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Summary

Networks are essential parts of our natural and physical world. They are every-
where around us and have penetrated deeply into our contemporary society. Phys-
ical linear networks consist of interconnected systems that exist in the natural and
physical world. Some examples of these networks are: interactions in ecological
systems; industrial process plants that manufacture chemicals; pipelines for trans-
porting liquid or gas over long distances; manufacturing and testing integrated
circuits and printed circuit board assemblys (PCBAs); and robots communicating
with each other. In recent decades, vast technological developments have led to
larger and more complex systems and thus, it has become more valuable to study
dynamic networks and understand their behaviour. This is conducted by exploit-
ing the laws of nature and by utilising experimental data to build a mathematical
model. In this thesis, we pursue the objective of: Developing model structures
and identification tools for parameter estimation in physical linear networks.

In this thesis, we focus on linear physical networks that are characterised by
symmetric diffusive couplings. A diffusive coupling is a relationship between
manifest signals that is based on sharing information instead of a predefined direc-
tion of information flow. This type of interconnection is more natural for physical
networks, while input-output relations are more natural for digital systems, such
as controllers. The ultimate goal is to solve identification problems for physical
networks, such as topology detection and the identification of all dynamics or only
a selection of dynamics that are present in the network. Before going into network
identification (Part II), a suitable network model is being determined (Part I). Phys-
ical linear networks are often connected to digital systems, such as controllers,
leading to mixed dynamic networks, which are studied as well (Part III).

Part I focuses on finding an appropriate model structure for describing physical
linear networks. In Chapter 2, we examine numerous existing model structures
and we explore whether one of them is appropriate for modelling physical linear
dynamic networks for identification purposes. A model structure is suitable for
this aim if it is able to incorporate both the characteristic properties of physical
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linear systems as well as the network interconnection structure. We discuss these
aspects and various properties, including the generality of the model structures and
relations between the model structures. Based on this, the three most promising
model structures are selected for further investigation.

In Chapters 3 and 4, these model structures are further studied and graphical
aspects receive significant attention. We study the level on which networks can
graphically be represented and how to move from one level to another by including
or excluding topological information. This leads to an extension of the concept of
immersion to a single-path and a multi-path version. We find mappings between
the interaction-oriented model focusing on subsystems (often used in control)
and the module representation focusing on signals (often used in identification).
This directly connects these network models to each other and therefore, also the
network control and identification fields. In addition, we develop an extended
version of the module representation by allowing for self-loops and multiple-input
multiple-output (MIMO) modules. This module dynamic network is capable of
describing state-space systems, such that a state-space form and a module repres-
entation can always be converted into each other without losing any information.

None of the existing model structures that we examine is sufficiently suitable
for modelling physical linear dynamic networks for identification purposes, be-
cause none of them is able to incorporate both the characteristic properties of
physical linear systems and the network topology. Therefore, in Chapter 5, we
develop a new model structure that meets the aforementioned specifications. This
diffusively coupled linear network model is developed in a polynomial framework
and possesses the specific structural properties that the polynomial matrix describ-
ing the internal network dynamics is symmetric (reflecting the symmetric nature
of the linear diffusive couplings) and nonmonic. These structural properties have
to be accounted for in the identification procedure.

Now that the network model is decided on, we proceed with the identification
of physical linear networks, to which Part II is dedicated. First, we gather relevant
identification tools from the literature in Chapter 6. Then, in Chapter 7, the (un-
directed) diffusively coupled linear network model is translated into the (directed)
module representation, to which network identification tools from the literature
are applied. In this way, the identification of all dynamics in the network or a
selection of dynamics is possible. However, in this framework, the structural prop-
erties of physical linear networks lead to too strict identifiability conditions and
expensive experiments. Therefore, it is more attractive to preserve the polynomial
representation and develop identification tools for this network model structure.

This is exactly what Chapter 8 is devoted to: developing identification tools for
the diffusively coupled linear network model. By combining the ideas and tools
for the identification of polynomial models and dynamic network identification,
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we develop identification tools, results, and algorithms for the identification of all
dynamics (and the topology) for structured polynomial models. The conditions
for identifiability, and consequently for consistent identification, are rather simple
compared to the ones we derived in Chapter 7 for the module framework. The
experimental condition reduces to a single excitation signal in the case that all
manifest node signals are measured. The simplicity of the conditions is entirely
due to the structural conditions that can maximally be exploited in the polyno-
mial framework. We solve the resulting nonconvex optimisation problem with a
multistep algorithm that leads to consistent results.

In Chapter 9, we consider the identification of a subnetwork. The experi-
mental setting is again very simple due to the characteristic properties of physical
linear networks. For the identification, only the node signals of the subnetwork
and their neighbour node signals are required and all other node signals can be
discarded. This means that subnetwork identification can be solved really locally
in the network. The identification procedure consists of identifying the immersed
network (in which only the required node signals are described) from which the
dynamics of the subnetwork are obtained.

In the previously mentioned identification results, it is assumed that all node
signals can be measured, leading to the requirement of a single excitation signal.
In Chapter 10, the experimental conditions are relaxed by considering the situation
in which not all node signals can be measured. Analysing the uniqueness of the
network description leads to a flexible instrumentation scheme for identifiability.
For identifiability of the complete network, it is sufficient that each node signal
is equipped with either a sensor or an actuator and that one node signal has a
colocated sensor-actuator pair.

After deriving all these identification results for physical linear networks, we
concentrate on physical linear networks that also include directed dynamics, such
as digital controllers, in Part III and Chapter 11. Adding directed interconnections
to (undirected) physical linear networks destroys the symmetry property of the
network model. This is accounted for in the identification procedure by adapting
the identifiability conditions and the identification procedure. Suggestions for
algorithms are presented and the implementation is saved for the future.

Finally, Chapter 12 concludes the thesis. It contains an overview of the main
findings and their implications, which lead to answers to the research questions
of this theses. Subsequently, a general conclusion is given regarding the main
research objective. In this respect, the newly developed network model for the
identification of physical linear networks is described and the developed identific-
ation tools are summarised. Lastly, suggestions for future research are given.
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1 | Introduction

Nowadays, systems become more complex and more systems become intercon-
nected. In addition, more precise descriptions of systems and networks are
required. In system identification, or data-driven modelling, mathematical sys-
tem representations are determined from data. The techniques for open-loop
and closed-loop identification have been extended to directed dynamic networks,
where signals of interest are connected through directed dynamic modules with
an input-output structure. However, physical networks consist of interconnec-
ted physical subsystems that share information. These networks do not possess
any predefined directions of information flow. On the other hand, identification
methods for physical systems do not incorporate the interconnection structure
of networks. In this thesis, we develop model structures and identification tools
for parameter estimation in physical linear networks. A modelling framework is
set up for identification in physical networks, while incorporating the physical
characteristics and interconnection structure. This research includes various
aspects, such as determining a proper modelling framework; finding conditions
under which identification leads to unique results; identifying the complete
dynamics of the network, with known or unknown interconnection structure;
identifying local dynamics in the network; designing the experiment; developing
algorithms; and including directed links. This introductory chapter presents
physical network models in a broad sense. The main motivation and challenges
are presented and it concludes with the objectives of each of the subsequent
chapters.

1.1 Systems

Science is the ‘knowledge about the structure and behaviour of the natural and
physical world, based on facts that you can prove, for example, by experiments’
(Oxford University Press, 2023). This means that science helps us to understand

1
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the extremely complicated world. The knowledge of science can, for example,
be used to predict what the future will bring us and even to influence upcoming
events. The ultimate goal of science would be to achieve a complete understanding
of the enormous complexity of the natural and physical world, preferably by the
simplest general principles.

How to improve our understanding of the world? To improve our understand-
ing of the world, we need to expand our knowledge by contributing to science.
This can be achieved by studying the properties of a system. A system is ‘a group
of things that work together in a particular way or for a particular purpose’ (Oxford
University Press, 2023). So, the system is the object or the collection of objects
that we want to study. Everything excluded from the system is called the environ-
ment and represents ‘the conditions in which someone/something exists’ (Oxford
University Press, 2023). If this system is ‘always active, changing, or making pro-
gress’, we refer to it as being dynamic and otherwise it is static (Oxford University
Press, 2023). In particular, we will consider dynamic systems as systems whose
state varies over time and depends on the past. In other words, dynamic systems
have a memory, while static systems are memoryless and contain instantaneous
relationships between quantities.

Example 1.1 (Throwing a dice). The outcome of throwing a dice is a static
system, with the outcome of the last throw as its state. The state only depends
on the outcome of the current throw and does not depend on the outcomes
of the previous throws, because each throw is independent. At each throw,
the chance of a specific outcome is the same, no matter what the outcomes
of the previous throws were (hence, it has no memory).

Example 1.2 (Conductor). A conductor (or resistor) is a static system,
because its resistance (𝑅) describes a proportional relationship between
the voltage drop (𝑉) and the current flow (𝐼) through the conductor by
Ohm’s law (𝑉 = 𝐼𝑅). Even though the voltage drop and current flow may
vary over time, their ratio remains the same at all times. At each time
instant, the current flow can be determined from the resistance and the
voltage drop (and vice versa), without using any observation from the past.

Example 1.3 (Throwing a dice). The total sum of the outcomes of throwing
a dice is a dynamic system, with the total sum of the outcomes of all throws
as its state. The state depends on the outcome of the current throw and on
the outcomes of all previous throws. The state remembers the sum of all
outcomes (hence, it has a memory) and adds the new outcome to it.
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Example 1.4 (Inductor). An inductor (or coil) is a dynamic system, because
it stores energy in a magnetic field when electric current flows through it.
Storing energy in the buffer is a kind of memory of the inductor. The current
flow generates a magnetic field with a magnetic flux that is proportional to
the inductance. Any change in current flow creates a change in magnetic flux,
which induces a voltage across the inductor. By Faraday’s law of induction,
this induced voltage is proportional to the (negative) rate of change of the
current flow. In other words, the induced voltage is time-dependent on the
current flow.

Example 1.5 (Ecological system). An ecological system, consisting of
multiple animal species that are in a predator-prey relationship, is a dynamic
system. The number of animals of a specific species depends on the birth
and death rates of that species and also on the number of animals of the
other species over time. If there are many predators, the prey will be eaten
(resulting in less prey and food shortage for the predators, so they will die
out) and if there are few predators, the prey can reproduce (resulting in
more prey and food surplus for the predators, so they will reproduce).

How to study a system? We can study a system by performing experiments
on it and by using the experimental data to answer questions about the system’s
properties. Experiments are performed by applying some input to the system,
the system will react to that and respond with an output. In this way, we can
investigate how the system responds to different input signals and study the input-
output behaviour of the system. In many systems, there are multiple options
for choosing the input and output signals. For example, for the conductor in
Example 1.2, a voltage can be the input signal with the current flow as the output
signal or the other way around. Choosing different input and output signals results
in different reactions of the system. The reaction from voltage to current is the
exact opposite/inverse of the reaction from current to voltage. Therefore, the
input-output behaviour of a system is dependent on the choice of input and output
signals and thus, on the experiment that is performed on the system.

How does a system behave? In the natural and physical world, systems just
exist. They can be seen as systems that share signals with each other, while they do
not consist of signal flows or cause-effect relationships. Therefore, these systems
are considered just like that: the way they are present in the world. These so-called
physical system ‘acts according to the laws of nature or what is likely’ (Oxford
University Press, 2023). Hence, their behaviour is independent of the experiment
that is performed on it and therefore, also studied without labelling any signals
as ‘input’ and ‘output’ or as ‘cause’ and ‘effect’ (Polderman and Willems, 1998;
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Willems, 2007, 2010). This is further discussed in Section 1.7.

1.2 Networks

What has changed? Scientists have been studying all kinds of systems for many
centuries. These systems have become larger and more complex with the tremend-
ous technological developments of the last decades. Nowadays, many systems
consist of several coupled subsystems that work together. Instead of considering
a single system, it becomes more natural and more valuable to also consider the
interactions with other systems. Think, for example, about communicating cars in
the automotive industry, electrical and mechanical devices including ever-smaller
chips with ever-more components, more extensive and more complex manufac-
turing systems, and the sewage system and power grid. In addition, detailed
information is included to a greater extent to improve the understanding of the
system. This happens, for example, in biological and medical processes, in which
an increasing amount of influencing factors are incorporated; and in ecological
systems , as in Example 1.5, in which an increasing number of species and envir-
onmental factors get included.

Another development that took place over the past few years is that sensors have
been improved. They have become cheaper, more accurate, and more versatile,
making data acquisition more easy. As a result, many different types of signals
can be measured within a single system. The relations among those signals can
also be seen as subsystems that describe the interaction between the signals.

What is a network? These large systems, or systems of systems, are called
networks: ‘groups of things that are connected to each other’ (Oxford University
Press, 2023). With a dynamic network, we mean a system that consists of intercon-
nected dynamic subsystems. That is, a dynamic network is a system of dynamic
systems. In particular, a physical network is a dynamic network with subsystems
that share information through their interconnections rather than having inputs
and outputs or directed cause-effect relationships. The interconnection structure
of the network is referred to as the topology of the network.

Example 1.6 (Maps). Maps, such as flight maps and road maps, are static
networks that display graphs of travel paths and their intersection points.
These graphs give an overview of all possible travel options and are useful
for making a travel route.
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Example 1.7 (Phylogenies and pedigrees). Phylogenies and pedigrees are
one of the oldest networks that exist. They display the genetic relations
among groups of organisms and individuals, respectively (Morrison, 2016).
Phylogenies help in understanding how species evolve over time and pedi-
grees do the same for individual genetic information.

Example 1.8 (Digestive system). The digestive system in human bodies is
a dynamic network as it consists of several organs (with time-dependent
behaviour) that interact with each other. Each organ can be seen as a
separate system that is connected to other organs to form the complete
digestive system.

Example 1.9 (Electric circuit). An electric circuit consisting of intercon-
nected (voltage or current) sources, resistors, capacitors, and inductors is
a (linear) physical network. These networks can be analysed using, for
example, Kirchhoff’s voltage law, Kirchhoff’s current law, and Ohm’s law.
The interesting signals are typically the voltage drop and current flow across
the components.

1.3 Models

How to study a system? As discussed before, we can study a system by per-
forming experiments on it. However, it is not always possible to perform these
experiments, for example, because it is too expensive, too dangerous, or because
the system still has to be designed. Instead of using the actual system, we can
create a model: ‘an object that is a copy of the system’ or ‘a simple description,
especially a mathematical one, of a group of complex systems or processes, used
for understanding or explaining how something works’ (Oxford University Press,
2023). Once we have created the model, it can be used to study the properties of
the system without using the actual system itself. According to Ljung and Glad
(1994), that is really what science is about: ‘Constructing models for a slice of
reality and studying their properties’.

What kind of models do exist? Models do exist in many forms; for example,
consider the following ones (Ljung and Glad, 1994; Ljung, 1999): In our daily
lives, we use mental models at the back of our heads to make all kinds of predictions
and decisions. Based on the experience we have gained throughout our lives, we
have all kinds of expectations for what will happen if we do or say something.



6 Introduction

Physical models are used to imitate a system and are visible or touchable, such
as a design, scale model, prototype, mould, and template. Every day, we use
verbal models to explain or describe something with words. Similar, we use
graphical models to illustrate or characterise something with visuals, such as
figures or pictures. In science, we use mathematical models to explain or describe
relationships among quantities with mathematical (and analytical) relations, such
as equations. Sometimes software models, such as digital computer programmes,
are used to capture the behaviour of a system. The graphical and mathematical
models are the ones that will be considered further.

What information is in the model? The model needs to contain only the aspects
of the system that are essential for answering our questions. That means that the
system’s information that is captured by the model thus depends on the purpose of
our study: on what we want to achieve. In addition, only the system’s information
that is observed from the outside world can be captured by the model. A model
can never capture all the information. Even though the model might be a very
good representation of the system, it is never an exact copy of the true system. We
should always keep this in mind when we are using models to learn to understand
the world.

What are the building blocks of a model? When building a model of a
system, one has to set the boundaries of the system: one has to decide on what is
captured by the model and what is considered to be the environment. The system
interacts with the environment across the boundaries. The environment can excite
the system through known signals, which are referred to as external excitation
signals, and the system can be subject to unknown signals from the environment,
which are referred to as disturbance signals. Furthermore, the environment can
observe some signals of interest from the system.

What is the purpose of a model? A model is used to study a system. So,
what can we actually learn about the system? First of all, building the model
gives insight into the system, as formulating the mathematical relations helps to
understand the behaviour of the system. Once the model is available, it can be
analysed and used for several purposes. A model can be used to estimate quantities
that cannot be measured in the system. A model can also be used to make
predictions about future outcomes and to see what is likely to happen. Sometimes
these predictions are made based on simulations. Then many experiments are
performed on the model to see how it responds. Simulations can provide much
information on the behaviour of the system. Using the model, we can monitor the
behaviour of the system by comparing the behaviour of the model and the system.
If the (predicted) outcome of the model is different from the actual outcome of
the system, this new information can be used to improve the model. However,
this difference can also indicate that the system itself has changed, for example,
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because a component or interconnection has been broken. In this way, the model
can be used for fault detection. The next step would be to diagnose the underlying
cause of the faults. A model can also be created for systems that do not exist yet.
The purpose of the model is then to design the system such that it shows the desired
behaviour. In a similar way, the behaviour of an already existing system can be
improved by, for example, (re)designing specific components in the system. The
system can also be influenced by the environment in order to control its behaviour,
where control is ‘the power to influence a process or a course of events’ (Oxford
University Press, 2023). Then the purpose of the model is to design the controller,
such that the controlled system (the system and the controller together) shows the
desired behaviour.

Example 1.10 (Prediction). In weather forecasting, a mathematical model
is used to describe the behaviour of the atmosphere and the exchanges
with its environment, the Earth and space. The purpose of this model is
to predict the behaviour of the atmosphere and thus predict the weather
(i.e. atmospheric state at a specific point in time and geographic location)
(Coiffier, 2011).

Example 1.11 (Fault detection and diagnostics). In medical diagnostics,
a patient’s health is examined by taking several tests. These tests can
be performed through questionnaires, scans, medical imaging, and tests
on samples gathered from the patient’s body. Any deviation from what is
expected indicates a symptom or a ‘fault’. A doctor or medical specialist
can look for the cause of the symptoms, which leads to the diagnosis of an
underlying disease or condition.

Example 1.12 (Control). In automotive industry, adaptive cruise control
can continuously adjust the speed of a vehicle while maintaining a safe
distance from the preceding car. It adjusts the throttle position to accelerate
and decelerate in order to maintain the desired cruise speed (selected by
the driver) and safety distance (preset by the manufacturer) (Nice, 2021).

How to build a mathematical model? A mathematical model can, for example,
be obtained by one of the following two approaches: In the first method, the model
is derived by utilising the scientific knowledge that is available in the literature and
the experience of experts. The laws of nature and other principles are exploited
to capture the behaviour of the system. Therefore, this principle-based method
is referred to as first-principles modelling. In the second method, the model is
constructed by utilising the observations of the system. The experimental data are
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the driving force behind the model. Therefore, this data-based method is referred
to as data-driven modelling.

How informative is the model? The insight the model gives into the behaviour
of the system can be of different levels. Some models are clearly interpretable
in terms of their behaviour and predictions and the relations among different
quantities. These models are referred to as white box models, because everything
is crystal clear. Other models are not interpretable at all. As one is completely
in the dark about the interpretation of the model, these models are referred to as
black box models. Of course, there are also models that are partially interpretable
and they are referred to as grey box models for obvious reasons.

How accurate is the model? Once the model has been built, it is interesting to
know how well it captures the behaviour of the system. In order to investigate how
precise and reliable our model is, the behaviour of the model and the system can
be compared. The differences can be evaluated using various validation tools. As
mentioned before, the model can never be an exact copy of the system and contain
all the information. Therefore, every model is only valid in a limited range of
conditions. Sometimes, this domain is large enough to capture all the interesting
behaviour, but sometimes the range of conditions limits the domain of where the
model is an accurate representation of the system. We should always be aware of
this limited range and possibly limit the range of operation of the system.

1.4 Modelling of physical linear networks

1.4.1 Modelling

What is the purpose of a network model? Similar to a general model, a network
model is used to study a network. So, similar purposes hold for network models,
such as understanding, estimation, prediction, simulation, monitoring, fault detec-
tion, diagnosing, system (re)designing, and controller designing. As networks are
more comprehensive than general systems, these objectives are also broader. The
objectives can be formulated for the complete network, for only a single system,
for a subset of systems, and/or for (a part of) the interconnection structure. These
additional considerations make studying networks different and more extensive
than studying single systems.

How to model a network? After setting the boundaries of the network, the
network itself can be modelled. Basically, there are three approaches for modelling
a network. First of all, one can consider the network to be a single system. Then all
behaviour in the network is merged. In this way, the complete internal structure
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Figure 1.1: Graph with vertices 𝑣𝑖 and directed edges (lines with a single arrow),
bi-directed edges (lines with two arrows), and undirected edges (lines without
arrows).

of the network disappears and all existing modelling techniques can simply be
applied. A second method for modelling a network is by selecting the interesting
signals of the network and relating them to each other. In this way, a network
is viewed as an interconnection of signals. There are numerous ways of relating
the interesting signals to each other and therefore, many interpretations of the
topology. The topology together with the relations among the signals contain the
full information of the network. A third technique for modelling a network is
by viewing it as an interconnection of subsystems. Then each subsystem can be
modelled individually and the relations among the subsystems can be modelled
by analysing the interconnections (Willems, 2007, 2010). The models of the
subsystems and interconnections together describe the complete network. In this
way, the internal structure of the network remains present in the network model.
Both the second and third methods require more extensive modelling procedures
than the first method.

How to represent a network model? As just discussed, networks can be seen
as signals or subsystems that are interconnected with each other. The interconnec-
tion structure makes a crucial difference with single systems. Therefore, network
models consist of two parts: a graphical representation and a mathematical rep-
resentation of the network model.

A graphical network model, or graph, is a visualisation of the interconnection
structure of the dynamic network. It consists of vertices that are interconnected
through edges. Figure 1.1 shows an example of graph. There are roughly two
options for making a graph of a dynamic network: the dynamic subsystems are
placed at the vertices, while the edges represent the information or signals that
are shared between the subsystems; or the signals of interests are placed at the
vertices and the edges represent the dynamics that relate them. Depending on
what the edges mean, they can either be directed (pointing from one vertex to
another one), bi-directed (pointing from one vertex to another one and back), or
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undirected (connecting two vertices without specific directions), as illustrated in
Figure 1.1.

A mathematical network model describes the behaviour of a dynamic network
with mathematical relations. It captures the dynamics of the subsystems and their
interconnections. These mathematical relations can, for example, be given by
functional dependencies, differential equations, difference equations, or transfer
functions.

What network models are available? It is conceivable that networks occur in
numerous research areas. All these networks represent a diversity of processes
with their own objectives. They have different priorities in terms of what is
important and therefore, they are also differently modelled. As a result, various
network models are available in the literature. The choice of the network model,
of course, influences its graphical and mathematical representation. An extensive
discussion on network models is presented in Chapter 2. Here we provide a brief
overview of the broad range of linear time-invariant (LTI) network models.

1.4.2 State-of-the-art network models

Physical systems are often modelled by using first-principles modelling by using
the laws of nature (Young and Freedman, 2012). Energy is an important physical
quantity and therefore, there exist many energy-based models, such as bond-
graph models, (multi)port models, and Hamiltonian models (Paynter, 1961; van
der Schaft and Jeltsema, 2014). The characteristic symmetry property of many
linear physical components is very clear in first-order and second-order diffusively
coupled models (Jones, 1985; Ren et al., 2005; Cheng et al., 2017). Many of these
models lead to polynomial descriptions.

Example 1.13 (Mechanical system). A mechanical mass-spring-damper
system, or the rotational analogy, is modelled by first-principles modelling
by using the constitutive laws of the components and Newton’s second law
or Euler’s second law (Young and Freedman, 2012).

Example 1.14 (Electrical circuit). An electrical resistor-inductor-
capacitor (RLC) circuit is modelled by first-principles modelling by using
the constitutive laws of the components and Kirchhoff’s laws (Balabanian
and Bickart, 1969).

Single system models can be used to model complete networks, if the network
is viewed as a single system. The polynomial models of Ljung (1999) and Hannan
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and Deistler (2012) are very popular for modelling systems for identification
purposes. System identification of these models is therefore extensively studied
(Ljung, 1999). Second-order (vector) differential equations are often used to
model physical systems (Ljung and Glad, 1994; Young and Freedman, 2012).
For identification purposes, this model is often rewritten in a state-space form
(De Angelis et al., 2002; Lopes dos Santos et al., 2015). State-space models
themselves are also commonly used for modelling (and identification of) physical
systems (Mesbahi and Egerstedt, 2010; Verhaegen and Verdult, 2012).

Interconnections of signals can be modelled in numerous ways. In probabil-
istic models, each vertex represents a single time instant from a time series of a ran-
dom (or stochastic) variable and the edges represent the conditional dependencies
among the stochastic variables. The complete graph shows the joint distributions,
for example, as in the (dynamic) Bayesian network (Koller and Friedman, 2009;
Sucar, 2021). Closely related are structural equation models, which have vertices
representing a single time instant from a time series of a variable and edges rep-
resenting the functional dependencies among the vertex variables (Pearl, 2000).
In vector autoregressive models, the vertices represent (time series of) variables
and the edges represent the causal relations among them (Tsay, 2013). Transfer
function models also have vertices that represent (time series of) variables, but
now the edges represent transfer function relations among the vertex variables.
Some examples are the dynamical structure function (Gonçalves et al., 2007), the
module representation (Van den Hof et al., 2013), and networks with Wiener filters
(Materassi and Innocenti, 2010). State-space models have their states as vertices
and the first-order relations between them at the edges.

Interconnections of subsystems can also be modelled in various ways. The
subsystems at the vertices can be modelled by any modelling approach for dynamic
systems (Lunze, 1992). The edges represent the input and output signals coming
from and going to other subsystems. An alternative way of modelling the subsys-
tems is through the behavioural approach (Willems, 2007, 2010). Then the edges
represent signals or quantities that are shared among the subsystems. Hence, this
method does not make use of input-output structures in the subsystems.

Different levels of topology can be incorporated into the network model.
One can be very precise and include all the structural (and dynamical) details in
the network model. On the other hand, one can be very loose and exclude all
topological information and describe the complete network by a single system. In
between these two extremes are the models that interconnect signals or subsystems.
Research has been done on similarities and differences between these network
representations at different levels of detail (Yeung et al., 2010, 2011a; Chetty and
Warnick, 2015; Warnick, 2015).

Which dynamic network model to use for identification? Sometimes, state-
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space models are used for the identification of dynamic networks (Verhaegen
and Verdult, 2012). However, most often, transfer function models are used for
the identification of dynamic networks and the most popular one is probably the
module representation (Van den Hof et al., 2013). The module representation
is a generalisation of the classical closed-loop system. In the graphical network
model, the (measurable) signals of interest are located in the vertices and the
dynamics that relates these signals is captured in so-called modules in the edges.
The modules are black boxes that mathematically describe the dynamics through
transfer functions. These modules can be seen as subsystems, like the plant
and controller in a closed-loop system. The edges represent information flow
and therefore, they are directed. The vertices are summation points that sum
all incoming signals together to create the signal of interest, which can often be
measured and is referred to as the node signal.

1.5 Identification of physical linear networks

1.5.1 System identification

What is system identification? System identification deals with data-driven model-
ling problems in dynamical systems. This means ‘building mathematical models
of dynamical systems based on observed data from the system’ (Ljung, 1999).
For reaching this objective, three basic ingredients are necessary: a data set, a
model set, and a selection criterion or algorithm (Eykhoff, 1974; Ljung, 1999;
Pintelon and Schoukens, 2012). To acquire an accurate model, the data need to
contain sufficient information, the model set needs to be chosen so that it contains
the system, and a proper selection criterion has to be chosen. The validity of the
obtained model is tested using a validation criterion.

The data set contains the signals obtained from the experiment that is per-
formed on the system. These data signals can have several properties that are
important for the subsequent choices. These aspects include the type of excitation
signals (e.g. periodic, random); considerations on the disturbance and noise sig-
nals that might be present; the type of data signals (e.g. deterministic, stochastic);
the behaviour of the data signals in between the samples that are taken (e.g. zero-
order hold, band-limited); discrete-time or continuous-time data; and time-domain
or frequency-domain data.

The model set contains a description of the models that are considered during
identification. Partially, the structure of the models depends on the data. However,
there is much freedom in making various choices about the model structure. Some
options are: the level of detail; white/grey/black box; parametric or nonparametric;
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linear or nonlinear; time-invariant or time-varying; input-output structure or not;
and linear-in-the-parameters or nonlinear-in-the-parameters.

The identification criterion or algorithm selects the best possible model from
the candidate models in the model set. The identification criterion depends
on the data set and the model set. There exist time-domain and frequency-
domain identification methods for both discrete-time and continuous-time data,
such as subspace identification methods, prediction error methods, and Bayesian
approaches.

The validation criterion is used to check whether the selected model properly
describes the data. These tests are often based on the residuals: the part of the
data that is not captured by the model. To judge the accuracy of the model, the
covariance between the residuals and the past inputs and the correlation among
the residuals themselves can be evaluated. For physical systems, the physical
interpretation and feasibility of the estimated parameter values also need to be
considered.

For studying the accuracy of the identification methods, the measures of
bias, variance, and mean-squared-error of the parameters are frequently used.
This study is performed by identifying systems for which the coefficients are
known, after which the identified parameters are compared with the true (known)
coefficients.

1.5.2 State-of-the-art network identification

What to identify of a dynamic network? As dynamic networks are more compre-
hensive than general systems, there are multiple questions regarding identification
that can be raised. These identification problems can roughly be divided into three
main categories.

Topology identification or topology detection concerns the identification of the
interconnection structure of the network. As stated before, the interconnection
structure is what makes dynamic networks different from general systems and
reveals the relations among the subsystems. For topology detection, the network
dynamics is frequently unknown. Several methods have been developed for es-
timating the interconnection structure of a network (Mantegna, 1999; Timme,
2007; Materassi and Innocenti, 2010; Shahrampour and Preciado, 2015; Shi et al.,
2019; Dimovska and Materassi, 2021; van Waarde et al., 2021). Information on
the global network structure is present in the spectral properties of the network
(Mauroy and Hendrickx, 2017).

Full network identification holds the identification of the dynamics of the
complete network. As mentioned before, the complete network can be identified by
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considering it to be a single system. Then, traditional identification approaches can
be applied, such as the ones presented by Ljung (1999); Markovsky et al. (2006);
Pintelon and Schoukens (2012); Verhaegen and Verdult (2012). However, then
the network structure is not incorporated. Some methods use an additional step
to retrieve the network structure from the identified complete network. For state-
space models, these methods use, for example, matrix transformations (Friswell
et al., 1999; Lopes dos Santos et al., 2015) or eigenvalue decompositions (Fritzen,
1986; De Angelis et al., 2002; Mukhopadhyay et al., 2016). For transfer function
models, the topology and dynamic modules can be retrieved through matrix
transformations (Gonçalves and Warnick, 2008; Yuan et al., 2011) or optimisation
steps (Fonken et al., 2020) that lead to consistent and asymptotically efficient
results. Other identification approaches directly incorporate the known topology in
the estimation procedure (Risuleo et al., 2017; Weerts et al., 2018c). Furthermore,
methods that identify both the topology and the dynamics of the complete network
have been developed (Chiuso and Pillonetto, 2012; Hayden et al., 2014).

Local network identification concerns the identification of the dynamics of a
small part of the network, such as a subnetwork or single dynamics (sometimes
referred to as a single module). As dynamic networks consist of many intercon-
nected subsystems, it is natural that only a small part of the network might be
of interest. The target dynamics can be identified from an unstructured complete
network through an indirect method (Gevers et al., 2018; Hendrickx et al., 2019;
Bazanella et al., 2019). However, identifying the complete network dynamics
seems to be excessive and a waste of energy and cost. Another way to obtain local
dynamics is by blocking the target dynamics and performing a local experiment, as
is often done in, for example, in-circuit testing (General Radio, 1984). However,
it is not always desired or possible to block the target dynamics. Therefore, local
identification methods have been developed that operate on the complete network
(Van den Hof et al., 2013; Haber and Verhaegen, 2014; Linder and Enqvist, 2017;
Ramaswamy et al., 2019; Materassi and Salapaka, 2020; Ramaswamy and Van
den Hof, 2021; Jahandari and Materassi, 2022a).

Additional identification aspects that have been investigated with regard to the
above three main identification problems are the following:

Data informativity considers the information that is present in the experimental
data, which should be sufficient for obtaining a solution to the posed identification
problem. For dynamic networks, this often leads to spectral conditions on internal
or external signals (Gevers and Bazanella, 2015; Gevers et al., 2018). Data
informativity has also been studied further for specific identification methods
(Van den Hof and Ramaswamy, 2020; Bombois et al., 2023; Van den Hof et al.,
2023).

Network identifiability considers the uniqueness of the solution to one of
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the main network identification problems described above. For this, a unique
representation of the network is necessary (Bottegal et al., 2018; Weerts et al.,
2020). If multiple solutions are available, it is unclear which one corresponds to
the true system. This makes it difficult to interpret the results. A distinction is made
between global network identifiability (the ability to distinguish between all models
in the model set) (Weerts et al., 2018b), generic network identifiability (the ability
to distinguish between almost all models in the model set) (Hendrickx et al., 2019;
Bazanella et al., 2019), and generic local identifiability (Legat and Hendrickx,
2020) (the ability to distinguish between all models in a neighbourhood in the
model set). Network identifiability has been studied for full network identification
(Adebayo et al., 2012; Hayden et al., 2016, 2017; van Waarde et al., 2018; Weerts
et al., 2018b; van Waarde et al., 2020) and local network identification (Hendrickx
et al., 2019; Bazanella et al., 2019; Shi et al., 2023).

Scalable algorithms are necessary for solving identification problems in large
networks. The optimisation problems that are formulated for solving the iden-
tification problems are often nonlinear-in-the-parameters, which are difficult to
solve, especially for large networks. Therefore, simple algorithms with relatively
short computation times are required, such that they can easily be applied to large
networks. Kernel-based methods can be used to decrease the computation time
by decreasing the number of parameters (Pillonetto et al., 2014) and they can also
be applied to identification in dynamic networks (Chiuso and Pillonetto, 2012;
Risuleo et al., 2017; Everitt et al., 2018; Ramaswamy et al., 2018). Methods for
improving the numerical calculations are discussed by Ljung (1999) and include
convex recursive algorithms. More recent developments are tailored to dynamic
networks and consist of multiple convex (least-squares) steps that can lead to con-
sistent and asymptotically efficient results (Weerts et al., 2018a; Galrinho et al.,
2019; Dankers, 2019; Fang et al., 2021; Fonken et al., 2022).

Experiment design includes the allocation of excitation actuators and the posi-
tioning of measurement sensors. The excitation and measurement signals need to
be selected in such a way that the identification objective can be achieved (Gevers
and Bazanella, 2015; Bazanella et al., 2017; Cheng et al., 2022, 2023). This also
leads to the question of how to deal with unmeasured signals in a network. Typ-
ically, this is done by removing the unmeasured signals from the representation
through a Gaussian elimination procedure, such as Kron reduction in electrical
circuits (Kron, 1949; Dörfler and Bullo, 2013; Dörfler et al., 2018) and immer-
sion (Dankers et al., 2016) or abstraction (Woodbury et al., 2017; Woodbury and
Warnick, 2019; Weerts et al., 2020) in dynamic networks. Another topic for ex-
periment design is the design of the excitation signals themselves. These signals
should be rich enough to induce informative experimental data, which is also
related to data informativity (Mareels, 1984).
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Software has been developed to make system identification theory accessible
and easy to use. A system identification toolbox has been developed for dy-
namic system modelling, time-series analysis, and forecasting (Ljung, 1999; The
Mathworks, Inc., 2021). A software implementation for system identification of
dynamic systems in the behavioural approach has been developed accompanied
by Markovsky et al. (2006). In addition, a frequency domain system identifica-
tion toolbox for Matlab has been developed to support Pintelon and Schoukens
(2012). For data-driven modelling in dynamic networks, a Matlab app and
toolbox are under development (SYSDYNET, 2023).

