P. C) and the chosen
norm | - |I, thus leading to a really control-
oriented identification. The mismatch between
plant and model is measured in terms of the
control performance costs of plant and model,
when controlled by the controller C;.
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When is a model good?

> if G is exact: G = G, then model is good for any purpose
» in practice: model errors

» bias: model structure not flexible enough

» variance: only finite time and noisy data available

> if G # Gy, then quality depends on goal
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> if G is exact: G = G, then model is good for any purpose
» in practice: model errors

» bias: model structure not flexible enough
» variance: only finite time and noisy data available

> if G # Gy, then quality depends on goal

Control goal
» select criterion J(G, K) = ||[N(G, K)||
» ||.||: a norm, e.g., Ho, Hoo
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When is a model good?

> if G is exact: G = G, then model is good for any purpose
» in practice: model errors

» bias: model structure not flexible enough

» variance: only finite time and noisy data available

> if G # Gy, then quality depends on goal

Control goal N .. :
» select criterion J(G, K) = ||[N(G, K)|| w EP ref s
» ||.|: anorm, e.g., Ho, Hoo u Je |

> example: sensitivity minimization : N(G, K) = (I + GK)™
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» apply triangle inequality
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model-based control performance degradation
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Basic idea in identification for control [> 1990s]
» apply triangle inequality
J(Go, K) = |IN(G, K) + N(Go, K) = N(G, K)|
——
achieved performance
< HGK) A+ |IN(Go K) = N(G, K|
N——

model-based control performance degradation

Classical procedure

1. for a reasonable controller K&, identify arg min |[N(Go, K&P) - N(G, K&P))|
G

= matches the closed-loop response
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Basic idea in identification for control [> 1990s]
» apply triangle inequality
J(Go K)  =|IN(G, K) + N(Go, K) = N(G, K)|
——
achieved performance
< HGK) A+ |IN(Go K) = N(G, K|
N——

model-based control performance degradation

Classical procedure

1. for a reasonable controller K&, identify arg min |[N(Go, K&P) - N(G, K&P))|
G

= matches the closed-loop response
2. model-based control K°Pt = min (G, K)



The need for robustness

J(Go,K) =< JG,K)  +]|IN(Go K)=N(G,K)|
N—_—— N—_—— ~ -
achieved performance model-based control performance degradation

is only valid for a single K
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The need for robustness

J(Go,K) =< NG K) +]|N(Go, K)=N(G,K)| Multivariable
N—_—— y ‘Fc°b~ack

achieved performance model-based control performance degradation
is only valid for a single K

Robust control design

1. identify a model set G, where G, € G(G, A)

2. robust control: performance guarantee J(G,, K) < sup J(G, K)
Geg
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The need for robustness
J(Go,K) =< NG K) +]|N(Go, K)=N(G,K)| Multivariable
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achieved performance model-based control performance degradation

is only valid for a single K

Robust control design

1. identify a model set G, where G, € G(G, A)
2. robust control: performance guarantee J(Go, K) < sup J(G, K) ]
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The need for robustness
J(Go,K) =< NG K) +]|N(Go, K)=N(G,K)| . Muitvariable

Feedba
C
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achieved performance model-based control performance degradation

is only valid for a single K

Robust control design

1. identify a model set G, where G, € G(G, A)

2. robust control: performance guarantee J(G,, K) < sup J(G, K)
Geg

Identification of G for robust control [2000s - now]

» traditional structures:
> how to guarantee G, € G(G, A)? (idea 2)
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The need for robustness

JGo,K) =< JG K)  +|N(Go K)=-N(G,K)| Multivariable
N—— ), Fegdbg
achieved performance model-based control performance degradation

is only valid for a single K

Robust control design

1. identify a model set G, where G, € G(G, A)

2. robust control: performance guarantee J(G,, K) < sup J(G, K)
Geg

Identification of G for robust control [2000s - now]

» traditional structures:
> how to guarantee G, € G(G, A)? (idea 2)
> (Later, idea 3: sup J(G, K*P) unbounded?)
Geg



Example revisited
> Gy 5
» KP =1000 (optimal)

» G = 5 (‘control-relevant)
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Example revisited

> G- ok

» KP = 1000 (optimal)

R 1. ,
» G = 7 (‘control-relevant’)

