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Introduction



bolyai and the non-euclidean geometry

V. Postulate: "For any line and an external point in the plane they define, exactly one parallel
line can be drawn."

It reveals the sophisticated thinking of greek mathematicians that they felt this postulate as
different, more complicated, from the others. During the 17-18 centuries several people attempted
to prove the fifth postulate. Only around 1830 did it become clear from the work of Bolyai and
Lobachevsky, that this axiom cannot be derived from the others, it is independent of them.

The essence of the revolutionary innovation: assuming that Euclidean geometry is correct, it is
possible to define a non-contradictory geometric theory in which the fifth postulate does not
hold. Around 1850 radical changes took place in the philosophy of mathematics: they realized
that mathematics can describe multiple realities.

Non-contradiction of the new geometry was proved by giving a model, i.e., a set of mathematical
objects, with their relationship to each other, in such a way, that the axioms of hyperbolic
geometry, are fulfilled.
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geometry: a global approach
Klein view: (Movements)Groups + invariants (properties) = geometry

To visualize hyperbolic geometry, we have to resort to a model. Beltrami was the first to provide
a model for hyperbolic geometry (the so-called pseudosphere). Poincaré’s models are even
simpler.
In the Poincaré model the hyperbolic plane is the unit disk, and points are Euclidean points.
Lines are portions of circles intersecting the disk and meeting the boundary at right angles. The
angles for the model are the same as Euclidean angles. A model with the property that angles are
faithfully represented is called a conformal model. A hyperbolic circle is drawn as a Euclidean
circle, but its center becomes lopsided toward the outer edge of the unit disk.

Erlanger Program: geometry should be defined as the study of transforms (symmetries) and of
the objects that transforms leave unchanged, or invariant.

1. The set of symmetries of an object has a very nice algebraic structure: they form a group.
2. Klein’s approach allows us to relate different (models of the) geometries.
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the hilbert axioms of euclidean geometry

Basic Concepts⇒ points, straight lines, planes

Basic relations⇒
betweenness, containment, congruence

Basic groups of axioms⇒

• Incidence axioms
• Betweenness axioms
• Parallelism axiom
• Congruence axioms
• Continuity axioms
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hyperbolic geometry: the poincaré disc model
One model of the hyperbolic geometry is the

Poincaré disc model,

named after the French mathematician Henry Poincaré (1854–1912) as proposed by Eugenio
Beltrami.

Disc: an open unit disc of the complex plane

Ä = {z ∈ Ã : `z ` < 1}

a hyperbolic plane

Ô = {z ∈ Ã : `z ` = 1}

Ä boundary, "torus"

Points: elements of Ä — complex numbers of Ä

Lines: Circles in Ä intersecting Ô perpendicularly.
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hyperbolic geometry: the poincaré disc model

Analytic discussion: the Blaschke function

Ba(z ) := ε
z − a

1 − az
(a = (a, ε) ∈ Â, Â = Ä× Ô)

Properties:
• Ba : Ä→ Ä , Ô→ Ô is a bijection.
• Ba (a ∈ Â) forms a group with respect to the function composition.
• Lines: the image of (−1, 1) generated by Ba .
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hyperbolic geometry: the poincaré disc model
Illustration:

[w1,w2 ∈ Ä \ a ∈ Â,
such that

Ba(0) = w1,

and

Ba(p) = w2,

where

p = `B(w1,1)(w2)`.

w1

w2

0 p

 a

 e

w=e B_a(z)

z

w

w1w2 hyperbolic section: the image of the interval [0, p] generated by Ba
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hyperbolic geometry: the poincaré disc model
Congruence: using the definition of hyperbolic lines, the ordering on the hyperbolic plane is
equivalent to the ordering on the Euclidean line. The congruence axioms are satisfied.

The distance between two points: pseudo-hyperbolic metrics

ρ0(w1,w2) =
`w1 −w2`

`1 −w1w2`
= `B(w1,1)(w2)`

hyperbolic metrics

ρ0(w1,w2) = ath(ρ0(w1,w2))

Ba is isometry with respect to the hyperbolic metrics:

ρ0(Ba(w1),Ba(w2)) = ρ0(w1,w2)

Interpretation of angles: Euclidean angles of the tangent lines.
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hyperbolic geometry: the poincaré disc model
Ba (a ∈ Â) can be identified as the group of congruency transforms of the hyperbolic plane.

