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First there was variance



First there was variance

K.J. Åström and T. Bohlin (1965). “Numerical identification of linear dynamic systems from normal
operating records”. In: Proc. IFAC Symp. Self-Adaptive Systems. Teddington, U.K., pp. 96–111

K.J. Åström and B. Wittenmark (1971). “Problems of identification and control”. In: J. Math.
Analalysis and Applications 34, pp. 90–113

K.J. Åström et al. (1977). “Theory and Applications of Self-Tuning Regulators”. In: Automatica 13,
pp. 457–476

M. Gevers and L. Ljung (1986). “Optimal experiment designs with respect to the intended model
application”. In: Automatica 22.5, pp. 543–554

K.J. Åström and B. Wittenmark (1989). Adaptive Control. Reading, Massachusetts: Addison-Wesley

• True system in model set
• Certainty equivalence principle used in control design
• MSE for control performance used as criterion in optimal experiment
design
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and then there was bias



and then there was bias

B. Wahlberg and L. Ljung (1986). “Design variables for bias distribution in transfer function
estimation”. In: IEEE Trans. Automatic Control 31.2, pp. 134–144

R. J. P. Schrama (1992). “Accurate models for control design: the necessity of an iterative scheme”.
In: IEEE Transactions on Automatic Control 37.7, pp. 991–994

R.J.P. Schrama and P.M.J. Van den Hof (1992). “An Iterative Scheme for Identification and Control
Design Based on Coprime Factorizations”. In: Proc. ACC. Chicago, pp. 2842–2846

R.G. Hakvoort, R.J.P. Schrama, and P.M.J. Van den Hof (1992). “Approximate Identification in view of
LQG Feedback Design”. In: Proc. ACC. Chicago

R.J.P. Schrama and P.M.J. Van den Hof (1993). “Iterative Identification and Control Design: A Three
Step Procedure with Robustness Analysis”. In: 2nd European Control Conference. Groningen,
pp. 237–241

• Restricted complexity models
• Focus on the bias error
• Match model closed loop to true closed loop for the same controller
• Iterative procedures
• Closed loop identification under non-ideal conditions 2
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A typical day in the life of a control engineer

C Go

Ho

et

u(t) y(t)

v(t)

r(t)

Task: Design a PI-controller C(z) = K/(1− z−1) using data so that step
disturbances rejected as quickly as possible.
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A typical day in the life of a control engineer

Given some data, an ARX-model seems like a good starting point:

Choose cross-over frequency ωc = 0.017 [rad/s]
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A typical day in the life of a control engineer

Optimal controller: K(θ) = argminθ VStep(K, θ) = argminθ
∑

t y
2
step(t, K, θ)

Well done lad!

5



A typical day in the life of a control engineer

Optimal controller: K(θ) = argminθ VStep(K, θ) = argminθ
∑

t y
2
step(t, K, θ)

Well done lad!

5



A typical day in the life of a control engineer

Optimal controller: K(θ) = argminθ VStep(K, θ) = argminθ
∑

t y
2
step(t, K, θ)

Well done lad!

5



A typical day in the life of a control engineer

Alternative 1: Certainty equivalence K(θ̂ARX)
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A typical day in the life of a control engineer

Alternative 2: Pitman type tuning
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A typical day in the life of a control engineer

What’s this?

Suppose we have the ARX-model y(t) = φT(t)θ + e(t)

KPitman := argmin
K

∫
VStep(K, θ)e−

1
2σ2

∑N
t=1(y(t)−φT(t)θ)2︸ ︷︷ ︸

Weighting

dθ

• More weight to step-responses for models which are consistent with
data

• This is basically what’s under the hood in DeePC
J. Coulson, J. Lygeros, and F. Dörfler (2019). “Data-enabled predictive control: In the shallows
of the DeePC”. In: 18th European Control Conference (ECC), pp. 307–312

as shown in
Alessandro Chiuso et al. (2023). Harnessing the Final Control Error for Optimal Data-Driven
Predictive Control. arXiv: 2312.14788 [eess.SY]

• Same principle used by Pitman for estimating the location parameter θ
when y has distribution f(y− θ) = f(y(1)− θ), . . . , y(N)− θ)

E. J. G. Pitman (1939). “The Estimation of the Location and Scale Parameters of a Continuous
Population of any Given Form”. In: Biometrika 30.3/4, pp. 391–421

8

https://arxiv.org/abs/2312.14788
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A typical day in the life of a control engineer

Monte Carlo study: 100 simulations.