> Additive Hoo-bounded uncertainty
Go ¢ G + A

stable  unstable stable
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Example revisited
> G, = 51?
» KPP = 1000 (optimal)
> G = 5171 (‘control-relevant’)
> Additive Hoo-bounded uncertainty
o +

unstable  stable

Solution: coprime factor perturbations
> G =ND™", with N, D € Hoo
> G, e (N+Ay) D+ Ap)" for some stable Ay, Ap
» mechanism: now an RHP pole can be created by Ap
» this is fairly abstract, what does this mean?
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More on coprime factor perturbations
> G=ND", with N, D € Hoo
> G, e (N+ApN)(D+Ap)" for some stable Ay, Ap
» think of this as two closed-loop transfer functions

PN

G

1+ GKexp
1

14 GKeP

N

o
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Idea 2: robustness is key for feedback control

More on coprlme factor perturbations
> G=ND", with N, D € Hoo

> Go e (N+Ayn)D+ Ap)~" for some stable Ay, Ap
» think of this as two closed-loop transfer functions

A

e &
1+ GKoP
 J —
1+ GKoP

» If KP ¢ Ho, then this is actually also a coprime factorization, since the Bezout identity

XN+ YD =1
holds for X = K®*P, D =1 (indeed, S+ T = 11)
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Idea 2: robustness is key for feedback control

More on coprlme factor perturbations
> G=ND", with N, D € Hoo

> Go e (N+Ayn)D+ Ap)~" for some stable Ay, Ap
» think of this as two closed-loop transfer functions

A

e &
1+ GKoP
 J —
1+ GKoP

» If KP ¢ Ho, then this is actually also a coprime factorization, since the Bezout identity

XN+ YD =1

holds for X = K®P, D =1 (indeed, S+ T = 1l)
> You can easily parameterize all by {NQ, DQ}, with @, Q™1 € Hoo
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Idea Van den Hof et al. (1993):
go from control-relevant id (idea 1) to iteratively finding 'normalized’ RCFs

Classical procedure
1. for a reasonable controller K<, identify arg main [IN(Go, K&P) = N(G, K®)|| e Notes in
= matches the closed-loop response

lormation Sciences

Editod by M.Thoma and A Wiynor

), yielding

138

D. C. McFarlane, K. Glover

AR —————
auired for obtaining convergence of the iterative scheme.
the fiter F* will be updated by restricting the ref of the
model to be normalized. I

Robust Controller Design
Using Normalized Coprime
Factor Plant Descriptions

FA10 - 10:10

Identification of normalized coprime plant factors for iterative model and controller enhancement -

Springer-Verlag
P et a3, Ok . e e . o et Heldoery Newvork
i et s et st G
L ok marg iy e O
g s 8




» (N+ Apn)(D+ Ap)' guarantees G, € G for some Ay, Ap € Hoo

» however: Ayc(G, K&P) can become unbounded
» no guarantees that all candidate models in G stabilized by K*P...
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» (N+ Apn)(D+ Ap)' guarantees G, € G for some Ay, Ap € Hoo
» however: Ayc (G, K&P) can become unbounded
» no guarantees that all candidate models in G stabilized by K*P...
Recall: Youla parameterization (1970s)
Let K be a stabilizing controller for G = VD", with K& = N.D;". Then all stabilizing
controllers for G are given by

K= (Nc+DQ)(De-NQR)™, Q € Hoo
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» (N+ Apn)(D+ Ap)' guarantees G, € G for some Ay, Ap € Hoo
» however: Ayc (G, K&P) can become unbounded
» no guarantees that all candidate models in G stabilized by K*P...

Recall: Youla parameterization (1970s)

Let K be a stabilizing controller for G = VD", with K& = N.D;". Then all stabilizing
controllers for G are given by

K= (Nc+DQ)(De-NQR)™, Q € Hoo

Dual-Youla: switch role of K& and G!
All models stabilized by K€*P are given by

(N + DcAYD - NeAY T A € Hoo
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Why does this lead to a robust-control-relevant model set?
> general LFT uncertainty: ) . A
Jwe(G, KP) = Sup Mz + Moy A1 = My1 A) Myz|oo
€

Available online at i rect.com —_——
@ reuoe @ornacr- Automatica

PERGAMON Automatica 39 (2003) 325-333 J
www.elsevier.com/locate/automatica

Brief Paper
Controller tuning freedom under plant identification uncertainty:
double Youla beats gap in robust stability™

Sippe G. Douma?, Paul M.J. Van den Hof**, Okko H. Bosgra®
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Why does this lead to a robust-control-relevant model set?
> general LFT uncertainty: ) . A
Jwe(G, KP) = Sup Mz + Moy A1 = My1 A) Myz|oo
€

> dual-Youla result for any coprime factorization:
Iwe(G, KEF) = sup [|Ma2 + M1 AMhzlloc
€