A'

A

B'
B

C'

C

O
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hyperbolic geometry: the poincaré disc model
Parallelism axioms: are not satisfied. It is possible to draw infinitely many hyperbolic lines
through the point P not on the line P1P2 such that none of them intersects P1P2.

hyperbolic

P1 P2

UV

P

Euclidean

P
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The Blaschke group



the blaschke function
The Blaschke function represents a hyperbolic map in the unit disc.
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Blaschke transformed curves

Ba (z ) := e j δ
z − a

1 − az

• δ – realizes rotation

• a – determines the zero of the function, affects both shape
and rotation

`Ba (e j t )` = 1
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the blaschke group

Bb(z ) := ε
z − b

1 − bz

z ∈ Ã, b = (b, ε) ∈ Â := Ä× Ô
Ä := {z ∈ Ã : `z ` > 1}
Ô := {z ∈ Ã : `z ` = 1}

The Blaschke function forms a group with respect to function composition:

(Bb1 ◦ Bb2 )(z ) := Bb1 (Bb2 (z )).

The collection of parameters b = (b, ε) ∈ Â := Ä× Ô forms also a group – (Â, ◦) – that is
isomorphic with the group ((Bb, b ∈ Â), ◦), i.e.

Bb1 ◦ Bb2 = Bb1 ◦ b2
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the blaschke group

With the notations

bj := (b j , εj ), j ∈ {1, 2} b := (b, ε) b := b1 ◦ b2

the group operation can be expressed as

b =
b1ε2 + b2

1 + b1b2ε2
= B(−b2,ε2)(b1ε2)

ε = ε1
ε2 + b1b2

1 + ε2b1b2
= B(−b1b2,ε1)(ε2)

The neutral and inverse element of the group (Â, ◦):

e := (0, 1) and b−1 := (−bε, ε)
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representations of lti systems
IR models

A discrete time LTI system G can be considered as a linear causal time-invariant operatorTG
mapping an input sequence ut ∈ U ⊂ l2 to an output sequence yt ∈ Y ⊂ l2.
ApplyingZ-transform on the input and output sequences,Z : l2 7→ H2, it can be proved that
the operatorG (z ) : U (z ) 7→Y (z ) acts as a multiplication operator andG (z ) ∈ H∞ :

G (z ) =
∞∑
k=1

gk z
−k ,

where gk , k = 1, . . . , is the impulse response sequence.
This system representation depends on the use of the canonical shift operator on l2 that corre-
sponds to the multiplication by z−1 inH2 and z−k , k = 1, 2, . . . forms a basis inH2.
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gobf representations of lti systems
LetVk (z ), k = 0, 1, . . . be an orthogonal basis inH2. Then an LTI system can be represented as

G (z ) =
∞∑
k=0

GkVk (z ).

Examples:
Canonical basis :

Gb = z
−1, Vk (z ) =

1

z
z−k

Laguerre basis :

Gb (z ) = La (z ) = (1 − az )/(z − a), `a ` < 1,

Vk (z ) = Lak (z ) =

√
(1 − a2)
z − a

(
1 − az

z − a

)k
16/39 18.04.2024 Identifying system poles



the discrete laguerre system

For an elementary factor we have

F (z ) =
1

1 − a z
=
∞∑
n=0

lnVn (z ) ⇒ ln =
√
1 − `b `2

(a − b)n

(1 − ab)n+1

With the term

q =
a − b

1 − ab

geometrical sequences with quotient q are obtained – convergence depends on q .
For a, b ∈ Ä ������

a − b

1 − ab

������
< 1,

hence the geometrical sequence absolutely converges.
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analyzing the convergence quotient
The quotient

q =
a − b

1 − ab

can be interpreted as

q =
a − b

1 − ba
= Bb (a),

where Bb (z ) is a Blaschke function of parameter b ∈ Ä, i.e.,

Bb (z ) =
z − b

1 − bz
.

The Blaschke function is an inner function in the spaceH2(Ä), i.e., it is a bijection

Bb : Ä→ Ä Bb : Ô→ Ô

The Blaschke function of this form realizes a hyperbolic distance measure between points a and
b within the unit circle.
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identifying a pole
The hyperbolic distance between two poles a and b (a, b ∈ Ä):

d =
�����
a − b

1 − ba

�����
Let a be fixed and select alternative b parameters, e.g. b1 and b2:
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The hyperbolic circles belonging to distances

d1 =
�����
a − b1

1 − b1a
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d2 =
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1 − b2a

�����

cross each other on pole a .

This fact can be used to identify the pole!
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general method for identifying poles

By selecting a parameter value `b ` < 1,
1. Estimation of the coefficients `n of the Laguerre representation based upon specific b .
2. Estimation of the convergence rate q according to the Laguerre coefficients obtained by
considering

q = lim
n→∞

`n+1
`n

3. Apply the hyperbolic transform a = Bb−1 (q ) to derive pole a .
4. Steps 1 to 3 have to be repeated for new values of parameter b .