Other objectives in identification of dynamic networks are: considering known
dynamics (Dreef et al., 2022), confounding variables (Dankers et al., 2016, 2017;
Ramaswamy and Van den Hof, 2021), rank-reduced noise (Weerts et al., 2018c;
Gevers et al., 2019), and sensor noise (Dankers et al., 2015) in the network models;
monitoring, fault detection, and fault diagnostics (General Radio, 1984; Mishra
and de Callafon, 2020; Dankers et al., 2021); validation of (especially local)
identification results; and controller design (Lunze, 1992; Steentjes et al., 2021).

1.6 Practical applications

1.6.1 Pipelines

Pipelines are used for transporting liquid or gas over long distances. Think, for
example, of oil distribution or the sewage system. Leaks in these systems can be
caused by material failure, ground movement, corrosion, or external influences.
Leaks can be harmful to the environment and endanger safety and health. The
pipelines are monitored to restrain the impact of leaks, for example, by acoustic
measurements with fibre optic sensors, where light pulses are sent down the
cable and the reflected light is measured. The response changes if the pipeline is
deformed or broken. Thus, damage to the pipelines can be detected by monitoring
the acoustic response and detecting faults in the reflected light (Dankers et al.,
2021).

Many sensors show faulty responses due to a single leak. Even though damage
can be detected, it remains impossible to find the exact location of the defect. To
locate the damaged pipe, the interconnection structure of the pipeline system has
to be incorporated into the model. The resulting network model contains dynamic
modules that depend on each other, because they (partially) describe the same
physics of the pipe. Due to the input-output structure of the dynamic modules,
the wave propagating from left to right is separately described from the wave
propagating from right to left, while, actually, they pass through exactly the same
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part of the pipe. The physical (and symmetric) characteristics of the pipelines
need to avoid single dynamics occurring in multiple dynamic modules. Therefore,
physical network models are useful for locating defects in addition to detecting
faults.

1.6.2 Electric power networks

Electric power networks transmit and distribute power from power plants to indi-
vidual customers. The network needs to be robust to variability and uncertainty
in power supply and demand, which lead to fluctuations in voltage and frequency
and therefore in admittance. Due to the current developments in renewable energy
and energy storage, these fluctuations are increasing. For the reliability of the
network, it is key to detect abrupt changes in the line admittance as quickly as
possible. Synchronised phasor measurement units (PMUs) are used for real-time
monitoring of three-phase voltage and currents, from which the three-phase line
admittance can be estimated (Mishra and de Callafon, 2020).

Abrupt changes in admittance can only be detected through real-time monit-
oring. This asks for fast calculations, which can be performed by using simple
algorithms (such as, for example, least squares) and small amounts of signals and
parameters. If fewer signals are required, then less equipment is required, which
also saves money that can be invested otherwise. Physical linear network mod-
els are necessary for incorporating the physical characteristics of the electrical
power network in the most extensive way. This will lead to a minimum number
of required parameters and measurement signals, resulting in short time intervals
in which the admittance can be estimated. As changes in the admittance can be
detected relative quickly, the reliability of the electric power network is high.

1.6.3 Smart grid

The smart grid is crucial for a smart and carbon-neutral society. This modern
power network contains more and more new equipment related to renewable
energy sources, energy storage, and control, which lack effective state awareness
and maintenance protocols. The increasing diversity of devices also leads to larger
power fluctuations. The more complex and intelligent operation conditions ask for
higher requirements on safety and reliability, also on the long term. In addition,
the desire for a carbon-neutral society leads to new operation requirements to
reduce emissions during planning, operation, and maintenance (Li et al., 2023).

Slow and low-reliable methods are the current standard for fault detection.
Often, fault detection and diagnostics are even done by employees going step-by-
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step through manuals. Autonomous real-time measurements, fast calculations,
and accurate assessments are necessary to detect faults in due time. This can
be achieved through real-time data-driven identification and accurate parameter
prediction. To this end, identification tools for physical linear network models that
describe the smart grid on different levels of detail have to be utilised to detect,
locate, and diagnose faults in a short time.

1.6.4 Printed circuit boards

Printed circuit board assemblys (PCBAs) are the objects that result from placing
components on a printed circuit board. To validate the production procedure
and check whether there are any defects or faults, an in-circuit test procedure
is followed. During this test, each connection or component is checked separ-
ately by attaching external measurement equipment to the PCBA and performing
component-wise experiments. A fault is detected when an experiment gives dif-
ferent results than expected. A fault can have several causes, such as a broken
link, a shortcut, a wrong component, or parasitic effects (additional components
or connections that should not be present) (Meijer, 2021).

Component-wise testing takes many experiments and is therefore time-
consuming and costly. The testing procedure can be improved by creating single
tests that are capable of validating multiple components and interconnections.
These tests should check the presence and absence of links, the values of
the placed components, and the presence of parasitic effects. To create these
intelligent tests, the topological information and the characteristics of the physical
components need to be incorporated. Therefore, physical network models are
necessary for efficient in-circuit testing of PCBAs.

1.6.5 Wafer scanners

Wafer scanners manufacture integrated circuits. These machines are becoming
more complex and operate under highly advanced conditions to increase the
production, accuracy, and functionality of the chips. They are composed of
many (physically) interconnected subsystems. Component malfunctions, such as
loosened bolts, broken screws, and cable shortcuts, lead to changes in dynamics.
A single fault results in performance degradation throughout the whole machine,
which makes it difficult to locate the cause of the problem. The problem is
often solved by employees going step-by-step through manuals, which is a time-
consuming approach. During the search and repair of the malfunction, the machine
is inoperable, causing a discontinuation of chip production. Nimble fault detection



1.7 Problem statement 19

and diagnostics are necessary to reduce these expensive downtimes. Especially
rare errors take much time and are sometimes not identified at all. As they occur
so seldom, only few data are available to gain knowledge on these errors (Nikitas,
2023).

Knowledge on (rare) errors can be gained by creating a digital twin. This
model should be capable of simulating realistic, accurate, and faulty machine
operation. By simulating faults in the digital twin, the distribution of performance
degradation throughout the machine can be monitored. Analysing the generated
data gives insight into what kind of changes in the data are caused by which
faults. This leads to better fault detection and diagnostics techniques. The digital
twin should generate realistic data on both a properly working machine and a
faulty machine. Currently, the subsystems are described using finte-element-
method (FEM) models with high accuracy (Nikitas, 2023), while the models of
the interconnections lack accuracy. Physical networks can be used to precisely
model the physical interconnections between the subsystems.

1.7 Problem statement

1.7.1 Boundaries

By now, it is clear that systems, and in particular dynamic networks, are every-
where around us and thus occur in many research areas. In this work, we will
restrict to a particular class of dynamic networks, namely physical networks. As
mentioned before, physical systems are characterised by the fact that they ‘act
according to the laws of nature or what is likely’. To be more precise, physical
systems and physical networks are defined by Willems (2007) as follows:

Definition 1.15 (Physical system (Willems, 2007)). A physical system is a
system whose behaviour is described by relations between system variables.

Definition 1.16 (Physical network (Willems, 2007)). A physical network
is a network consisting of interacting physical systems (as defined in Defin-
ition 1.15). These physical systems are interconnected by sharing variables
among subsystems.

In other words, no predefined input-output structure is present in physical sys-
tems and an interconnection of physical systems implies that these systems share
information (or system variables). There is no predefined signal flow or cause-
effect relationship in physical networks. The physical systems define mappings
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from time to outcomes. The collection of all possible outcomes is the behaviour
of the system. In line with this, a physical system is defined as follows:

Definition 1.17 (Physical system (Willems, 1986a)). A physical system is
defined as the triplet

Σ = (T,W,B), (1.1)

with

1. T ⊆ R the time space.

2. W ⊆ Rw the signal space, with w ∈ N the dimension of the trajectories
𝑤(𝑡).

3. B ⊆ WT the behaviour, with WT the collection of all maps from T to
W.

Linearity and time invariance are natural characteristics of many laws used
in science and engineering. Typically, systems are designed to operate in the
LTI region. Consider for example a resistor, which describes a linear and static
relation between the current flow and the voltage drop through Ohm’s law, see
Example 1.2. For very large changes in the current flow, this relation might
change and become nonlinear. Typically, the electrical circuit is designed so
that the resistor’s behaviour can be described well with Ohm’s law. Therefore, we
restrict ourselves to LTI systems and networks. Linearity means that superposition
and scaling of trajectories result in allowed trajectories, that is, for two trajectories
𝑤1(𝑡) ∈ B and 𝑤2(𝑡) ∈ B and for all scalars 𝛼, 𝛽 ∈ R, the trajectory 𝛼𝑤1(𝑡) +
𝛽𝑤2(𝑡) ∈ B. Time invariance means that time shifting trajectories results in
allowed trajectories, that is, for trajectory 𝑤(𝑡) ∈ B and time 𝑡1 ∈ T, the trajectory
𝑤(𝑡 + 𝑡1) ∈ B. The behaviour of physical LTI systems (1.1) can be described by
linear constant-coefficient ordinary differential equations (ODEs).

Definition 1.18 (Physical LTI systems (Willems, 1986a; Polderman and
Willems, 1998)). The behaviour B of a physical system as defined in Defin-
ition 1.17 that has LTI behaviour and with p ≤ w can be described by an
ODE as

B = {𝑤(𝑡) ∈ C∞(R,Rw) | 𝑅( 𝑑
𝑑𝑡
)𝑤(𝑡) = 0} (1.2)

with 𝑡 ∈ T indicating the time, C∞(R,Rw) the set of infinitely differentiable
functions from R to Rw, and 𝑅(𝜉) ∈ Rp×w [𝜉].

The ODE in (1.2) describes the behaviour of the trajectories 𝑤(𝑡) ∈ B without
an explicit input-output mapping. The coefficients of the polynomial matrix
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𝑅(𝜉) depend on the physics and so, the ODE can be seen as a function that
restricts the trajectories to legitimate behaviour. The behaviour can be subject to
disturbances, which act as inputs to the trajectories. To include these disturbances
in the behaviour, the signal space is extended to include the trajectories of the
disturbances.

Definition 1.19 (Physical LTI systems with disturbances (Polderman
and Willems, 1998)). A physical system, as described in Definition 1.18,
that is subject to disturbances 𝑣(𝑡) is defined by the triplet Σ𝑣 = (T,W𝑣 ,B𝑣)
with

1. Signal space W𝑣 := W ∪ V ⊆ Rw+v, with v ∈ N the dimension of the
trajectories 𝑣(𝑡).

2. Behaviour B𝑣 ⊆ WT
𝑣 .

and can be described by an ODE as

B𝑣 = {𝑤(𝑡) ∈ C∞(R,Rw), 𝑣(𝑡) ∈ C∞(R,Rv) | 𝑅(
𝑑

𝑑𝑡
)𝑤(𝑡) = 𝑣(𝑡)}. (1.3)

Physical networks as defined by Definition 1.16 are interconnections of phys-
ical systems and therefore, physical LTI networks can also be represented by the
ODE in (1.3). This particular model can be seen as a basis for many other mod-
els describing physical linear networks. In order to identify these networks, the
identification setting is limited by the following choices:

The data set is considered to contain time-domain data. The interconnections
in the network are assumed to be deterministic in the sense that they are either
present or absent. We do not consider switching interconnections or connections
that are only present with a certain probability. On the other hand, the input
signals can be stochastic signals, meaning that the network is subject to unknown
disturbances.

The model set is limited to LTI models. Although many physical laws are
not LTI by nature, we typically design systems and subsystems to operate in an
LTI region, as mentioned before. These models describe the network behaviour
through mathematical relations and use parameters to capture the dynamics. We
do not limit our research to a particular model structure. In fact, finding the proper
model structure is part of the research.

The identification criterion is chosen to be a quadratic and possibly weighted
function of the prediction error. We chose prediction error over simulation error,
because it is easer to optimise and less computational intense (Aguirre et al.,
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2010); a rigorous theoretical analysis on the error bounds is available, where
stability of the error is guaranteed; and measured data gives more information on
the dynamics than estimated signals. Networks can consist of many signals and
therefore, computational simplicity is important. Hence, we restrict ourselves to
prediction error identification methods.

1.7.2 Open problem

The identification objective is either the dynamics of the full physical linear net-
work or the dynamics of a part of a physical linear network. This dynamics is
described by parameters that are directly related to the physical components in
the network. The objective is thus to estimate these parameters. Identifying the
interconnection structure between the subsystems is of minor interest. However,
for full network identification, the topology does not have to be known in advance
and moreover, it can be identified simultaneously. That is, if the dynamics of an
interconnection is determined to be zero, it implicitly means that the intercon-
nection is absent. Nevertheless, this work is mostly concerned with identification
questions regarding network dynamics.

What is the current situation? For the identification of physical networks, there
are essentially two approaches available in the literature. The first one considers
the network as a single physical system and the second one considers the network
as a dynamic network. As discussed in Section 1.5.2, several modelling and
identification techniques are available in the literature. The most relevant models
for the identification of physical linear networks are state-space models, dynamic
network models, and behavioural models.

State-space models can be used to model physical networks either directly
or by transforming second-order (vector) differential equations into state-space
forms. The state-space model is identified using a subspace identification method.
Sometimes, the parameters related to the interesting physical components can
directly be extracted from the identified state-space model, but often there is
an additional step needed to obtain these parameters in the second-order vector
differential equations.

Are there performance guarantees? For subspace identification methods, there
are no guarantees on statistical accuracy and disturbances acting on the systems
are not considered (except for white noise on the measured signals). Therefore,
it is unclear how well these methods perform, especially for networks that are
subject to unknown disturbance signals. In addition, the question is whether the
network topology can be incorporated into these methods and how to do this.
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Dynamic network models, such as the module representation, explicitly exploit
the topology of the network. There is much literature on the identification of
dynamic networks, especially for this module representation. If physical networks
can be modelled by the module representation, all the identification tools that are
available for dynamic networks can be applied to the identification of physical
networks.

Has it the correct structure? The module representation is a generalisation
of the open-loop and closed-loop systems and therefore consists of directed in-
formation flows among input-output subsystems. However, physical networks do
not possess any input-output structure. Therefore, the question is whether phys-
ical networks can be modelled with an input-output structure for identification
purposes and what the consequences are for doing so.

The behavioural approach is the modelling approach that lies closest to the
nature of physical systems and networks. Physical networks can be modelled by
modelling the subsystems and the interconnections separately, and therefore, the
topology can be represented in the model.

Is there identification theory available? Although there exist some literature
on system identification in the behavioural approach, to our best knowledge, there
is no literature available on the identification of networks in this setting. Therefore,
it remains challenging to incorporate the network topology into the identification
procedure and to oversee the consequences.

1.7.3 Research objective

What is the main problem? The physical linear network models need to consider
disturbance signals and the topology needs to be taken into account, especially
for local identification problems. The problem with state-space models is that
the influence of disturbance signals is unclear and the topology is hidden in the
model structure. However, it is possible to include these aspects in dynamic
network models. The problem with dynamic network models is that it is unknown
whether the noninput-output structure of the subsystems can be modelled. In
the natural and physical world, there are only physical systems, which do not
possess a predefined input-output structure. The behavioural approach is suitable
for modelling these physical networks, but in this setting, there is a lack of
identification tools for networks. Then again, it is unclear how to incorporate the
topology into the identification procedure. This raises the question of whether
one of the above approaches is attractive for accurately identifying some (or all)
dynamics in physical linear networks or whether it would be better to take an
alternative approach with a new model structure.
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What is the main objective? Once the model structure is determined, the
identification procedure for estimating the network dynamics can be investigated.
As mentioned, the focus of this research will be on the dynamics of the full
network or of a part of the network. The topology is of minor interest and might
be detected implicitly during the identification procedure. Summarising this leads
to the objective of this research.

Research objective. Develop model structures and iden-
tification tools for parameter estimation in physical linear
networks.

This research objective consists of four concepts, which are elaborated on
here.

Physical linear networks are the networks that are considered in this work.
They are physical networks, as defined in Definition 1.16, that are restricted to
having only linear dynamics. This dynamics represents the behaviour of the
physical components that are present in the network.

Model structures need to be developed to describe the physical linear networks
in a way that is appropriate for identification purposes. This means that the model
structures should capture the specific characteristics of physical components, in-
corporate the topology of the network, and account for disturbance signals that
can process through the network.

Parameter estimation is used to select the best model from the model structure.
The parameters represent the physical components in the network model and
therefore, parameter estimation leads to the values of the physical elements in the
network. In this work, we either aim for all parameters describing all dynamics
in the network or for a subset of parameters, which only describe a subset of the
network dynamics.

Identification tools have to be developed to perform the parameter estimation.
Next to algorithms and software implementations to execute the parameter estima-
tion, additional tools need to be developed to arrive at these results. These include
methods to modify the network description, conditions under which network
models can uniquely be determined, and conditions under which the parameter
estimation can be performed. This leads to guidelines for the experimental setup,
restrictions on the network model, and assumptions on the disturbance signals.

The process of achieving this research objective comprises several topics.
These topics lead to the subquestions of this research, which are presented next.
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1.8 Subquestions

1.8.1 Model structure

The model set is one of the three main objects that are necessary for system
identification, as explained in Section 1.5.1. It describes the candidate models
that will be considered during identification. The set of candidate models is
parameterised as a model structure. There are many model structures available in
the literature, but it is unclear whether any of them is suitable for identification in
physical linear networks. We can already reveal that this is not the case, which
means that an appropriate model structure needs to be developed. This leads to
the first question.

Research question 1. What model structure to use for iden-
tification of physical linear networks?

The model structurethat we are looking for should be such that it allows for
capturing the specific characteristics of the physical components that are present
in the network. In addition, the topology of the network should be incorporated
and the model structure should account for disturbance signals that can process
through the network. The approach to determining a desired model structure
consists of several steps. First, the physical linear network model is viewed
as an interconnection of physical components, where the physical components
and interconnections will be described by the laws of nature. This modelling
procedure is similar to the method of tearing, zooming, and linking (Willems,
2007). Second, all relations are combined to describe the signals of interest in
terms of other signals that are present in the network, similar to the approach of
the module representation (Van den Hof et al., 2013). This will lead to a (new)
network model for physical linear networks that includes both the dynamics and
the topology of the network in such a way that it accommodates the properties of
the physical components.

1.8.2 Network identifiability

Identification is the process of selecting the model from the model set that best
explains the experimental data. In order to make this selection, the best model
must be unique. In other words, there must be only one model in the model set
that explains the data best. For physical networks, this uniqueness is particularly
significant, because the model parameters are directly related to the coefficients
of the physical components that are present in the network. Furthermore, the
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experimental data consist of external excitation signals and internal measured
network signals. In a network, there are plenty of options for selecting these
signals. The excitation locations and measurement signals need to be selected so
that identification can be performed. This leads to the second research question.

Research question 2. Under what conditions are physical
linear network models identifiable?

An identifiability problem is the problem of distinguishing network models in
a network model set. The approach to deriving identifiability conditions for iden-
tification of the complete network dynamics is based on finding a network model
that uniquely describes the data. This is done by investigating the uniqueness of
matrix-fraction descriptions (MFDs), which describe a transfer function matrix in
terms of a numerator and denominator polynomial matrix. The resulting condi-
tions restrict the model structure so that the uniqueness of the network model can
be guaranteed. This includes the selection of measured internal signals and the
allocation of external excitation signals. Prior knowledge on network dynamics,
network topology, and the presence of excitation signals (and measurable signals)
restricts the model structure and therefore facilitates identifiability. In the situation
where only some local dynamics needs to be identified (i.e. only a subnetwork),
then only that particular part of the network needs to be identifiable. This leads
to more relaxed conditions.

All (relevant) node signals are assumed to be measurable in the initial situation.
The identifiability results are dual for networks in which external excitation signals
are present at all (relevant) node signals. However, it is not always possible to
measure all relevant node signals and it is doubtful whether it is possible to
allocate external excitation signals at any desired location. Therefore, networks
with a selected set of actuators and sensors are considered. The identifiability
analysis follows the same path as the one for networks with full measurement (i.e.
networks in which all node signals are measurable) and for networks with full
excitation (i.e. networks in which all node signals are excited).

1.8.3 Full network identification

An identification criterion or algorithm is necessary for estimating the parameters.
This is the next ingredient in the identification procedure, once the network model
is guaranteed to be unique within the model set. There are several identification
methods available in the literature. We have to investigate which identification
procedure is suitable for the physical linear networks described by the developed
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model structure. Further, algorithms need to be developed to perform the optim-
isation in the identification methods. This leads to the third question.

Research question 3. How to identify a full physical linear
network?

Full identification refers to the identification of both the dynamics and the
topology of the network. The approach to identifying the full physical linear net-
work is based on the prediction error identification method, for which conditions
for consistency (and minimum variance) will be derived. These conditions in-
clude conditions for identifiability of the network dynamics and restrictions on the
experimental data. The optimisation problem resulting from the prediction error
identification method will be nonconvex, because the prediction error is nonlinear
in the parameters. The larger the network, the more parameters are present in the
model and therefore, the more tuning nobs are available for adjusting the solution.
This makes it more likely to arrive at local optima, while the computation time
is also high. To make the identification algorithm suitable for large networks
and to reach the global optimum, a multistep convex algorithm will be developed
based on the weighted null-space fitting (WNSF) algorithm (Galrinho et al., 2019).
This algorithm also allows for incorporating prior knowledge on the dynamics or
topology of the network.

1.8.4 Subnetwork identification

Identifying a subnetwork is another objective, next to identifying all network
dynamics and the topology. Especially for large networks, it is imaginable that
only a small part of the network is of interest or that insufficient information is
available to identify the full network. The larger the network, the more relevant it
becomes to consider this. This leads to the fourth question.

Research question 4. How to identify specific components
in a physical linear network?

In subnetwork identification, the consideration of the part of the network that is
outside the target subnetwork is an additional aspect that plays a crucial role. This
includes the problem of dealing with unmeasurable signals. In the module repres-
entation, unmeasured signals are eliminated through immersion (Dankers et al.,
2016). For physical linear networks, a similar mechanism will be developed that,
at the same time, accounts for the characteristic properties of physical components.
Similar to the identification of the full network, conditions for consistency will
be derived and a multistep convex algorithm has to be developed for performing
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the identification. Again, incorporating prior knowledge on the dynamics and
topology of the network is supported by the algorithm. However, the topology in
the neighbourhood of the target dynamics is required to enable the identification.
The remaining topological information is not necessary for identification.

1.8.5 Directed interconnections

Controllers often influence physical linear systems or networks in practice. A
digital controller is an example of a nonphysical element that has a predefined
input-output structure and therefore, has properties that are different from the
physical components in the network. Therefore, physical networks with digital
controllers lead to networks with different characteristics. In addition, nonsym-
metric components, such as diodes or one-way check valves, can be present in
the network. Hence, it is of substantial value to manage directed dynamics in the
network model and the identification procedure. This leads to the final question.

Research question 5. How to account for directed dynam-
ics in physical linear networks?

Directed dynamics can be present in physical networks in several ways. For
example, the network may contain just some additional directed links, or there
may also be some additional node signals that are only influenced by directed
dynamics. This leads to mixed linear dynamic networks that contain both directed
and undirected interconnections. The directed dynamics can be unknown, but
may also be known, for example, when they represent a controller. Incorporating
known dynamics into the identification procedure facilitates the identification.
As directed dynamics have different properties than physical components, in-
cluding directed dynamics in the network model will destroy the structure. This
has consequences for the identification procedure and changes, for example, the
identifiability conditions. All identification tools that have been developed will
be analysed again to discover the consequences due to the directed dynamics.
Adjustments to the identification tools will be made to make them suitable for
handling directed dynamics.

1.9 Overview

1.9.1 Introduction

The remaining part of the thesis consists of three parts.
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Part I concerns the modelling of physical linear networks and therefore, this
part is completely dedicated to Research question 1. In this part of the thesis, we
search for a suitable model structure of physical linear networks for identification
purposes.

Part II is devoted to the identification of physical linear networks by studying
Research question 2-4. In this part of the thesis, we explain which conditions
have to be satisfied for identifiability, how a full physical linear network can be
identified, and how a subnetwork can be identified.

Part III contains the extension of physical linear networks to mixed linear
dynamic networks. Research question 5 is explored in this part, which means that
we investigate the consequences of including directed dynamics in the modelling
and identification of physical linear networks.

1.9.2 Part I: Modelling of physical linear networks

Chapter 2: Linear dynamic network models

Physical linear networks and their characteristic properties are discussed. Numer-
ous dynamic models for systems and networks are presented. These models are
compared on several aspects that are important for the identification of dynamic
networks. The most promising dynamic network models are selected for further
research. This chapter contributes to the answer to Research question 1.

Chapter 3: Graphical structures of linear dynamic networks

Graphical representations of linear dynamic networks are analysed and four main
graphical structures are discussed. Networks can be described at different levels
of detail by including or excluding structural and dynamic information. The
relations between these representations are analysed, including a comparison
between the module representation and the interaction-oriented model. This
chapter contributes to the answer to Research question 1.

Chapter 4: Representations of linear dynamic networks

Various representations of dynamic networks are studied. The relations between
state-space models and module representations of dynamic networks are investig-
ated, leading to a dynamic network model that can capture both representations.
Modelling tools are developed for analysing this network model. These tools
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allow for zooming in on and zooming out of the network model and including
and excluding structural information. With this, a network can be described at
different levels of detail, as discussed in Chapter 2. This chapter contributes to
the answer to Research question 1.

This chapter is a slightly extended version of

E.M.M. Kivits and P.M.J. Van den Hof. On representations of linear dynamic
networks. IFAC-PapersOnLine, 51(15):838–843, 2018. Proceedings of the
18th IFAC Symposium on System Identification (SYSID).

Chapter 5: Diffusively coupled linear network models

A diffusively coupled linear network model is introduced to describe physical linear
networks. This network model possesses several interesting equivalent represent-
ations, which are analysed. Their relationships, advantages, and disadvantages
are discussed. The use of this network model to describe networks from different
physical domains is illustrated and the analogies among them are clarified. In
addition, the application of this newly developed network model to other types of
networks than physical networks is elaborated on. This chapter contributes to the
answer to Research question 1.

1.9.3 Part II: Identification of physical linear networks

Chapter 6: Linear dynamic network identification tools

Identification tools from the literature are presented that form the basis for the
identification tools for physical linear networks that will be developed in the
remainder of the thesis. Polynomial models and their properties are provided,
because they are relevant for the diffusively coupled network model that has
been developed in Chapter 5. In addition, concepts for identification in dynamic
networks are specified.

Chapter 7: Identification through a dynamic network approach

A dynamic network approach is applied to identify diffusively coupled linear
network models that have been developed in Chapter 5. The network model is
translated into the module representation (Van den Hof et al., 2013). The specific
properties of the resulting network model are analysed. The identification tools
that are available for the module representation lead to conditions and algorithms
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for full network identification. Identification tools and an identification set-up for
local identification are derived. This chapter contributes to the answer to Research
question 3-5.

This chapter is a revised and extended version of

E.M.M. Kivits and P.M.J. Van den Hof. A dynamic network approach
to identification of physical systems. In Proceedings of the 58th IEEE
Conference on Decision and Control (CDC), pages 4533–4538, 2019.

Chapter 8: Identification through structured polynomial models

Conditions and a convex algorithm for consistent identification of the complete
physical linear network are derived. These physical linear networks are modelled
by the diffusively coupled linear network model of Chapter 5. The conditions
include conditions for identifiability of the full physical network and conditions for
data informativity. The identification is performed in the discrete-time domain by
using a prediction error identification method. The algorithm consists of multiple
steps of convex optimisations and polynomial matrix manipulations. The main
part of the algorithm is similar to the WNSF (Galrinho et al., 2019)), which is
adapted to account for the structural characteristics of diffusively coupled linear
networks and to incorporate the identifiability constraints. A simulation example
is shown to illustrate the algorithm. This chapter contributes to the answers to
Research question 2 and 3.

This chapter is equivalent to

E.M.M. Kivits and P.M.J. Van den Hof. Identification of diffusively coupled
linear networks through structured polynomial models. In IEEE Transac-
tions on Automatic Control, vol. 68, no. 6, pages 3513-3528, 2023.

Chapter 9: Subnetwork identification

Identification of only a small part of the network is considered here. Due to the
specific characteristics of physical components, the objective for this local identi-
fication is revised for physical linear networks and reformulated into a subnetwork
identification problem. A tool for eliminating unmeasured signals from diffusively
coupled linear networks is developed based on immersion (Dankers et al., 2016).
Conditions for consistent identification of the target dynamics are derived and
algorithms are developed for performing the identification. A simulation example
illustrates the identification. This chapter contributes to the answers to Research
question 2 and 4.
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This chapter adds Section 9.9 and 9.10 to the work that is equivalent to

E.M.M. Kivits and P.M.J. Van den Hof. Local identification in diffusively
coupled linear networks. In Proceedings of the 61st IEEE Conference on
Decision and Control (CDC), pages 874-879, 2022.

Chapter 10: Identifiability with partial instrumentation

Identifiability conditions are derived for diffusively coupled linear networks in
which only a selected set of node signals is measurable and where external ex-
citation signals can only be allocated at specific locations. The identifiability
conditions for diffusively coupled networks in which all node signals are measur-
able are repeated and the dual conditions for the situation in which all node signals
are excited are given. Along the same line of reasoning, conditions for the partial
instrumentation case are derived. Using a special case, the sufficient conditions
on the actuator and sensor locations are illustrated. This chapter contributes to the
answers to Research question 2-4.

This chapter adds Remark 10.18 to the work that is equivalent to

E.M.M. Kivits and P.M.J. Van den Hof. Identifiability of diffusively coupled
linear networks with partial instrumentation. Preprints of the 22nd IFAC
World Congress, 2706-2711, July 2023.

1.9.4 Part III: Extension of physical linear networks

Chapter 11: Mixed linear dynamic networks

Mixed linear dynamic networks with both directed and undirected interconnections
are discussed. Two types of mixed networks are modelled in the polynomial
framework that is used for describing diffusively coupled linear networks. One of
these mixed networks is also modelled in the module representation that is used
for describing directed dynamic networks. For all three models, the implications
for identification are analysed. This leads to adapted conditions for consistent
identification of the complete networks, including identification of the directed
dynamics. Suggestions for algorithms are given and the results are discussed.
This chapter contributes to the answers to Research question 5.
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Chapter 12: Conclusions and future research

Conclusions are drawn by evaluating the main research objective and answer-
ing the five research questions. Suggestions for future research are presented,
which include the improvement of algorithms, continuous-time identification, and
practical applications to monitoring, fault detection, and diagnostics.
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2 | Linear dynamic network
models

Systems in the natural and physical world can be described in various ways.
There also exist several models for interconnections of these physical systems.
Physical linear networks are described in detail and their particular properties
are explained. Several mathematical models of linear systems and networks
are discussed. The main advantages and shortcomings of the linear dynamic
network models for modelling and identification of physical linear dynamic
networks are discussed.

2.1 Introduction

Networks can be found in various different research areas, including biology,
economy, engineering, physics, and social sciences (Ren et al., 2005; Boccaletti
et al., 2006; Mesbahi and Egerstedt, 2010). All these research areas have their
own environment with specific conditions and unique issues. This gives rise to
research questions that are pertinent to the particular situation. Therefore, each
research area has its own unique way of expressing its problem. The choice of
model structure to describe or represent these networks is usually aligned with
the environment, preconditions, model objectives, and questions. This leads to
numerous models for describing linear networks, each of which is tailored to a
particular situation.

The overall interest of this research is parameter estimation in networks from
the natural and physical world. These physical networks act according to the laws
of nature or what is likely. Many physical laws can be approximated well by
linear and time-invariant relations and therefore, this work is restricted to linear
time-invariant (LTI) models. In addition, many of these laws can be expressed
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38 Linear dynamic network models

by systems of ordinary differential equation (ODE), which are therefore used
in many mathematical network models. Some examples of these models are
state-space models, which are often used in biology and economy (Mesbahi and
Egerstedt, 2010; Verhaegen and Verdult, 2012; Bullo, 2022); second-order vector
differential equation models, which are often used in mechanics (Ljung and Glad,
1994; Van den Bosch, 2009); and polynomial models, which are often used in an
identification setting (Ljung and Glad, 1994; Ljung, 1999).

Networks with uncertain interconnections are modelled by (dynamic) Bayesian
networks, which describe joint probabilities over a set of random variables (Koller
and Friedman, 2009; Sucar, 2021).

For modelling linear dynamic networks, Wiener filters (Materassi and In-
nocenti, 2010), the dynamical structure function (Gonçalves et al., 2007), and
the module representation (Van den Hof et al., 2013) are popular approaches.
Here, signals are interconnected through transfer function relations, the so-called
modules of the network. Linear dynamic networks can also be modelled by
interconnecting subsystems through an interaction-oriented model (Lunze, 1992).

Energy is a well-studied quantity in physical networks, for example, in energy
balances and energy or power exchange. Therefore, there are many energy-based
modelling techniques, such as bond-graph models, (multi)port models, and (port-
)Hamiltonian models (Paynter, 1961; van der Schaft and Jeltsema, 2014). A more
general modelling technique is the behavioural approach, which considers just
the interconnections between physical components Willems (2007). This is a
modelling technique that lies very close to the natural and physical world.

One might wonder whether users of different network models can learn from
each other. Some questions arising in one research area may already be answered
in another research area, where they use a different network model. Perhaps it is
possible to transform results for one model structure into results for another model
structure. Therefore, it is important to know the relations among the network
models.

This chapter addresses the questions of which network models are available for
the identification of physical linear networks and what the relations between them
are. Some mathematical definitions and notation are introduced in Section 2.2.
Some general modelling aspects are presented in Section 2.3. Section 2.4 describes
a number of network models. The main advantages and shortcomings of the
linear network models for modelling and identification of physical linear dynamic
networks are discussed in Section 2.5. Finally, Section 2.6 concludes the chapter.
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2.2 Mathematical definitions and notation

2.2.1 Variables

Throughout the thesis, consider the following definitions of variables:

Definition 2.1 (Manifest variable (Polderman and Willems, 1998)). A
manifest variable is a variable of interest.

Definition 2.2 (Latent variable (Polderman and Willems, 1998)). A latent
variable is a variable that is not manifest.

The manifest variables are the variables that are modelled and on which the
attention is focussed. The latent variables are auxiliary variables that are used to
achieve a convenient expression of the model. Remark that each variable is either
manifest or latent.

2.2.2 Signals

Signals capture the change of variables over time. A signal can be multidimen-
sional. Multiple signals 𝑤 𝑗 (𝑡), 𝑗 = 1, 2, . . . , 𝐿 can be captured in a vector as

𝑤(𝑡) =


𝑤1(𝑡)
𝑤2(𝑡)
...

𝑤𝐿 (𝑡)


, (2.1)

and 𝑤(𝑡) is sometimes referred to as a vectorised version of 𝑤 𝑗 (𝑡), 𝑗 = 1, 2, . . . , 𝐿.
Here, 𝑤 𝑗 (𝑡) can also be a multidimensional signal, but without loss of generality
we will restrict our attention in this thesis to scalar-valued signals 𝑤 𝑗 (𝑡).

2.2.3 Polynomials

A polynomial 𝑎(𝜉) ∈ R[𝜉] in indeterminate 𝜉 ∈ C, consists of elements 𝑎ℓ ∈ R
such that

𝑎(𝜉) =
𝑛𝑎∑︁
ℓ=0

𝑎ℓ𝜉
ℓ = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜉

2 + . . . + 𝑎𝑛𝑎𝜉𝑛𝑎 . (2.2)

A polynomial is called monicity if lim𝜉→∞ 𝑎(𝜉) = 1, that is if 𝑎0 = 1.
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The indeterminate 𝜉 in (2.2) can be substituted by the differential operator 𝑝
meaning 𝑝𝑢(𝑡) = 𝑑

𝑑𝑡
𝑢(𝑡), leading to

𝑎(𝑝)𝑢(𝑡) =
𝑛𝑎∑︁
ℓ=0

𝑎ℓ
𝑑ℓ

𝑑𝑡ℓ
𝑢(𝑡) = 𝑎0𝑢(𝑡) + 𝑎1

𝑑

𝑑𝑡
𝑢(𝑡) + 𝑎2

𝑑2

𝑑𝑡2
𝑢(𝑡) + . . . + 𝑎𝑛𝑎

𝑑𝑛𝑎

𝑑𝑡𝑛𝑎
𝑢(𝑡).