Optimal Paul CE Pitman

Tuning method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Optimal Paul CE Pitman

Tuning method
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• Certainty equivalence takes too big risks
• Pitman type more cautious, but still makes a few chancy decisions
• Paul plays it safe

Before proceeding, who’s this gifted control engineer?
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A typical day in the life of a control engineer

Sasol’s Synthetic Fuel Plant in Secunda
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A typical day in the life of a control engineer

Here’s our FT-depropanizer unit:

An old Dutch proverb: What happened in Secunda stays in Secunda
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A typical day in the life of a control engineer

Optimal Paul CE Pitman

Tuning method
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Some observations:

• Clearly the certainty equivalence controller is model based

• The Pitman type controller does not seem to involve an explicit model, although
it makes use of a predictor. A direct data driven method?

• Paul’s engineering approach can be interpreted as using the model to modify the
control criterion. How should it be classified?

The essence of this talk:

• Highlight the degree of freedom in data-driven control offered by the tuning of
the control criterion
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A quick recap of decision theory

• Unknown θ

• Optimal decision: h(θ)
• Decision: ĥ
• Loss: Lθ(ĥ) = |ĥ− h(θ)|2W(θ)

• Data: Z

• Provides indirect information of θ
• Z modelled as a random variable drawn fom a distribution with pdf p(z; θ)

• Decision rule: ĥ(Z)

• Risk: Rθ(ĥ) = Eθ

[
Lθ(ĥ(Z))

]
• Bias-variance decomp: Rθ(ĥ) = ∥b(θ)∥2W(θ)︸ ︷︷ ︸

Bias increase ≥0

+ Tr
{
W(θ)Varθ

[
ĥ(Z)

]}
︸ ︷︷ ︸

Variance increase ≥0

where the bias is b(θ) = Eθ

[
ĥ(Z)

]
− h(θ)
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Lθ(ĥ(Z))

]
• Bias-variance decomp: Rθ(ĥ) = ∥b(θ)∥2W(θ)︸ ︷︷ ︸
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ĥ(Z)

]
− h(θ)

15



A quick recap of decision theory

• Unknown θ

• Optimal decision: h(θ)
• Decision: ĥ
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Bias increase ≥0

+ Tr
{
W(θ)Varθ

[
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• Data: Z
• Provides indirect information of θ
• Z modelled as a random variable drawn fom a distribution with pdf p(z; θ)

• Decision rule: ĥ(Z)

• Risk: Rθ(ĥ) = Eθ

[
Lθ(ĥ(Z))

]

• Bias-variance decomp: Rθ(ĥ) = ∥b(θ)∥2W(θ)︸ ︷︷ ︸
Bias increase ≥0

+ Tr
{
W(θ)Varθ

[
ĥ(Z)

]}
︸ ︷︷ ︸

Variance increase ≥0

where the bias is b(θ) = Eθ

[
ĥ(Z)

]
− h(θ)
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A running example: Feedforward control

• System: y(t) = G(q, θ)u(t)

• Criterion: Jθ(F̂) := E
[
|r(t)− G(q, θ)u(t)|2

]
+ λ E

[
|u(t)|2

]
where {r(t)} is

stationary and expectation is over r.
• Input: u(t) = F̂(q)r(t)
• Frequency domain expression: Jθ(F̂) = 1

2π
∫ π

−π
Qθ(eiω, F̂)Φrr(eiω)dω

where Qθ(eiω, F̂) := |1− G(eiω)F̂(eiω)|2 + λ|F̂(eiω)|2

• Optimal controller: Fθ(eiω) := G(eiω,θ)

|G(eiω,θ)|2+λ
⇔ h(θ)

• Minimum cost: Qθ(eiω, Fθ) = λ
|G(eiω,θ)|2+λ

• Decision F̂(eiω) ⇔ ĥ
• Per frequency loss: Lθ(F̂(eiω)) := (|G(eiω, θ)|2 + λ)︸ ︷︷ ︸

W(θ)

|F̂(eiω)− Fθ(eiω)|2

• Frequency domain criterion: Qθ(eiω, F̂) = Lθ(F̂(eiω)) + Qθ(eiω, Fθ)
• Per frequency risk: Rθ(F̂(eiω, Z)) := Eθ

[
Lθ(F̂(eiω, Z))

]
• Total loss: Lθ(F̂) = 1

2π
∫ π

−π
Lθ(F̂(eiω))dω

• Total risk: Rθ(F̂(Z)) = 1
2π

∫ π

−π
Rθ(F̂(eiω, Z))dω = Eθ

[
Lθ(F̂(Z))

]
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• Per frequency loss: Lθ(F̂(eiω)) := (|G(eiω, θ)|2 + λ)︸ ︷︷ ︸

W(θ)

|F̂(eiω)− Fθ(eiω)|2

• Frequency domain criterion: Qθ(eiω, F̂) = Lθ(F̂(eiω)) + Qθ(eiω, Fθ)
• Per frequency risk: Rθ(F̂(eiω, Z)) := Eθ

[
Lθ(F̂(eiω, Z))

]
• Total loss: Lθ(F̂) = 1

2π
∫ π

−π
Lθ(F̂(eiω))dω

• Total risk: Rθ(F̂(Z)) = 1
2π

∫ π

−π
Rθ(F̂(eiω, Z))dω = Eθ

[
Lθ(F̂(Z))

]
16



Performance bounds

• No uniformly best decision rule. Optimal controller for a given system
G◦ has zero risk for that system and no truly data-dependent controller
can achieve this

17



Design principles

• Unbiased decision rules: Eθ

[
ĥ(Z)

]
= h(θ).