In practical cases:
• Finite number of Laguerre coefficients can be estimated.
• The limit can approximately be evaluated .
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TheH∞ performance group



geometry and control
Local vs. global view

Local view: geometric control theory: based on differential geometry, Lie algebra, algebraic
geometry, treats many important system concepts, for example controllability, as
geometric properties of the state space or its subspaces. These are the properties
that are preserved under change of coordinates, for example, the so-called in-
variant or controlled invariant subspaces. Linear theory (Wonham,Basile-Marro),
nonlinear theory (Isidori). System transforms (diffeomorphism) play a fundamen-
tal role to reveal these invariants, e.g., Kalman decomposition.

Global view: an input-output ("coordinate free") framework, centered on a Kleinian approach
to the geometry. Transformation groups play fundamental roles, they leave a
given property invariant, e.g., stability orH∞ norm.
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problem setting
Indirect vs. direct blending

Solutions of the quadratic performance problems, e.g., a suboptimalH∞ design, are parametrized
by the elements of the unit ball. However, we cannot define directly an operation on this
parameter space in a trivial way that bears a nice algebraic structure.

In this case the group actions that correspond to the addition of stable plants, which will be
seen for the Youla parametrization, are the hyperbolic motions of the unit ball, determined by
the J -unitary operators.

The goal is to provide an explicit parametrization of these operators and the corresponding
induced blending on the parameter space. In contrast to these examples for the stability property
of the closed loop there exists a direct blending of the stabilizing controllers without the need
to introduce an additional parametrization.
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generalized plant
Performance loop, LFT, "gang of nine"
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In the generalized plant paradigm two issues are handled:

the loop should be stable: the causal map (z ,u, y ) to (w , d , n)
is invertible and the
inverse map L(Pg ,K ) : (w , d , n) 7→ (z ,u, y ) is stable.

Lower LFT:
Tzw = Fl (Pg ,K ) = Pzw + PzuK (I − PyuK )−1Pyw

Pzw Pzu
Pyw Pyu

K
n

d

y

u

w z

−

−

Performance specification: the LFT Fl (Pg ,K ) should satisfy some norm constraints:

optimalH∞ design: infK �Fl (Pg ,K )�∞
suboptimalH∞ design: �Fl (Pg ,K )�∞ < γ



quadratic performance vs. hyperbolic geometry
Matrix Blaschke function

Any quadratic performance problem is related to the open unit ball through a J -spectral factor-
ization and a Möbius transformation, i.e., the controller is parametrised as:

K = MΦ(a), a ∈ B ⊂ H∞

Since J -unitary maps leave the the open unit ball B invariant, hyperbolic geometry and hyper-
bolic distance is a natural choice.

Ba (x ) = (1 − aa∗)−1/2(x − a)(1 − a∗x )−1(1 − a∗a)1/2, a, x ∈ B

This Blaschke function is a biholomorphic automorphism of B. The hyperbolic distance on B
is dB(a, b) = arctanh �Ba (b)�. On any bounded set (contained in some ρ-ball) the hyperbolic
metrics is equivalent to the operator norm.
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J -unitary matrices
For J =

(
I 0
0 −I

)
consider the group of J -unitary matrices Φ, i.e., those matrices for which

Φ∗JΦ = J .

These matrices define the movements on the unit (contractive) ball that preserve the hyperbolic
distance. There is a correspondence between the contractive ball and the J -unitary matrices:

Φa =

(
Na 0
0 Na∗

) (
I −a∗

−a I

)
, a ∈ B

is J -unitary. We use the notations Da = (I − a∗a)1/2 and Na = D−1a .
These unitary matrices correspond to the hyperbolic translations. Their Möbius transform defines
the multidimensional generalisation of Blaschke products:

Ba (z ) = MΦ(z ) = Na∗ (z − a)(I − a∗z )Da = −a + Da∗z (I − a∗z )−1Da

Note that

Ba (0) = −a, Ba (a) = 0, B−a (0) = a Ba ◦ B−a = B−a ◦ Ba = I .
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hyperbolic group
Parametrization
While elementary translations form a group in the Euclidean geometry, in the hyperbolic world
not. This fundamental difference makes things more complicated: we cannot define a group
structure merely on the contractive ball. However, there is a remedy due to the fact that every
J -unitary matrix can be expressed as an elementary translation and a block diagonal unitary
action.

Every J -unitary matrix can be expressed as

Φ =Wu,vΦa , Wu,v = diag{u,v},

for a suitable contraction a and unitary matrices u and v .