Available online at i irect.com -
@ reuoe @ornacr- Automatica

PERGAMON Automatica 39 (2003) 325-333

www.elsevier.com/locate/automatica

Brief Paper
Controller tuning freedom under plant identification uncertainty:
double Youla beats gap in robust stability™

Sippe G. Douma?, Paul M.J. Van den Hof**, Okko H. Bosgra®



A ‘small-scale’ multivariable application



IEEE 'VOL. 9, NO. 2, MARCH 2001 381
Multivariable Feedback Relevant System Identification of a Wafer Stepper
System
Raymond A. de Callafon and Paul M. J. Van den Hof

a8 IEEE VOL.9,NO. 2, MARCH 2001

where the entries of M are given by
My =-W=HD+CN)™HC - C,)DV™H
My =WHD+CN)[C 1)U,

My =-Up [ 'i_] (I+PC)™(I + PC,)D.V

N N
Mn=U;[ ] (D+CN)yH[C 1. @3)

It can be observed from (23) that substitution of C = C,
yields My, = 0. This implies that when the controller C',
is applied to the estimated set of models 7, the upper LFT
F,(M. A) modifies into W 31

A A
]
e v e

. ) I
which is an affine expression in A. Substituting My and Myy [ 1%, Ampiude bode ploof et
in (24) with A = VAW yields the following expression: o e

May + My AMyz = Myz + WoBW, inty regions for ch

mmmmmmmW«-
where



A 3 x 3 wafer stepper application e ez - the details
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As previously indicated in Section 5.2.5, the unweighted coefficient matrix @ in
(8.15) can be easily modified to account for a diagonal form of the model perturbation
Apg. This modification is found by multiplying @, with two scaling matrices 7} and

T5 to obtain
o [meuT @
Q2 Q2
as the unweighted coefficient matrix Q. Since Agr(w) consists of 9 scalar elements

(3 x 3), the scaling matrices 7} and T, are given by

111000000 100100100
000111000 T 010010010
000000111 001001001

to be able to deal with the 9 elements of Ag in diagonal form.

©

Apg(w), only a stable and stably invertible diagonal weighting filter V; needs to be

estimated and W; can be omitted. In this case, the weighting filter V; has a simi-
Taa AL wal facan aed 2a Jacabad L. 22a.fT7 1 e B N i N PRSSNSY 14 PR N




Don’t even think about trying this on our 26 x 52 system (= 1352 elements!)
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Don’t even think about trying this on our 26 x 52 system (= 1352 elements!)
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Putting the ideas together
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Result ©men&Besaa20i2): Tha control-relevant identification criterion is equivalent to a coprime factor iden-
tification problem:

W ([5] - [5]) [Bo<y]

co-inner 1l 5o

=]

min [ W (T(Go, K%)= T(G, K*)) Vl|oo = mi
¢ i,

O
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Result ©men&Besaa20i2): Tha control-relevant identification criterion is equivalent to a coprime factor iden-
tification problem:

W ([5] - [5]) [Bo<y]

co-inner 1l 5o

min || W (T(Go, K®P) - T(G, Kexp)) Voo =
G

D>3

N

Resulting coprime factorization {N D} of G
» generally not normalized: N* A/ + D*D # |
» direct identification from data:
» reduces complexity: 4-block = 2-block
» frequency domain identification algorithm

» use of non-normalized coprime factorizations also appearing in robust control theory

(Lanzon & Papageorgiou 2009)
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Why does this lead to a robust-control-relevant model set?
> general LFT uncertainty: . R R
Jwc(G, K&P) = Sup M2z + Ma1 A(1 = W11 2)™ Mz oo
S

» dual-Youla result for any coprime factorization:
Jwc(G, KTP) = Aen |Maz + M2y AMy2|| oo
€
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Why does this lead to a robust-control-relevant model set?
> general LFT uncertainty: ) . A
Jwe(G, KP) = Sup Mz + Moy A1 = My1 A) Myz|oo
€

> dual-Youla result for any coprime factorization:
Jwc(G, KEP) = sup ||[Mag + Moy AMizl| o
AeA

Result: If the coprime factors from ©menssesaa202 £/ D1 and a specific factorization of K<<
are used, then:

Jwe(G, KSP) < 12| + sup [[Alloo

nominal performance J (G, K&P) —- .
model uncertainty bound ~
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Why does this lead to a robust-control-relevant model set?
> general LFT uncertainty: ) . A
Jwe(G, KP) = Sup Mz + Moy A1 = My1 A) Myz|oo
€