(2.3)

The indeterminate 𝜉 in (2.2) can be substituted by the backward shift operator
𝑞−1 meaning 𝑞−1𝑢(𝑡) = 𝑢(𝑡 − 1), leading to

𝑎(𝑞−1)𝑢(𝑡) =
𝑛𝑎∑︁
ℓ=0

𝑎ℓ𝑢(𝑡−ℓ) = 𝑎0𝑢(𝑡) +𝑎1𝑢(𝑡−1) +𝑎2𝑢(𝑡−2) + . . .+𝑎𝑛𝑎𝑢(𝑡−𝑛𝑎).

(2.4)

The indeterminate 𝜉 in (2.2) can be substituted by the forward shift operator 𝑞
meaning 𝑞𝑢(𝑡) = 𝑢(𝑡 + 1), leading to

𝑎(𝑞)𝑢(𝑡) =
𝑛𝑎∑︁
ℓ=0

𝑎ℓ𝑢(𝑡+ℓ) = 𝑎0𝑢(𝑡)+𝑎1𝑢(𝑡+1)+𝑎2𝑢(𝑡+2)+. . .+𝑎𝑛𝑎𝑢(𝑡+𝑛𝑎). (2.5)

2.2.4 Polynomial matrices

A polynomial matrix 𝐴(𝜉) ∈ R𝐿×𝐾 [𝜉] in indeterminate 𝜉 ∈ C, consists of
matrices 𝐴ℓ ∈ R𝐿×𝐾 such that

𝐴(𝜉) =
𝑛𝑎∑︁
ℓ=0

𝐴ℓ𝜉
ℓ , (2.6)

and such that

𝐴(𝜉) =


𝑎11(𝜉) 𝑎12(𝜉) · · · 𝑎1𝐾 (𝜉)
𝑎21(𝜉) 𝑎22(𝜉) . . . 𝑎2𝐾 (𝜉)
...

...
. . .

...

𝑎𝐿1(𝜉) 𝑎12(𝜉) · · · 𝑎𝐿𝐾 (𝜉)


, (2.7)

with ( 𝑗 , 𝑘)th polynomial elements

𝑎 𝑗𝑘 (𝜉) =
𝑛𝑎∑︁
ℓ=0

𝑎 𝑗𝑘,ℓ𝜉
ℓ , (2.8)

with 𝑗 = 1, 2, . . . , 𝐿 and 𝑘 = 1, 2, . . . , 𝐾 . Hence, the ( 𝑗 , 𝑘)th element of the
matrix 𝐴ℓ is denoted by 𝑎 𝑗𝑘,ℓ .
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Definition 2.3 (Monic (Kailath, 1980)). A polynomial matrix 𝐴(𝜉) is called
monic if lim𝜉→∞ 𝐴(𝜉) = 𝐼, with 𝐼 the identity matrix, that is if 𝐴0 = 𝐼, or
in other notation, if 𝑎 𝑗 𝑗 ,0 = 1 and 𝑎 𝑗𝑘,0 = 0 for 𝑗 ≠ 𝑘 .

2.2.5 Rational functions

A rational function 𝐺 (𝜉) ∈ R(𝜉) in indeterminate 𝜉 ∈ C, consists of a numerator
and denominator polynomial 𝑛(𝜉) ∈ R[𝜉] and 𝑑 (𝜉) ∈ R[𝜉], respectively, such
that

𝐺 (𝜉) = 𝑛(𝜉)
𝑑 (𝜉) =

∑𝑟𝑛
ℓ=0 𝑛ℓ𝜉

ℓ∑𝑟𝑑
ℓ=0 𝑑ℓ𝜉

ℓ
. (2.9)

A rational function applied to a signal is interpreted as

𝐺 (𝜉)𝑢(𝑡) :=
∞∑︁
ℓ=0

𝑔ℓ𝜉
ℓ𝑢(𝑡), (2.10)

with 𝑔𝑖 the analytic part of the Laurent series expansion of the rational function
𝐺 (𝜉) at the point 0.

The indeterminate 𝜉 in (2.10) can be substituted by the differential operator 𝑝,
leading to

𝐺 (𝑝)𝑢(𝑡) =
∞∑︁
ℓ=0

𝑔ℓ
𝑑ℓ

𝑑𝑡ℓ
𝑢(𝑡) = 𝑔0𝑢(𝑡) + 𝑔1

𝑑

𝑑𝑡
𝑢(𝑡) + 𝑔2

𝑑2

𝑑𝑡2
𝑢(𝑡) + . . . (2.11)

The indeterminate 𝜉 in (2.10) can be substituted by the backward shift operator
𝑞−1, leading to

𝐺 (𝑞−1)𝑢(𝑡) =
∞∑︁
ℓ=0

𝑔ℓ𝑢(𝑡 − ℓ) = 𝑔0𝑢(𝑡) + 𝑔1𝑢(𝑡 − 1) + 𝑔2𝑢(𝑡 − 2) + . . . (2.12)

The indeterminate 𝜉 in (2.10) can also be substituted by the forward shift
operator 𝑞. However, we decide to use a different definition for 𝐺 (𝑞).

Definition 2.4 (Transfer function G(q) (Ljung, 1999)). The notation𝐺 (𝑞)
is used as an alias for the rational function 𝐺 (𝑞−1). That is, 𝑞 is used as an
argument of𝐺 to indicate the rational function𝐺 (𝜉) with 𝑞−1 substituted for
𝜉. This choice is made to be in formal agreement with the 𝑍-transform and



42 Linear dynamic network models

Fourier-transform expressions, which are common in linear system theory
(Hespanha, 2023) and system identification (Ljung, 1999). Furthermore,

𝐺 (𝑞) :=
∞∑︁
ℓ=0

𝑔(ℓ)𝑞−ℓ , (2.13)

with 𝑔(ℓ) the ℓth sample of the impulse response, is referred to as the
transfer function, even though the notion transfer function is strictly speaking
reserved for the 𝑍-transform of the impulse response.

2.2.6 Rational function matrices

A rational function matrix 𝐺 (𝜉) ∈ R𝐿×𝐾 (𝜉) in indeterminate 𝜉 ∈ C, consists of
matrices 𝐺ℓ ∈ R𝐿×𝐾 such that

𝐺 (𝜉) =
𝑛𝐺∑︁
ℓ=0

𝐺ℓ𝜉
ℓ , (2.14)

and such that

𝐺 (𝜉) =


𝐺11(𝜉) 𝐺12(𝜉) · · · 𝐺1𝐾 (𝜉)
𝐺21(𝜉) 𝐺22(𝜉) . . . 𝐺2𝐾 (𝜉)
...

...
. . .

...

𝐺𝐿1(𝜉) 𝐺12(𝜉) · · · 𝐺𝐿𝐾 (𝜉)


, (2.15)

with ( 𝑗 , 𝑘)th polynomial elements

𝐺 𝑗𝑘 (𝜉) =
𝑛𝐺∑︁
ℓ=0

𝑔 𝑗𝑘,ℓ𝜉
ℓ (2.16)

with 𝑗 = 1, 2, . . . , 𝐿 and 𝑘 = 1, 2, . . . , 𝐾 . Hence, the ( 𝑗 , 𝑘)th element of the
matrix 𝐺ℓ is denoted by 𝑔 𝑗𝑘,ℓ .

Definition 2.5 (Proper, strictly proper, monic (Kailath, 1980)). A rational
function matrix 𝐹 (𝜉) is proper if lim𝜉→∞ 𝐹 (𝜉) = 𝑐 ∈ R𝐿×𝐾 ; it is strictly
proper if 𝑐 = 0; and monic if 𝐾 = 𝐿 and 𝑐 is the identity matrix.

Definition 2.6 (Stability (Hespanha, 2023)). Consider a transfer function
𝐺 (𝜉) that describes a linear dynamic system according to the relation
𝑦(𝑡) = 𝐺 (𝜉)𝑢(𝑡). The system is (bounded-input bounded-output (BIBO))
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age) and the latent variables (the branch voltages and currents). These equations
constitute the full behavioralequations.

Constitutiveequations:

dVe
C-=Ie,

dt
(1.1)

Kirchhoffs current laws:

(1.2)

Kirchhoffs voltage laws:

V = VRe + Ve, (1.3)

In what sense do these equations specify a manifest behavior? In principle this is
c1earfrom Definition 1.3.4. But is there a more explicit way of describing the man
ifest behavior other than through (1.1, 1.2, 1.3)? Let us attempt to eliminate the la
tent variables in order to come up with an explicit relation involving V and I only.
In the example at hand we will do this elimination in an ad hoc fashion . In Chapter
6, we willleam how to do it in a systematic way.

Note first that the constitutive equations (1.1) allow us to eliminate VRe, VRL, le,
and VL from equations (1.2, 1.3). These may hence be replaced by

av;
I = IRe + Lu IRe = C--;[t, ti. = IRL' (1.4)

dh
V = RclRe + Ve, V = Ld( + RLIRL. (1.5)

Note that we have also dropped the equations Ie + I RL = I and VRe+Ve = VL+
VRL, since these are obviously redundant. Next, use I RL = Ii. and IRe = VIi? to
eliminate I RL and IRe from (1.4) and (1.5) to obtain

dh
RLh + Ld( = V, (1.6)

(a) Depiction of the components.
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ifest behavior other than through (1.1, 1.2, 1.3)? Let us attempt to eliminate the la
tent variables in order to come up with an explicit relation involving V and I only.
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RLh + Ld( = V, (1.6)

(b) Depiction of the signal variables.

Figure 2.1: Electrical circuit with resistors (𝑅𝐿 , 𝑅𝐶), inductor (𝐿), and capacitor
(𝐶) and with current flows (𝐼) and voltage drops (𝑉) (Polderman and Willems,
1998).

stable if a bounded input signal 𝑢(𝑡) leads to a bounded output signal 𝑦(𝑡).

Definition 2.7 (Stability continuous-time (Hespanha, 2023)). In
continuous-time, the transfer function matrix 𝐹 (𝑠) is (BIBO) stable if all its
poles have strictly negative real part (|ℜ(𝑠) | < 0) and thus lie in the strict
left half plane.

Definition 2.8 (Stability discrete-time (Hespanha, 2023)). In discrete-
time, the transfer function matrix 𝐹 (𝑧) is (BIBO) stable if all its poles have
magnitude strictly smaller than 1 (|𝑧 | < 1) and thus lie within the unit circle.

2.3 Physical linear dynamic networks

2.3.1 Electrical circuits

One of the most famous examples of a physical linear network is an electrical
circuit. An electrical circuit consisting of resistors, capacitors, and inductors is
referred to as an RLC circuit. An electrical circuit can be modelled using the
constitutive relations, Kirchhoff’s current law, and Kirchhoff’s voltage law.
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Example 2.9 (Electrical circuit (Polderman and Willems, 1998)). Con-
sider the circuit shown in Figure 2.1, which consists of two resistors (𝑅𝐿 ,
𝑅𝐶), an inductor (𝐿), and a capacitor (𝐶). The dynamics of this circuit are
modelled with the constitutive relations:

𝑉𝑅𝐶 = 𝑅𝐶 𝐼𝑅𝐶 , 𝑉𝑅𝐿 = 𝑅𝐿 𝐼𝑅𝐿 , 𝐶
𝑑𝑉𝐶

𝑑𝑡
= 𝐼𝐶 , 𝐿

𝑑𝐼𝐿

𝑑𝑡
= 𝑉𝐿;

(2.17)
Kirchhoff’s current law:

𝐼 = 𝐼𝑅𝐶 + 𝐼𝐿 , 𝐼𝑅𝐶 = 𝐼𝐶 , 𝐼𝐿 = 𝐼𝑅𝐿 , 𝐼𝐶 + 𝐼𝑅𝐿 = 𝐼; (2.18)

and Kirchhoff’s voltage law:

𝑉 = 𝑉𝑅𝐶 +𝑉𝐶 , 𝑉 = 𝑉𝐿 +𝑉𝑅𝐿 , 𝑉𝑅𝐶 +𝑉𝐶 = 𝑉𝐿 +𝑉𝑅𝐿 , (2.19)

with voltage drops 𝑉𝑥 among the components and current flows through
the components 𝐼𝑥 , 𝑥 ∈ {𝑅𝐶 , 𝑅𝐿 , 𝐿, 𝐶}. To find the relation between the
variables of interest𝑉 and 𝐼, (2.17), (2.18), and (2.19) need to be combined
in a smart way by eliminating the other variables 𝑉𝑅𝐶 , 𝐼𝑅𝐶 , 𝑉𝑅𝐿 , 𝐼𝑅𝐿 , 𝑉𝐶 ,
𝐼𝐶 , 𝑉𝐿 , and 𝐼𝐿 . This results in two cases: either 𝑅𝐿𝑅𝐶𝐶 ≠ 𝐿 (case 1) or
𝑅𝐿𝑅𝐶𝐶 = 𝐿 (case 2). The behaviour of the variables of interest in cases 1
and 2 is described by(

1 + (𝑅𝐶 + 𝑅𝐿)𝐶
𝑑

𝑑𝑡
+ 𝐶𝐿 𝑑

2

𝑑𝑡2

)
𝑉 =

(
𝑅𝐿 + 𝐿

𝑑

𝑑𝑡

) (
1 + 𝑅𝐶𝐶

𝑑

𝑑𝑡

)
𝐼,

(2.20a)(
1 + 𝑅𝐿𝐶

𝑑

𝑑𝑡

)
𝑉 = 𝑅𝐿

(
1 + 𝑅𝐶𝐶

𝑑

𝑑𝑡

)
𝐼, (2.20b)

respectivelya.
aIf 𝑅𝐿𝑅𝐶𝐶 ≠ 𝐿 (case 1), the eliminated variables are observable from the variables

of interest, otherwise (case 2) not (Polderman and Willems, 1998).

Another electrical circuit with the same topology as the electrical circuit
of Example 2.9 may lead to a different mathematical model with a different
network complexity (order of the differential equations) depending on the physical
components that are present in the interconnections. In addition, Example 2.9
proves that it is possible to eliminate all variables other than the variables of
interest.
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2.3.2 Kron reduction

There are several ways to eliminate the latent variables. One way is to manipulate
(2.17), (2.18), and (2.19) and find smart combinations together with Gaussian
elimination to remove the latent variables one by one from the equations. A more
structured way to eliminate the latent variables is by Kron reduction (Kron, 1949).
In this method, the conductance matrix is constructed and its Schur complement
is used to eliminate the latent variables in a single step.

Consider an electrical circuit with two vertices, vertex 1 and vertex 2. The
electrical circuit can be modelled as[

𝐼1
𝐼2

]
=

[
𝐺11 𝐺12
𝐺21 𝐺22

] [
𝑃1
𝑃2

]
, (2.21)

with 𝐼𝑥 and 𝑃𝑥 , 𝑥 ∈ {1, 2}, the current flow that is inserted at vertex 𝑥 and the
electrical potential at vertex 𝑥, respectively, and with 𝐺𝑥𝑦 , 𝑥, 𝑦 ∈ {1, 2}, the
conductance between 𝐼𝑥 and 𝑃𝑦 . Gaussian elimination of the electric potential 𝑃2
can be performed by rewriting the second equation in (2.21) as

𝑃2 = 𝐺−1
22 𝐼2 − 𝐺

−1
22𝐺21𝑃1, (2.22)

and substituting this into the first equation in (2.21) leading to the reduced model

𝐼1 = 𝐺𝑟𝑒𝑑𝑃1 +𝑄12𝐼2, (2.23)

with
𝐺𝑟𝑒𝑑 = 𝐺11 − 𝐺12𝐺

−1
22𝐺21, 𝑄12 = 𝐺12𝐺

−1
22 , (2.24)

with 𝐺𝑟𝑒𝑑 the Schur complement of the conductance matrix in (2.21).

Kron reduction is often used in electrical circuits to eliminate so-called internal
vertices, which are not subject to any externally inserted current flow. To give
a better idea of its value and how it can be applied in electrical circuits, Kron
reduction is illustrated by Example 2.10 (Dörfler and Bullo, 2013; Dörfler et al.,
2018).

Example 2.10 (𝑌 − Δ transformation). Consider the electrical circuit in
Figure 2.2a (the 𝑌 -circuit). To each vertex 𝑖, 𝑖 ∈ {1, 2, 3, 4}, an electrical
potential 𝑃𝑖 and an inserted current flow 𝐼𝑖 is allocated. Now suppose that
the objective is to eliminate the latent variables corresponding to the centre
vertex, that is 𝑃4 and 𝐼4. Observe that there is no current flow inserted
at the centre vertex, so 𝐼4 = 0. This results in the electrical circuit in
Figure 2.2b (the Δ-circuit). This transformation is referred to as the 𝑌 − Δ
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transformation.
A mathematical model of the𝑌 -circuit follows from the constitutive relations

𝑃1 − 𝑃4 = 𝑅1𝐼1, 𝑃2 − 𝑃4 = 𝑅2𝐼2, 𝑃3 − 𝑃4 = 𝑅3𝐼3, (2.25)

and Kirchhoff’s current law

𝐼1 + 𝐼2 + 𝐼3 = 0. (2.26)

Using the conductances 𝐺𝑖 = 𝑅−1
𝑖

, (2.25) and (2.26) lead to
𝐼1
𝐼2
𝐼3
0

 =

𝐺1 0 0 −𝐺1
0 𝐺2 0 −𝐺2
0 0 𝐺3 −𝐺3
−𝐺1 −𝐺2 −𝐺3 𝐺1 + 𝐺2 + 𝐺3



𝑃1
𝑃2
𝑃3
𝑃4

 . (2.27)

The objective is to eliminate the latent variable 𝑃4 from the model. Using
Kron reduction, the reduced conductance matrix becomes

𝐺𝑟𝑒𝑑 =


𝐺1 0 0
0 𝐺2 0
0 0 𝐺3

 −

−𝐺1
−𝐺2
−𝐺3

 (𝐺1 + 𝐺2 + 𝐺3)−1 [−𝐺1 −𝐺2 −𝐺3
]
,

(2.28a)

= (𝐺1 + 𝐺2 + 𝐺3)−1

𝐺1 − 𝐺1𝐺1 −𝐺1𝐺2 −𝐺1𝐺3
−𝐺1𝐺2 𝐺2 − 𝐺2𝐺2 −𝐺2𝐺3
−𝐺1𝐺3 −𝐺2𝐺3 𝐺3 − 𝐺3𝐺3

 ,
(2.28b)

leading to the reduced model
𝐼1
𝐼2
𝐼3

 = 𝐺𝑟𝑒𝑑

𝑃1
𝑃2
𝑃3

 + (𝐺1 + 𝐺2 + 𝐺3)−1

−𝐺1
−𝐺2
−𝐺3

 𝐼4. (2.29)

Observe that 𝐼4 = 0 as vertex 4 is an internal vertex and does not have an
externally inserted current flow. This leads to the model of the Δ-circuit
𝐼1
𝐼2
𝐼3

 = (𝐺1 + 𝐺2 + 𝐺3)−1

𝐺1 − 𝐺1𝐺1 −𝐺1𝐺2 −𝐺1𝐺3
−𝐺1𝐺2 𝐺2 − 𝐺2𝐺2 −𝐺2𝐺3
−𝐺1𝐺3 −𝐺2𝐺3 𝐺3 − 𝐺3𝐺3



𝑃1
𝑃2
𝑃3

 ,
(2.30)
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(a) Electrical circuit with four vertices (𝑌 )
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I3I2

Rb

Rc

Ra

w1

w3w2

(b) Electrical circuit with three vertices (Δ)

Figure 2.2: 𝑌 − Δ transformation in an electrical circuit by eliminating the centre
vertex as described by Example 2.10.

which describes the resistances

𝑅𝑎 =

[
𝐺1𝐺2

𝐺1 + 𝐺2 + 𝐺3

]−1
=

𝑅3

𝑅1𝑅2 + 𝑅1𝑅3 + 𝑅2𝑅3
, (2.31a)

𝑅𝑏 =

[
𝐺1𝐺3

𝐺1 + 𝐺2 + 𝐺3

]−1
=

𝑅2

𝑅1𝑅2 + 𝑅1𝑅3 + 𝑅2𝑅3
, (2.31b)

𝑅𝑐 =

[
𝐺2𝐺3

𝐺1 + 𝐺2 + 𝐺3

]−1
=

𝑅1

𝑅1𝑅2 + 𝑅1𝑅3 + 𝑅2𝑅3
. (2.31c)

There exist other elimination methods that are similar to Kron reduction. One
of these methods is immersion for module representations (Dankers et al., 2016),
which is described in Section 2.4.8. Another method is the elimination of latent
variables for the behavioural approach (Polderman and Willems, 1998).

2.3.3 Diffusive couplings

One particular property of physical linear components is that they are symmetric
in the sense that they act exactly the same when they are turned around, i.e. when
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the connection points of the component are interchanged. For example, if one
of the resistors (𝑅𝐶 , 𝑅𝐿), inductor (𝐿), or capacitor (𝐶) in the 𝑅𝐿𝐶 circuit of
Figure 2.1 is removed and placed backward at the same location in the circuit in
such a way that the terminals of the component switch places, the component and
the circuit behave exactly the same. Moreover, the symmetric interactions appear
in the differential equations as so-called diffusive couplings.

Definition 2.11 (Diffusive coupling (Jones, 1985)). A diffusive coupling
is an interconnection that depends on the difference of variables.

For example, a connection with a resistor can be modelled by the constitutive
relation

𝑃1 − 𝑃2 = 𝑅𝐼, (2.32)

where 𝑃1 and 𝑃2 are the electric potential on each side of the resistor with
resistance 𝑅 and with 𝐼 the current flow through the resistor. The strength of
the interconnection, given by the resistance, depends on the difference in electric
potential on each side of the resistor. By replacing the voltage drop 𝑉𝑥 in (2.17),
(2.18), and (2.19) by the difference in electric potential between the connected
terminals, the diffusive couplings become clear in the model of the electrical
circuit of Example 2.9.

Similar to electrical circuit components, mechanical springs and dampers can
also be modelled with diffusive couplings, as the force induced by these mechanical
components depends on the difference in position and velocity, respectively. That
is, a linear spring and a linear damper can, respectively, be modelled by

𝐹 = 𝑘 (𝑥1 − 𝑥2), 𝐹 = 𝑏(𝑣1 − 𝑣2), (2.33)

respectively, with force 𝐹, where 𝑥1 and 𝑥2 are the positions on each side of the
spring with spring constant 𝑘 , and where 𝑣1 and 𝑣2 are the velocity on each side
of the damper with damping constant 𝑏.

Diffusive couplings thus appear naturally in physical linear networks. How-
ever, they also appear in other types of networks, such as in consensus networks.
These networks are, among others, used to describe multiagent systems, for ex-
ample, for cooperative or formation control. The typical objective in consensus
networks is to let the agents come to consensus, that is to let them converge to
joint behaviour (Ren et al., 2005). In these networks, each vertex 𝑖 is associated
with an agent (or subsystem) with state 𝑥𝑖 (𝑡). All vertices (say 𝑛) are diffusively
coupled with other vertices as

¤𝑥𝑖 (𝑡) = −
𝑛∑︁

𝑗=1, 𝑗≠𝑖
𝑤𝑖 𝑗 [𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)] +

𝑝∑︁
𝑘=1

𝑏𝑖𝑘𝑢𝑘 (𝑡), (2.34)
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with inputs 𝑢𝑘 (𝑡) and with 𝑤𝑖 𝑗 and 𝑏𝑖𝑘 the weight of the edge from vertex 𝑗 and
input 𝑘 to vertex 𝑖, respectively. The dynamics of the complete consensus network
is described by the LTI system

¤𝑥(𝑡) = −𝐿𝑥(𝑡) + 𝐵𝑢(𝑡), (2.35)

where 𝐿 ∈ R𝑛×𝑛 is the Laplacian matrix of the network, consisting of elements

𝐿𝑖 𝑗 =

{
−∑𝑘≠ 𝑗 𝑤𝑘 𝑗 , if 𝑖 = 𝑗 ,

𝑤𝑖 𝑗 , if 𝑖 ≠ 𝑗 .
(2.36)

and 𝐵 ∈ R𝑛×𝑝 is the input matrix, consisting of elements 𝐵𝑖𝑘 = 𝑏𝑖𝑘 . The Laplacian
matrix captures the structure of the diffusive couplings among the agents. If the
weight from vertex 𝑖 to vertex 𝑗 is the same as the weight from vertex 𝑗 to vertex
𝑖, then 𝑤 𝑗𝑖 = 𝑤𝑖 𝑗 and the Laplacian matrix 𝐿 is symmetric. Then the network can
be depicted by an undirected graph.

In this section, both electrical and mechanical components have been modelled
with diffusive couplings. Moreover, a more careful look at (2.32) and (2.33) shows
that these equations have the same structure. This analogy holds for many physical
systems, such as electrical circuits and mechanical (both translational and rota-
tional) systems, but also hydraulic flow systems, pneumatic flow systems, acoustic
systems, thermal systems, mass flow systems, compartment models in pharmacy
kinetics, and chemical reactions (Paynter, 1961; Ljung and Glad, 1994; Van den
Bosch, 2009; van der Schaft and Jeltsema, 2014). The analogies among physical
domains and the transitions between them are further discussed in Section 5.4.

2.4 Dynamic network models

2.4.1 Graphical representation

A network model consists of two parts: a graphical and a mathematical repres-
entation. The graphical network model is a visualisation of the interconnection
structure of the dynamic network. It is a graph consisting of two main compon-
ents: the vertices (or nodes) and the edges (or links). One can choose to place
the signals of interest in the vertices and interconnect them through edges that
represent the influences or dynamics between them. Then the dynamics of the
network is thus located in the edges. One can also choose to place subsystems in
the vertices and interconnect them through edges that represent the information or
signals that are shared between them. Then the dynamics of the network is thus
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Figure 2.3: Directed graph with vertices
𝑣𝑖 and directed edges (arrows).
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Figure 2.4: Undirected graph with ver-
tices 𝑣𝑖 and undirected edges (lines).

located in the vertices. The relations between several graphical representations
are investigated in Chapter 3.

Consider the directed graph and undirected graph shown in Figure 2.3 and
Figure 2.4, respectively. We will use these graphs to introduce some nomenclature
and concepts for graphs, see, for example, Godsil and Royle (2001) and Mesbahi
and Egerstedt (2010).

An edge leaving a vertex is an outgoing edge and an edge entering a vertex is
an incoming edge; for example, the edge between 𝑣1 and 𝑣2 is an outgoing edge of
𝑣1 and an incoming edge of 𝑣2. Two vertices that are directly connected to each
other are neighbours; for example, 𝑣1 and 𝑣2 are neighbours. To be more precise,
𝑣1 is an in-neighbour of 𝑣2 and 𝑣2 is an out-neighbour of 𝑣1. A vertex with only
outgoing edges is a source, for example, 𝑣3; a vertex with only incoming edges is
a sink, for example, 𝑣6; and vertices with both incoming and outgoing edges are
internal vertices, for example, 𝑣1.

A path is a sequence of vertices and outgoing edges; for example, the path
(𝑣1, 𝑣2, 𝑣4). The length of a path is the number of edges in a path; for example,
the path (𝑣1, 𝑣2, 𝑣4) has length 2. A direct path is a path of length 1; for example,
the path (𝑣1, 𝑣2). There is no direct path between 𝑣1 and 𝑣4, because that path
needs to pass through 𝑣2, i.e. the path becomes (𝑣1, 𝑣2, 𝑣4). Multiple paths are
called vertex disjoint paths if they do not share any vertices; for example, the paths
(𝑣1, 𝑣2) and (𝑣3, 𝑣5) are vertex disjoint paths, while the paths (𝑣1, 𝑣2) and (𝑣2, 𝑣4)
are not vertex disjoint paths. Multiple paths are called parallel paths if they start
at the same vertex and end at the same vertex; for example, the path (𝑣7, 𝑣6) is a
parallel path to the path (𝑣7, 𝑣4, 𝑣6). A loop is a path that starts and ends at the
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same vertex; for example, the path (𝑣5, 𝑣6, 𝑣4, 𝑣5). A self-loop is a loop that is a
direct path; for example, the path (𝑣5, 𝑣5).

A digraph is a graph with directed edges, as shown in Figure 2.3. An un-
directed graph is a graph with undirected or bi-directed edges, see Figure 2.4.
For undirected graphs, all edges are both incoming and outgoing and hence, all
neighbours are both in-neighbours and out-neighbours. Such a network has no
sources and sinks, only internal vertices. If there is a path between two vertices,
then there also is a path in the opposite direction, implying that if there is a path
between two vertices, there also is a loop between those vertices.

The adjacency matrix 𝐴(𝐺) is a square matrix that encodes the adjacency
relations in the graph 𝐺 by its elements

[𝐴(𝐺)]𝑖 𝑗 =
{
𝑎𝑖 𝑗 , if (𝑣 𝑗 , 𝑣𝑖) exists
0, otherwise,

(2.37)

where 𝑎𝑖 𝑗 ≠ 0 is the weight of the edge (𝑣 𝑗 , 𝑣𝑖). If the weight 𝑎𝑖 𝑗 = 0, then it
coincides with the situation that there is no edge (𝑣 𝑗 , 𝑣𝑖).

The in-degree matrix 𝐷𝑖𝑛 (𝐺) is a diagonal matrix that encodes the weights of
the in-neighbour edges of the vertices by its diagonal elements

[𝐷𝑖𝑛 (𝐺)]𝑖𝑖 =
∑︁

{ 𝑗 | (𝑣 𝑗 ,𝑣𝑖 ) exists}
𝑎𝑖 𝑗 . (2.38)

The (in-degree) Laplacian matrix 𝐿𝑖𝑛 (𝐺) is defined by

𝐿𝑖𝑛 (𝐺) = 𝐷𝑖𝑛 (𝐺) − 𝐴(𝐺). (2.39)

By construction, the sum of each row of 𝐿𝑖𝑛 (𝐺) equals zero, that is the vector
with all elements equal to 1 lies in the null space of 𝐿𝑖𝑛 (𝐺).

For the graph shown in Figure 2.3, the adjacency matrix, the in-degree matrix,
and the (in-degree) Laplacian matrix are, respectively,

𝐴(𝐺) =



0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 1 1 0 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0


, 𝐷𝑖𝑛 (𝐺) =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1


,

(2.40)
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𝐿𝑖𝑛 (𝐺) =



1 0 −1 0 0 0 0
−1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 2 0 0 −1
0 0 −1 −1 2 0 0
0 0 0 −1 0 2 −1
0 0 0 −1 0 0 1


. (2.41)

Opposite to the in-degree matrix and in-degree Laplacian matrix are the out-
degree matrix and out-degree Laplacian matrix. The out-degree matrix 𝐷𝑜𝑢𝑡 (𝐺)
is a diagonal matrix that encodes the weights of the out-neighbour edges of the
vertices by its diagonal elements

[𝐷𝑜𝑢𝑡 (𝐺)]𝑖𝑖 =
∑︁

{ 𝑗 | (𝑣𝑖 ,𝑣 𝑗 ) exists}
𝑎𝑖 𝑗 . (2.42)

The (out-degree) Laplacian matrix 𝐿𝑜𝑢𝑡 (𝐺) is defined by

𝐿𝑜𝑢𝑡 (𝐺) = 𝐷𝑜𝑢𝑡 (𝐺) − 𝐴(𝐺). (2.43)

By construction, the sum of each column of 𝐿𝑜𝑢𝑡 (𝐺) equals zero.
The in-degree versions capture how a vertex is influenced by other vertices,

while the out-degree versions capture how a vertex influences other vertices. For
undirected graphs, the adjacency matrix is symmetric (𝐴(𝐺) = 𝐴(𝐺)⊤) and the in-
degree matrix is equal to the out-degree matrix (𝐷𝑖𝑛 (𝐺) = 𝐷𝑜𝑢𝑡 (𝐺)). Hence, the
in-degree and out-degree Laplacian matrices are symmetric (𝐿𝑖𝑛 (𝐺) = 𝐿𝑖𝑛 (𝐺)⊤
and 𝐿𝑜𝑢𝑡 (𝐺) = 𝐿𝑜𝑢𝑡 (𝐺)⊤) and equal (𝐿𝑖𝑛 (𝐺) = 𝐿𝑜𝑢𝑡 (𝐺)) and therefore, simply
referred to as the Laplacian matrix 𝐿 (𝐺).

Definition 2.12 (Connected digraph (Mesbahi and Egerstedt, 2010)). A
digraph is

1. strongly connected if there exists a directed path between every pair
of vertices.

2. weakly connected if there exists an undirected path between any pair
of vertices.

To find the undirected paths in a digraph, replace all directed edges by un-
directed edges. The resulting graph is referred to as the underlying undirected
graph.

For undirected graphs, strong connectivity and weak connectivity are equival-
ent and therefore, simply referred to as connectivity.
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Definition 2.13 (Connected graph (Mesbahi and Egerstedt, 2010)). An
undirected graph is connected if there exists a path between every pair of
vertices.

The in-degree Laplacian matrix (and especially the one of undirected graphs)
has some special properties. For an undirected graph with 𝑛 vertices, the Laplacian
matrix is a symmetric 𝑛 × 𝑛 matrix (𝐿 (𝐺) = 𝐿⊤(𝐺)). The sum of all elements
in a single row of the Laplacian matrix is zero and because the Laplacian matrix
is symmetric, all elements in a single column add up to zero as well. This holds
for each row and each column of the Laplacian matrix. Algebraically, this means
that the vector with all elements equal to 1 lies in the kernel of 𝐿 (𝐺) and the
kernel of 𝐿⊤(𝐺). The Laplacian matrix 𝐿 (𝐺) is positive semi-definite with real
eigenvalues

𝜆1(𝐿 (𝐺)) ≤ 𝜆2(𝐿 (𝐺)) ≤ · · · ≤ 𝜆𝑛 (𝐿 (𝐺)), (2.44)

with 𝜆1(𝐿 (𝐺)) = 0 (Mesbahi and Egerstedt, 2010). An undirected graph is
connected if and only if 𝜆2(𝐿 (𝐺)) > 0 (Mesbahi and Egerstedt, 2010, Theorem
2.8). Note that if an undirected graph is connected, then rank(𝐿 (𝐺)) = 𝑛 − 1.

A polynomial matrix 𝐿 (𝜉) ∈ R𝑀×𝐾 is Laplacian if all its matrices 𝐿𝑖 are
Laplacian matrices. As a result, 𝐿 (𝜉) itself has a Laplacian structure in the sense
that in each row and in each column, the elements add up to zero. That is

𝑀∑︁
𝑚=1

ℓ𝑚𝑘 (𝜉) = 0, and
𝐾∑︁
𝑘=1

ℓ𝑚𝑘 (𝜉) = 0, (2.45)

respectively.

2.4.2 State-space model

In physics and control, state-space models are often used to describe dynamic
systems, for example, for the purpose of system analysis or controller design
(Mesbahi and Egerstedt, 2010; Verhaegen and Verdult, 2012; Bullo, 2022). State-
space models are also used in other research areas, such as biology and economy,
for example, to describe brain connectivity (Friston et al., 2014; Prando et al.,
2020), gene regulation (Huang et al., 2005), or other biochemical reaction networks
(Anderson et al., 2011). In addition, state-space models are used to describe
the interaction between subsystems or agents, where each vertex represents a
subsystem or agent and the state-space model describes the links between them
(Boccaletti et al., 2006; van der Schaft and Maschke, 2013; Haber and Verhaegen,
2014; van Waarde et al., 2018; Cheng and Scherpen, 2021).
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State-space representations capture the behaviour of physical systems through
inputs, outputs, and state variables that are related to each other through a set of
first-order differential equations.

Definition 2.14 (State-space model (Kalman, 1960)). A state-space model
consists of 𝑛 internal state variables 𝑥1(𝑡), . . . , 𝑥𝑛 (𝑡); 𝑝 known external ex-
citation signals 𝑢1(𝑡), . . . , 𝑢𝑝 (𝑡); and 𝑐 measured signals 𝑦1(𝑡), . . . , 𝑦𝑐 (𝑡).
The behaviour of the system is described by

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡), (2.46)

with 𝑡 ∈ R indicating the time, with matrices 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑝,
𝐶 ∈ R𝑐×𝑛, and 𝐷 ∈ R𝑐×𝑝, and where

𝑥(𝑡) =
[
𝑥1(𝑡) 𝑥2(𝑡) . . . 𝑥𝑛 (𝑡)

]⊤
, (2.47a)

𝑢(𝑡) =
[
𝑢1(𝑡) 𝑢2(𝑡) . . . 𝑢𝑝 (𝑡)

]⊤
, (2.47b)

𝑦(𝑡) =
[
𝑦1(𝑡) 𝑦2(𝑡) . . . 𝑦𝑐 (𝑡)

]⊤
. (2.47c)

Graphically, state-space models can be depicted by directed graphs 𝐺, where
the vertices represent the states of the network and the edges represent the first-
order relations between the states. These relations are exactly captured by the
state matrix 𝐴. That is, 𝐴 coincides with the adjacency matrix 𝐴(𝐺) of the
corresponding graph 𝐺. Two additional layers can be added: one for the inputs
and one for the outputs. The additional edges represent the static relations from
the inputs to the states and from the states to the outputs, captured by the input
matrix 𝐵, output matrix 𝐶, and direct feedthrough matrix 𝐷.