A less known but an important formula is:

ΦaWu,v =Wu,vΦv ∗au

26/39 18.04.2024 TheH∞ performance group



the blaschke group
Main result: parameter blending formula

Φ(u1,v1,a1)Φ(u2,v2,a2) = Φ(u,v ,a)

defines a group

(u,v , a) = (u1,v1, a1) ◦ (u2,v2, a2) =
(u1u2E−a2 (v

∗
2 a1u2),v1v2E−a∗2 (u

∗
2a
∗
1v2),B−a2 (a1)).

where Ea (z ) is the unitary operator for which

Ba (z ) = −Bz (a)Ea (z ), Ea (z ) = Qa (z )NBa (z )

with

Qa (z ) = Dz (I − a∗z )−1Da .

We use the notations Da = (I − a∗a)1/2 and Na = D−1a .
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feedback stability
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d = u + K y

n = Pu + y

(P ,K ) form a stable pair if the elements
of the matrix

(
I K

P I

)−1
=

(
E F

G H

)
=

=

(
(I − KP )−1 −K (I − PK )−1

−P (I − KP )−1 (I − PK )−1

)
are stable.

The feedback loop is stable if the map
w → z is bounded and causal.

w =

(
d
n

)
, z =

(
u
y

)

P

K
n

d

y

u yP

uK

�

C

C�

⇒ stable factorization P = −GE −1 = −H −1G (K = −F H −1 = −E −1F )

Projective geometry is a natural framework of the problem formulation.



internal stability
Projective view
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graph subspace: P = Im
(
Iu
P

)
u inverse graph subspace: K −1 = Im

(
K

Iy

)
y

Homogeneous coordinates: P = NM −1 K = UV −1

P ∼
� (M
N

) �
= {

(
M
N

)
T `T invertible} K −1 ∼

� (U
V

) �
= {

(
U
V

)
T `T invertible}

P

∼

(

I

P

)

P

OP

P

OP
∼

(

I

0

)

OK
∼

(

0

I

)

OK

K

K

K
−

∼

(

K

I

)

Finite points:
Ðf = {P } haM invertible
(Ëf = {K } haV invertible)

Special case: double coprime factorization

(P ,K ) form a stable pair if the inverse Σ̃P ,K of ΣP ,K =
(
M U

N V

)
is stable.

Moreover a d. c. factorization ΣΣ̃ = I determine a stable pair (P ,K0).



projective geometry
Finite points

Projective geometry formalizes the central principles of perspective: parallel lines meet at infinity.
Introducing a special hyperplane two subspaces are parallel if they have the same intersection
with this special hyperplane.
Special case: double coprime factorization

stability of the pair (P ,K ) means that ΣP ,K =
(
M U

N V

)
has a bounded causal inverse – assuming

a double coprime factorization.
In homogeneous coordinates defined by the splitting induced by the hyperplane a point

P = [

(
M

N

)
] is finite ifM is invertible.

Equivalence classes of finite points Ðf are the plants P represented by P = [
(
M

N

)
].

Controllers K = UV −1 are described by the inverse relation (inverse graph), i.e., K = [

(
U

V

)
].

30/39 18.04.2024 Feedback stability: a geometric view



projective group: möbius transformation
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Projectivity: action of S ∈ GL(U ⊕ Y) on Ð

S =

(
A C
B D

)
and P ∈ Ð the map P S = [P S ] where

P S =

(
P S1
P S2

)
= S

(
P1
P2

)
=

(
AP1 + CP2
BP1 + DP2

)
.

Projectivities of Ð form a group under composition.

If P is a finite point and P S is also finite, then(
I
P S

)
=

(
I

(B + DP )(A + CP )−1

)
.

Möbius transformation: restriction of S to the finite points Ðf
MS (P ) = (B + DP )(A + CP )−1.

b

b

b

b
b

S

MS

P P S

P P S

O

O

Pf

Pf

D�

For P = 0P we haveMΣP ,K (0P ) = (N +V 0P )(M +U0P )−1 = NM −1.