Uniformly minimum risk unbiased decision rule: UMRU

• Loss tuning: ĥCE(θ̂)(Z) = argminĥ Lθ̂(Z)(ĥ) = argminĥW(θ̂(Z))|ĥ− h(θ̂(Z)|2

⇒ ĥCE(θ̂)(Z) = h(θ̂(Z))

Certainty equivalence decision rule

• Average risk tuning: Weighting losses for different models more robust:

ĥA(π)(z) := argmin
ĥ

∫
Lθ(ĥ)w(θ; z)dθ

How to choose w(z; θ)? Need to link data to θ. p(z; θ) only link

• Pitman type: w(z; θ) = p(z; θ)
• Weighting: w(z; θ) = p(z; θ)π(θ) (Bayesian interpretation)
• Note π does not have to be integrable (generalized average risk decision
rules, cf. Pitman type)
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ĥA(π)(z) := argmin
ĥ
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Design principles

• Minimax decision rules: ĥwc = argminĥ supθ∈Dθ Rθ(ĥ)

• Risk tuning:

• Estimate the risk Rθ and minimize the estimate R̂(ĥ, Z) wrt ĥ
• but this is also a decision problem (h(θ) = Rθ(ĥ))
• All previous methods can be used!

• Certainty equivalence tuning: ĥR(θ̂(Z)) := arg minĥ∈Dh
Rθ̂(Z)(ĥ)

• Unbiased risk tuning: Example Stein’s unbiased risk estimate (SURE)
• Average risk tuning: Take Lθ(R̂) = WR(θ)|R̂− Rθ(ĥ)|2 as loss

• Composite methods: Combine all the above!
• HELP!
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• All previous methods can be used!

• Certainty equivalence tuning: ĥR(θ̂(Z)) := arg minĥ∈Dh
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Design guidelines

• A decision rule ĥ is said to be admissible if there is no other decision
rule that improves on it (has at least as low risk for all systems, and
lower for some systems)

• A class A of decision rules is complete if for any decision rule ĥ not in A
there exists a decision rule ℏ̂ in A that improves on it

• Sufficient statistic T(Z): p(Z|T(Z)) does not depend on θ

• Compresses data without information loss
• Minimal sufficient statistics compresses data the most
• For any decision rule ĥ(Z) there exists ℏ̂(T) which has the same risk as ĥ(Z).
• Let ĥ(Z) be an arbitrary decision rule and T a suff. stat. Then
ĥT(Z) := E

[
ĥ(Z)|T(Z)

]
improves on ĥ unless ĥ(Z) = ĥT(T(Z)) with

probability 1.
• Largest improvement when using a minimal sufficient statistic
• Example: FIR model with Gaussian noise and known noise variance: θ̂ML
minimal sufficient
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• Let ĥ(Z) be an arbitrary decision rule and T a suff. stat. Then
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ĥT(Z) := E

[
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• Let ĥ(Z) be an arbitrary decision rule and T a suff. stat. Then
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Design guidelines

• Average risk decision rules

• Admissible if p(z; θ) continuous on Dθ for all z, and π has support Dθ .

• For exponential families, every admissible decision rule is a generalized
average risk decision rule and they form a complete class.

• Asymptotically efficient (under regularity conditions)
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Design guidelines

Summary: Seems like a good idea to

• Restrict attention to a complete class

• Use minimal sufficient statistics
(unfortunately, sometimes only one to one transformations of Z may be
the only available sufficient statistics)

• (Generalized) average risk decision rules attractive class (admissible,
asymptotically efficient, complete class for exponential families)
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Feedforward control

Back to our running example:

• System: y(t) = G(q, θ)u(t), controller u(t) = F̂(q)r(t)
• Frequency domain expression: Jθ(F̂) = 1

2π
∫ π

−π
Qθ(eiω, F̂)Φrr(eiω)dω

where Qθ(eiω, F̂) := |1− G(eiω, θ)F̂(eiω)|2 + λ|F̂(eiω)|2

• Optimal controller: Fθ(eiω) := G(eiω,θ)

|G(eiω,θ)|2+λ
⇔ h(θ)

• Minimum cost: Qθ(eiω, Fθ) = λ
|G(eiω,θ)|2+λ

• Decision F̂(eiω) ⇔ ĥ
• Per frequency loss: Lθ(F̂(eiω)) := (|G(eiω, θ)|2 + λ)︸ ︷︷ ︸

W(θ)

|F̂(eiω)− Fθ(eiω)|2

• Per frequency risk: Rθ(F̂(eiω, Z)) := Eθ

[
Lθ(F̂(eiω, Z))

]
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Feedforward control

Suppose the data is generated from the FIR-system

y(t) = φT(t)θ + e(t)

where e(t) is white Gaussian with known variance σ2.