In state-space models that describe interactions between subsystems or agents,
each state variable is related to a subsystem. The directed graphs depicting these
networks now have vertices that are directly related to specific subsystems.

Example 2.15 (State-space model of an electrical circuit). Consider
again the electrical circuit in Figure 2.1. This circuit is described in a
state-space model as[

𝑑
𝑑𝑡
𝑉𝐶 (𝑡)

𝑑
𝑑𝑡
𝐼𝐿 (𝑡)

]
=

[
0 − 1

𝐶
1
𝐿
−𝑅𝐿+𝑅𝐶

𝐿

] [
𝑉𝐶 (𝑡)
𝐼𝐿 (𝑡)

]
+
[ 1
𝐶
𝑅𝐶
𝐿

]
𝐼 (𝑡), (2.48a)

𝑉 (𝑡)
𝑉𝐶 (𝑡)
𝑉𝑅𝐿 (𝑡)

 =

1 −𝑅𝑐
1 0
0 𝑅𝐿


[
𝑉𝐶 (𝑡)
𝐼𝐿 (𝑡)

]
+

𝑅𝐶
0
0

 𝐼 (𝑡). (2.48b)
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Figure 2.5: State-space model of the electrical circuit of Example 2.15.

Figure 2.5 shows the graphical representation of this state-space model.
This figure shows three layers: one with the input, one with the two states,
and one with the three outputs. The causal relations between the signals
are depicted by the directed graph.

Remark 2.16 (Discrete time). State-space models can similarly be formu-
lated in discrete time. Then the internal state variables 𝑥1(𝑘), . . . , 𝑥𝑛 (𝑘),
with time instant 𝑘 , are related to each other through a set of first-order
difference equations. This results in a formulation that explains the state
variables at the next time instant, 𝑥(𝑘 + 1), in terms of the state variables
at the current time instant and the external excitation signals 𝑢(𝑘). The
output equation is formulated mutatis mutandis.

2.4.3 Second-order model

Many physical systems can be modelled by second-order vector differential equa-
tions (Wittenburg, 1977; Ljung and Glad, 1994; Van den Bosch, 2009). Some
well-known examples are mechanical mass-spring-damper systems for modelling
multibody dynamics, structure dynamics, or vibration dynamics (Wittenburg,
1977; Fritzen, 1986; De Angelis et al., 2002; Lopes dos Santos et al., 2015), and
electrical resistor-inductor-capacitor circuits. These second-order representations
capture the behaviour of physical systems through second-order (ordinary vector)
differential equations.
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Definition 2.17 (Second-order model (Wittenburg, 1977)). A second-
order model consists of 𝑛 internal variables 𝑥1(𝑡), . . . , 𝑥𝑛 (𝑡); 𝑝 known
external excitation signals 𝑢1(𝑡), . . . , 𝑢𝑝 (𝑡); and 𝑐 measured signals
𝑦1(𝑡), . . . , 𝑦𝑐 (𝑡). The behaviour of the system is described by

𝑀
𝑑2

𝑑𝑡2
𝑥(𝑡) + 𝐷 𝑑

𝑑𝑡
𝑥(𝑡) + 𝐾𝑥(𝑡) = 𝐹𝑢(𝑡), 𝑦(𝑡) = 𝐶𝑥(𝑡), (2.49)

with 𝑡 ∈ R indicating the time, with matrices 𝑀, 𝐷, 𝐾 ∈ R𝑛×𝑛, 𝐹 ∈ R𝑛×𝑝,
and 𝐶 ∈ R𝑐×𝑛, and where

𝑥(𝑡) =
[
𝑥1(𝑡) 𝑥2(𝑡) . . . 𝑥𝑛 (𝑡)

]⊤
, (2.50a)

𝑢(𝑡) =
[
𝑢1(𝑡) 𝑢2(𝑡) . . . 𝑢𝑝 (𝑡)

]⊤
, (2.50b)

𝑦(𝑡) =
[
𝑦1(𝑡) 𝑦2(𝑡) . . . 𝑦𝑐 (𝑡)

]⊤
. (2.50c)

For physical systems, the system matrices 𝑀 , 𝐷, and 𝐾 are often symmetric
and positive semi-definite matrices, due to the symmetric nature of the physical
components and the positive value of their coefficients. The internal variables
𝑥𝑖 (𝑡) represent generalised displacements or charges and the number of internal
variables 𝑛 is equal to the number of degrees of freedom. A graphical repres-
entation of a physical system follows from the interconnections of the physical
components. The number of internal variables 𝑛 is equal to the number of vertices
in the network. Moreover, each vertex is directly related to an internal (state)
variable. The edges in the undirected graph represent the components between
the internal variables, the input, and the ground (or reference), see, for example,
(Cheng et al., 2017).

Second-order models are particularly useful for modal analysis of the system,
where the natural frequencies (eigenfrequencies), damping factors, and mode
shapes are analysed. These quantities are, for example, useful in vibration ana-
lysis of mechanical structures (Luş et al., 2003; Lopes dos Santos et al., 2015;
Mukhopadhyay et al., 2015).

Example 2.18 (Second-order model of an electrical circuit). Consider
again the electrical circuit in Figure 2.1. This circuit is described by a
second-order model as


0 0 0
0 𝐶 0
0 0 0




𝑑2

𝑑𝑡2
𝑉 (𝑡)

𝑑2

𝑑𝑡2
𝑉𝐶 (𝑡)

𝑑2

𝑑𝑡2
𝑉𝑅𝐿 (𝑡)

 +


1
𝑅𝐶

− 1
𝑅𝐶

0
− 1
𝑅𝐶

1
𝑅𝐶

0
0 0 1

𝑅𝐿




𝑑
𝑑𝑡
𝑉 (𝑡)

𝑑
𝑑𝑡
𝑉𝐶 (𝑡)

𝑑
𝑑𝑡
𝑉𝑅𝐿 (𝑡)

 +
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Figure 2.6: Second-order model of the electrical circuit of Example 2.18.


1
𝐿

0 − 1
𝐿

0 0 0
− 1
𝐿

0 1
𝐿



𝑉 (𝑡)
𝑉𝐶 (𝑡)
𝑉𝑅𝐿 (𝑡)

 =

𝑑
𝑑𝑡

0
0

 𝐼 (𝑡). (2.51)

Figure 2.6 shows the graphical representation of this second-order model.
This figure shows three layers: one with the input, one with the internal
variables, and one with the ground. The physical interpretation is clear
from the undirected graph.

For the purpose of analysis, control, and in particular identification of physical
systems, the second-order model is often translated into a first-order state-space
representation (Fritzen, 1986; Friswell et al., 1999; Luş et al., 2003; Ramos et al.,
2013; Lopes dos Santos et al., 2015). There are many options for choosing the
state vector of the state-space model, all with their own advantages, for example,
as the generalised displacement and velocity, or as the modal displacement and
velocity (Luş et al., 2003). The most commonly used approach is probably to
define the state of the state-space model as 𝜉 (𝑡) :=

[
𝑥⊤(𝑡) 𝑑

𝑑𝑡
𝑥⊤(𝑡)

]⊤ leading to
the continuous-time state-space model

𝑑

𝑑𝑡
𝜉 (𝑡) =

[
𝑑
𝑑𝑡
𝑥(𝑡)

𝑑2

𝑑𝑡2
𝑥(𝑡)

]
=

[
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐷

] [
𝑥(𝑡)
𝑑
𝑑𝑡
𝑥(𝑡)

]
+
[

0
𝑀−1𝐹

]
𝑢(𝑡), (2.52)

provided that 𝑀 is invertible. If 𝑀 is not invertible, then the following system of
differential and algebraic equations (DAE) is used:[

𝐼 0
0 𝑀

]
𝑑

𝑑𝑡
𝜉 (𝑡) =

[
0 𝐼

−𝐾 −𝐷

]
𝑑

𝑑𝑡
𝜉 (𝑡) +

[
0
𝐹

]
𝑢(𝑡). (2.53)
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Remark 2.19 (Discrete time). Second-order models can similarly be for-
mulated in discrete time. Then the behaviour of the system is captured
by second-order vector difference equations. A state-space model of the
discrete-time second-order model is formulated mutatis mutandis.

2.4.4 Polynomial model

Polynomial models are popular representations for describing dynamic systems,
especially for identification purposes with prediction error identification methods
(Ljung, 1999; Hannan and Deistler, 2012). Therefore, they are typically formu-
lated in discrete time, where the input and output signals are related through
polynomials in the time-shift operator.

Definition 2.20 (Polynomial model (Ljung and Glad, 1994)). A polyno-
mial model consists of 𝑝 known external excitation signals 𝑢1(𝑡), . . . , 𝑢𝑝 (𝑡);
𝑛 unknown external noise signals 𝑒1(𝑡), . . . , 𝑒𝑛 (𝑡); and 𝑐 measured signals
𝑦1(𝑡), . . . , 𝑦𝑐 (𝑡). The behaviour of the system is described by

𝐴(𝑞−1)𝑦(𝑡) = 𝐹−1(𝑞−1)𝐵(𝑞−1)𝑢(𝑡) + 𝐷−1(𝑞−1)𝐶 (𝑞−1)𝑒(𝑡), (2.54)

with 𝑡 ∈ Z the time instant, with delay operator 𝑞−1 meaning 𝑞−1𝑢(𝑡) = 𝑢(𝑡−
1), with polynomial matrices 𝐴(𝑞−1) ∈ R𝑐×𝑐 [𝑞−1], 𝐵(𝑞−1) ∈ R𝑐×𝑝 [𝑞−1],
𝐶 (𝑞−1) ∈ R𝑐×𝑛 [𝑞−1], and 𝐷 (𝑞−1), 𝐹 (𝑞−1) ∈ R𝑐×𝑐 [𝑞−1], and where

𝑢(𝑡) =
[
𝑢1(𝑡) 𝑢2(𝑡) . . . 𝑢𝑝 (𝑡)

]⊤
, (2.55a)

𝑦(𝑡) =
[
𝑦1(𝑡) 𝑦2(𝑡) . . . 𝑦𝑐 (𝑡)

]⊤
, (2.55b)

𝑒(𝑡) =
[
𝑒1(𝑡) 𝑒2(𝑡) . . . 𝑒𝑛 (𝑡)

]⊤
. (2.55c)

The polynomial matrices 𝐴(𝑞−1), 𝐷 (𝑞−1), and 𝐹 (𝑞−1) are assumed to satisfy
det(𝐴0) ≠ 0, det(𝐷0) ≠ 0, and det(𝐹0) ≠ 0, where 𝐴0 = 𝑙𝑖𝑚𝑧→∞𝐴(𝑧), 𝐷0 =

𝑙𝑖𝑚𝑧→∞𝐷 (𝑧) and 𝐹0 = 𝑙𝑖𝑚𝑧→∞𝐹 (𝑧). Further, 𝐴−1(𝑞−1)𝐹−1(𝑞−1)𝐵(𝑞−1) and
𝐴−1(𝑞−1)𝐷−1(𝑞−1)𝐶 (𝑞−1) are assumed to be proper transfer function matrices.
For uniqueness of the representation, 𝐴(𝑞−1), 𝐶 (𝑞−1), 𝐷 (𝑞−1), and 𝐹 (𝑞−1) are
often assumed to be monic, meaning that lim𝑧→∞ 𝐴(𝑧) = 𝐼, lim𝑧→∞𝐶 (𝑧) = 𝐼,
lim𝑧→∞ 𝐷 (𝑧) = 𝐼, and lim𝑧→∞ 𝐹 (𝑧) = 𝐼.

Some well-known polynomial model structures are the finite impulse response
(FIR), the output error (OE), the autoregressive with exogeneous input (ARX),
the autoregressive-moving average with exogeneous input (ARMAX), and the
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Table 2.1: Simplified polynomial model structures (Ljung and Glad, 1994; Ljung,
1999).

Model structure Simplification
FIR 𝐴(𝑞−1) = 𝐶 (𝑞−1) = 𝐷 (𝑞−1) = 𝐹 (𝑞−1) = 𝐼
OE 𝐴(𝑞−1) = 𝐶 (𝑞−1) = 𝐷 (𝑞−1) = 𝐼
ARX 𝐶 (𝑞−1) = 𝐷 (𝑞−1) = 𝐹 (𝑞−1) = 𝐼
ARMAX 𝐷 (𝑞−1) = 𝐹 (𝑞−1) = 𝐼
BJ 𝐴(𝑞−1) = 𝐼

Box-Jenkins (BJ) model structures. Their exact simplifications of the general
polynomial model structure are captured in Table 2.1.

Remark 2.21 (Continuous time). In continuous time, polynomial models
are formulated similarly by relating the input and output signals through
polynomials in the differential operator 𝑝 meaning 𝑝𝑢(𝑡) = 𝑑

𝑑𝑡
𝑢(𝑡).

Remark 2.22 (Relation with second-order model). A discrete-time
second-order model (the discrete-time version of (2.49)) with 𝐶 = 𝐼, that is
with 𝑦(𝑡) = 𝑥(𝑡), is equivalent to a polynomial model (2.54) with𝐶 (𝑞−1) = 0
and 𝐷 (𝑞−1) = 𝐹 (𝑞−1) = 𝐼.

Even though this relation with second-order models exists, there is not really
an interpretation in terms of networks (yet) and therefore also no graphical rep-
resentation. Dynamical networks that are modelled by these polynomial models
are considered to be a single system.

Example 2.23 (Polynomial model of an electrical circuit). Consider again
the electrical circuit in Figure 2.1. This circuit is described by a polynomial
model as

1
𝑅𝐶
𝑝 + 1

𝐿
− 1
𝑅𝐶
𝑝 − 1

𝐿

− 1
𝑅𝐶
𝑝 𝐶𝑝2 + 1

𝑅𝐶
𝑝 0

− 1
𝐿

0 1
𝑅𝐿
𝑝 + 1

𝐿



𝑉 (𝑡)
𝑉𝐶 (𝑡)
𝑉𝑅𝐿 (𝑡)

 =

𝑝

0
0

 𝐼 (𝑡). (2.56)

Eliminating the output variables 𝑉𝐶 (𝑡) and 𝑉𝑅𝐿 (𝑡) leads to (2.20).

Observe that the polynomial model in (2.56) in Example 2.23 is of the form
𝐴(𝑝)𝑦(𝑡) = 𝐵(𝑝)𝑢(𝑡) and that the diffusive couplings appear in this network
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model by symmetry of the polynomial matrix 𝐴(𝑝).

2.4.5 Bayesian network

The first version of a Bayesian network was used in genetic pedigrees to describe
genetic inheritances (Koller and Friedman, 2009). The model was further de-
veloped for describing games of change. A Bayesian network describes joint
probabilities over a set of random variables. If the conditional dependencies
between the variables change over time, the network is called a dynamic Bayesian
network. The information on the probabilistic dependencies is used to draw
conclusions on what might be true and on how to act. From an identification per-
spective, the main objective is to determine the causal dependencies, or topology,
between the variables. Nowadays, Bayesian networks are applied in many differ-
ent fields, for example, in medical diagnostics and decision making; analysis of
marketing data; text and speech recognition and language and image processing;
modelling and prediction of pollution, epidemics, and weather; fault detection
and diagnostics in industrial equipment; and artificial intelligence (Koller and
Friedman, 2009; Sucar, 2021).

Definition 2.24 (Bayesian network (Pearl, 2000)). A Bayesian network
consists of 𝐿 random state variables 𝑥1, . . . , 𝑥𝐿 and conditional dependen-
cies between them. The joint probability distribution is described by

𝑃(𝑥1, . . . , 𝑥𝐿) =
𝐿∏
𝑗=1

𝑃(𝑥 𝑗 |𝑃𝑎(𝑥 𝑗)), (2.57)

with 𝑃(𝑥) the probability of 𝑥, with 𝑃(𝑥 |𝑦) the probability of 𝑥 given 𝑦, and
with 𝑃𝑎(𝑥 𝑗) the parents of 𝑥 𝑗 .

Definition 2.25 (Dynamic Bayesian network (Pearl, 2000)). A dynamic
Bayesian network consists of 𝐿 random state variables 𝑥1(𝑡), . . . , 𝑥𝐿 (𝑡) at
time instances 𝑡 = 1, . . . , 𝑁 and conditional dependencies between them.
The joint probability distribution is described by

𝑃({𝑥1(𝑡), . . . , 𝑥𝐿 (𝑡)}𝑁𝑡=1) =
𝑁∏
𝑡=1

𝐿∏
𝑗=1

𝑃(𝑥 𝑗 (𝑡) |𝑃𝑎(𝑥 𝑗 (𝑡))), (2.58)

with 𝑃(𝑥) the probability of 𝑥, with 𝑃(𝑥 |𝑦) the probability of 𝑥 given 𝑦, and
with 𝑃𝑎(𝑥 𝑗) the parents of 𝑥 𝑗 .
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(b) Dynamic Bayesian Network unrolled over 3 time steps.

Figure 2.7: Dynamic Bayesian Network for genetic inheritance that changes over
time.

Graphically, Bayesian networks are represented by directed acyclic graphs,
where the vertices represent the random variables and the edges represent con-
ditional dependencies. Dynamic Bayesian networks are similarly represented as
Bayesian networks, but now the vertices represent the random variables at each
specific time step.

Example 2.26 (Dynamic Bayesian network of a genetic inheritance).
Consider a disease that is genetically transmissible from the parents to their
child. The genetic inheritance can be modelled by a Bayesian network,
which can graphically be visualised by the graph in Figure 2.7a.
Suppose that the probability of genetic transmission changes over time, for
example, because the probability depends on the age of the parents. At
each time instant, for example, at each year, the genetic inheritance can
again be modelled by the Bayesian network in Figure 2.7a. Over time, the
probabilities of inheritance of the parents change, but only by a personal
factor. The dynamic Bayesian network can graphically be visualised by the
graph in Figure 2.7b.

2.4.6 Wiener filter models

Wiener filter descriptions of dynamic networks are typically used to determine the
interconnection structure of the signals. They were initially used to reconstruct
the topological structure between random signals (Materassi and Innocenti, 2010;
Materassi and Salapaka, 2012; Innocenti and Materassi, 2012; Materassi and
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Salapaka, 2015) and they can also be used to identify the dynamics of the network
(Materassi and Salapaka, 2020; Jahandari and Materassi, 2022a,b; Dimovska and
Materassi, 2021). Some typical application domains are neural networks, eco-
nomy, biology, cognitive sciences, ecology, and geology (Materassi and Salapaka,
2012; Talukdar et al., 2020).

Definition 2.27 (Wiener filter model (Materassi and Innocenti, 2010)).
The dynamic networks that are considered consist of 𝐿 measured sig-
nals 𝑦1(𝑡), . . . , 𝑦𝐿 (𝑡) and 𝑝 unknown external stochastic excitation sig-
nals 𝑒1(𝑡), . . . , 𝑒𝑝 (𝑡). The behaviour of the network is described (in the
frequency domain) by

𝑌 (𝑧) = 𝐻 (𝑧)𝑌 (𝑧) + 𝐸 (𝑧), (2.59)

with complex frequency variable 𝑧, and where 𝑌 (𝑧) = Z
(
𝑦(𝑡)

)
and 𝐸 (𝑧) =

Z
(
𝑒(𝑡)

)
, the 𝑍-transform of 𝑦(𝑡) and 𝑒(𝑡), respectively, and where 𝐻 (𝑧)

is a hollow transfer function matrix and with 𝑧 ∈ C the complex frequency
variable.
A Wiener filter model of this network is described by

𝑌 (𝑧) = 𝑊 (𝑧)𝑌 (𝑧), (2.60)

where the Wiener filter𝑊 (𝑧) is a real-rational transfer function matrix and
a fraction of (cross-)power spectral densities:

𝑊𝑖 𝑗 (𝑧) =
Φ𝑦 𝑗 ,𝑦𝑖 (𝑧)
Φ𝑦 𝑗 (𝑧)

. (2.61)

As the main interest is to reconstruct the topology of the network, these
networks are typically depicted by directed graphs, where the vertices represent the
signals (𝑦𝑖 (𝑡)) and the edges represent the presence of dynamic transfer functions
between them. A nonzero Wiener filter𝑊𝑖 𝑗 (𝑧) corresponds to the presence of an
edge from signal 𝑦 𝑗 (𝑡) to signal 𝑦𝑖 (𝑡).

In general, the Wiener filter (2.61) can be noncausal. The corresponding
causal Wiener filter is constructed as

𝑊𝐶
𝑖 𝑗 (𝑧) =

{
Φ𝑦 𝑗 ,𝑦𝑖 (𝑧)
Φ𝑦 𝑗 (𝑧)

𝑆(𝑧)
}
𝐶

𝑆−1(𝑧), (2.62)

with 𝑆(𝑧) the spectral factorisation of Φ𝑦 𝑗 (𝑒𝑖𝜔) = 𝑆(𝑒𝑖𝜔)𝑆∗(𝑒𝑖𝜔) and with causal
truncation operator {𝑊 (𝑧)}𝐶 selecting the causal part of𝑊 (𝑧).
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Remark 2.28 (Continuous time). Even though the Wiener filter description
of dynamic networks is typically formulated in discrete time, it can be
formulated similarly in continuous time in terms of the complex Laplace
variable 𝑠.

2.4.7 Dynamical structure function

The dynamical structure function has its origin in system biology (Gonçalves
et al., 2007). It describes interconnections of LTI systems with partial state obser-
vations and with causal dependencies between the observed state variables. The
main objective of this research is to reconstruct the structure and dynamics of the
network from the input-output transfer function that is obtained from measurement
data. Further research involves: including noise (Yuan et al., 2011); identifiab-
ility conditions (Adebayo et al., 2012); topology identification (Hayden et al.,
2014); identifiability in particular situations (Hayden et al., 2016, 2017); minimal
state-space realisations (Yuan et al., 2017); and well-posedness, realisations, and
abstractions (Woodbury et al., 2017, 2018)

The networks are considered to be state-space models, with input signals,
output signals, measured and unmeasured state variables, and sometimes noise.
The unmeasured state variables are eliminated from the representation, leading to
the dynamical structure function as formulated by Gonçalves and Warnick (2008).

Definition 2.29 (Dynamical structure function (Gonçalves et al., 2007)).
A dynamical structure function consists of 𝐿 measured state variables
𝑦1(𝑡), . . . , 𝑦𝐿 (𝑡) and 𝑝 known external excitation signals 𝑢1(𝑡), . . . , 𝑢𝑝 (𝑡).
The behaviour of the network is described by

𝑌 (𝑠) = 𝑄(𝑠)𝑌 (𝑠) + 𝑃(𝑠)𝑈 (𝑠), (2.63)

with

1. 𝑠 ∈ C the complex Laplace variable.

2. 𝑌 (𝑠) = L
(
𝑦(𝑡)

)
and 𝑈 (𝑠) = L

(
𝑢(𝑡)

)
, the Laplace transform of 𝑦(𝑡)

and 𝑢(𝑡), respectively.

3. Strictly proper transfer function matrix𝑄(𝑠) ∈ R𝐿×𝐿 (𝑠) that is hollow,
i.e. 𝑄𝑖𝑖 (𝑠) = 0, ∀𝑖.

4. Strictly proper transfer function matrix 𝑃(𝑠) ∈ R𝐿×𝑝 (𝑠).
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Figure 2.8: Dynamical structure function of the electrical circuit of Example 2.30.

The zero structure of 𝑄(𝑠) describes the internal structure of the network and
the zero structure of 𝑃(𝑠) describes the control structure.

Example 2.30 (Dynamical structure function of an electrical circuit).
Consider again the electrical circuit in Figure 2.1. This circuit is described
by a time-domain dynamical structure function as


𝑉 (𝑡)
𝑉𝐶 (𝑡)
𝑉𝑅𝐿 (𝑡)

 =


0 𝐿𝑝

𝑅𝐶+𝐿𝑝
𝑅𝐶 𝑝

𝑅𝐶+𝐿𝑝
𝑝

1+𝐶𝑅𝐶 𝑝2 0 0
𝑅𝐿

𝑅𝐿+𝐿𝑝 0 0



𝑉 (𝑡)
𝑉𝐶 (𝑡)
𝑉𝑅𝐿 (𝑡)

 +

𝑅𝐶𝐿𝑝

𝑅𝐶+𝐿𝑝
0
0

 𝐼 (𝑡),
(2.64)

with differential operator 𝑝 meaning 𝑝𝐼 (𝑡) = 𝑑
𝑑𝑡
𝐼 (𝑡). Gaussian elimination

of the state variables 𝑉𝐶 (𝑡) and 𝑉𝑅𝐿 (𝑡) leads to (2.20).

The graphical representation of the dynamical structure function of Example
2.30 is shown in Figure 2.8. The dynamical structure function is depicted by a
directed graph with measured state variables at the vertices and the causal transfer
functions 𝑃𝑖 𝑗 (𝑠) and 𝑄𝑖 𝑗 (𝑠) at the edges.

The unmeasured state variables are hidden in these transfer functions and are
therefore referred to as hidden states. Moreover, the elimination process in a
network can lead to the situation in which multiple transfer functions contain the
same unmeasured state variables. This is referred to as shared hidden states,
because the hidden states are shared among several transfer functions (Warnick,
2015).
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Remark 2.31 (Discrete time). Even though the dynamical structure func-
tion is typically formulated in continuous time, it can be formulated similarly
in discrete time in terms of the complex frequency variable 𝑧.

2.4.8 Module representation

The module representation is probably the most popular transfer function model
that is used for identifying dynamic networks with prediction error identification
methods. As it is formulated for prediction error identification purposes, it is
formulated in discrete time. The module representation is a generalisation of the
classical closed-loop system (Van den Hof et al., 2013). The main objectives in this
research are to identify the topology of the network (Materassi and Innocenti, 2010;
Chiuso and Pillonetto, 2012; Shi et al., 2019), the complete network dynamics
(Weerts et al., 2018c; Fonken et al., 2020), or the dynamics of a subnetwork
(Van den Hof et al., 2013; Dankers et al., 2016; Ramaswamy and Van den Hof,
2021). Other research objectives are related to identifiability (Weerts et al., 2018b;
Hendrickx et al., 2019; Bazanella et al., 2019; Shi et al., 2023), experiment design
(Gevers and Bazanella, 2015; Bazanella et al., 2017) and allocation of excitation
signals (Cheng et al., 2022; Dreef et al., 2022), developing scalable algorithms
(Everitt et al., 2018; Fonken et al., 2022), control (Steentjes et al., 2021), and
applications (Dankers et al., 2021).

In the module representation, a set of interesting signals (node signals) is
interconnected through dynamic systems (modules) and possibly driven by known
external excitation signals and unknown external disturbance signals (Van den Hof
et al., 2013). Sometimes measurement noise is taken into account as well (Dankers
et al., 2015).

Definition 2.32 (Module representation (Van den Hof et al., 2013)). A
module representation consists of 𝐿 internal node signals 𝑤1(𝑡), . . . , 𝑤𝐿 (𝑡)
interconnected through transfer function modules; 𝐾 known external
excitation signals 𝑟1(𝑡), . . . 𝑟𝐾 (𝑡); and 𝐿 unknown disturbance signals
𝑣1(𝑡), . . . , 𝑣𝐿 (𝑡). The behaviour of the node signals 𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿, is
described by

𝑤 𝑗 (𝑡) =
∑︁
𝑖∈N𝑗

𝐺0
𝑗𝑖 (𝑞)𝑤𝑖 (𝑡) +

𝐾∑︁
𝑘=1

𝑅0
𝑗𝑘 (𝑞)𝑟𝑘 (𝑡) + 𝑣 𝑗 (𝑡), (2.65)

with

1. 𝑡 ∈ Z the time instant.
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2. 𝑞 the shift operator meaning 𝑞𝑤 𝑗 (𝑡) = 𝑤 𝑗 (𝑡 + 1).

3. N𝑗 the set of indices of node signals 𝑤𝑖 (𝑡) 𝑖 ≠ 𝑗 with direct paths to
node signals 𝑤 𝑗 (𝑡) (i.e. N𝑗 is the set of in-neighbours of 𝑤 𝑗 (𝑡)).

4. 𝐺0
𝑗𝑖
(𝑞) proper rational transfer functions, referred to as modules, with

𝐺0
𝑗 𝑗
(𝑞) = 0.

5. 𝑅0
𝑗𝑘
(𝑞) known stable proper rational transfer functions.

Combining the expressions of all node signals results in the following matrix
equation describing the full behaviour of the network:

𝑤(𝑡) = 𝐺0(𝑞)𝑤(𝑡) + 𝑅0(𝑞)𝑟 (𝑡) + 𝑣(𝑡), (2.66)

where 𝐺0(𝑞) and 𝑅0(𝑞) consist of elements [𝐺0(𝑞)]𝑖 𝑗 = 𝐺0
𝑖 𝑗
(𝑞) and [𝑅0(𝑞)]𝑖 𝑗 =

𝑅0
𝑖 𝑗
(𝑞), respectively, and where

𝑤(𝑡) =
[
𝑤1(𝑡) 𝑤2(𝑡) . . . 𝑤𝐿 (𝑡)

]⊤
, (2.67a)

𝑟 (𝑡) =
[
𝑟1(𝑡) 𝑟2(𝑡) . . . 𝑟𝐾 (𝑡)

]⊤
, (2.67b)

𝑣(𝑡) =
[
𝑣1(𝑡) 𝑣2(𝑡) . . . 𝑣𝐿 (𝑡)

]⊤
. (2.67c)

The disturbance signals 𝑣(𝑡) are modeled as a filtered white noise process such
that 𝑣(𝑡) = 𝐻0(𝑞)𝑒(𝑡), with 𝐻0(𝑞) a square rational transfer function matrix that
is monic, stable, and has a stable inverse; and with 𝑒(𝑡) the with noise process
with covariance Λ0 ≻ 0.

The dynamic network is assumed to be stable, meaning that the transfer
function matrix

(
𝐼 − 𝐺0(𝑞)

)−1 only contains stable transfer function elements.
The dynamic network is also assumed to be well-posed, meaning that all principal
minors of lim𝑧→∞

(
𝐼 − 𝐺0(𝑧)

)
are nonzero.

Remark 2.33 (Continuous time). Even though the module representation
is typically formulated in discrete time, it can be formulated similarly in
continuous time in terms of the differential operator 𝑝 meaning 𝑝𝑤 𝑗 (𝑡) =
𝑑
𝑑𝑡
𝑤 𝑗 (𝑡).

The graphical module representation corresponding to Example 2.35 is shown
in Figure 2.9. The circles are the vertices, which are summation points leading
to the node signals 𝑤(𝑡). The boxes in the edges represent the transfer function
modules interconnecting the node signals. The arrows represent internal and
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Figure 2.9: Module representation of the electrical circuit of Example 2.35.

external signals and describe a directed information flow. Observe that the module
representation of the electrical circuit in Figure 2.1, described by (2.70) and shown
in Figure 2.9, is exactly the same as the dynamical structure function of this
network, described by (2.64) and shown in Figure 2.8.

Immersion

Immersion is an operation to eliminate node signals from the network representa-
tion, whilst preserving the behaviour of the remaining node signals (Dankers et al.,
2016). This is, for example, useful for removing unmeasured node signals from
the module representation. Then the representation resulting from immersion de-
scribes the relations among the measured node signals. Immersion is performed
both graphically and mathematically, as illustrated by the following example:

Example 2.34 (Immersion). Consider the module representation shown in
the graph in Figure 2.10a, which consists of three node signals at the vertices
and the modules at the edges between them. This module representation is
described by

𝑤1(𝑡)
𝑤2(𝑡)
𝑤3(𝑡)

 =


0 0 𝐺31(𝑞)
𝐺21(𝑞) 0 0

0 𝐺32(𝑞) 0



𝑤1(𝑡)
𝑤2(𝑡)
𝑤3(𝑡)

 +

𝑟1(𝑡)

0
0

 . (2.68)

Eliminating 𝑤2(𝑡) from the network is graphically performed by lifting the
path through 𝑤2(𝑡); combining the dynamics in this path; and removing
𝑤2(𝑡) from the graph. The resulting module representation is shown in
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Figure 2.10: Module representation of the dynamic network of Example 2.34 and
the immersed network resulting from eliminating 𝑤2(𝑡) from the network.

Figure 2.10b. Mathematically, 𝑤2(𝑡) is eliminated by selecting the second
row of (2.68), i.e. 𝑤2(𝑡) = 𝐺21(𝑞)𝑤1(𝑡); substituting it in the other rows of
(2.68); and removing 𝑤2(𝑡) from (2.68). The resulting module representa-
tion is described by[

𝑤1(𝑡)
𝑤3(𝑡)

]
=

[
0 𝐺31(𝑞)

𝐺32(𝑞)𝐺21(𝑞) 0

] [
𝑤1(𝑡)
𝑤3(𝑡)

]
+
[
𝑟1(𝑡)

0

]
. (2.69)

Mathematically, a node signal 𝑤 𝑗 (𝑡) is removed from the representation by
Gaussian elimination. To be precise, the equation describing the behaviour of
𝑤 𝑗 (𝑡) is used to eliminate 𝑤 𝑗 (𝑡) from the network. Sometimes, it is also possible
to use the equation of other node signals to eliminate 𝑤 𝑗 (𝑡) from the network. For
example, in Example 2.34 the third row of (2.68) can be used to eliminate 𝑤2(𝑡).
This procedure is a generalisation of immersion and referred to as abstraction
(Weerts et al., 2020). Abstraction also results in a representation in which the
behaviour of the remaining node signals is preserved. However, then the modules
are not guaranteed to be proper.

Example 2.35 (Module representation of an electrical circuit). Consider
again the electrical circuit in Figure 2.1. This circuit is described by a
continuous-time module representation as

𝑉 (𝑡)
𝑉𝐶 (𝑡)
𝑉𝑅𝐿 (𝑡)

 =


0 𝐿𝑝

𝑅𝐶+𝐿𝑝
𝑅𝐶 𝑝

𝑅𝐶+𝐿𝑝
𝑝

1+𝐶𝑅𝐶 𝑝2 0 0
𝑅𝐿

𝑅𝐿+𝐿𝑝 0 0



𝑉 (𝑡)
𝑉𝐶 (𝑡)
𝑉𝑅𝐿 (𝑡)

 +

𝑅𝐶𝐿𝑝

𝑅𝐶+𝐿𝑝
0
0

 𝐼 (𝑡).
(2.70)
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Immersion of the node signals 𝑉𝐶 (𝑡) and 𝑉𝑅𝐿 (𝑡) leads to (2.20).

2.4.9 Interaction-oriented model

The interaction-oriented model of Lunze (1992) thanks its name to the explicit de-
scription of the interactions between the dynamic subsystems. The interactions are
modelled as dynamic relations between signals. The interaction-oriented model
contains two types of dynamic elements: subsystems and interconnections. It
originates from a perspective of (distributed) control of interconnected dynamical
subsystems in which each subsystem is described by a state-space model. It is used
in (distributed) control applications of interconnected systems, such as in smart
grids, communication networks, and chemical plants (Lunze, 1992; Dullerud and
D’Andrea, 2004; Langbort et al., 2004; Steentjes et al., 2021; Bullo, 2022).

In the interaction-oriented model, a set of subsystems interact through dynamic
interconnections. The subsystems are connected to the environment with external
signals and interconnected with each other through internal signals. In an input-
output setting, the subsystems are driven by internal input signals coming from the
network and known external excitation signals coming from the environment. It
produces measured external output signals leaving the network and internal output
signals processing through the network. The interconnection dynamics and the
internal signals can be subject to unknown external disturbance signals.