Möbius transform inherits the group
structure of the linear operators:
MS2 ◦MS1 = MS2S1



internal stability: geometric property
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P = MΣP ,K (0P ) for every ΣP ,K and the zero plant is stabilized by the entire stable set, and only by that set. The

additive group of the stable plants induces the projective subgroupGs = {
(
I Q
0 I

)
}. For a fixed stable point

(P ,K0), i.e., Σ = ΣP ,K0 , the groupGP = ΣGsΣ
−1 keeps P fixed and keeps invariant the stability property of the

pairs (P ,K ). The stabilizing controllers are described by

K = MSQ (K 0) = MΣ(Q ), SQ ∈ GP ,

i.e., the well-known Youla parametrization
Kst ab = {K ` K = (U +MQ )(V + NQ )−1,Q stable}.

b

b

b

0 ∼
(

I

0

)

0 ∼
(

0

I

)

Q ∼
(

Q

I

) b

b b

b

b

0 ∼
(

I

0

)

0 ∼
(

0

I

)

Q ∼
(

Q

I

)

(
M U

N V

)

P ∼ P

K ∼ K



controller blending
Indirect approach
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(P,K0) (P,K)

(0P, 0K) (0,Q)

MΣ̃P
(K)

τQ

MΣP
(Q)

M
ΣP

((M
Σ̃P

(K0) +M
Σ̃P

(K )))

Indirect blending:

0K = MΣ̃(K0), K = MΣ(Q ),
K = K1 +(P ,K0) K2 =

MΣ

(
MΣ̃(K1) +MΣ̃(K2)

)
The unit element is K0 which defines Σ.

We have a parameter spaceÑ, and a group of automorphisms associated to this space formed
by simple translations Q 7→ τQ , with

τQ =

(
I Q

0 I

)
, τQ1τQ2 = τQ1+Q2

While the group homomorphism between the composition of translations and the addition of
parameters is trivial, the mere addition on the Youla parameter level does not lead, in general,
to a "simple" operation on the level of controllers.



controller blending
Direct approach – semigroup
The observation (

I K

P I

)
=

(
I 0
P I

) (
I K

0 I − PK

)
,

suggests to define the controller blending through(
I K

P I

)
=

(
I 0
P I

) (
I K1
0 I − PK1

) (
I K2
0 I − PK2

)
.

It turns out that on controllers the corresponding operation is

K = K1(I − PK2) + K2 = K1 �P K2.

The unit of this operation is the zero controller K = 0K and the corresponding inverse elements
are given by K �P = −K (I − PK )−1.
if 0K is not a stabilizing controller: it is only a semigroup.
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direct approach
Group homomorphism
By using the notation (

I K

P I

)
=

(
I 0
P I

) (
I K

0 I − PK

)
= RPT

(P )
K

we can express these facts in a more formal term as follows:

T (P )
K1
T (P )
K2

= T (P )
K1�PK2

and

K = M
RPT

(P )
K
R−1
P
(0K ).

In this case the group homomorphism between the composition of translations and the addition
of the corresponding parameters is nontrivial.
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controller group
Strictly stable controllers

If there is a stabilizing controller K0 such that

K �P0 = −K0(I − PK0)−1 = Σc0

is also a stabilizing controller, then (ΣP ,�P ) with

K = K1 �P K2 = K1 �P K
�P
0 �P K2 =

= K2 + (K1 − K0)(I − PK0)−1(I − PK2)

is a group with a unit (K0). The corresponding inverse is given by

K �
−1
P = K0 − (K − K0)(I − PK )−1(I − PK0).

This may happen only if the plant is strongly stabilizable: the group of strongly stable controllers.
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conclusion

Development of the Bolyai-Lobachevsky geometry, as the first instance of non-euclidean geome-
tries, had a great impact on the evolution of mathematical thinking. Non-Euclidean geometry
has turned out to be more than just a logical curiosity, and many of its basic features continue
to play important roles in several branches of mathematics and its applications.

We put an emphasize on the Kleinian concept of the geometry and its direct applicability to
control problems: through the analogous of the classical geometric constructions not only might
get hints for efficient algorithms but also obtain tools for controller manipulations that preserves
the property at hand (stability), called controller blending.

Geometry – and also group theory – does not deal with the existence and the actual nature of
the objects that are the primitives of the given geometry but rather captures the "rules" they
obeys to. It responds to the question "what can be done with these objects" rather than "how to
synthesise the object having a given property (e.g., stability)".
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conclusion

It is very useful to formulate a control problem in an abstract setting and then translate it into
an elementary geometric fact or construction. The basic global geometric structures that are
related to feedback stability are closely related to generalised projective geometric ideas. On
this projective geometric background one can solve solve the controller blending problem in a
general setting.
As a result, an operation is given under which well-posedness is a group while stability is a
semigroup. Moreover, an operation was given that makes controllers with strongly stable property
a group.

For the blending problem associated to a suboptimalH∞ design the relevant geometric structure
is related to the hyperbolic geometry while the corresponding group structure is an extension of
the so called Blaschke group.

Besides the educative value a merit of the presentation for control engineers might be a unified
view on control problems that reveals the main structure of the problem at hand and give a
skeleton for the algorithmic development.
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finally

Thank You for Your Attention!
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