What have we learnt?

• θ̂ML(Z) is a minimal sufficient statistic
⇒ Can consider θ̂ML(Z) as our data
⇒ Need only consider controllers of the form F̂(q, Z) = F̂(z, θ̂ML)

• θ̂ML(Z) ∼ N (θ, C), C = σ2(
∑N

t=1 φ(t)φ
T(t))−1

⇒ All admissible controllers are (generalized) average risk controllers
which form a complete class
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The Pitman type controller

Average risk tuning:

argmin
ĥ

∫
Lθ(ĥ)w(θ; z)dθ, Lθ(ĥ) = W(θ)|ĥ− h(θ)|2

Feedforward control:

• W(θ) = |G(eiω, θ)|2 + λ, h(θ) = G(eiω,θ)

|G(eiω,θ)|2+λ

• The Pitman type controller

F̂Pitman(eiω) =
G(eiω, θ̂ML)

|G(eiω, θ̂ML)|2 + λ+ Varθ
[
G(eiω, θ̂ML)

]
• Recall that criterion Qθ(eiω, F̂) := |1− G(eiω, θ)F̂(eiω)|2 + λ|F̂(eiω)|2 gives
optimal controller Fθ(eiω) := G(eiω,θ)

|G(eiω,θ)|2+λ

• Certainty equivalence controller with a modified control criterion

|1− G(eiω)F(eiω)|2 +
(
λ+ Varθ

[
G(eiω, θ̂ML)

])
|F(eiω)|2

• Pauls approach but frequency dependent input penalty!
• Control criterion detuning instead of modifying the controller (or model)
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The Pitman type controller

Hmm, this rings a bell.....

A long time ago at the dear green place in the heart of Scotland
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The Pitman type controller

Average risk tuning:

argmin
ĥ

∫
Lθ(ĥ)w(θ; z)dθ

• The Pitman type controller

F̂Pitman(eiω) =
G(eiω, θ̂ML)

|G(eiω, θ̂ML)|2 + λ+ Varθ
[
G(eiω, θ̂ML)

]

• Gaussian weighting: π(θ) = N (θ; 0, P) ⇒

F̂P(eiω) =
ĜP(eiω)∣∣∣ĜP(eiω)∣∣∣2 + λ+ Var

[
G(eiω, θ) | θ̂ML

]
where

ĜP(eiω) =E
[
G(eiω, θ) | θ̂ML

]
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A palette of feedforward controllers

Name Acronym Controller

Certainty equivalence CE G(eiω, θ̂ML)

|G(eiω, θ̂ML)|2 + λ

Kernel-based CE KE
ĜP(η)(ejω, θ̂ML)

|ĜP(η)(ejω, θ̂ML)|2 + λ

Shrinked CE SH η F̂θ̂ML
(eiω), 0 < η < 1

Pitman type P G(eiω,θ̂ML)

|G(eiω,θ̂ML)|2+λ+Varθ[G(eiω,θ̂ML)]

Kernel based average risk KE A ĜP(η)(eiω)

|ĜP(η)(eiω)|2+λ+Var[G(eiω,θ) | θ̂ML]

Input penalized CE IP G(eiω, θ̂ML)

|G(eiω, θ̂ML)|2 + η(ω)

Remember that for any of these controllers and any tuning method for η,
there is an average risk controller that improves on it.
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Numerical illustrations

               Var1                 Var2  

    ___________________________    _______

    "Order FIR"                         57

    "# Monte Carlo"                    500

    "# samples for risk approx"        200

    "# data for identification"        400

    "SNR"                          -4.1759

    "lambda"                           0.1
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Numerical illustrations

Kernel based method with unbiased risk estimation outperforms Pitman
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Conclusions

• Direct data driven or indirect model based not a concern from a
statistical perspective

• Instead minimal sufficient statistics central
• Variance due to the complexity of this statistic must be handled in the
usual way, i.e. by tailoring the controller structure to the class of
systems in question

• Average risk controllers possess several attractive properties
• Despite this, a rich palette of ways to construct data-driven controllers
• But remember that for any controller you can come up with, there is a
better average risk controller (for exponential families at least)

• The importance of using the degree of freedom offered by the control
criterion has been highlighted highlighted (well known by practitioners)
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A typical day in the life of a control engineer

Good luck with your future projects Paul!

PS: I hear there’s an opening in Secunda
34
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