Definition 2.36 (Interaction-oriented model (Lunze, 1992)). An
interaction-oriented model consists of 𝑁 subsystems Σ1, . . . , Σ𝑁 , with 𝑚𝑢𝑖
external input signals 𝑢𝑖 (𝑡), 𝑚𝑠𝑖 internal input signals 𝑠𝑖 (𝑡), 𝑟𝑦𝑖 external
output signals 𝑦𝑖 (𝑡), and 𝑟𝑧𝑖 internal output signals 𝑧𝑖 (𝑡). The behaviour of
the 𝑖th subsystem Σ𝑖 is described (in state-space form) by

Σ𝑖 =


¤𝑥𝑖 (𝑡) = 𝐴𝑖𝑥𝑖 (𝑡) + 𝐵𝑖𝑢𝑖 (𝑡) + 𝐸𝑖𝑠𝑖 (𝑡), (2.71a)
𝑦𝑖 (𝑡) = 𝐶𝑖𝑥𝑖 (𝑡) + 𝐷𝑖𝑢𝑖 (𝑡) + 𝐹𝑖𝑠𝑖 (𝑡), (2.71b)
𝑧𝑖 (𝑡) = 𝐶𝑧𝑖𝑥𝑖 (𝑡) + 𝐷𝑧𝑖𝑢𝑖 (𝑡) + 𝐹𝑧𝑖 𝑠𝑖 (𝑡), (2.71c)

with initial condition 𝑥𝑖 (0) = 𝑥𝑖0 and where the behaviour of the intercon-
nections is described by

𝑠(𝑡) = 𝐿 (𝑝)𝑧(𝑡), (2.72)

with 𝑡 ∈ R indicating the time, 𝑝 the differential operator meaning 𝑝𝑧(𝑡) =
𝑑
𝑑𝑡
𝑧(𝑡), and 𝐿 (𝑝) ∈ R𝑀𝑠𝑖×𝑟𝑧𝑖 (𝑝).
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Figure 2.11: Interaction-oriented model with three subsystems Σ𝑖, 𝑖 = 1, 2, 3, and
with 𝐿𝑖 the interconnections between them representing the 𝑖th row of 𝐿 (𝑝).

In Definition 2.36, the subsystems Σ𝑖 are described in a state-space form,
because this is typically done in literature. However, it is also possible to describe
the behaviour of the subsystems using any other modelling technique. Moreover,
the dynamics can even be nonlinear. Further, the interconnections can be dynamic,
as in Definition 2.36, but can also be static by considering a static 𝐿 (𝑝) := 𝐿 in
(2.72). The interactions capture the topology of the network, which is described
by the zero-structure of 𝐿 (𝑝).

Graphically, the interaction-oriented model is depicted by a directed graph
with vertices representing the subsystems and the interconnections and with edges
representing the internal and external signals. The subsystems Σ𝑖 are blocks
with two input signals and two output signals, while the interactions 𝐿𝑖 𝑗 (𝑝) are
SISO blocks. Sometimes the interactions with a subsystem Σ𝑖 are captured by
a single multi-input single-output (MISO) block 𝐿𝑖, representing the 𝑖th row of
𝐿 (𝑝). Figure 2.11 shows an interaction-oriented model with three subsystems Σ𝑖,
𝑖 = 1, 2, 3 and with the interconnections between them captured by 𝐿𝑖, 𝑖 = 1, 2, 3
representing the 𝑖th row of 𝐿 (𝑝).

Remark 2.37 (Discrete time). The interaction-oriented model can similarly
be formulated in discrete time. Then the dynamics of the subsystems is
described by discrete-time state-space models (see Section 2.4.2).
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2.4.10 Behavioural approach

Introduction

All aforementioned model representations are input-output descriptions, which
means that preselected output signals are described by preselected input signals
(and possibly, initial conditions). This induces a signal flow from the input,
through the system, to the output. Allocating the inputs and outputs often depends
on the experiment that is being performed. The dynamics between the inputs and
outputs depend on the selected input and output signals. This type of modelling
leads to a model that depends on the experiment, while the physical system
remains the same for any experiment and is thus independent of the experiment.
Hence, assigning inputs and outputs to a system is usually a result of the chosen
experiment and not a characteristic of the system itself. The chosen experiment
can be one out of several, which means that the input-output structure of a system
is not unique.

In input-output descriptions of dynamic networks, subsystems are intercon-
nected through couplings of inputs and outputs. That is, the input signal to a
subsystem depends on the output signals of some other subsystems and possibly
on input signals from the environment. However, physical systems interact with
their environment by exchanging matter, energy, or information. For many of
these interconnections, it is not clear or obvious which signals serve as inputs or
outputs of interconnected subsystems. Physical subsystems in physical networks
also interact with each other. The interconnections between subsystems are char-
acterised by variable sharing. A mathematical model of a physical linear network
describes simultaneous occurring events, often with unclear cause-effect relations
or signal flows.

Exactly because of these reasons, Willems (1986a,b, 1987) came up with the
behavioural approach, in which the behaviour of the system is described without
assigning inputs and outputs. Only the relations among the variables are described.
This model is independent of the chosen experiment. Causal relations can be part
of the physics, but are not dictated, while additional input and output signals can be
selected after designing the experiment. System properties such as controllability
are defined based on the behavioural description of the system alone, without
defining inputs and outputs. Therefore, these properties are properties of the
system instead of properties of the representation (as in, for example, state-space
models).
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Dynamical systems

In the behavioural approach, the behaviour of a dynamical system is described by
signal trajectories.

Definition 2.38 (Behavioural approach (Willems, 1986a)). A dynamical
system is defined as the triplet

Σ = (T,W,B), (2.73)

with

1. T ⊆ R the time space.

2. W ⊆ Rw the signal space, with w ∈ N the dimension of the trajectories
𝑤(𝑡).

3. B ⊆ WT the behaviour, with WT the collection of all maps from T to
W.

Definition 2.39 (Kernel representation (Willems, 1986a; Polderman and
Willems, 1998)). The behaviour B of a dynamical system with p ≤ w can
be described in the kernel representation by

B = {𝑤(𝑡) ∈ C∞(R,Rw) | 𝑅( 𝑑
𝑑𝑡
)𝑤(𝑡) = 0} (2.74)

with 𝑡 ∈ T indicating the time, C∞(R,Rw) the set of infinitely differentiable
functions from R to Rw, and 𝑅(𝜉) ∈ Rp×w [𝜉].

If p = w, the behaviour of (2.74) is autonomous in the sense that no free inputs
can be distinguished.

The behavioural approach only describes the trajectories of signals 𝑤(𝑡), no
input-output mapping. However, there always exists a nonunique partitioning of
the signals 𝑤(𝑡) into inputs 𝑢(𝑡) and outputs 𝑦(𝑡). In this input-output partitioning,
the input 𝑢(𝑡) can be chosen freely and the output 𝑦(𝑡) is bounded and completely
determined by the past and the input, such that (𝑢(𝑡), 𝑦(𝑡)) = 𝑤(𝑡) ∈ B. Even
though the partitioning is nonunique, the dimensions of 𝑢(𝑡) and 𝑦(𝑡) are fixed
and thus independent of the partitioning. Moreover, for the kernel representation
of the behaviour, the dimension of the output is equal to the rank of 𝑅(𝜉), that
is rank(𝑅(𝜉)) = dim(𝑦(𝑡)) = p. The partitioning of 𝑤(𝑡) into input and output
signals leads to an input-output representation.
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Definition 2.40 (Input-output representation (Polderman and Willems,
1998)). The behaviour B of a dynamical system can be described in the
input-output representation by

B = {𝑤(𝑡) =
[
𝑢(𝑡)
𝑦(𝑡)

]
∈ C∞(R,Rw) | 𝑃( 𝑑

𝑑𝑡
)𝑦(𝑡) = 𝑄( 𝑑

𝑑𝑡
)𝑢(𝑡)} (2.75)

with 𝑃(𝜉) ∈ Rp×p [𝜉] and𝑄(𝜉) ∈ Rp×m [𝜉], with m = w−p, with det(𝑃(𝜉)) ≠
0 and with 𝑃−1(𝜉)𝑄(𝜉) a matrix of proper rational functions.

The fact that the transfer function matrix 𝑃−1(𝜉)𝑄(𝜉) is required to be proper,
imposes restrictions on the input-output partitioning of 𝑤(𝑡).

Example 2.41 (Behavioural model of a resistor). The behaviour of a
resistor can be described by Ohm’s law as

B = {(𝑉 (𝑡), 𝐼 (𝑡)) ∈ R2 | 𝑉 (𝑡) = 𝑅𝑠 𝐼 (𝑡)}, (2.76)

where 𝑉 (𝑡) is the voltage across the resistor, 𝑅𝑠 is the resistance, and
𝐼 (𝑡) is the current flowing through the resistor. The corresponding kernel
representation is given by [

−1 𝑅𝑠
]︸      ︷︷      ︸

𝑅 ( 𝑑
𝑑𝑡
)

[
𝑉 (𝑡)
𝐼 (𝑡)

]
= 0. (2.77)

As rank(𝑅( 𝑑
𝑑𝑡
)) = 1, the resistor can be modelled by an input-output model

with one output and thus 2 − 1 = 1 input. As 𝑅( 𝑑
𝑑𝑡
) is static, there is no

causal relation between the signals in 𝑤(𝑡) and thus no signal is obliged to
be an input or an output signal.

The behavioural model of the electrical circuit in Figure 2.1 is given by (2.20)
(Polderman and Willems, 1998; Willems, 2007, 2010). This model is in an
input-output representation as defined in Definition 2.40.

Networks of interconnected systems

Networks of interconnected systems are modelled by tearing, zooming, and linking
(Willems, 2007). In this method, the network is first torn apart into subsystems
(modules) with terminals that contain the physical variables that can be shared.
Second, each subsystem is modelled separately by zooming into it. Finally, the
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Figure 2.12: Network of two interconnected systems Σ1 and Σ2.

subsystems are linked with each other by modelling the relations among the shared
variables.

This modelling is similar to the interaction-oriented model explained in Sec-
tion 2.4.9, with the difference that the interaction-oriented model has subsystems
with an input-output structure, while here the subsystems share variables.

In a network of interconnected systems, the behaviour of each system is
described by Σ𝑖 = (T,W𝑖 ,B𝑖), 𝑖 = 1, 2, . . .. The interconnection between
any two systems Σ 𝑗 and Σ𝑘 , denoted by Σ 𝑗 ∧ Σ𝑘 , is modelled by any law
𝐿 𝑗𝑘

(
𝑤 𝑗 (𝑡), 𝑤𝑘 (𝑡)

)
= 0, where 𝑤𝑖 (𝑡) ∈ B𝑖, 𝑖 = 𝑗 , 𝑘 .

Example 2.42 (Two interconnected systems). Consider a network of two
interconnected systems Figure 2.12. Suppose that Σ1 and Σ2 are linear
dynamic systems of which the behaviour is described by the kernel repres-
entations [

𝑅1( 𝑑𝑑𝑡 ) 𝑅2( 𝑑𝑑𝑡 )
] [𝑤1(𝑡)
𝑤2(𝑡)

]
= 0, (2.78a)[

𝑄1( 𝑑𝑑𝑡 ) 𝑄2( 𝑑𝑑𝑡 )
] [𝑤3(𝑡)
𝑤4(𝑡)

]
= 0, (2.78b)

respectively. Let the interconnection Σ1∧Σ2 also be linear and be described
by 𝑤2(𝑡) = 𝑤3(𝑡), that is [

1 −1
] [𝑤2(𝑡)
𝑤3(𝑡)

]
= 0. (2.79)

Then the network is described by
𝑅1( 𝑑𝑑𝑡 ) 𝑅2( 𝑑𝑑𝑡 ) 0 0

0 1 −1 0
0 0 𝑄1( 𝑑𝑑𝑡 ) 𝑄2( 𝑑𝑑𝑡 )



𝑤1(𝑡)
𝑤2(𝑡)
𝑤3(𝑡)
𝑤4(𝑡)

 = 0, (2.80)

which is equivalent to the minimal kernel representation[
𝑅1( 𝑑𝑑𝑡 ) 𝑅2( 𝑑𝑑𝑡 ) 0

0 𝑄1( 𝑑𝑑𝑡 ) 𝑄2( 𝑑𝑑𝑡 )

] 
𝑤1(𝑡)
𝑤2(𝑡)
𝑤4(𝑡)

 = 0, (2.81)
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where the latent variable 𝑤3(𝑡) has been eliminated.

2.4.11 Bond-graph models

The behavioural model is closely related to energy-based modelling approaches,
such as bond-graph models and (multi)port models (Paynter, 1961; Ljung and
Glad, 1994; Borutzky, 2010, 2011). These modelling approaches are based on
energy preservation and power interconnections. They are generally based on two
types of variables, effort 𝑒 and flow 𝑓 , whose product equals power. The flow vari-
able is a rate of change of state and the effort variable is an equilibrium-determining
variable. Typical flow variables are current flow, (angular) velocity, and flow rate,
while typical effort variables are potential, force, torque, and pressure.

Let the linear space F and the dual space E := F ∗ be the spaces of flows
𝑓 ∈ F and efforts 𝑒 ∈ E, respectively. Then the power of the total space is defined
by (van der Schaft and Jeltsema, 2014)

𝑃 =< 𝑒 | 𝑓 >= 𝑒⊤ 𝑓 , ( 𝑓 , 𝑒) ∈ F × E . (2.82)

Physical components can be classified in multiple ways. In bond-graph and
port models, they are typically modelled based on the number of energy transac-
tion forms (Paynter, 1961). Each energy transaction is modelled by a bond or port
with a flow and effort variable through which the physical elements are intercon-
nected. These bonds are closely analogous to chemical valency bonds between
atoms. One-ports are generalised impedances, such as resistive, capacitive, and
inductive components or effort and flow sources. These components have only a
single bond and therefore, allow only simple interconnections. Two-ports are gen-
eralised transport processes, such as energy transformation, energy transmission,
and energy transduction processes. These elements have two bonds and therefore,
allow for chain interconnections. Three-ports are generalised modulators, such
as energy junctions, power and signal amplifiers or modulators, and power ex-
changers. These elements have three bonds and therefore, allow for more complex
interconnection structures.

Energy junctions are one example of three-port elements (Paynter, 1961).
There are two types of ideal energy junctions: effort junctions and flow junc-
tions. Effort junctions (or 1-junctions) are a generalisation of Kirchhoff’s loop
law (Kirchhoff’s voltage law). They are characterised by equal flows at all bonds,
resulting in efforts that sum to zero. Flow junctions (or 0-junctions) are a general-
isation of Kirchhoff’s node law (Kirchhoff’s current law). They are characterised
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Figure 2.13: Bond-graph model of the electrical circuit of Example 2.43.

by equal efforts at all bonds, resulting in flows that sum to zero. The 𝑘-dimensional
effort junction and flow junction are, respectively, given by

D𝑒 :=
{
( 𝑓 , 𝑒) ∈ F × E | 𝑒1 = 𝑒2 = · · · = 𝑒𝑘 , 𝑓1 + 𝑓2 + · · · + 𝑓𝑘 = 0

}
, (2.83a)

D 𝑓 :=
{
( 𝑓 , 𝑒) ∈ F × E | 𝑒1 + 𝑒2 + · · · + 𝑒𝑘 = 0, 𝑓1 = 𝑓2 = · · · = 𝑓𝑘

}
, (2.83b)

where 𝑒 =
[
𝑒⊤1 𝑒⊤2 . . . 𝑒⊤

𝑘

]⊤ and 𝑓 =
[
𝑓 ⊤1 𝑓 ⊤2 . . . 𝑓 ⊤

𝑘

]⊤.

Example 2.43 (Bond-graph model of an electrical circuit). Consider
again the electrical circuit in Figure 2.1. This circuit is graphically depic-
ted by the bond-graph model shown in Figure 2.13. This figure shows the
interconnection structure of the network and it shows the four components
and the voltage source as one-port elements (blue circles), because they
have only one connection, and the junctions (white circles) as multiport ele-
ments, because they have multiple connections. The 1-junctions represent
Kirchhoff’s voltage law and the 0-junctions represent Kirchhoff’s current
law.

Once the bond-graph model of dynamic networks is drawn using ports, caus-
ality can be added. Causality, which depends on environmental conditions, is
similar to the direction in which chemical reactions proceed, which depends on
ambient conditions. First, the energy exchange of the system with the environment
is considered, which can be seen as the experimental setup. Then, the internal
causal structure can be chosen by following specific steps. Once causality is added
to the bond-graph model, it can be converted into a state-space model. A special
form of a state-space model is a Hamiltonian system. Port models that are con-
verted into a Hamiltonian state-space model are referred to as port-Hamiltonian
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systems (van der Schaft and Jeltsema, 2014).

2.4.12 Port-Hamiltonian models

Introduction

In Hamiltonian models, physical components are characterised by their energy-
consuming behaviour. The physical components are divided into three groups:
energy-storing elements, energy-dissipating elements, and energy-routing ele-
ments. In port-Hamiltonian models, interconnections are again made through
ports with a flow and effort variable attached to them. As the product of flow
and effort equals power (2.82), the interconnections ensure power preservation.
Port-Hamiltonian models are closely related to the behavioural approach and to
bond-graph models. (van der Schaft and Maschke, 2013; van der Schaft and
Jeltsema, 2014). Moreover, bond-graph models can also be formulated as port-
Hamiltonian systems (Golo et al., 2003).

Dynamical systems

Energy-storing elements save energy for later use. Examples of energy-storing
elements are capacitive and inductive components. Energy-dissipating elements,
such as resistive components, consume energy. Transformers and constraints
are examples of energy-routing elements, which preserve a power balance and
redirect the energy. Energy can be supplied to a system by the environment that
is connected through external ports.

Using efforts, flows, and power, the Dirac structure is defined, which cap-
tures the energy-routing elements and provides power conservation between the
interconnected ports.

Definition 2.44 (Dirac structure (van der Schaft and Jeltsema, 2014)).
Consider a finite-dimensional linear space F with E = F ∗. A subspace
D ⊂ F × E is a Dirac structure if

1. < 𝑒 | 𝑓 >= 0, ∀( 𝑓 , 𝑒) ∈ D (power conservation).

2. dimD = dimF .

Observe that the effort and flow junctions (2.83) are examples of Dirac struc-
tures.

In connection with efforts and flows, let us define the bilinear form.
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Definition 2.45 (Bilinear form (van der Schaft and Jeltsema, 2014)). A
bilinear form≪,≫ on the space F × E is defined as

≪ ( 𝑓1, 𝑒1), ( 𝑓2, 𝑒2) ≫:=< 𝑒1 | 𝑓2 > + < 𝑒2 | 𝑓1 >, (2.84)

with ( 𝑓1, 𝑒1), ( 𝑓2, 𝑒2) ∈ F × E.

Using the bilinear form defined in Definition 2.45, the following result on the
Dirac structure is formulated:

Proposition 2.46 (Dirac structure (van der Schaft and Jeltsema, 2014)).
A Dirac structure on F × E is a subspace D ⊂ F × E such that 𝐷 = 𝐷⊥,
with ⊥ the orthogonal companion with respect to the bilinear form≪,≫.

The energy stored in an energy-storing element is defined by the spaceX and a
Hamiltonian function 𝐻 (𝑥) : X → R that denotes the energy. The power flowing
into the energy-storing element is given by

𝑑

𝑑𝑡
𝐻 (𝑥) =< 𝜕

𝜕𝑥
𝐻 (𝑥), 𝑑

𝑑𝑡
𝑥(𝑡) >= 𝜕⊤

𝜕𝑥
𝐻 (𝑥) 𝑑

𝑑𝑡
𝑥(𝑡) = −𝑒⊤𝑠 𝑓𝑠, (2.85)

with state 𝑥 ∈ X, time 𝑡 ∈ R, effort 𝑒𝑠 = 𝜕
𝜕𝑥
𝐻 (𝑥), and flow 𝑓𝑠 = −𝑥.

An energy-dissipating element is defined by the energy-dissipating relation
R ⊂ F𝑟 × E𝑟 , < 𝑒𝑟 | 𝑓𝑟 >= 𝑒⊤𝑟 𝑓𝑟 ≤ 0, ∀( 𝑓𝑟 , 𝑒𝑟 ) ∈ R. (2.86)

For linear resistive elements, the mapping becomes 𝑓𝑟 = −𝑅𝑒𝑟 , with matrix
𝑅 = 𝑅⊤ ⪰ 0.

The interaction with the environment is modelled with external ports with
variables ( 𝑓𝑝, 𝑒𝑝). This leads to the overall power balance

𝑒⊤𝑠 𝑓𝑠 + 𝑒⊤𝑟 𝑓𝑟 + 𝑒⊤𝑝 𝑓𝑝 = 0, (2.87)
that is

𝑑

𝑑𝑡
𝐻 (𝑥) = 𝑒⊤𝑟 𝑓𝑟 + 𝑒⊤𝑝 𝑓𝑝 ≤ 𝑒⊤𝑝 𝑓𝑝 . (2.88)

This means that the increase of the internally stored energy (represented by the
Hamiltonian 𝐻 (𝑥)) is always less than or equal to the externally supplied power.

Figure 2.14 shows the general structure of a port-Hamiltonian system. The
energy-storing elements with effort 𝑒𝑆 and flow 𝑓𝑆 are collected in the blue oval
with the label Storage, the energy-dissipating elements with effort 𝑒𝑅 and flow 𝑓𝑅
are collected in the blue oval with the label Dissipation, and the energy-routing
elements are collected in the blue circle with the label D representing the Dirac
structure. The effort 𝑒𝑃 and flow 𝑓𝑃 represent the external port connecting the
system with the environment.
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Figure 2.14: Structure of a port-Hamiltonian system (van der Schaft and Jeltsema,
2014).

Networks of interconnected systems

The Dirac structure can be used to describe interconnections of systems. Fur-
thermore, the interconnection of power-conserving elements is again power-
conserving, which means that the composite of Dirac structures is again a Dirac
structure (van der Schaft and Jeltsema, 2014). This is illustrated by the following
example:

Example 2.47 (Two interconnected Dirac structures (van der Schaft and
Jeltsema, 2014)). Consider the interconnection of two Dirac structures as
shown in Figure 2.15, where the two Dirac structuresD𝐴 andD𝐵 shown in
the blue circles are interconnected through the empty blue circle. Suppose
that the two Dirac structures are described by

D𝐴 ∈ F1 × F2 × E1 × E2, (2.89a)
D𝐵 ∈ F2 × F3 × E2 × E3, (2.89b)

with E𝑖 = F ∗𝑖 , 𝑖 = 1, 2, 3. The spaces F2 and E2 are the spaces of shared
flow and effort variables, respectively. Let

( 𝑓1, 𝑒1, 𝑓𝐴, 𝑒𝐴) ∈ D𝐴, ( 𝑓𝐵, 𝑒𝐵, 𝑓3, 𝑒3) ∈ D𝐵, (2.90)

where < 𝑒𝐴| 𝑓𝐴 > and < 𝑒𝐵 | 𝑓𝐵 > denote the incoming power in D𝐴 and
D𝐵, respectively. The interconnection between D𝐴 and D𝐵 is constraint
by

𝑓𝐴 = − 𝑓𝐵 ∈ F2, 𝑒𝐴 = 𝑒𝐵 ∈ E2, (2.91)

leading to the composite Dirac structure

D𝐴 ◦ D𝐵 :=
{
( 𝑓1, 𝑒1, 𝑓3, 𝑒3) ∈ F1 × E1 × F3 × E3 | ∃( 𝑓2, 𝑒2) ∈ F2 × E2

s.t. ( 𝑓1, 𝑒1, 𝑓2, 𝑒2) ∈ D𝐴 and (− 𝑓2, 𝑒2, 𝑓3, 𝑒3) ∈ D𝐵
}
. (2.92)
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Figure 2.15: The composite Dirac structureD𝐴◦D𝐵 (van der Schaft and Jeltsema,
2014).

Remark 2.48 (Link with the Behavioural approach). The difference
between energy-based models and the behavioural approach is that the
energy-based methods have power transmissions through interconnected
ports with effort and flow variables, while in the behavioural approach, the
subsystems are interconnected through terminals with any possible quant-
ities, which cannot necessarily be interpreted as energy flow. For example,
the Υ and Δ circuits shown in Figure 2.2 have three terminals, but only a
single port.

2.5 Discussion

2.5.1 Introduction

To describe physical linear networks for identification purposes, a suitable model-
ling approach needs to be chosen. The candidate linear dynamic (network) models
that are presented in Section 2.4 are discussed here to make well-considered and
well-motivated decisions on the network model structure.

The focus lies on several modelling aspects that are important for the iden-
tification of physical linear networks, which include: incorporating the physical
characteristics; representing the topology; including higher-order dynamics; the
interaction with the environment; and dealing with unknown disturbances and
noise signals. In addition, the availability of identification theory for the candid-
ate models is discussed. Based on these aspects, a comparison is made between
the candidate models to see which models are most suitable for the identification
of physical linear networks.

2.5.2 Diffusive couplings

Physical components are characterised by diffusive couplings, as has been ex-
plained in Section 2.3. For linear components, this leads to symmetric relations
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between signals. This characteristic needs to be incorporated into the dynamic
network model.

In the behavioural approach, the bond-graph model and port-Hamiltonian
models this can easily be done, because their interconnections are based on shar-
ing variables, which do not require input-output descriptions. This is further
discussed in Section 5.3. In addition, the behavioural approach is not bound by
interconnections through effort and flow pairs. Therefore, the behavioural ap-
proach is preferred above port-Hamiltonian models, which are more general than
bond-graph models (Golo et al., 2003).

The interaction-oriented model describes subsystems and interconnections
with input-output models and therefore, this model is less suitable for describing
physical linear dynamic networks.

The symmetric nature of physical components appears in polynomial models
through the symmetry of the polynomial matrix 𝐴(𝑞−1), as illustrated by Example
2.23, and therefore, diffusive couplings can also be incorporated in these models.

In the module representation, the symmetric nature of the linear physical com-
ponents leads to the situation that coefficients of single components appear in
several transfer function modules. This happens because every dynamic mod-
ule describes an input-output relation from one signal to another, while two
interconnected signals both depend on the physical components that are in the
interconnection between them. A similar mechanism appears in the Wiener filter
model and the dynamical structure function. The shared dynamics in the relations
between the signals makes these models less suitable for describing physical linear
dynamic networks.

2.5.3 Topology

As this research considers networks, it is necessary that the interconnections can
be modelled and that the topology can be incorporated into the network model.
In addition, it would be nice if the topology is directly visible in the mathematical
network model, because this makes it easy to include a priori topological informa-
tion and draw conclusions on the topology based on the mathematical description
of the network.

The module representation is designed for dynamic networks and the topology
is clearly visible in the transfer function matrix 𝐺 (𝑞) describing the dynamics of
the network. A zero element in 𝐺 (𝑞) corresponds to an edge with a zero transfer
function between the corresponding signals, which can be interpreted as an absent
edge. A similar reasoning holds for the input transfer function matrix 𝑅(𝑞) and
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the noise model 𝐻 (𝑞). The same mechanism is present in the dynamical structure
function model and the Wiener filter model, where in the latter case a zero filter
is interpreted as an absent edge.

In polynomial models of networks, the topology appears in the polynomial
matrix 𝐴(𝑞−1) describing the dynamics of the network. Similar as in the module
representation, a zero element in 𝐴(𝑞−1) can be interpreted as an absent edge
between the corresponding signals. A similar mechanism holds for the input
dynamics described by 𝐹−1(𝑞−1)𝐵(𝑞−1) and the noise model 𝐷−1(𝑞−1)𝐶 (𝑞−1).

The behavioural approach of dynamic network models describes the subsys-
tems and their interactions separately, from which the topology is visible in the
graphical network model. In general, these objects are only explicitly described
by equations, from which the topology is not immediately visible in the mathem-
atical model. If the dynamic network is described by the kernel representation
(2.74), then 𝑅( 𝑑

𝑑𝑡
) has the same functionality as 𝐴(𝑞−1) in the polynomial model

and therefore, 𝑅(𝜉) includes the topology, where again a zero element can be
interpreted as an absent edge between the corresponding signals.

The interaction-oriented model also describes the subsystems and their inter-
actions separately. The topology is visible in the interconnection matrix 𝐿 (𝑞),
where a zero element is interpreted as an absent edge between the corresponding
subsystems.

Port-Hamiltonian models are able to model the interconnections of systems.
The typical strategy is to merge all Dirac structures, causing the topology to get lost
in the network model. To avoid this, the Dirac structures should not be merged.
Then each system in the network consists of a Dirac structure with a group of
storage elements and a group of dissipative elements connected to it. In addition,
the Dirac structures should be modelled such that they have multiple ports to the
environment, which will be used to connect to other systems and the outside world.
Then the topology remains present in the graphical network model, although it
remains unclear how the topology is present in the mathematical model.

2.5.4 Higher-order dynamics

State-space models are first-order models and therefore, a special case of second-
order models, which are a special case of polynomial models as they can include
even higher-order terms. Even though most physical linear systems are naturally
described by at most second-order models, some signals may be inaccessible or
latent and therefore be eliminated from the network representation. This leads to
higher-order network descriptions.
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On the other hand, every polynomial model and every second-order model
can be written as a state-space model by introducing additional state variables.
Rewriting a model into a lower-order model can lead to the reproduction of
component coefficients, meaning that a single coefficient of a physical component
appears multiple times in the model. This is disadvantageous for identification and
moreover, it can vanish the network topology from the representation. Therefore,
the polynomial model is preferred over the second-order model and state-space
model.

Transfer function representations, such as the Wiener filter model, dynam-
ical structure function, and module representation are suitable for incorporating
higher-order dynamics. The interaction-oriented model only includes input-output
models between internal and external signals, which can be of any finite order. A
similar reasoning holds for the behavioural approach and the interaction-oriented
model, where every subsystem and interconnection are characterised by their be-
haviour or any input-output model, respectively, which can include any finite-order
dynamics.

2.5.5 External signals

In general, all models can be extended to include known external input signals,
unknown disturbance signals that process through the system or network, and
noise that is added to the measured signals. However, in some models, it is more
common to include disturbances than in other models. Measurement noise comes
only into play when identification is considered.

In the interaction-oriented model, disturbance signals can be added to the sub-
systems or interactions. The same holds for state-space models and second-order
models, although disturbance signals are often not included in the corresponding
identification theory. Measurement noise is sometimes taken into account. Poly-
nomial models do include disturbance signals and noise models are included in
the identification theory. Therefore, the polynomial model is preferred over the
second-order model and state-space model.

The behavioural approach, bond-graph models, and port-Hamiltonian models
typically model exact dynamics, which means that disturbance signals are not
considered.

Wiener filter models typically only include unknown external excitation sig-
nals. Known external signals can be added to the model, but are not included
in the available identification theory. On the other hand, the dynamical structure
function only includes known external excitation signals and does not consider
disturbance signals, also not in the available identification theory.
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The module representation includes both known external excitation signals
and unknown external disturbance signals. Furthermore, measurement noise can
be included in the module representation (Dankers et al., 2015). The module
representation is preferred over the Wiener filter model and the dynamical struc-
ture function, because it is more general in the sense of incorporating external
(disturbance) signals and measurement noise in both the network model as well
as in the network identification theory that is available.

2.5.6 Network identification

For state-space models, there exists an extensive identification theory consisting of
subspace identification methods (Verhaegen and Verdult, 2012). However, there
are no statistical guarantees and the influence of disturbances remains unclear.
Second-order models are usually identified by first identifying a state-space model
and then translating the first-order state-space model into a second-order model,
see, for example, De Angelis et al. (2002).

For polynomial models, there also exists a major identification theory consist-
ing of prediction error identification methods (Ljung, 1999), including algorithms,
statistical guarantees, and validation methods.

The Wiener filter model has been developed for topology identification in
dynamic networks and it can also be used for identifying the dynamics. The
dynamical structure function and the module representation have been developed
specifically for identification purposes in dynamic networks. By now, considerable
network identification literature has been built, including solutions to various
network identification problems, see, for example, (Gonçalves and Warnick, 2008;
Materassi and Innocenti, 2010; Van den Hof et al., 2013; Ramaswamy et al., 2019;
Jahandari and Materassi, 2022a).

For the behavioural approach and port-Hamiltonian models, there is some
identification theory available (Roorda and Heij, 1995; Markovsky et al., 2006).
However, this has not been extended to dynamic networks.

2.5.7 Relations between network models

As mentioned, the network models that are developed in the literature, originate
from various research domains, all with their own objectives and circumstances.
The discussion of the models above raises the question of how theory developed
in one domain is connected to other domains. For example, if an identification or
control problem is solved for a particular model, can this solution be translated to
another model? How to do this and what are the consequences of doing so?
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The dynamic Bayesian network model is not fit for modelling physical lin-
ear dynamic networks, because it uses probability distributions and conditional
dependencies to describe relations between signals, while the relations between
signals in physical linear networks are considered to be fixed. However, the dy-
namic Bayesian network model is useful for topology identification in dynamic
networks.

Polynomial models, second-order models, and state-space models can be trans-
formed into each other, which means that the theory for each of these models is
also accessible to the other models by transforming the model. This approach is,
for example, applied in the identification of second-order models, where first a
state-space model is identified, which is then translated into a second-order model.
The transformation the other way around, that is, translating the theory instead of
the model is more complicated. Reviewing the discussion points in Section 2.5.2-
2.5.6, shows that the polynomial model is more general than the state-space model
and the second-order model and that the identification theory that is available for
polynomial models is more attractive. Therefore, the polynomial model is pre-
ferred above the state-space model and the second-order model. In addition, the
polynomial model is able to incorporate diffusive couplings, higher-order dynam-
ics, the network topology, and disturbance signals, and therefore, seems suitable
for modelling physical linear dynamic networks.

The Wiener filter model, dynamical structure function, and module representa-
tion are all developed for directed dynamical network representations and are very
much alike, which makes it feasible to translate theory from one model to another.
Still, the differences between the Wiener filter model and the other two models are
slightly too large to make a complete translation of the theory. For example, both
for the Wiener filter model and the module representation there exist (graphical)
conditions for identifiability (Jahandari and Materassi, 2022a,b; Ramaswamy and
Van den Hof, 2021), which are very much alike and should be related to each
other. However, the exact mapping between the results remains unsolved for the
time being. The module representation is considered to be the most general one
of these network models and therefore, it is preferred over the other two. The
module representation is able to incorporate higher-order dynamics, the network
topology, and disturbance signals. In addition, extensive literature on dynamic
network identification is available. A disadvantage of the module representation
is that it is less suitable for describing diffusive couplings.

The interaction-oriented model is as good as the module representation for
modelling physical linear dynamic networks, as it has the same modelling advant-
ages and disadvantages. Even though the interaction-oriented model is typically
not used for identification purposes, but for (distributed) control (Lunze, 1992).
Therefore, there is also less identification theory available in the literature.
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The behavioural approach is closely related to bond-graph models and port-
Hamiltonian models. The behavioural approach is the most general one and thus,
it is preferred above the other two. This modelling approach is able to incorporate
diffusive couplings, higher-order dynamics, and the network topology. However,
there is little literature on identification in the behavioural setting and especially
for dynamic networks.

It is more complicated to relate theory from, for example, polynomial models
and the module representation to each other. Especially for dynamic networks,
which include topology next to just dynamics. Polynomial models are more
suitable for representing undirected interconnections, which occur, for example,
in physical networks. Module representations are more suitable for representing
directed interconnections, which occur, for example, in digital networks, such as
controllers. Often, digital and physical systems are interconnected with each other,
for example, when a digital controller is applied to a physical system. Both models
are interesting for modelling these mixed networks, which are further studied in
Chapter 11.

More research is needed to find the relations between these models and to use
this knowledge to draw conclusions on the relations between, for example, iden-
tification results. The relations between several (more distinct) network models
receive more attention in Chapter 3, 4, 5, and 7. Figure 2.16 shows an overview of
the twelve dynamic network models that have been discussed in this chapter. Thin
lines show the relations among closely related models. The dynamic network
models that are highlighted with bold letters and a thick border are the most gen-
eral models. The relations that are studied further are indicated with a thick line.
The number corresponds to the chapter where the relation is discussed. Graphical
models are discussed in Chapter 3.

2.5.8 Conclusion

Higher-order models (such as general polynomial models) can be transformed into
lower-order models (such as state-space models) by introducing additional latent
variables. The conversion in the opposite direction is performed by eliminating
variables. This means that a dynamic system or network can be represented on
different levels. This is an interesting phenomenon that needs to be understood
better, especially for dynamic networks. The representation of LTI dynamic
networks on different structural levels is further studied in Chapter 3 and 4.

From the models that are discussed in Section 2.4, the polynomial model,
module representation, interaction-oriented model, and behavioural approach are
the most general.
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Figure 2.16: Overview of the twelve dynamic network models that have been
discussed in Chapter 2. The relations that are studied in subsequent chapters are
indicated with thick lines, where the number indicates the chapter.