> dual-Youla result for any coprime factorization:
Jwc(G, KEP) = sup ||[Mag + Moy AMizl| o
AeA

Result: If the coprime factors from ©menssesaa202 £/ D1 and a specific factorization of K<<
are used, then:

Jwe(G, KSP) < 12| + sup [[Alloo

nominal performance J (G, K&P) ~— .
model uncertainty bound

connects A and criterion J: avoids multivariable & frequency dependent weighting



Why is this important?
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QT Qus
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Qn Qn
a8 the unweighted coefficient matrix Q. Since Ap(<) consists of 0 scalar clements
(3 % 3). the scaling matrices Ti and 75 arc given by

O|d A= dlag(51 52, .. .,59 Ap) (F=10)
new: A = diag(A3%3, Ap) (F =2)

L DB DD DD DD DB DD DD D DD i D

D08 I b B BB i I DD DS 2D,

oo oS DD i85 DD i D,

YW D8P D3P DI I DD,

SN DD Dl N0 N DK,

AR T L e

SO

R e T
Y R N O,

W
mﬁ\-«w\’»\\\\mﬂwmm\\\mnm\m N AN N
O NN R I R I, Sy Ny N MW W SN
Y N T A NI i
P I M T T W S s

N T T T I T TN N S R O Y Y
ww'h\mNww.w\mmwwm.u\"\\ww'\.\m.\w\\m‘w\'wwvmm\\4\ o
Rt

JEFTERRN

F7ZE2

AR

-
¥
A
™
W
Sy,
W . oy
T M T T N W N St N R P NN S S
o
N
W

-'wmmN\N.Nr\\mmmwwmmw\wwmmww-www‘wwm«wm*emw\\\‘v-ﬂ
N A NN R N T T NN
iy iyl by vy
WN\\NMN’«N\N“N\\Wmmw\\\w\wwmw NN VRN,
VN ) RN AT WY N N Y TR A

w-nm--nnmwwww"mw\\vw.\\mm\\wmww\mmwwh«ﬂ“w\m‘v\mww
TN N N T N N S P T N Y
OV N '\mmmwmmwﬁ

Erave 2y o vl

} o e

old: A = diag(61 , 52, ..

new: A = diag(A26%52

-, 61352, Ap) (F = 1353)
Ap) (F=2)



Robust controller synthesis (D-K-iteration)
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Multivariable Feedback Relevant System Identification offa
Sy:

TABLE

UPPER BOUND

1. GUARANTEED EQUALITY BETWEEN U AND THE

Packard and Doyle (1993)

—

F=0

F=1

F=2

F=3

F=4

R
APl D o
Py
O RN SN
TR M
R e N SN
O N I SN
T T R T TR

YES

YES
[Section 9.1

YES
Section 9.3

NO
Section 9.2

=1 YES

YES
Section 9.4

NO
Section 9.6

NO

NO

NO
Section 9.5

NO

NO

NO

NO

NN
R Tt T T
P NN W W R
PO N NN
SN RN
PN Y
T
R ]

R e e
T P W NN T
ATARTRNA T T TN W
B R R Y
N T N

old: A = diag(51 , 52, .
new: A = diag(A%*3 Ap) (F =2)

old: A = dlag(<)1 , 0o, ..

-, 01352, Ap) (F = 1353)

new: A = diag(A26%%2 Ap) (F = 2)

69, Ap) (F = 10)

Always p-simple, so nonconvervative D-K iteration, independent of input-output dimension!



Data-driven gain estimation (no multivariable/frequency scaling!) 19722
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» three important and original ideas that are essential pieces of a larger puzzle (3x Paul in
1990s)

» they connect: control-relevant (idea 1) and coprime-factor identification (idea 2):

min | W (T(Go, K&) = T(G, K=)) Voo = min W ([%] - [£])]
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>

>

three important and original ideas that are essential pieces of a larger puzzle (3x Paul in
1990s)

they connect: control-relevant (idea 1) and coprime-factor identification (idea 2):

min | W (T(Go K#) = T(G, K=)) Voo = min W ([&] - [1])]

N,D

andideas 1, 2, 3
Jwe (g, KTP) < A + sup [|Alloo

nominal performance j(@, KeP) ~——
model uncertainty bound v

essential for complex systems (e.g., mechatronics)

thanks Paul! For all the fantastic interactions, | learned a lot! (Including the initial 4,5 hour
scientific discussion (June 29, 2009, Delft), invitation to ERNSI, etc. etc. etc.)
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