For the behavioural approach, there is only a little literature on the identification
and it is also difficult to connect this modelling approach with other modelling
techniques for which there is literature on the identification in dynamical networks,
in particular the module representation. Therefore, this modelling technique is
not further considered.

This leaves the polynomial model, module representation, and interaction-
oriented model as the most attractive ones for modelling and identification of
physical linear networks. The interaction-oriented model and the module rep-
resentation seem to be related to each other. The relation between these models
deserves more attention and this is further investigated in Section 3.3.

The polynomial model seems the most attractive for modelling physical sys-
tems. However, currently, it is not used in a network setting. So, there is also no
network identification literature for the polynomial model, which is extensively
available for the module representation. Though, the module representation is
less suitable for incorporating diffusive couplings. Further research on identific-
ation in these models is needed to determine which model is most suitable for
identification in physical linear networks, which is done in Chapter 7.
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2.6 Conclusion

Physical linear networks are characterised by linear diffusive couplings, which are
interconnections that depend on the difference of variables. Various modelling
approaches for describing physical LTI systems and dynamic networks have been
presented. Based on several modelling aspects, the polynomial model, module
representation, and interaction-oriented model are selected as the most attractive
ones for modelling and identification of physical linear networks.

The discussion on the network models raises the question of how theory
developed in one domain is connected to other domains. To answer this question,
more research is needed on the different network models. This additional research
will also support the final decision on which model is most suitable for modelling
and identification of physical linear networks. Therefore, the relations between
the network models are further investigated in Chapter 3, 4, 5, and 7.

In this chapter, the focus was mainly on the mathematical part of the models.
It has been shown that dynamic networks can be represented on different structural
levels. This graphical aspect of the network modes is further studied in Chapter 3
and 4. This also gives insight into how the different linear dynamic network
models are related to each other.



3 | Graphical structures of
linear dynamic networks

Systems in the natural and physical world can be described in various ways.
There also exist several models for interconnections of these physical systems.
To each of them, a graphical representation is associated that depicts the internal
structure of the network. Four structural representations of dynamic networks
are discussed and the relations between them are interpreted. Two of them are
further studied by comparing two specific network models: the module repres-
entation from the network identification domain and the interaction-oriented
model from the network control field. It follows that these two network models
can be transformed into one another, which connects the network identification
domain with the network control field.

3.1 Introduction

Networks can be found in various different research areas, including biology,
economy, engineering, physics, and social sciences (Ren et al., 2005; Boccaletti
et al., 2006; Mesbahi and Egerstedt, 2010). All these research areas have their
own environment with specific conditions and unique issues. This gives rise to
research questions that are pertinent to the particular situation. Therefore, each
research area has its own unique way of expressing its problem. The choice of
model structure to describe or represent these networks is usually aligned with
the environment, preconditions, model objectives, and questions. This leads to
numerous models for describing linear networks, each of which is tailored to a
particular situation.

Every network model consists of two parts: the dynamics characterising
the behaviour of the network and the structure representing the topology of the

89
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network. The dynamics is modelled by mathematical relations, for which many
models exist. The structure is depicted by a graph and is a property of the
network model, not of the network itself. Therefore, every network model has
its own graph. All network models have their own aspects of attention and
thus, they include different network information. As a result, dynamic networks
can be represented on different structural levels, including different topological
information.

Four main network structures have been introduced in the literature (Yeung
et al., 2010, 2011a; Chetty and Warnick, 2020). The complete computational
structure contains the most detailed information on the internal interconnection
structure of the network. On the other hand, the manifest structure contains the
least topological information. In between these extremes are the signal structure
and the subsystem structure, which consider the network as an interconnection
of signals or dynamic subsystems, respectively. The differences and similarities
between these two structural network representations received much attention
(Yeung et al., 2011b; Chetty and Warnick, 2015; Warnick, 2015). Moreover, the
signal structure is depicted by a graph with the signals in the vertices and the
dynamic relations in the edges, while the subsystem structure is depicted by a
graph with the subsystems in the vertices and the signals in the edges.

The interaction-oriented model is a popular network model in the domain
of distributed control (Lunze, 1992; Dullerud and D’Andrea, 2004; Langbort
et al., 2004; Steentjes et al., 2021; Bullo, 2022). In this model, a dynamic
network is viewed as a set of subsystems that interact with each other through
possibly dynamic interconnections. Here, the focus is on the subsystems and
the interconnections between them and thus, this network model has a subsystem
structure.

In data-driven identification of dynamic networks, the module representation
is a popular model (Gonçalves and Warnick, 2008; Van den Hof et al., 2013;
Hendrickx et al., 2019; Materassi and Salapaka, 2020; van Waarde et al., 2020).
A dynamic network consists of signals of interest that are interconnected through
dynamic transfer function modules. In this network model, the focus lies on the
behaviour of the signals and the relations between them and therefore, this network
model has a signal structure.

In this chapter, the four main network structure representations are reviewed
and the relations between them are discussed. The connections between the
structural representations are important to give insight into how to include or
exclude information in the network model and the consequences of this. The
relations between graphs with signals in the vertices and dynamics in the edges
and graphs with subsystems in the vertices and signals in the edges are studied, as
well as the question of how a preference for one of the two different representations
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can be judged. The subsystem structure and signal structure are further examined
by comparing extended versions of the module representation (Van den Hof et al.,
2013) and the interaction-oriented model (Lunze, 1992).

This chapter investigates the graphical representations of linear dynamic net-
works. The structure of network models can graphically be represented on differ-
ent levels of detail as explained in Section 3.2. The relation between the module
representation and the interaction-oriented model is further investigated in Sec-
tion 3.3. In Section 3.4 the insights that are gained are discussed, after which
Section 3.5 concludes the chapter.

3.2 Different levels of detail

3.2.1 Network structures

Introduction

The graphical part of a network model shows the topology of the network. This
representation of the interconnection structure of the network can include different
levels of detailed information, which depends on the chosen modelling technique.
Four main network structure representations are presented in the literature (Yeung
et al., 2010, 2011a,b; Chetty and Warnick, 2015; Warnick, 2015; Chetty and
Warnick, 2020). In this section, these network structures are presented in a
slightly different way to make the connection with several network models, such
as the module representation and the interaction-oriented model. The relations
between the network structures are interpreted to gain insight on the advantages
and disadvantages of each structural representation.

A dynamic system constrains the behaviour of its manifest variables (the
variables of interest), possibly through latent variables (auxiliary variables) that
are internally hidden in the system. A network consists of the interconnection
of a number of dynamic subsystems, all with their own manifest variables. The
manifest variables of the network are a subset of the set of manifest variables of
all the subsystems it contains. This means that some variables that are manifest
for the subsystems may be latent for the network.

Complete computational structure

The most precise description of the network includes all the details. It maximally
zooms in on the network and includes all manifest and latent network variables
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and all relations between them, as described by atomic systems. In linear dy-
namic systems, the behaviour of an atomic system is described by first-order and
static relations, otherwise there are additional (latent) variables internal to atomic
systems. A network thus consists of atomic subsystems that are interconnected
through their manifest variables. This most precise network representation is
referred to as the complete computational structure.

Definition 3.1 (Complete computational structure (Yeung et al., 2010)).
The complete computational structure describes first-order and static rela-
tions between manifest and latent variables. It is depicted by a graph with
vertices representing the atomic subsystems and with edges corresponding
to the manifest and latent variables.

The complete computational structure is an exact description of the relations
between all variables in the network. The internal structure of the network is
thus completely described. An example of such a representation for linear time-
invariant (LTI) models is a state-space model, where the manifest variables are
the input and output variables and the latent (internal) variables are the state
variables. The manifest and latent variables are related through static and first-
order equations.

Manifest structure

On the other extreme, all internal structure is left out of the representation. This
representation maximally zooms out of the network and only includes the beha-
viour between the manifest variables. Therefore, this network representation is
referred to as the manifest structure.

Definition 3.2 (Manifest structure (Yeung et al., 2010)). The manifest
structure describes the relations between manifest variables. It is depicted
by a graph with vertices representing the manifest variables and with edges
corresponding to the behaviour of ordered pairs of manifest variables.

As the manifest structure only contains the relations between the manifest
variables, it includes no information on any internal variable or on the internal
structure of the network. An example of a manifest structure for LTI models is an
input-output relation, such as a transfer function representation, where only the
relations from input variables to output variables are described. Therefore, the
manifest structure is sometimes referred to as the input-output structure.
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Subsystem structure

In between the two extreme situations described by the complete computational
structure and the manifest structure, there exist many intermediate structures.
These intermediate structures represent the network as the interconnection of sev-
eral distinct subsystems. The subsystems are distinct in the sense that the latent
variables of a subsystem are distinct from the latent variables of the other sub-
systems in the network. The latent variables of a subsystem are hidden in the
subsystem and therefore, are referred to as hidden variables or hidden states (War-
nick, 2015). These subsystems consist of one or multiple joint atomic systems and
therefore, the subsystems are not restricted to having static or first-order dynamics
and can also have higher-order dynamics. In general, these intermediate struc-
tures only partially reveal the internal interconnection structure of the network,
while the remaining part is hidden in the subsystems. The most interesting inter-
mediate structure is the one that has the highest number of subsystems that are
interconnected through the manifest variables of the network. This intermediate
representation is referred to as the subsystem structure.

Definition 3.3 (Subsystem structure (Yeung et al., 2010)). The subsystem
structure describes the relations between manifest variables with the highest
number of distinct subsystems. It is depicted by a graph with vertices
representing the subsystems and with edges corresponding to the manifest
variables.

If every subsystem is atomic, the subsystem structure is equal to the complete
computational structure. If all subsystems are interconnections between pairs of
manifest variables, the subsystem structure is equivalent to the manifest structure.
Examples of LTI models that have a subsystem structure are the interaction-
oriented model (Lunze, 1992), the behavioural model (Willems, 2007), and port-
Hamiltonian models (van der Schaft and Maschke, 2013).

Signal structure

The above three structures are very general representations of the network in the
sense that a network is viewed as the interconnections of subsystems, while the
exact modelling technique that is used to describe the dynamics of the subsystems
remains free. Therefore, these structures do not limit themselves to linear or time-
invariant behaviour or causal dependencies. The subsystems can be modelled
very generally in the behavioural framework as defined in Definition 2.38.

Motivated from a system identification perspective, where the network struc-
ture is recovered from data, is a network structure in which the manifest variables
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are related through causal dependencies. The manifest variables, or manifest sig-
nals, are central to this network structure instead of the (subsystem) dynamics.
Therefore, this network representation is referred to as the signal structure.

Definition 3.4 (Signal structure (Yeung et al., 2010)). The signal structure
describes the network dynamics by causal dependencies among its manifest
variables. It is depicted by a graph with vertices representing the manifest
variables and with edges corresponding to the causal influences of ordered
pairs of manifest variables on each other.

The causal relations between the manifest variables are sometimes referred
to as dynamic modules. They include input-output relations to describe the
directed information flow of one manifest signal to another. These relations are
not restricted to being static or first-order and can also be higher-order. In the
latter case, the modules contain latent variables that are hidden in the modules.
The modules in the signal structure are allowed to have hidden (latent) variables
that are the same among several modules. These variables are said to be shared
among the modules and therefore, are referred to as shared hidden variables or
shared hidden states (Warnick, 2015). Examples of LTI models that have a signal
structure are the polynomial model (Ljung, 1999; Hannan and Deistler, 2012),
(dynamic) Bayesian model (Koller and Friedman, 2009), Wiener filter model
(Materassi and Innocenti, 2010), dynamical structure function (Gonçalves and
Warnick, 2008), and module representation (Van den Hof et al., 2013).

3.2.2 Relations between the network structures

The relations among the four network structures that are presented in Section 3.2.1
are also studied in literature (Yeung et al., 2010, 2011a,b; Chetty and Warnick,
2015; Warnick, 2015; Chetty and Warnick, 2020). These relations are clarified by
the following observations.

The complete computational structure includes all structural information in
the network model, while the manifest structure excludes all internal structural
information from the network model. In between these two extremes are many
intermediate frameworks that include some structural information. The most
significant intermediate frameworks are the subsystem structure and the signal
structure.

Excluding structural information from the model can be seen as zooming
out of the network and is performed with abstractions (performed by eliminating
variables from the model). In particular, a manifest abstraction from a complete
computational structure is, for example, a transfer function representation of a
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state-space model, which is known to have a unique result. Including more
structural information in the model can be seen as zooming in on the network and
is performed with realisations, which are nonunique. In particular, the complete
computational structure realisation from a manifest structure is, for example, a
state-space realisation of a transfer function model. Hence, the relation between
the manifest structure and the complete computational structure is the same as
the relation between the transfer function and state-space representation for LTI
models, where a transfer function possesses numerous state-space realisations,
while every state-space model specifies a unique transfer function.

The complete computational structure is the only structure that contains lat-
ent variables. The signal structure, subsystem structure, and manifest structure
describe only relations between manifest variables. In an input-output setting,
the manifest structure describes closed-loop relations between manifest variables,
that is, relations from input variables to output variables. The subsystem structure
and the signal structure describe open-loop relations between manifest variables,
that is, they also describe the influence that output variables have on each other.
Therefore, the subsystem structure and the signal structure contain more structural
information than the manifest structure, as the influences of manifest variables on
each other are included in the representation.

Both the complete computational structure and the subsystem structure are
represented by a graph with vertices that represent dynamics and edges that rep-
resent variables. Conversely, both the signal structure and the manifest structure
are represented by a graph with vertices that represent variables and edges that
represent dynamics. This contradiction is due to the following: The complete
computational structure and the subsystem structure represent the internal struc-
ture between distinct dynamics, captured by multivariable subsystems (that are
atomic in the complete computational structure). The edges are tools to represent
the interconnections between these subsystems, which are realised by latent and
manifest variables that are shared among subsystems. Hence, the subsystems and
the structure between them are the main information to depict. The signal struc-
ture and the manifest structure represent the influences between pairs of manifest
variables (which are causal relations in the signal structure). The exact relations,
which can share dynamics among them, are of less importance. The manifest
variables and the (causal) influences between them are the main information to
depict.

The subsystem structure follows naturally from block diagrams, where the
subsystems have a central role, while the signal structure follows naturally from
signal processing, where the signals are in the spotlight. In the subsystem structure,
every subsystem is distinct, meaning that each subsystem has latent variables (or
hidden variables) that are distinct from the ones from other subsystems in the
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Figure 3.1: The set of all realisations of the signal structure R𝑠𝑖𝑔 (red oval),
subsystem structure R𝑠𝑢𝑏 (blue oval), and manifest structure R𝑚𝑠 (orange oval) of
a particular complete computational structure 𝑟𝑐𝑐𝑠 (white dot).

network. As a result of this, subsystems in the subsystem structure can have
multiple inputs and multiple outputs. On the other hand, modules in the signal
structure always have a single input and a single output. In accordance with this,
the modules in a signal structure can have latent variables that are the same as the
ones from other modules. In other words, modules may contain shared hidden
variables.

If all modules in a signal structure are independent from each other, which
means that they do not have any shared hidden states, then the modules can be
seen as independent subsystems and therefore, this signal structure is equivalent
to a subsystem structure. On the other hand, if all subsystems in subsystem
structure are causal and have a single-input single-output (SISO) structure, which
means they describe causal relations from one manifest variable to another, then
the subsystems can be seen as modules and therefore, this subsystem structure is
equivalent to a signal structure.

Consider a network resulting from a particular interconnection of atomic
subsystems. From this complete computational structure 𝑟𝑐𝑐𝑠, the corresponding
subsystem structure, signal structure, and manifest structure are uniquely obtained.
The set of all realisations of this subsystem structure, signal structure, and manifest
structure are denoted by R𝑠𝑢𝑏, R𝑠𝑖𝑔, and R𝑚𝑠 respectively. Then observe that
𝑟𝑐𝑐𝑠 ∈ R𝑠𝑢𝑏 ⊆ R𝑚𝑠 and 𝑟𝑐𝑐𝑠 ∈ R𝑠𝑖𝑔 ⊆ R𝑚𝑠, which is illustrated by Figure 3.1.
This figure also shows the relation between the subsystem structure and signal
structure, which are generally not equivalent and related to each other by R𝑠𝑢𝑏 ⊈
R𝑠𝑖𝑔, R𝑠𝑖𝑔 ⊈ R𝑠𝑢𝑏, and R𝑠𝑢𝑏 ∩ R𝑠𝑖𝑔 ≠ ∅ (Warnick, 2015).
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3.2.3 Examples

The relations between the network structures are further clarified by two examples.
In the first example, the behaviour of the subsystems is described by the behavioural
approach as defined in Definition 2.38. In the second example, a network of
interconnected LTI systems is considered, where the behaviour of the subsystems
is described by input-output models.

Example 3.5 (Four atomic systems). Consider four atomic systems 𝐴𝑖 of
which the behaviour is described by 𝐴𝑖 = (T,W1

𝑖
× W2

𝑖
,B𝑖), 𝑖 = 1, 2, 3

and 𝐴4 = (T,W1
4 ×W2

4 ×W3
4,B4). Consider a network 𝐺 consisting of

these four subsystems interconnected through the relations 𝑤2
1(𝑡) ≡ 𝑤

1
4(𝑡),

𝑤2
4(𝑡) ≡ 𝑤

1
2(𝑡), and 𝑤3

4(𝑡) ≡ 𝑤
1
3(𝑡). Let the manifest variables be 𝑤1

1(𝑡),
𝑤2

2(𝑡), 𝑤
1
3(𝑡), and 𝑤2

3(𝑡) and hence, the latent variables are 𝑤2
1(𝑡), 𝑤

1
2(𝑡),

𝑤1
4(𝑡), 𝑤

2
4(𝑡), and 𝑤3

4(𝑡). The interconnection structure of this network is
shown in Figure 3.2a, with the manifest variables in blue and the latent
variables in red.
Make the following observations on this network:

1. The behaviour of the complete computational structure, shown in
Figure 3.2b, is given by 𝐺𝑐𝑐𝑠 = (T,W1

1 × W2
1 × W1

2 × W2
2 × W1

3 ×
W2

3,B𝑐𝑐𝑠).

2. If 𝐴1 and 𝐴4 are combined in a composite subsystem, the behaviour
of this intermediate frame, shown in Figure 3.2c, is given by 𝐺𝑠𝑢𝑏𝑠1 =

(T,W1
1 ×W

1
2 ×W

2
2 ×W

1
3 ×W

2
3,B𝑠𝑢𝑏𝑠1).

3. If 𝐴2 and 𝐴4 are combined in a composite subsystem, the behaviour
of this intermediate frame, shown in Figure 3.2d, is given by𝐺𝑠𝑢𝑏𝑠2 =

(T,W1
1 ×W

2
1 ×W

2
2 ×W

1
3 ×W

2
3,B𝑠𝑢𝑏𝑠2).

4. The behaviour of the subsystem structure, shown in Figure 3.2e, is
given by 𝐺𝑠𝑢𝑏 = (T,W1

1 ×W
2
2 ×W

1
3 ×W

2
3,B𝑠𝑢𝑏).

5. The behaviour of the manifest structure, shown in Figure 3.2f, is also
given by 𝐺𝑚𝑠 = 𝐺𝑠𝑢𝑏.

Example 3.5 illustrates several observations that hold in general. Potentially,
there exist numerous different intermediate views of the network. The complete
computational structure is the intermediate frame that consists of the largest num-
ber of subsystems. It includes only atomic subsystems and possibly many latent
variables. The subsystem structure is the intermediate frame that consists of
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Figure 3.2: Six graphical structures of the network consisting of four atomic
systems as described in Example 3.5, with the manifest variables in blue and the
latent variables in red.

the largest number of subsystems, while only describing the behaviour between
manifest variables. All latent variables are eliminated from the network. If all in-
terconnection variables are manifest variables for the network, then the complete
computational structure and the subsystem structure are equal. The difference
between the subsystem structure and the manifest structure is that the manifest
structure only depicts SISO relations between pairs of manifest variables, while
the subsystem structure depicts multiple-input multiple-output (MIMO) relations
between manifest variables. If all relations between the manifest variables are
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Figure 3.3: The four graphical structures for the feedback system of Example 3.6.

SISO in the subsystem structure, this structure is equivalent to the manifest struc-
ture.

Example 3.6 (Feedback interconnection). Consider a feedback system as
shown in Figure 3.3. This network consists of four subsystems, of which +1
and +2 are algebraic summation equations meaning 𝑢1(𝑡) + 𝑦2(𝑡) = ℓ1(𝑡)
and 𝑢2(𝑡) + 𝑦1(𝑡) = ℓ2(𝑡), respectively, and 𝐺1 and 𝐺2 are distinct dynamic
systems. The manifest signals are the input signals 𝑢1(𝑡) and 𝑢2(𝑡) and the
output signals 𝑦1(𝑡) and 𝑦2(𝑡). The latent signals are ℓ1(𝑡) and ℓ2(𝑡).
Make the following observations on this network:

1. Figure 3.3a shows the complete computational structure if the two
subsystems 𝐺1 and 𝐺2 are atomic. Otherwise, this figure shows an
intermediate frame, where the (distinct) subsystems𝐺1 and𝐺2 contain
additional latent variables.

2. Figure 3.3b shows the subsystem structure with subsystems 𝐻𝑖 com-
bining the subsystems 𝐺𝑖 and +𝑖, 𝑖 = 1, 2.

3. Figure 3.3c shows the signal structure, which depicts the causal de-
pendencies among the manifest variables.

4. Figure 3.3d shows the manifest structure, which depicts the input-
output structure of the network.
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Example 3.6 illustrates several observations that hold in general. The complete
computational structure and the subsystem structure contain only distinct subsys-
tems, while the modules in the signal structure do not have to be distinct. If all
modules in the signal structure are distinct, then the signal structure is equivalent
to the subsystem structure. If there are no causal dependencies among the output
variables, then the signal structure is equal to the manifest structure.

3.2.4 Dynamics in the vertices or in the edges

As mentioned above, the complete computational structure and the subsystem
structure are represented by a graph with dynamics in the vertices and variables
in the edges, while the signal structure and the manifest structure are represented
by a graph with variables in the vertices and dynamics in the edges. Thus, a
dynamic network can graphically be represented by a graph with the variables
in the vertices and the dynamics in the edges, or by a graph with the variables
in the edges and the dynamics in the vertices. The difference between the two
graphical representations is a matter of user’s choice (for example, based on what
deserves the most attention: the dynamics or the variables) and definition: what
is a ‘vertex’ and what is an ‘edge’. In addition, it was explained before that under
certain conditions, some structures can be equal or equivalent, and with that, a
graph with dynamics in the vertices and variables in the edges can be equivalent to
a graph with variables in the vertices and dynamics in the edges. This equivalence
is further studied here, with a focus on the subsystem structure and the signal
structure.

For LTI models, the interaction between subsystems is often static and occur-
ring via a summation of variables. Think, for example, of the feedback system
in Example 3.6 or Kirchhoff’s current law. Applying this interaction law to the
signal structure implies that a vertex is a summation point, where all incoming
edges are added together to create the variable corresponding to the vertex. In
general, this interaction remains implicit and hidden in the vertices of the signal
structure. The module representation (Van den Hof et al., 2013) is such a signal
structure that contains summation points in the vertices. It also explicitly depicts
the dynamic modules in the edges.

The subsystem structure can be adapted by separating interaction dynamics
from subsystem dynamics and allows for these specific latent variables. This is
especially convenient when the interaction dynamics is more advanced than a
simple summation of variables. Typical subsystem structure models, such as the
interaction-oriented model (Lunze, 1992) and the behavioural approach (Willems,
2007), indeed model interactions separately from subsystems. The vertices can be
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divided into two sets, one describing the interaction dynamics and one describing
the subsystem dynamics.

In this situation, where the interactions take place through summations of vari-
ables, the link between the subsystem structure and the signal structure becomes
rather easy. This is illustrated by the following examples.

Example 3.7 (Signal structure). Consider the signal structure depicted
in Figure 3.3c. Let the interactions be such that the manifest variable in
each vertex is created by adding all incoming variables together, where an
incoming variable is created by the dynamics on the corresponding edge
multiplied by the manifest variable in the vertex from which the edge leaves.
This gives

𝑦1(𝑡) = 𝐺1𝑢1(𝑡) + 𝐺1𝑦2(𝑡), 𝑦2(𝑡) = 𝐺2𝑢2(𝑡) + 𝐺2𝑦1(𝑡), (3.1)

which is visualised in Figure 3.3a. As all dynamics in the edges are dis-
tinct, this signal structure is equivalent to the subsystem structure shown in
Figure 3.3b, where each subsystem represents a dynamic module.

Example 3.8 (Subsystem structure). Consider the subsystem structure
depicted in Figure 3.3b. Let the dynamic subsystems be such that the two
input variables are summed together to create a latent variable that is then
applied to the subsystem dynamics to create the output. This gives

𝑦1(𝑡) = 𝐺1
(
𝑢1(𝑡) + 𝑦2(𝑡)

)
, 𝑦2(𝑡) = 𝐺2

(
𝑢2(𝑡) + 𝑦1(𝑡)

)
. (3.2)

The summation of variables can be separated from the subsystem dynamics,
as shown in Figure 3.3a. As the dynamic subsystems have a single input and
a single output, this subsystem structure is equivalent to the signal structure
shown in Figure 3.3c.

These examples illustrate that in LTI models, the static interactions (for ex-
ample, summations of variables) can be separated from dynamic interactions and
that if the dynamic modules in the signal structure are distinct and the subsystems
in a subsystem structure are SISO, then the subsystem structure and the signal
structure are equivalent.
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3.2.5 Conclusion

In this section, we showed how a dynamic network can graphically be represented
at different levels of detail, where the level of detail relates to the amount of
structural information that is incorporated in the graph. The different network
structures with corresponding graphical representations and the mechanisms of
moving from one to another, by including more information in the network model
and excluding information from the network model, give the user the opportunity
to analyse the network at the desired level of detail.

The relation between the subsystem structure and the signal structure has
already been extensively studied in the literature (Yeung et al., 2011a,b; Chetty
and Warnick, 2015; Warnick, 2015) and in this section. The relations between
intermediate structures, such as the subsystem structure and the signal structure,
are further analysed by comparing the module representation and the interaction-
oriented model in the following section, Section 3.3. More analysis of the zooming
mechanisms is useful and therefore studied in Chapter 4 by analysing the relation
between the complete computational structure and the signal structure.

3.3 Module representation and interaction-oriented
model

3.3.1 Module representation

Consider the module representation of Van den Hof et al. (2013), as presented in
Section 2.4.8, which has a signal structure. The manifest variable, or manifest
signals, are located at the vertices (referred to as nodes) and therefore, referred to as
node signals. The causal, dynamic influences in the edges are captured in dynamic
modules. The node (or vertex) is a summation point, where all signals that enter
are summed together to generate the node signal, which is the output signal of the
node. The signals entering a node are of three types: known external excitation
signals, unknown external disturbance signals, and internal (latent) output signals
of dynamic modules (Van den Hof et al., 2013).

To construct an output vector with possibly partial measurements of node
signals and subject to measurement noise, a measurement equation is added to
the module representation. Communication between the environment and the
network takes place through external input signals that enter the network and
external output signals that leave the network.
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This leads to the following definition of the module representation that will be
considered in this chapter.

Definition 3.9 (Module representation). A module representation con-
sists of 𝐿 internal node signals 𝑤1(𝑡), . . . , 𝑤𝐿 (𝑡); 𝐾 ≤ 𝐿 known ex-
ternal excitation signals 𝑟1(𝑡), . . . 𝑟𝐾 (𝑡); 𝐿 unknown disturbance signals
𝑣𝑤1 (𝑡), . . . , 𝑣𝑤𝐿 (𝑡); 𝑐 ≤ 𝐿 measured output signals 𝑦1(𝑡), . . . , 𝑦𝑐 (𝑡); and 𝑐
sensor noise signals 𝑣𝑦1 (𝑡), . . . , 𝑣𝑦𝐿 (𝑡). The behaviour of the node signals
𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿, and the output signals 𝑦 𝑗 (𝑡), 𝑗 = 1, . . . , 𝑐 is described
by

𝑤 𝑗 (𝑡) =
∑︁
𝑖∈N𝑗

𝐺 𝑗𝑖 (𝑞)𝑤𝑖 (𝑡) +
𝐾∑︁
𝑘=1

𝑅 𝑗𝑘 (𝑞)𝑟𝑘 (𝑡) + 𝑣𝑤 𝑗 (𝑡), (3.3a)

𝑦 𝑗 (𝑡) =
𝐿∑︁
𝑖=1

𝐶 𝑗𝑖 (𝑞)𝑤𝑖 (𝑡) +
𝐾∑︁
𝑘=1

𝐷 𝑗𝑖 (𝑞)𝑟𝑘 (𝑡) + 𝑣𝑦 𝑗 (𝑡), (3.3b)

with

1. 𝑞 the shift operator meaning 𝑞𝑤 𝑗 (𝑡) = 𝑤 𝑗 (𝑡 + 1).

2. N𝑗 the set of indices of signals 𝑤𝑖 (𝑡) 𝑖 ≠ 𝑗 with direct paths to 𝑤 𝑗 (𝑡).

3. 𝐺 𝑗𝑖 (𝑞) proper rational transfer function modules with 𝐺 𝑗 𝑗 (𝑞) = 0.

4. 𝑅 𝑗𝑘 (𝑞) stable proper rational transfer functions.

5. 𝐶 𝑗𝑖 (𝑞) stable proper rational transfer functions.

6. 𝐷 𝑗𝑖 (𝑞) stable proper rational transfer functions.

Combining the expressions of all node signals and output signals results in the
following matrix equations describing the full behaviour of the network.

𝑤(𝑡) = 𝐺 (𝑞)𝑤(𝑡) + 𝑅(𝑞)𝑟 (𝑡) + 𝑣𝑤 (𝑡), (3.4a)
𝑦(𝑡) = 𝐶 (𝑞)𝑤(𝑡) + 𝐷 (𝑞)𝑟 (𝑡) + 𝑣𝑦 (𝑡), (3.4b)

where the vectors 𝑤(𝑡), 𝑟 (𝑡), 𝑣𝑤 (𝑡), 𝑦(𝑡), and 𝑣𝑦 (𝑡) consists of elements 𝑤 𝑗1(𝑡) =
𝑤 𝑗 (𝑡), 𝑟 𝑗1(𝑡) = 𝑟 𝑗 (𝑡), 𝑣𝑤 𝑗1 (𝑡) = 𝑣𝑤 𝑗 (𝑡), 𝑦 𝑗1(𝑡) = 𝑦 𝑗 (𝑡), and 𝑣𝑦 𝑗1 (𝑡) = 𝑣𝑦 𝑗 (𝑡),
respectively, and where 𝐺 (𝑞), 𝑅(𝑞), 𝐶 (𝑞), and 𝐷 (𝑞) consist of elements 𝐺𝑖 𝑗 (𝑞),
𝑅𝑖 𝑗 (𝑞), 𝐶𝑖 𝑗 (𝑞), and 𝐷𝑖 𝑗 (𝑞), respectively.

The dynamic network is assumed to be stable, meaning that the transfer
function matrix

(
𝐼 − 𝐺 (𝑞)

)−1 only contains stable transfer function elements.
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Figure 3.4: Graphical representations of (parts of) the module representation.

The dynamic network is also assumed to be well-posed, meaning that all principal
minors of lim𝑧→∞

(
𝐼 − 𝐺 (𝑧)

)
are nonzero. Often, 𝑅(𝑞) and 𝐶 (𝑞) are diagonal,

binary, and known, meaning that they are selection matrices and 𝐷 (𝑞) = 0.

Figure 3.4a shows how a node signal is constructed in the module represent-
ation and Figure 3.4b shows how an output signal is constructed in the module
representation. Using the mathematical representation of the module representa-
tion (3.4), the overall network can graphically be represented as in Figure 3.4c. The
transfer function matrix𝐺 (𝑞) contains both the dynamics and the interconnection
structure of the network. The module representation can be seen as dynamic plant
model 𝐺 (𝑞) with direct feedback and with an output signal created from the node
signals and external input signals.

3.3.2 Interaction-oriented model

Consider the interaction-oriented mode of Lunze (1992), as presented in Sec-
tion 2.4.9, which has a subsystem structure. The behaviour of the subsystems can
be described by an input-output model, such as a state-space model or a transfer
function matrix. To connect with the module representation, a transfer function
matrix is used in this section. To account for disturbances and modelling errors,
external disturbance signals are added to the model. Then each subsystem has two
input signals: a known external input signal and an internal input signal. Each
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subsystem has two output signals: an internal output signal that can be subject
to disturbances and an external output signal that can be subject to measurement
noise.

The dynamics of the interconnections is also described by any input-output
model, which is again a transfer function here. The interconnections have the
internal output signals of the subsystems as an input signal and the internal input
signals of the subsystems as an output signal, which can be subject to external
disturbances as well. The internal signals are not visible from the environment.
The communication between the environment and the network takes place through
external input signals that enter the network and external output signals that leave
the network.

This leads to the following definition of the interaction-oriented model that
will be considered in this chapter.

Definition 3.10 (Interaction-oriented model). An interaction-oriented
modell consists of 𝐿 internal signals 𝑠1(𝑡), . . . , 𝑠𝐿 (𝑡); 𝐿 internal signals
𝑧1(𝑡), . . . , 𝑧𝐿 (𝑡); 𝐾 ≤ 𝐿 known external excitation signals 𝑢1(𝑡), . . . 𝑢𝐾 (𝑡);
𝐿 unknown disturbance signals 𝑣𝑠1 (𝑡), . . . , 𝑣𝑠𝐿 (𝑡); 𝐿 unknown disturbance
signals 𝑣𝑧1 (𝑡), . . . , 𝑣𝑧𝐿 (𝑡); 𝑐 ≤ 𝐿 measured output signals 𝑦1(𝑡), . . . , 𝑦𝑐 (𝑡);
and 𝑐 sensor noise signals 𝑣𝑦1 (𝑡), . . . , 𝑣𝑦𝐿 (𝑡). The behaviour of the subsys-
tems Σ 𝑗 is described by

Σ 𝑗 =

{
𝑧 𝑗 (𝑡) = 𝑇 𝑧𝑠𝑗 (𝑞)𝑠 𝑗 (𝑡) + 𝑇

𝑧𝑢
𝑗
(𝑞)𝑢 𝑗 (𝑡) + 𝑣𝑧 𝑗 (𝑡), (3.5a)

𝑦 𝑗 (𝑡) = 𝑇 𝑦𝑠𝑗 (𝑞)𝑠 𝑗 (𝑡) + 𝑇
𝑦𝑢

𝑗
(𝑞)𝑢 𝑗 (𝑡) + 𝑣𝑦 𝑗 (𝑡), (3.5b)

and the behaviour of the 𝑗 th interconnection is described by

𝑠 𝑗 (𝑡) =
𝐿∑︁
𝑖=1

𝐿 𝑗𝑖 (𝑞)𝑧𝑖 (𝑡) + 𝑣𝑠 𝑗 (𝑡), (3.6)

with 𝑞 the shift operator meaning 𝑞𝑤 𝑗 (𝑡) = 𝑤 𝑗 (𝑡 + 1) and with proper
rational transfer function matrices 𝑇 𝑧𝑠

𝑗
(𝑞), 𝑇 𝑧𝑢

𝑗
(𝑞), 𝑇 𝑦𝑠

𝑗
(𝑞), 𝑇 𝑦𝑢

𝑗
(𝑞), and

𝐿 𝑗𝑖 (𝑞).

Combining the expressions of all subsystems and interconnections results in
the following description of the overall network[

𝑧(𝑡)
𝑦(𝑡)

]
=

[
𝑇 𝑧𝑠 (𝑞) 𝑇 𝑧𝑢 (𝑞)
𝑇 𝑦𝑠 (𝑞) 𝑇 𝑦𝑢 (𝑞)

]
︸                  ︷︷                  ︸

𝑇 (𝑞)

[
𝑠(𝑡)
𝑢(𝑡)

]
+
[
𝑣𝑧 (𝑡)
𝑣𝑦 (𝑡)

]
, (3.7)
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with diagonal 𝑇 𝑧𝑠 (𝑞), 𝑇 𝑧𝑢 (𝑞), 𝑇 𝑦𝑠 (𝑞), and 𝑇 𝑦𝑢 (𝑞), and with network intercon-
nections

𝑠(𝑡) = 𝐿 (𝑞)𝑧(𝑡) + 𝑣𝑠 (𝑡), (3.8)

where 𝑠(𝑡), 𝑢(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑣𝑠 (𝑡), 𝑣𝑦 (𝑡), and 𝑣𝑧 (𝑡) consists of elements 𝑠 𝑗1(𝑡) =
𝑠 𝑗 (𝑡), 𝑢 𝑗1(𝑡) = 𝑢 𝑗 (𝑡), 𝑦 𝑗1(𝑡) = 𝑦 𝑗 (𝑡), 𝑧 𝑗1(𝑡) = 𝑧 𝑗 (𝑡), 𝑣𝑠 𝑗1 (𝑡) = 𝑣𝑠 𝑗 (𝑡), 𝑣𝑦 𝑗1 (𝑡) =
𝑣𝑦 𝑗 (𝑡), and 𝑣𝑧 𝑗1 (𝑡) = 𝑣𝑧 𝑗 (𝑡), respectively, and where 𝑇 𝑧𝑠 (𝑞), 𝑇 𝑧𝑢 (𝑞), 𝑇 𝑦𝑠 (𝑞),
and 𝑇 𝑦𝑢 (𝑞), consists of elements 𝑇 𝑧𝑠

𝑗 𝑗
(𝑞) = 𝑇 𝑧𝑠

𝑗
(𝑞) and 𝑇 𝑧𝑠

𝑗𝑖
(𝑞) = 0 for 𝑖 ≠ 𝑗 ,

𝑇 𝑧𝑢
𝑗 𝑗
(𝑞) = 𝑇 𝑧𝑢

𝑗
(𝑞) and 𝑇 𝑧𝑢

𝑗𝑖
(𝑞) = 0 for 𝑖 ≠ 𝑗 , 𝑇 𝑦𝑠

𝑗 𝑗
(𝑞) = 𝑇 𝑦𝑠

𝑗
(𝑞) and 𝑇 𝑦𝑠

𝑗𝑖
(𝑞) = 0 for

𝑖 ≠ 𝑗 , 𝑇 𝑦𝑢
𝑗 𝑗
(𝑞) = 𝑇 𝑦𝑢

𝑗
(𝑞) and 𝑇 𝑦𝑢

𝑗𝑖
(𝑞) = 0 for 𝑖 ≠ 𝑗 , respectively, and where 𝐿 (𝑞)

consists of elements 𝐿𝑖 𝑗 (𝑞).
The dynamic network is assumed to be stable, meaning that the transfer

function matrix
(
𝐼−𝑇𝑧𝑠 (𝑞)𝐿 (𝑞)

)−1 only contains stable transfer function elements.
The dynamic network is also assumed to be well-posed, meaning that all principal
minors of lim𝑧→∞

(
𝐼 − 𝑇𝑧𝑠 (𝑧)𝐿 (𝑧)

)
are nonzero. Often, the interconnections

described by 𝐿 (𝑞) are static and only one of the disturbance signals 𝑣𝑠 (𝑡) and
𝑣𝑧 (𝑡) is taken into account.

Figure 3.5a shows how the signals of a single subsystem are constructed in
the interaction-oriented model and Figure 3.5b shows how the signals of an inter-
action are constructed in the interaction-oriented model. Using the mathematical
transfer function representation of the interaction-oriented model (3.7) and (3.8),
the overall network can graphically be represented as in Figure 3.5c. The trans-
fer function matrix 𝑇 (𝑞) contains the dynamics of the subsystems, while 𝐿 (𝑞)
contains the dynamics and structure of the interactions between the subsystems.
The interaction-oriented model can be seen as a dynamic plant model 𝑇 (𝑞) with
output feedback 𝐿 (𝑞).

3.3.3 Mappings between the module representation and the
interaction-oriented model

Mappings

In this section, the mapping between the interaction-oriented model and the mod-
ule representation is studied. Here, a more mathematical approach is taken in
comparison with Section 3.2, where network structures are compared, which is
stronger based on the interpretation.

Comparing the interaction-oriented model with the module representation
leads to the following observations regarding the dynamics that is present in the
models. In the interaction-oriented model, the dynamics of the subsystem and
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Figure 3.5: Graphical representations of (parts of) the interaction-oriented model.

the dynamics of the interconnections are separated from each other, while in the
module representation, all dynamics is combined in the dynamic modules. In the
interaction-oriented model, the four main signals (𝑠(𝑡), 𝑧(𝑡), 𝑢(𝑡), and 𝑦(𝑡)) are
attributed to the subsystems: each subsystem has an internal and an external input
and an internal and an external output signal. In the module representation, on
the other hand, the three main signals (𝑤(𝑡), 𝑟 (𝑡), and 𝑦(𝑡)) cannot be tightened to
a module. For example, the internal signals 𝑤(𝑡) can enter multiple modules and
the external signals are not even necessarily tight to a single internal signal 𝑤(𝑡)
(although the latter is often the case in practice).

Furthermore, both models have a single known external excitation signal
(𝑟 (𝑡) in the module representation and 𝑢(𝑡) in the interaction-oriented model)
and both models have a single external output signal 𝑦(𝑡) with measurement
noise 𝑣𝑦 (𝑡). These signals have the same interpretation for both models. The
module representation has two types of internal signals: 𝑤(𝑡), influenced by the
disturbance signal 𝑣𝑤 (𝑡), and the output signals of the modules, which do not
appear in the mathematical representation. The interaction-oriented model also
has two internal signals: 𝑠(𝑡) and 𝑧(𝑡), influenced by disturbance signals 𝑣𝑠 (𝑡) and
𝑣𝑧 (𝑡), respectively.

Every interaction-oriented model can be mapped into a module representation
by equating either one of the internal signals 𝑠(𝑡) or 𝑧(𝑡) to the internal signal 𝑤(𝑡)
of the module representation and eliminating the other one from the representation.
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In both cases, the dynamics of the interconnections is combined with the dynamic
subsystems to create the modules. However, in each cases, this is done differently,
leading to different module representations. Hence, there are at least two different
module representations for each interaction-oriented model.

On the other hand, splitting the dynamic modules into dynamic subsystems
and interconnections is less straightforward. Module representations with 𝑅(𝑞),
𝐶 (𝑞), and 𝐷 (𝑞) diagonal, can be mapped into an interaction-oriented model by
equating the interconnection dynamics of the interaction-oriented model to the
dynamic modules in the module representation and capturing the input and output
dynamics, described by 𝑅(𝑞), 𝐶 (𝑞), and 𝐷 (𝑞), by the subsystems. The reason
for the requirement of diagonality of 𝑅(𝑞), 𝐶 (𝑞), and 𝐷 (𝑞) is that the interaction-
oriented model only allows for a single external input and output signal in the
subsystems, while all dynamic interconnections are between internal signals.

From interaction-oriented model to module representation: eliminating s(t)

Eliminating the internal signal 𝑠(𝑡) from an interaction-oriented model leads to a
module representation.

Proposition 3.11 (Interaction-oriented model to module representation).
An interaction-oriented model described by (3.5) and (3.6) is equivalent to
a module representation (3.3) with

1. Internal signals 𝑤 𝑗 (𝑡) = 𝑧 𝑗 (𝑡).

2. Unknown external disturbance signals 𝑣𝑤 𝑗 (𝑡) = 𝑇 𝑧𝑠𝑗 (𝑞)𝑣𝑠 𝑗 (𝑡) + 𝑣𝑧 𝑗 (𝑡).

3. Known external excitation signals 𝑟𝑘 (𝑡) = 𝑢 𝑗 (𝑡) with 𝑘 = 𝑗 and𝐾 = 𝐿.

4. External output signals 𝑦 𝑗 (𝑡) = 𝑦 𝑗 (𝑡).

5. Unknown measurement noise signals 𝑣𝑦 𝑗 (𝑡) = 𝑇
𝑦𝑠

𝑗
(𝑞)𝑣𝑠 𝑗 (𝑡) + 𝑣𝑦 𝑗 (𝑡).

6. Dynamic modules 𝐺 𝑗𝑖 (𝑞) = 𝑇 𝑧𝑠𝑗 (𝑞)𝐿 𝑗𝑖 (𝑞).

7. Input dynamics 𝑅 𝑗 𝑗 (𝑞) = 𝑇 𝑧𝑢𝑗 (𝑞) and 𝑅 𝑗𝑖 (𝑞) = 0 for 𝑖 ≠ 𝑗 .

8. Output dynamics 𝐶 𝑗𝑖 (𝑞) = 𝑇 𝑦𝑠𝑗 (𝑞)𝐿 𝑗𝑖 (𝑞).

9. Output dynamics 𝐷 𝑗 𝑗 (𝑞) = 𝑇 𝑦𝑢𝑗 (𝑞) and 𝐷 𝑗𝑖 (𝑞) = 0 for 𝑖 ≠ 𝑗 ..

Proof: Eliminating 𝑠 𝑗 (𝑡) from the interaction-oriented model by substituting
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(3.6) into (3.5) leads to

Σ 𝑗 =


𝑧 𝑗 (𝑡) = 𝑇 𝑧𝑠𝑗 (𝑞)

𝐿∑︁
𝑖=1

𝐿 𝑗𝑖 (𝑞)𝑧𝑖 (𝑡) + 𝑇 𝑧𝑢𝑗 (𝑞)𝑢 𝑗 (𝑡) + 𝑇
𝑧𝑠
𝑗
(𝑞)𝑣𝑠 𝑗 (𝑡) + 𝑣𝑧 𝑗 (𝑡),

𝑦 𝑗 (𝑡) = 𝑇 𝑦𝑠𝑗 (𝑞)
𝐿∑︁
𝑖=1

𝐿 𝑗𝑖 (𝑞)𝑧𝑖 (𝑡) + 𝑇 𝑦𝑢𝑗 (𝑞)𝑢 𝑗 (𝑡) + 𝑇
𝑦𝑠

𝑗
(𝑞)𝑣𝑠 𝑗 (𝑡) + 𝑣𝑦 𝑗 (𝑡),

which is a module representation (3.3) with 1.-9. ■

Proposition 3.11 shows that the external signals of the interaction-oriented
model and the module representation are equal. Every node signal and every
output signal is excited by (at most) one known external excitation signal, which
is captured by the diagonality of the input transfer function matrix 𝑅(𝑞) and the
feedthrough output matrix 𝐷 (𝑞). In addition, if 𝑣𝑠 𝑗 (𝑡) is absent in the interaction-
oriented model, then 𝑣𝑤 𝑗 (𝑡) = 𝑣𝑧 𝑗 (𝑡) and 𝑣𝑦 𝑗 (𝑡) = 𝑣𝑦 𝑗 (𝑡). This means that
𝑣𝑧 𝑗 (𝑡) in the interaction-oriented model has the same role as 𝑣𝑤 𝑗 (𝑡) in the module
representation, which also follows naturally from the fact that the node signal in the
module representation becomes the remaining internal signal of the interaction-
oriented model, that is 𝑤 𝑗 (𝑡) = 𝑧 𝑗 (𝑡).

Self-loops are present in the resulting module representation if 𝐿 𝑗 𝑗 ≠ 0,
because then 𝐺 𝑗 𝑗 (𝑞) ≠ 0. The transfer function modules have shared hidden
dynamics in the sense that some transfer functions have common dynamics that
are not explicitly measured. This common dynamics is the following: 𝐺 𝑗𝑖 (𝑞), ∀ 𝑗 ,
have common dynamics 𝑇 𝑧𝑠

𝑗
(𝑞); 𝐶 𝑗𝑖 (𝑞), ∀ 𝑗 , have common dynamics 𝑇 𝑦𝑠

𝑗
(𝑞); and

𝐺 𝑗𝑖 (𝑞) and 𝐶 𝑗𝑖 (𝑞) have common dynamics 𝐿 𝑗𝑖 (𝑞). Hence, the interconnection
structure from node signal 𝑤𝑖 (𝑡) to node signal 𝑤 𝑗 (𝑡) and to output signal 𝑦 𝑗 (𝑡)
is the same and described by 𝐿 𝑗𝑖 (𝑞). If 𝑣𝑠 𝑗 (𝑡) is present, then the models of the
disturbance signals 𝑣𝑤 𝑗 (𝑡) and 𝑣𝑦 𝑗 (𝑡) share dynamics with 𝐺 𝑗𝑖 (𝑞) and 𝐶 𝑗𝑖 (𝑞),
respectively. If 𝑇 𝑦𝑠

𝑗
(𝑞) = 𝑇 𝑧𝑠

𝑗
(𝑞) and 𝑇 𝑦𝑢

𝑗
(𝑞) = 𝑇 𝑧𝑢

𝑗
(𝑞), then 𝑦 𝑗 (𝑡) = 𝑤 𝑗 (𝑡) +

𝑣𝑦 𝑗 (𝑡) − 𝑣𝑧 𝑗 (𝑡).
Figure 3.6 illustrates the transformation from the interaction-oriented model

to the module representation by eliminating the internal signals 𝑠 𝑗 (𝑡). Figure 3.6a
shows the interaction-oriented model. First, the interactions 𝐿 (𝑞) are split into
SISO interconnections described by 𝐿21(𝑞) and 𝐿31(𝑞) and second, the system Σ1
with dynamics 𝑇1(𝑞) is split into SISO systems, with dynamics described by the
transfer functions 𝑇 𝑧𝑠1 (𝑞), 𝑇

𝑧𝑢
1 (𝑞), 𝑇

𝑦𝑠

1 (𝑞), and 𝑇 𝑦𝑢1 (𝑞), resulting in Figure 3.6b.
Third, the internal signal 𝑠1(𝑡) is eliminated from the network through immersion
(Dankers et al., 2016), leading to new SISO dynamic systems, as shown in Fig-
ure 3.6c. Finally, the network of Figure 3.6c is related to the module representation
(3.4) and the dynamic blocks and the signals are renamed accordingly, resulting
in the module representation shown in Figure 3.6d.
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Figure 3.6: Interaction-oriented model transformed into a module representation
by eliminating internal variable 𝑠(𝑡).



3.3 Module representation and interaction-oriented model 111

From interaction-oriented model to module representation: eliminating z(t)

Eliminating the internal signal 𝑧(𝑡) from an interaction-oriented model also leads
to a module representation, but a different one than for eliminating the internal
signal 𝑠(𝑡) from the interaction-oriented model.

Proposition 3.12 (Interaction-oriented model to module representation).
An interaction-oriented model described by (3.5) and (3.6) is equivalent to
a module representation (3.3) with

1. Internal signals 𝑤 𝑗 (𝑡) = 𝑠 𝑗 (𝑡).

2. Unknown external disturbance signals 𝑣𝑤 𝑗 (𝑡) =
𝐿∑︁
𝑖=1

𝐿 𝑗𝑖 (𝑞)𝑣𝑧𝑖 (𝑡) +

𝑣𝑠 𝑗 (𝑡).

3. Known external excitation signals 𝑟𝑘 (𝑡) = 𝑢 𝑗 (𝑡) with 𝑘 = 𝑗 and
𝐾 = 𝐿..

4. External output signals 𝑦 𝑗 (𝑡) = 𝑦 𝑗 (𝑡).

5. Unknown measurement noise signals 𝑣𝑦 𝑗 (𝑡) = 𝑣𝑦 𝑗 (𝑡).

6. Dynamic modules 𝐺 𝑗𝑖 (𝑞) = 𝐿 𝑗𝑖 (𝑞)𝑇 𝑧𝑠𝑖 (𝑞).

7. Input dynamics 𝑅 𝑗𝑖 (𝑞) = 𝐿 𝑗𝑖 (𝑞)𝑇 𝑧𝑢𝑖 (𝑞).

8. Output dynamics 𝐶 𝑗 𝑗 (𝑞) = 𝑇 𝑦𝑠𝑗 (𝑞) and 𝐶 𝑗𝑖 (𝑞) = 0 for 𝑖 ≠ 𝑗 .

9. Output dynamics 𝐷 𝑗 𝑗 (𝑞) = 𝑇 𝑦𝑢𝑗 (𝑞).

Proof: Eliminating 𝑧 𝑗 (𝑡) from the interaction-oriented model by substituting
(3.5a) into (3.6) gives

Σ 𝑗 =


𝑠 𝑗 (𝑡) =

𝐿∑︁
𝑖=1

𝐿 𝑗𝑖 (𝑞)
[
𝑇 𝑧𝑠
𝑖
(𝑞)𝑧𝑖 (𝑡) + 𝑇 𝑧𝑢𝑖 (𝑞)𝑢𝑖 (𝑡) + 𝑣𝑧𝑖 (𝑡)

]
+ 𝑣𝑠 𝑗 (𝑡),

𝑦 𝑗 (𝑡) = 𝑇 𝑦𝑠𝑗 (𝑞)𝑠 𝑗 (𝑡) + 𝑇
𝑦𝑢

𝑗
(𝑞)𝑢 𝑗 (𝑡) + 𝑣𝑦 𝑗 (𝑡),

which is a module representation (3.3) with 1.-9. ■

Proposition 3.11 shows that the input and output signals of the interaction-
oriented model and the module representation are equal. Every output signal is
determined by exactly one node signal and at most one input signal, which is
captured by the diagonality of the output transfer function matrix 𝐶 (𝑞) and the
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feedthrough output matrix 𝐷 (𝑞). In addition, if 𝑣𝑧 𝑗 (𝑡) is absent in the interaction-
oriented model, then 𝑣𝑤 𝑗 (𝑡) = 𝑣𝑠 𝑗 (𝑡). This means that 𝑣𝑠 𝑗 (𝑡) in the interaction-
oriented model has the same role as 𝑣𝑤 𝑗 (𝑡) in the module representation, which also
follows naturally from the fact that the node signal in the module representation
becomes the remaining internal signal of the interaction-oriented model, that is
𝑤 𝑗 (𝑡) = 𝑠 𝑗 (𝑡).

Self-loops are present in the resulting module representation if 𝐿 𝑗 𝑗 ≠ 0,
because then 𝐺 𝑗 𝑗 (𝑞) ≠ 0. The transfer function modules have shared hidden
dynamics in the sense that some transfer functions have common dynamics that
are not explicitly measured. This common dynamics is the following: 𝐺 𝑗𝑖 (𝑞),
∀𝑖, have common dynamics 𝑇 𝑧𝑠

𝑖
(𝑞); 𝑅 𝑗𝑖 (𝑞), ∀𝑖, have common dynamics 𝑇 𝑧𝑢

𝑖
(𝑞);

and 𝐺 𝑗𝑖 (𝑞) and 𝑅 𝑗𝑖 (𝑞) have common dynamics 𝐿 𝑗𝑖 (𝑞), which are also present
in the model of the external disturbance 𝑣𝑤 𝑗 (𝑡) if 𝑣𝑧 𝑗 (𝑡) is present. Hence, the
interconnection structure from input signal 𝑟𝑖 (𝑡) and node signal 𝑤𝑖 (𝑡) to node
signal 𝑤 𝑗 (𝑡) is the same and described by 𝐿 𝑗𝑖 (𝑞).

Figure 3.7 illustrates the transformation from the interaction-oriented model
to the module representation by eliminating the internal signals 𝑧 𝑗 (𝑡). Figure 3.7a
shows the interaction-oriented model. First, the interactions 𝐿 (𝑞) are split into
SISO interconnections described by 𝐿12(𝑞) and 𝐿13(𝑞) and second, the systems
Σ𝑖, 𝑖 = 1, 2, 3, with dynamics 𝑇𝑖 (𝑞), 𝑖 = 1, 2, 3, are split into SISO systems, with
dynamics described by the transfer functions𝑇 𝑧𝑠

𝑖
(𝑞), 𝑇 𝑧𝑢

𝑖
(𝑞), 𝑇 𝑦𝑠

𝑖
(𝑞), and𝑇 𝑦𝑢

𝑖
(𝑞),

𝑖 = 1, 2, 3, resulting in Figure 3.7b. Third, the internal signals 𝑧2(𝑡) and 𝑧3(𝑡) are
eliminated from the network through immersion (Dankers et al., 2016), leading
to new SISO dynamic systems, as shown in Figure 3.7c. Finally, the network of
Figure 3.7c is related to the module representation (3.4) and the dynamic blocks
and the signals are renamed accordingly, resulting in the module representation
shown in Figure 3.7d.

From module representation to interaction-oriented model

Consider a module representation with diagonal 𝑅(𝑞), 𝐶 (𝑞), and 𝐷 (𝑞), that is
𝑅 𝑗𝑖 (𝑞) = 0, 𝐶 𝑗𝑖 (𝑞) = 0, and 𝐷 𝑗𝑖 (𝑞) = 0 for 𝑖 ≠ 𝑗 . Equating the interconnec-
tion dynamics 𝐿 𝑗𝑖 (𝑞) of the interaction-oriented model to the dynamic modules
𝐺 𝑗𝑖 (𝑞) in the module representation and capturing the input and output dynam-
ics, described by 𝑅 𝑗 𝑗 (𝑞), 𝐶 𝑗 𝑗 (𝑞), and 𝐷 𝑗 𝑗 (𝑞) by the subsystem Σ 𝑗 , leads to an
interaction-oriented model.

Proposition 3.13 (Module representation to interaction-oriented model).
A module representation (3.3) with 𝑅(𝑞), 𝐶 (𝑞), and 𝐷 (𝑞) diagonal is
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Figure 3.7: Interaction-oriented model transformed into a module representation
by eliminating internal variable 𝑧(𝑡), where 𝐿1• indicates the first row of 𝐿 (𝑞) and
𝑇 𝑧•
𝑖

and 𝑇 𝑦•
𝑖

indicate the rows of 𝑇𝑖 (𝑞) corresponding to 𝑧 and 𝑦, respectively.
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equivalent to an interaction-oriented model described by (3.5) and (3.6)
with

1. Internal signals 𝑧 𝑗 (𝑡) = 𝑤 𝑗 (𝑡).

2. Unknown external disturbance signals 𝑣𝑧 𝑗 (𝑡) = 𝑣𝑤 𝑗 (𝑡).

3. Unknown external disturbance signals 𝑣𝑠 𝑗 (𝑡) = 0.

4. Known external excitation signals 𝑢 𝑗 (𝑡) = 𝑟𝑘 (𝑡) for all 𝑗 = 𝑘 .

5. External output signals 𝑦 𝑗 (𝑡) = 𝑦 𝑗 (𝑡).

6. Unknown measurement noise signals 𝑣𝑦 𝑗 (𝑡) = 𝐶 𝑗 𝑗 (𝑞)𝑣𝑤 𝑗 (𝑡) + 𝑣𝑦 𝑗 (𝑡).

7. Subsystem internal input dynamics 𝑇 𝑧𝑠
𝑗
(𝑞) = 𝐼.

8. Subsystem external input dynamics 𝑇 𝑧𝑢
𝑗
(𝑞) = 𝑅 𝑗 𝑗 (𝑞).

9. Subsystem internal output dynamics 𝑇 𝑦𝑠
𝑗
(𝑞) = 𝐶 𝑗 𝑗 (𝑞).

10. Subsystem external output dynamics 𝑇
𝑦𝑢

𝑗
(𝑞) = 𝐶 𝑗 𝑗 (𝑞)𝑅 𝑗 𝑗 (𝑞) +

𝐷 𝑗 𝑗 (𝑞).

11. Interconnection dynamics 𝐿 𝑗𝑖 (𝑞) = 𝐺 𝑗𝑖 (𝑞) for 𝑖 ∈ N𝑗 and 𝐿 𝑗𝑖 (𝑞) = 0
for 𝑖 ∉ N𝑗 .

Proof: From the module representation (3.3) with 𝑅 𝑗𝑖 (𝑞) = 0, 𝐶 𝑗𝑖 (𝑞) = 0,
and 𝐷 𝑗𝑖 (𝑞) = 0 for 𝑖 ≠ 𝑗 , selecting

𝑠 𝑗 (𝑡) :=
∑︁
𝑖∈N𝑗

𝐺 𝑗𝑖 (𝑞)𝑤 𝑗 (𝑡),

which describes the interconnections of an interaction-oriented model (3.6) with
3. and 11. Substituting this expression for 𝑠 𝑗 (𝑡) into (3.3a) and substituting (3.3a)
into (3.3b) leads to

𝑤 𝑗 (𝑡) = 𝑠 𝑗 (𝑡) + 𝑅 𝑗 𝑗 (𝑞)𝑢 𝑗 (𝑡) + 𝑣𝑤 𝑗 (𝑡),
𝑦 𝑗 (𝑡) = 𝐶 𝑗 𝑗 (𝑞)𝑠 𝑗 (𝑡) +

(
𝐶 𝑗 𝑗 (𝑞)𝑅 𝑗 𝑗 (𝑞) + 𝐷 𝑗 𝑗 (𝑞)

)
𝑢 𝑗 (𝑡) + 𝐶 𝑗 𝑗 (𝑞)𝑣𝑤 𝑗 (𝑡) + 𝑣𝑦 𝑗 (𝑡),

which describes the subsystems of an interaction-oriented model (3.5) with 1.-2
and 4.-10. ■

Proposition 3.13 shows that the input and output signals of the module repres-
entation and the interaction-oriented model are equal. As mentioned before, the
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dynamic modules are captured by the interconnections in the interaction-oriented
model, while the input and output dynamics of the module representation is cap-
tured by the subsystem dynamics in the interaction-oriented model. The external
output dynamics described by 𝑇 𝑦𝑠

𝑗
(𝑞) and 𝑇 𝑦𝑢

𝑗
(𝑞) include a scaled version of the

internal dynamics described by 𝑇 𝑧𝑠
𝑗
(𝑞) and 𝑇 𝑧𝑠

𝑗
(𝑞). Similar, the measurement

noise includes a scaled version of the external disturbance signal. This is because
the external output signal in the module representation explicitly depends on the
internal signal 𝑤(𝑡), which becomes the internal output signal of the subsystems
in the interaction-oriented model.

Figure 3.8 shows the transformation from the module representation to the
interaction-oriented model. Figure 3.8a shows the module representation. First,
the vertex of 𝑤1(𝑡) is split into two vertices (summation points) to separate the
result of the (internal) interconnections from the external input dynamics. This
introduces a new latent variable 𝑠1(𝑡). Second, the paths from the external input
signals 𝑟1(𝑡) and 𝑣𝑤1 (𝑡) to the output signal 𝑦1(𝑡) are separated from their paths to
the internal signal 𝑤1(𝑡), leading to Figure 3.8b. Third, the network of Figure 3.8b
is related to the interaction-oriented model described by (3.5) and (3.6) and the
dynamic blocks and the signals are renamed accordingly, as shown in Figure 3.8c.
Finally, all dynamics from 𝑢1(𝑡) and the new latent variable 𝑠1(𝑡) to 𝑧1(𝑡) and 𝑦1(𝑡)
are captured by two-input two-output blocks, resulting in the interaction-oriented
model shown in Figure 3.8d.

3.4 Discussion

The interaction-oriented model is a subsystem structure that is often used for the
control of dynamic networks. On the other hand, the module representation is
a signal structure that is popular in the identification of dynamic networks. In
Section 3.3, two mappings from the interaction-oriented model to the module
representation and one mapping in the reverse direction have been made. The
existence of these mappings proves several important connections.

First of all, the mappings imply that every subsystem structure fitting the
interaction-oriented model and every signal structure fitting the module represent-
ation can be transformed into one another. Using these mappings, results for one
representation can be transformed into the other one. Observe that this mapping
also transforms the graphical representation and the corresponding topological
information.

Second, the mappings between the interaction-oriented model and the module
representation connect the network control field with the network identification
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(b) Separated internal and external influ-
ences.
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Figure 3.8: Module representation transformed into an interaction-oriented model
by separating the internal and external influences on 𝑤1(𝑡), where 𝐿1• indicates
the first row of 𝐿 (𝑞).

domain. The control theory developed for interaction-oriented models can be
mapped to module representations and the network identification theory developed
for module representations can be mapped to interaction-oriented models. This
means that there is no need to separately develop control theory for module
representations or identification theory for interaction-oriented models, because
they can use the available theory from the other domain.

Third, the two mappings from the interaction-oriented model into the module
representation lead to module representations with shared dynamics in the dy-
namical objects. The elimination of 𝑠(𝑡) in Proposition 3.11 shows that all𝐺 𝑗𝑖 (𝑞)
have common dynamics 𝑇 𝑧𝑠

𝑗
(𝑞) for all 𝑖 with 𝐿 𝑗𝑖 (𝑞) ≠ 0. A similar mechanism

is present in 𝐶 𝑗𝑖 (𝑞). The elimination of 𝑧(𝑡) in Proposition 3.12 shows that all
𝐺 𝑗𝑖 (𝑞) and all 𝑅 𝑗𝑖 (𝑞) have common dynamics 𝑇 𝑧𝑠

𝑖
(𝑞) and 𝑇 𝑧𝑢

𝑖
(𝑞), respectively,

for all 𝑗 with 𝐿 𝑗𝑖 (𝑞) ≠ 0. In addition, 𝐺 𝑗𝑖 (𝑞) and 𝑅 𝑗𝑖 (𝑞) have common dynamics
𝐿 𝑗𝑖 (𝑞) for all 𝑗 , 𝑖. Even though this is allowed in signal structures according
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to their definition, it is useful to take these shared dynamics into account in the
parameterisation in the identification procedure to achieve minimum variance.
Furthermore, identifiability analysis for module representations typically builds
on the assumption that the modules do not share information (Weerts et al., 2018b).

Fourth, the mapping from the module representation to the interaction-oriented
model also shows some shared dynamics between SISO transfer functions, but
they are captured by the same MIMO subsystem. So, there are no shared dy-
namics between subsystems or interconnections, which satisfies the definition of
a subsystem representation.

3.5 Conclusion

Linear dynamic network models can include different amounts of detailed in-
formation on the topology and manifest signals. Four different network structures
have been presented, which represent the network at different levels of detail. A
translation has been made between network structures that represent dynamics in
the vertices and network structures that represent dynamics in the edges. Some
of the relations between the network structure are well-studied in the literature.
The relation between the signal structure and the subsystem structure is further
investigated by studying the module representation and the interaction-oriented
model. There exist mappings between the interaction-oriented model and the
module representation, which directly connect the network control field with the
network identification domain. As a result, the network identification domain can
keep focusing on the module representation.

The relation between the complete computational structure and the signal
structure deserves more attention and therefore, this is further studied in Chapter 4.
In addition, the mechanisms of adding information to the network model or elim-
inating information from the network model are important for analysing networks.
The consequences of this zooming mechanism are elaborated on in Chapter 4.





4 | Representations of linear
dynamic networks

This chapter is a slightly extended version of

E.M.M. Kivits and P.M.J. Van den Hof. On representations of linear dynamic
networks. IFAC-PapersOnLine, 51(15):838–843, 2018. Proceedings of the 18th
IFAC Symposium on System Identification (SYSID).

Linear dynamic networks are typically described in either a state-space form
or a module representation. The question is addressed under which conditions
these representations are equivalent and can be transformed into one another.
Hidden states and especially shared hidden states have a central position in this
analysis. A consequence for identification is that multiple-input multiple-output
(MIMO) parameterised modules may be necessary in order to appropriately
take care of shared hidden states. Further, the construction of subnetworks in a
linear dynamic network resulting in a module representation is illustrated. The
module dynamic network allows to zoom in/out on/of the network to include/
exclude more detailed structural information. Zooming in and out is described
by realisation and multi-path immersion, respectively.

4.1 Introduction

Linear dynamic networks are interconnections of linear dynamic systems. The
attention for dynamic networks is growing, because in current day’s technology,
systems are increasing in complexity and size and an increasing number of systems
is being interconnected. The interest in identification, control and reduction of
dynamic networks is spreading over a diversity of scientific fields such as social
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science, finance, computer science, bio-informatics, biology and engineering. As
a result, a variety of representations of dynamic networks is developed and the
question arises how these representations are related to each other.

In one part of the literature, state-space forms are used as a basis of dynamic
network descriptions. State-space forms are typically related to first-principles
modelling and can be very much appealing in this sense. State-space descriptions
can be depicted in several ways. Often only the structure of the network is drawn
in a directed or undirected graph, where the nodes are the states of the system, see
e.g. Materassi and Salapaka (2015) and their references.

Sometimes, the edges of the graph are weighted with the corresponding ele-
ments of the system matrices (Chang et al., 2014), which gives some insight into
the relations between the inputs, states and outputs. The weights can also be dy-
namic transfer functions, which closely relates to the dynamical structure function
(Gonçalves et al., 2007) and the module representation (Van den Hof et al., 2013).

A dynamic network formulation in an identification context has been intro-
duced by Van den Hof et al. (2013). Dynamic networks are considered in a node
and link structure, including noise disturbances, excitation signals and sensor
noises (Dankers et al., 2015). The network is based on scalar transfer function
links (modules) between node signals.

Some different representations of dynamic networks are presented in literature
(Yeung et al., 2010, 2011a; Chetty and Warnick, 2015; Warnick, 2015). They
characterise the structure of dynamic networks on different levels. The emphasis
is on the difference between the dynamical structure function and the module
representation, while the relation to state-space forms is given less attention.

In terms of identification in dynamic networks, the following problems have
been addressed so far: the identification of a single module (Van den Hof et al.,
2013; Materassi and Salapaka, 2015; Dankers et al., 2016); the identification of
all modules (Risuleo et al., 2017); the identification of the structure or topology
(Materassi and Innocenti, 2010); and the identifiability of the network (Weerts
et al., 2018b).

The main question in this chapter is: can a network in state-space form always
be converted into a module representation without losing any information and
vice versa? To answer this question, algorithms are developed to transform one
network representation into the other. The focus is on discrete time systems,
although the results are applicable to continuous time systems as well.

The chapter is organised as follows. Section 4.2 defines the module dynamic
network and the state-space dynamic network. The relations between these two
representations are described in Section 4.3. Section 4.4 extends to more general
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networks. Section 4.5 describes the division of a network into subnetworks.
Section 4.6 contains the discussion and Section 4.7 presents the conclusion. The
proofs of the lemmas and propositions are included in the appendix following this
chapter.

4.2 Representations of dynamic networks

4.2.1 Module dynamic networks

A module representation of dynamic networks as considered in this chapter is
based on Van den Hof et al. (2013). A dynamic network is the interconnection
of 𝐿 nodes 𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿, and 𝐾 known external excitation signals 𝑟𝑘 (𝑡),
𝑘 = 1, . . . , 𝐾 . Each node signal is equal to

𝑤 𝑗 (𝑡) =
𝐿∑︁
𝑖=1

𝐺 𝑗𝑖 (𝑞)𝑤𝑖 (𝑡) +
𝐾∑︁
𝑘=1

𝑅 𝑗𝑘 (𝑞)𝑟𝑘 (𝑡), (4.1)

where 𝐺 𝑗𝑖 (𝑞) and 𝑅 𝑗𝑘 (𝑞) are proper rational transfer functions with 𝑞−1 the
delay operator meaning 𝑞−1𝑤 𝑗 (𝑡) = 𝑤 𝑗 (𝑡 − 1). As a further generalisation of
the setup of Van den Hof et al. (2013), the signals 𝑤 𝑗 (𝑡) and 𝑟𝑘 (𝑡) can be vector-
valued in which case the related transfer functions become matrices of appropriate
dimensions; additionally self-loops are allowed, i.e. 𝐺𝑖𝑖 (𝑞) is not necessarily 0.

Typically, node signals are affected by unknown disturbance signals. In this
chapter, unknown inputs act similar to known inputs and therefore, disturbances
are initially omitted for simplicity and considered in Section 4.4.

The expressions for the node signals (4.1) can be combined in a matrix equation
describing the network as

𝑤(𝑡) = 𝐺𝑤(𝑡) + 𝑅𝑟 (𝑡), (4.2)
𝑤(𝑡) = (𝐼 − 𝐺)−1𝑅𝑟 (𝑡), (4.3)

with matrices 𝐺 and 𝑅 composed of elements 𝐺 𝑗𝑖 (𝑞) and 𝑅 𝑗𝑘 (𝑞), re-
spectively, and where 𝑤(𝑡) =

[
𝑤1(𝑡) 𝑤2(𝑡) . . . 𝑤𝐿 (𝑡)

]⊤ and 𝑟 (𝑡) =[
𝑟1(𝑡) 𝑟2(𝑡) . . . 𝑟𝐾 (𝑡)

]⊤. All minors of 𝐼 −𝐺 (∞) should be nonzero in order
to achieve a well-posed network. Equation (4.2) is a dynamical structure function
as introduced by Gonçalves et al. (2007). Figure 4.1 shows a single building
block of a module dynamic network.
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Definition 4.1 (Module dynamic network). A module dynamic network is
defined by the pair (𝐺, 𝑅) describing a map 𝑟 (𝑡) → 𝑤(𝑡) according to (4.3).

Definition 4.2 (Equal and equivalent networks). Consider the well-posed
networksN1 andN2 defined by the pairs (𝐺1, 𝑅1) and (𝐺2, 𝑅2), respectively.
The networks N1 and N2 are

1. equal if (𝐺1, 𝑅1) = (𝐺2, 𝑅2).

2. equivalent if (𝐼 − 𝐺1)−1𝑅1 = (𝐼 − 𝐺2)−1𝑅2.

A particular property of the module representations in literature is that they
only allow for single-input single-output (SISO) modules and exclude self-loops.
This choice has been made to avoid identifiability problems as implied by the
following lemma:

Lemma 4.3 (Self-loops). A module dynamic network with self-loops can
always equivalently be written as a module dynamic network without self-
loops.

Proof: The proof is provided in Appendix 4.A. ■

In this chapter, self-loops are allowed in module dynamic networks in order to
be able to link with state-space dynamic networks as described in the next section.
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Network properties that depend on the structure or topology are referred to
as structural or generic network properties. One such property is the generic
McMillan degree (Karcanias et al., 2005).

Definition 4.4 (Generic McMillan degree). Let a system be represented
by a coefficient vector 𝜃 ∈ R𝑛𝜃 . The generic McMillan degree of the system
is the McMillan degree of the system for almost all 𝜃, i.e. for all 𝜃 ∈ R𝑛𝜃

except for a set of measure 0.

Lemma 4.5 (Generic McMillan degree). The generic McMillan degree of
a network is equal to the sum of the generic McMillan degrees of all modules
in the network.

Proof: The proof is provided in Appendix 4.B. ■

Example 4.6 (Generic McMillan degree). Consider the electrical circuit
of Example 2.9, where the relation between the voltage drop 𝑉 and the
current flow 𝐼 is generically described by (2.20a):(

1 + (𝑅𝐶 + 𝑅𝐿)𝐶
𝑑

𝑑𝑡
+ 𝐶𝐿 𝑑

2

𝑑𝑡2

)
𝑉 =

(
𝑅𝐿 + 𝐿

𝑑

𝑑𝑡

) (
1 + 𝑅𝐶𝐶

𝑑

𝑑𝑡

)
𝐼,

which has McMillan degree 2. In the special case that 𝑅𝐿𝑅𝐶𝐶 = 𝐿, this
relation reduces to (2.20b):(

1 + 𝑅𝐿𝐶
𝑑

𝑑𝑡

)
𝑉 = 𝑅𝐿

(
1 + 𝑅𝐶𝐶

𝑑

𝑑𝑡

)
𝐼,

which has McMillan degree 1. Hence, the generic McMillan degree of the
electrical circuit of Example 2.9 is 2, because the McMillan degree is 2 for
almost all combinations of 𝑅𝐿 , 𝑅𝐶 , 𝐶, and 𝐿 (except for 𝑅𝐿𝑅𝐶𝐶 = 𝐿).

4.2.2 State-space (SS) dynamic networks

In some research areas the behaviour of a dynamic network is mathematically
described in a state-space form as

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑟 (𝑡), (4.4)

with 𝐴 ∈ R𝐿×𝐿 with elements 𝐴(𝑖, 𝑗) = 𝑎𝑖 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝐿; 𝐵 ∈ R𝐿×𝐾 with
elements 𝐵(𝑖, 𝑗) = 𝑏𝑖 𝑗 , 𝑖 = 1, 2, . . . , 𝐿, 𝑗 = 1, 2, . . . , 𝐾; and where 𝑥(𝑡) is the state
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variable and 𝑟 (𝑡) is a known external excitation signal. A state-space description
can also be depicted as a module dynamic network. Figure 4.2 shows a single
building block of a state-space dynamic network.

Definition 4.7 (State-space (SS) dynamic network). A state-space (SS)
dynamic network is a module dynamic network, as defined in Definition 4.1,
with the additional properties that

1. Every state variable 𝑥 𝑗 (𝑡) is a node signal 𝑤 𝑗 (𝑡).

2. Every element in 𝐺 has the form 𝐺 𝑗𝑖 (𝑞) = 𝑞−1𝐴( 𝑗 , 𝑖).

3. Every element in 𝑅 has the form 𝑅 𝑗𝑘 (𝑞) = 𝑞−1𝐵( 𝑗 , 𝑘).

In general, SS dynamic networks contain self-loops, because 𝐴(𝑖, 𝑖) ≠ 0.
These diagonal elements of 𝐴 represent the relation from 𝑥𝑖 (𝑡) to 𝑥𝑖 (𝑡 + 1).

4.3 Relations between module and SS dynamic net-
works

4.3.1 Abstraction of state-space dynamic networks

One of the major expansions of module dynamic networks compared to SS dy-
namic networks is that in module dynamic networks the states are grouped into
a single module, while in SS dynamic networks the network is split into its core
elements with modules that only have (weighted) delays. A natural step to go
from SS dynamic networks to general module dynamic networks is by grouping
states, that is, by removing state variables as node signals and thereby increasing
the order of the dynamic terms in the modules of the network. This process is
referred to as abstraction(Woodbury et al., 2017).

Definition 4.8 (Abstraction). Consider the networksN1 andN2 defined by
the pairs (𝐺1, 𝑅1) and (𝐺2, 𝑅2), respectively. N1 is an abstraction of N2
with respect to nodes 𝑤𝛼 (𝑡) if (𝐼 − 𝐺1)−1𝑅1 =

[
(𝐼 − 𝐺2)−1𝑅2

]
𝑤𝛼

, where
[𝑇]𝑤𝛼 means 𝑇 without the rows corresponding to nodes 𝑤𝛼 (𝑡).

Abstracted node signals are still present in the network, but are hidden in
the modules and therefore referred to as hidden states. Hidden states present in
multiple modules are said to be shared by these modules and therefore referred to
as shared hidden states (Warnick, 2015).
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Figure 4.3: The path through 𝑤2 is lifted by deleting the red paths and adding the
orange path.

Abstraction is performed by eliminating 𝑤𝛼 (𝑡) from the node equations and
this procedure and result are non-unique, since various node equations can be
used for this (Weerts et al., 2020). If the node equation of 𝑤𝛼 (𝑡) itself is used as
an explicit expression for 𝑤𝛼 (𝑡), this approach is referred to as immersion and has
been worked out by Dankers et al. (2016) for module dynamic networks without
self-loops and with only SISO modules, and is equivalent to vertex elimination.
The immersion of several nodes has a unique result, regardless of the order in
which the nodes are eliminated. This immersion process is generalised to dynamic
networks with self-loops in the following algorithm and is equivalent to the Kron
reduction (Dörfler and Bullo, 2013).

Algorithm 4.9 (Immersion). An abstraction of a module dynamic network
with respect to node 𝑤𝛼 (𝑡) is obtained through immersion by taking the
following steps:

1. Substitute the node equation of 𝑤𝛼 (𝑡) into the other node equations.

2. Delete the node equation of 𝑤𝛼 (𝑡) from the network.

Graphically, immersion is performed by lifting the paths through 𝑤𝛼 (𝑡) and
deleting the isolated 𝑤𝛼 (𝑡).

Definition 4.10 (Lifting a path). Lifting the paths through 𝑤𝛼 (𝑡) means
that new paths are created by combining all paths entering 𝑤𝛼 (𝑡) with all
paths leaving 𝑤𝛼 (𝑡).

Example 4.11 (Lifting path). Consider a network with three nodes 𝑤1,
𝑤2, and 𝑤3 and two paths 𝑤1 → 𝑤2 with weight 𝐺21 and 𝑤2 → 𝑤3 with
weight𝐺32. Lifting the path through 𝑤2 means that the paths 𝑤1 → 𝑤2 and
𝑤2 → 𝑤3 are deleted and the path 𝑤1 → 𝑤3 with weight 𝐺32𝐺21 is added,
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as shown in Figure 4.3.

In general, this procedure of lifting paths can be performed in two ways. In
the first approach, every single path through 𝑤𝛼 (𝑡) results in a new module and
therefore, this approach is referred to as single-path immersion.

For a particular node, local inputs are all nodes and inputs that have direct
paths towards this node and local outputs are all nodes that have direct paths from
this node.

Algorithm 4.12 (Single-path immersion). An abstraction of a module
dynamic network with respect to node𝑤𝛼 (𝑡) is graphically obtained through
single-path immersion by taking the following steps:

1. Lift the paths from each local input, through 𝑤𝛼 (𝑡), to each local
output.

2. Delete the isolated 𝑤𝛼 (𝑡) from the network.

A part of the network that is present in multiple paths in the original dynamic
network appears in multiple modules arising from single-path immersion. Due to
this, shared hidden states are introduced and the network structure changes.

In a second approach of lifting the paths through 𝑤𝛼 (𝑡), all paths through
𝑤𝛼 (𝑡) together result in a new module and therefore, this approach is referred to
as multi-path immersion.

Algorithm 4.13 (Multi-path immersion). An abstraction of a module
dynamic network is graphically obtained through multi-path immersion by
Algorithm 4.12 with the modification that in step (1) the paths from all local
inputs, through 𝑤𝛼 (𝑡), to all local outputs are lifted together to create one
(multivariate) module.

Algorithm 4.13 allows for MIMO modules and therefore only one module
arises during multi-path immersion and hence, no shared hidden states are intro-
duced. The main advantage of this approach is that multi-path immersion can
be seen as zooming out of the network and excluding some detailed structural
information.

Example 4.14 (Single-path immersion). Consider a dynamic network with
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state-space description
𝑥1(𝑡 + 1)
𝑥2(𝑡 + 1)
𝑥3(𝑡 + 1)

 =


0 0 𝑎13
𝑎21 0 𝑎23
0 0 0



𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

 +


0
0
𝑏31

 𝑟1(𝑡).

Its SS dynamic network is shown in Figure 4.4a with

𝐺13 = 𝑞−1𝑎13, 𝐺21 = 𝑞−1𝑎21, 𝐺23 = 𝑞−1𝑎23, 𝑅31 = 𝑞−1𝑏31,

and with nodes 𝑤𝑖 = 𝑥𝑖. Suppose that 𝑤3 is abstracted from the network
by single-path immersion. The abstraction is shown in Figure 4.4b and
described by [

𝑤1(𝑡)
𝑤2(𝑡)

]
=

[
0 0
𝐺21 0

] [
𝑤1(𝑡)
𝑤2(𝑡)

]
+
[
�̂�11
�̂�21

]
𝑟1(𝑡),

with
�̂�11 = 𝑞−2𝑎13𝑏31, �̂�21 = 𝑞−2𝑎23𝑏31.

The dynamics of 𝑅31 = 𝑞−1𝑏31 appears in both modules and hence, 𝑤3 has
become a shared hidden state.

Example 4.15 (Multi-path immersion). Consider the SS dynamic network
of Example 4.14 and suppose that𝑤3 is abstracted from the network by multi-
path immersion. The abstraction is shown in Figure 4.4c and described by[

𝑤1(𝑡)
𝑤2(𝑡)

]
=

[
0 0
𝐺21 0

] [
𝑤1(𝑡)
𝑤2(𝑡)

]
+ �̂�1𝑟1(𝑡),

with
�̂�1 =

(
𝑞−2𝑎13𝑏31
𝑞−2𝑎23𝑏31

)
.

Only one module results from immersion and hence, 𝑤3 has not become a
shared hidden state.

4.3.2 Realisation of module dynamic networks

The major difference between module dynamic networks and SS dynamic net-
works is that in SS dynamic networks the modules are one-dimensional state-space
descriptions, while in module dynamic networks the modules contain higher-order
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(c) The abstraction of 𝑤3(𝑡) in (a) by multi-
path immersion.
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(e) A realisation of the module dynamic net-
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(f) The abstraction of 𝑤1 in (b), correspond-
ing to Example 4.21.

Figure 4.4: An SS dynamic network, three abstractions of it and realisations of
two of the abstractions.

dynamics which have many possible state-space realisations. A natural step to
go from a general module dynamic network to an SS dynamic network is by in-
troducing nodes, that is, by turning state variables that correspond to a particular
module into node signals and thereby decreasing the order of the dynamic terms
in the modules of the network. The process of transforming a general module
dynamic network into an SS dynamic network is called realisation.

Algorithm 4.16 (Realisation). A realisation (SS dynamic network) of a
module dynamic network is obtained by taking the following steps:

1. Select a module 𝑀𝛼 (𝑞).

2. Replace 𝑀𝛼 (𝑞) by a state-space realisation of it.

3. Turn all state variables into node signals and find the new modules in
accordance with Definition 4.7.
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4. Repeat the procedure to realise all modules.

It is well-known that realisation is a non-unique process and therefore, the
(number of) node signals added to the network depends on the state-space real-
isation. A minimum number of node signals is added if minimal state-space
realisations are substituted into the modules. When using an observable canonical
form, the outputs of the module are state variables in the new network. Realisation
can be seen as zooming in on the network and including more detailed structural
information.

Instead of finding realisations of all modules (to obtain an SS dynamic net-
work), one can choose to find realisations of only some modules and instead of
turning all state variables into node signals, one can choose to introduce only one
or some nodes.

Example 4.17 (Realisation with shared hidden states). Consider the
module dynamic network of Figure 4.4b with

�̂�11 = 𝑞−2𝛼1, �̂�21 = 𝑞−2𝛼2, 𝐺21 = 𝑞−1𝛼3.

A realisation (SS dynamic network) is found through Algorithm 4.16. It is
shown in Figure 4.4d and described by

𝑤1(𝑡)
𝑤2(𝑡)
�̃�3(𝑡)
�̃�4(𝑡)

 =


0 0 �̃�13 0
𝐺21 0 0 0

0 0 0 0
0 0 0 0



𝑤1(𝑡)
𝑤2(𝑡)
�̃�3(𝑡)
�̃�4(𝑡)

 +


0
0
�̃�31
�̃�41

 𝑟1(𝑡),

with

�̃�13 = 𝑞−1𝛽1, �̃�24 = 𝑞−1𝛽2, �̃�31 = 𝑞−1𝛽3, �̃�41 = 𝑞−1𝛽4,

where 𝛽1𝛽3 = 𝛼1 and 𝛽2𝛽4 = 𝛼2. This SS dynamic network has a different
structure than the underlying SS dynamic network shown in Figure 4.4a,
because of the shared hidden state in �̂�11 and �̂�21.

Example 4.18 (Realisation without shared hidden states). Consider the
module dynamic network of Figure 4.4c with

�̂�1 =

(
𝑞−2𝛼1
𝑞−2𝛼2

)
, 𝐺21 = 𝑞−1𝛼3.
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A realisation (SS dynamic network) is found through Algorithm 4.16. It is
shown in Figure 4.4e and described by

𝑤1(𝑡)
𝑤2(𝑡)
�̃�3(𝑡)

 =


0 0 �̃�13
𝐺21 0 �̃�23

0 0 0 0



𝑤1(𝑡)
𝑤2(𝑡)
�̃�3(𝑡)

 +


0
0
�̃�31

 𝑟1(𝑡),

with
�̃�13 = 𝑞−1𝛽1, �̃�23 = 𝑞−1𝛽2, �̃�31 = 𝑞−1𝛽3,

where 𝛽1𝛽3 = 𝛼1 and 𝛽2𝛽3 = 𝛼2. This SS dynamic network has the same
structure as the underlying SS dynamic network shown in Figure 4.4a.

4.3.3 Equivalence between module and SS dynamic networks

Now it is clear how to transform SS dynamic networks into general module
dynamic networks and vice versa and that they are equivalent if the node signals
remain invariant.

Proposition 4.19 (From SS to module dynamic network). An SS dynamic
network with minimal state-space dimension 𝑛 can be transformed by ab-
straction into a general module dynamic network with generic McMillan
degree ≥ 𝑛, where equality holds if and only if the abstraction generates no
shared hidden states.

Proof: The proof is provided in Appendix 4.C. ■

Single-path immersion does not lead to shared hidden states if it is equivalent
to multi-path immersion. The local network structure already reveals whether
shared hidden states are generated by abstraction.

Proposition 4.20 (Shared hidden states).

(a) Single-path immersion of a single node leads to a shared hidden state
if and only if this node has multiple local inputs or multiple local
outputs.

(b) Single-path immersion of multiple nodes leads to shared hidden states
if and only if at least one of the following holds:

• The nodes jointly have multiple local inputs and at least one of
the nodes has multiple local inputs.
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• The nodes jointly have multiple local outputs and at least one of
the nodes has multiple local outputs.

(c) Multi-path immersion never leads to shared hidden states.

Proof: The proof is provided in Appendix 4.D. ■

Point (b) of Proposition 4.20 implies that the introduction of a shared hidden
state can sometimes be nullified by removing an additional node from the network.

Example 4.21 (Nullified shared hidden state). Consider the abstraction
of Example 4.14 shown in Figure 4.4b. Suppose that 𝑤1 is also removed
from the network by immersion. Then �̂�11, �̂�21 and 𝐺21 are combined in
one module, without shared hidden states. This module dynamic network is
shown in Figure 4.4f and described by

𝑤2(𝑡) = �̃�21𝑟1(𝑡),

with
𝑅21 = 𝐺21�̂�11 + �̂�21 = 𝑞−3𝑎21𝑎13𝑏31 + 𝑞−2𝑎23𝑏31.

The reverse transformation of abstraction is the realisation of a module dy-
namic network into an SS dynamic network. In this process, shared hidden states
are not taken into account, because their existence is unknown.

Proposition 4.22 (From module to SS dynamic network). A module dy-
namic network with generic McMillan degree 𝑛 can be transformed into an
equivalent SS dynamic network with state-space dimension 𝑛 by realisation
through Algorithm 4.16 using minimal state-space realisations.

Proof: The proof is provided in Appendix 4.E. ■

The resulting SS dynamic network is not unique due to the freedom in creating
minimal realisations of single modules. Further, shared hidden states represent
the same node signal but are realised as different node signals. Sometimes the
modelling procedure prevents for shared hidden states.
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4.4 More general networks

4.4.1 Networks with disturbances

Dynamic networks as discussed in this chapter were only considered to have
known input signals (4.2). However, the node signals of the network can also be
influenced by unknown disturbance signals. Typically, these disturbance signals
are modelled as realisations of stationary stochastic processes. The network is
described in matrix form by

𝑤(𝑡) = 𝐺𝑤(𝑡) + 𝑅𝑟 (𝑡) + 𝐻𝑒(𝑡), (4.5)

where 𝐻𝑒(𝑡) represents the disturbance signals with 𝐻 monic, stable, with a
stable inverse, and composed of the elements 𝐻 𝑗 𝑝 (𝑞), 𝑝 = 1, . . . , 𝑃 ≤ 𝐿 and with
𝑒(𝑡) =

[
𝑒1(𝑡) 𝑒2(𝑡) . . . 𝑒𝑃 (𝑡)

]⊤ a stationary white noise signal.

From (4.5) it can be seen that 𝑒(𝑡) and 𝐻 have a similar role as 𝑟 (𝑡) and 𝑅,
respectively, and therefore, 𝑒(𝑡) and 𝐻 can be considered likewise. Further, 𝐻
is not part of the physics: it is just a modelling choice used for describing the
unknown disturbance signals. This means that the realisations and hidden states
of these modules are of less interest.

4.4.2 Networks with general measurements

The node signals of the dynamic networks discussed in this chapter were directly
measured, but this is not always possible. The measurements can also be linear
combinations of node signals and excitation signals and can be subject to additional
sensor noise. The 𝑐 measurements are then written in matrix form as

�̃�(𝑡) = 𝐶𝑤(𝑡) + 𝐷𝑟 (𝑡) + 𝑠(𝑡), (4.6)

with 𝐶 ∈ R𝑐×𝐿 with elements 𝐶 (𝑖, 𝑗) = 𝑐𝑖 𝑗 , 𝑖 = 1, 2, . . . , 𝑐, 𝑗 = 1, 2, . . . , 𝐿;
𝐷 ∈ R𝑐×𝐾 with elements 𝐷 (𝑖, 𝑗) = 𝑑𝑖 𝑗 𝑖 = 1, 2, . . . , 𝑐, 𝑗 = 1, 2, . . . , 𝐾; and where
𝑠(𝑡) is the sensor noise.

Algorithm 4.23 (Handling general measurements). A module dynamic
network with measurements of the form (4.6) can be transformed into a mod-
ule dynamic network with directly measured nodes by taking the following
steps:

1. Add node signals to the network that are directly measured, i.e. equal
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to �̃� 𝑗 (𝑡), 𝑗 = 1, · · · , 𝑐.

2. Add the corresponding modules, containing gains of the form 𝐶 ( 𝑗 , 𝑖),
𝐷 ( 𝑗 , 𝑘), and 1.

The resulting network contains unmeasured node signals 𝑤 𝑗 (𝑡), which can be
removed from the network by abstraction, and measured node signals �̃� 𝑗 (𝑡), which
depend on the unmeasured node signals via static terms. Using abstraction, it is
always possible to remove all unmeasured node signals from a module dynamic
network with measurements.

4.5 Constructing subnetworks

Dynamic networks often consist of subsystems interacting with each other, where
each subsystem has its own dynamics. From this point of view, a dynamic network
can be seen as the interconnection of subnetworks, where a subnetwork consists
of several modules and at least one node. A network can be partitioned into
subnetworks by drawing boxes around certain areas in the network and grouping
the interior of a box into a new module. The boxes should be non-overlapping,
their terminals should be connected to inputs (𝑟) or nodes (𝑤) and each box should
include all nodes between the modules in the box.

This method is equivalent to abstracting all nodes in the box by multi-path
immersion and analogous to zooming out of the network, that is, viewing the
network at a higher level, where the network consists of fewer modules and nodes.

Example 4.24 (Subnetworks). Consider the module dynamic network of
Figure 4.5a, where the red and orange box indicate subnetworks. The
interiors of the red and the orange box are captured in the new modules
�̂�𝐺 and �̂�6, respectively, as shown in Figure 4.5b. This is the same as
abstracting 𝑤1 and 𝑤2 in the red box and 𝑤5 in the orange box by multi-
path immersion.

4.6 Discussion

Lemma 4.3 implies that module dynamic networks with self-loops in general
are never a unique representation and thus cannot uniquely be identified from
measurement data. This is not true for SS dynamic networks, because their
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Figure 4.5: A module dynamic network with two subnetworks (the red and the
orange box) and its abstraction.

modules have a specific structure. The identifiability problem can be solved by
eliminating self-loops from the network, but this can introduce shared hidden
states.

In the current literature, identification is often applied in a module dynamic
network without self-loops and restricted to SISO modules. This implies that if
there is a (physical) state-space form underneath the module dynamic network,
shared hidden states can be present that will not be recognised as such, when all
modules are independently parameterised as SISO modules. In order to appropri-
ately deal with this situation (and arrive at minimum variance results for estimated
models) the handling of MIMO parameterised modules would be necessary. From
an identification perspective, this is the primal lesson to be learnt from the analysis
in this chapter.

The network structure cannot completely be identified through its modules if a
dynamic network contains hidden states. Only the network structure that manifests
itself in transfer functions between inputs and node signals can be identified. The
remaining structure is hidden in the modules and shared hidden states will remain
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undetected.

4.7 Conclusion

A module dynamic network has been formalised as a model for describing dynamic
networks. This concept has been extended by allowing self-loops and MIMO
modules. As a result, the module dynamic network incorporates state-space
forms as a special case.

A module dynamic network allows to zoom in/out on/of the network to include/
exclude more detailed structural information. Zooming in/out is represented by an
increased/decreased number of node signals and a decreased/increased order of
the module dynamics. Zooming in takes place by realisation (replacing modules
by state-space realisations), which in construction is non-unique. Zooming out
takes place by multi-path immersion (removing measured node signals from the
network), in which the loss of structural information by the introduction of shared
hidden states is avoided.

The main question in this chapter was: can a state-space form always be
converted into a module representation without losing any information and vice
versa? The answer to this question is: yes, provided that MIMO modules are
allowed in the module dynamic networks.



Appendix

4.A Proof of Lemma 4.3

Consider a module dynamic network as defined by Definition 4.1. Such network
can be written as (4.2). The self-loops of this network are represented by the
modules 𝐺𝑖𝑖 (𝑞), 𝑖 = 1, · · · , 𝐿, which can be found on the diagonal of 𝐺. The
transfer function matrix 𝐺 can be decomposed in two parts: a diagonal one
containing only the self-loops, denoted by 𝐺𝑑 , and one containing the remaining
terms (with zeros on its diagonal), denoted by𝐺𝑛𝑑 . The module dynamic network
with self-loops is then written as

𝑤(𝑡) = 𝐺𝑤(𝑡) + 𝑅𝑟 (𝑡),
= 𝐺𝑑𝑤(𝑡) + 𝐺𝑛𝑑𝑤(𝑡) + 𝑅𝑟 (𝑡),
= (𝐼 − 𝐺𝑑)−1 [𝐺𝑛𝑑𝑤(𝑡) + 𝑅𝑟 (𝑡)] ,
= �̂�𝑤(𝑡) + �̂�𝑟 (𝑡). (4.7)

The latter is again a module dynamic network, with transfer function matrices
�̂� and �̂�. From 𝐺𝑑 being diagonal, it follows that (𝐼 − 𝐺𝑑)−1 is diagonal as
well. Combining this with the fact that 𝐺𝑛𝑑 has a zero diagonal gives that
�̂� = (𝐼 − 𝐺𝑑)−1𝐺𝑛𝑑 has a zero diagonal and thus the module dynamic network
represented by (4.7) has no self-loops.

4.B Proof of Lemma 4.5

From the definition of the generic McMillan degree it follows that the generic
McMillan degree of a module prevents for pole-zero cancellation within this
module and that the generic McMillan degree of a network prevents for pole-zero
cancellation in the overall network description. As a consequence, pole-zero
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cancellations do not occur when any two (or more) modules in the network are
merged and the generic McMillan degree of the resulting module is equal to the
sum of the generic McMillan degrees of the merged modules. The overall transfer
function of the network is obtained by merging all modules and hence, the generic
McMillan degree of the network is equal to the sum of the generic McMillan
degrees of all modules in the network.

4.C Proof of Proposition 4.19

Consider an state-space (SS) dynamic network, as defined in Definition 4.7, with
minimal state-space dimension 𝑛. If unmeasured node signals are removed by
single-path immersion, the resulting module dynamic network has generic Mc-
Millan degree ≥ 𝑛.

Equality holds if the module dynamic network has no shared hidden states,
because then each hidden state in the module dynamic network represents an
unmeasured node signal of the underlying SS dynamic network.

If the module dynamic network has shared hidden states, multiple hidden
states in the modules represent the same unmeasured node signal of the original
SS dynamic network and the generic McMillan degree of the module dynamic
network is larger than 𝑛.

If the unmeasured node signals are removed from the SS dynamic network by
multi-path immersion, shared hidden states never occur and the resulting module
dynamic network always has a generic McMillan degree equal to 𝑛.

4.D Proof of Proposition 4.20

(a) Consider a node with multiple local inputs and one local output. The paths
from each local input, through the node, to the local output have an overlapping
part, namely the part from the node to the local output. If this node is removed
from the network by single-path immersion, the node (and the module between
the node and the local output) is merged in all modules from each local input to
the local output. Since the node is present in all these modules, it has become a
shared hidden state.

A similar reasoning holds for a node with multiple local outputs. If a node has
only one local input and one local output, single-path immersion results in only
one module (without a shared hidden state).
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(b) If a node (denoted as node 1) with multiple local inputs is removed from
the network by single-path immersion, then a shared hidden state is introduced,
see Proposition 4.20a. However, if all local inputs but one are nodes that also will
be removed from the network, the introduction of the shared hidden state will be
nullified if the local input to node 1 is the only local input to all nodes that also will
be removed from the network. Hence, the nodes jointly have one local input and
although node 1 has multiple local inputs, no shared hidden state is introduced.
In other words, if a node has multiple local inputs, single-path immersion only
introduces a shared hidden state if all nodes that will be removed from the network
jointly have multiple local inputs.

A similar reasoning holds for a node with multiple local outputs. If no node
has multiple local inputs or multiple local outputs, the nodes can subsequently be
removed from the network by single-path immersion and, by Proposition 4.20a,
no shared hidden states are introduced.

(c) If a node is removed from the network by multi-path immersion, all paths
through the node are combined in one module. Thus the node becomes a hidden
state in only one module and will therefore never be shared. If multiple nodes are
removed, the nodes can be removed sequentially and no node becomes a shared
hidden state.

4.E Proof of Proposition 4.22

Consider a module dynamic network, as defined in Definition 4.7, with generic
McMillan degree 𝑛. Realisation through Algorithm 4.16 adds a minimum number
of node signals to the network if every module is substituted by a minimal state-
space realisation of it. When minimal state-space realisations are substituted into
the modules, the dimension of the state-space realisation is equal to the generic
McMillan degree in every module. As a result, the state-space dimension of the
resulting SS dynamic network is equal to the generic McMillan degree of the
module dynamic network, which is 𝑛.



5 | Diffusively coupled linear
network models

Physical linear systems are typically described by second-order vector differ-
ential equations, which naturally follow from first-principles modelling. The
question that is addressed is: what network model is suitable for describing
the interconnections of physical linear systems for identification purposes. A
linear network model is developed that is able to incorporate the specific char-
acteristics of the symmetric nature of physical components. The application of
this new network model to various physical linear networks is illustrated and
their analogies are shown. It follows that this network model describes physical
linear systems that are passive, dissipative and stable. Further, the use of this
network model to other types of networks is discussed.

5.1 Introduction

Dynamic networks are gaining popularity among a wide range of scientific dis-
ciplines, because systems are becoming more complicated and larger. Some
examples of these interconnected dynamic systems are the brain, models describ-
ing the spread rate of infectious diseases, models describing social interactions,
electricity networks, and multiagent systems (Ren et al., 2005; Boccaletti et al.,
2006; Mesbahi and Egerstedt, 2010). The class of dynamic networks that will
receive our attention are physical networks, such as electrical circuits, mechanical
and hydraulic systems, and biological and chemical processes.

Physical networks are often represented by a vector differential equation of
maximum second order, which follows naturally from first-principles modelling
through the laws of nature. Two well-known examples of physical networks are
electrical resistor-inductor-capacitor circuits and mechanical mass-spring-damper
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systems. For identification purposes, the second-order vector differential equa-
tions can be converted into a state-space form, after which matrix transformations
(Friswell et al., 1999; Lopes dos Santos et al., 2015) or eigenvalue decomposi-
tions (Fritzen, 1986; Luş et al., 2003) are applied to estimate the model parameters.
However, these methods typically do not have any guarantees on the statistical ac-
curacy of the estimates and lack a consistency analysis. Physical networks can
also be modelled by classical black-box models, for example, in the form of monic
polynomial models, which can be identified using prediction error identification
methods (Ljung and Glad, 1994; Ljung, 1999). Again, the network structure in
the model is generally lost.

By representing a dynamic network as an interconnection structure of dy-
namic transfer function modules (Gonçalves and Warnick, 2008; Van den Hof
et al., 2013), a framework for system identification in dynamic networks has been
developed by Van den Hof et al. (2013), by extending classical closed-loop pre-
diction error methods. In this framework, dynamic networks are considered to
consist of directed interconnections of dynamic modules that can be of any dy-
namic order. However, the symmetric nature of physical components leads to
diffusive couplings (Cheng et al., 2017; Cheng and Scherpen, 2021), which are
characterised by undirected dynamic interconnections between node signals.

The overall objective of this research is to develop a comprehensive theory
for the identification of individual interconnections in physical linear networks,
where the dynamic order of these couplings is not restricted and where possibly
correlated disturbances are present. Before moving towards identification in
physical linear networks, an appropriate network model structure needs to be
selected or developed. This network model should be such that the particular
network characteristics can be incorporated in an effective manner.

In this chapter, a network model for the identification of physical linear net-
works is developed. The advantages of different representations are studied in
Section 5.2. A physical perspective on the developed network model is given in
Section 5.3. In Section 5.4, the application of the network model to various phys-
ical domains is illustrated. Section 5.5 describes other type of networks that can
be described by the developed network model and finally, Section 5.6 concludes
the chapter.

We consider the following notation throughout the chapter: A polynomial
matrix 𝐴(𝑧−1) in complex indeterminate 𝑧−1, consists of matrices 𝐴ℓ and ( 𝑗 , 𝑘)th
polynomial elements 𝑎 𝑗𝑘 (𝑧−1) such that 𝐴(𝑧−1) = ∑𝑛𝑎

ℓ=0 𝐴ℓ 𝑧
−ℓ and 𝑎 𝑗𝑘 (𝑧−1) =∑𝑛𝑎

ℓ=0 𝑎 𝑗𝑘,ℓ 𝑧
−ℓ . Hence, the ( 𝑗 , 𝑘)th element of the matrix 𝐴ℓ is denoted by 𝑎 𝑗𝑘,ℓ .

Physical components are indicated in sans serif font: A or a. A 𝑝 × 𝑚 rational
function matrix 𝐹 (𝑧) is proper if lim𝑧→∞ 𝐹 (𝑧) = 𝑐 ∈ R𝑝×𝑚; it is strictly proper



5.2 Diffusively coupled linear network 141

if 𝑐 = 0, and monic if 𝑝 = 𝑚 and 𝑐 is the identity matrix. 𝐹 (𝑧) is stable if all
its poles are within the unit circle |𝑧 | < 1. Further, 𝐷 (𝑧−1) = diag(𝐴(𝑧−1)) with
𝐴(𝑧−1) ∈ R𝑚×𝑚 is a diagonal polynomial matrix 𝐷 (𝑧−1) ∈ R𝑚×𝑚 containing the
diagonal of 𝐴(𝑧−1); 𝐷 (𝑧−1) = diag(𝐴(𝑧−1)) with 𝐴(𝑧−1) ∈ R𝑚×1 is a diagonal
polynomial matrix 𝐷 (𝑧−1) ∈ R𝑚×𝑚 with diagonal elements 𝑑𝑖𝑖 (𝑧−1) = 𝑎𝑖1(𝑧−1);
and𝐷 (𝑧−1) = rowsum(𝐴(𝑧−1))with 𝐴(𝑧−1) ∈ R𝑚×𝑚 is a column vector𝐷 (𝑧−1) ∈
R𝑚×1 with elements 𝑑𝑖1(𝑧−1) = ∑𝑚

𝑗=1 𝑎𝑖 𝑗 (𝑧−1). The identity matrix is denoted by
𝐼.

5.2 Diffusively coupled linear network

5.2.1 Electrical circuit

Physical linear systems are often described by second-order vector differential
equations. They can be considered to consist of 𝐿 interconnected node signals
𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿, of which the behaviour is described according to

M 𝑗0 ¥𝑤 𝑗 (𝑡) + D 𝑗0 ¤𝑤 𝑗 (𝑡) +
∑︁
𝑘∈N𝑗

D 𝑗𝑘 [ ¤𝑤 𝑗 (𝑡) − ¤𝑤𝑘 (𝑡)]

+ K 𝑗0𝑤 𝑗 (𝑡) +
∑︁
𝑘∈N𝑗

K 𝑗𝑘 [𝑤 𝑗 (𝑡) − 𝑤𝑘 (𝑡)] = 𝑢 𝑗 (𝑡), (5.1)

where M 𝑗0 ≥ 0, D 𝑗𝑘 ≥ 0, K 𝑗𝑘 ≥ 0, D 𝑗𝑘 = 0, K 𝑗𝑘 = 0, N𝑗 is the set of indices
of node signals 𝑤𝑘 (𝑡), 𝑘 ≠ 𝑗 , with connections to node signal 𝑤 𝑗 (𝑡), 𝑢 𝑗 (𝑡) are
the external input signals and ¤𝑤 𝑗 (𝑡) and ¥𝑤 𝑗 (𝑡) are the first and second-order
derivatives of the node signals 𝑤 𝑗 (𝑡), respectively.

In physical linear systems, interconnections between node signals depend on
both of these node signals. To be more precise, the couplings of node signal 𝑤𝑖 (𝑡)
with node signal 𝑤𝑘 (𝑡) depend on 𝑤𝑖 (𝑡) − 𝑤𝑘 (𝑡), which emerges in (5.1) by the
terms [ ¤𝑤𝑖 (𝑡) − ¤𝑤𝑘 (𝑡)] and [𝑤𝑖 (𝑡) − 𝑤𝑘 (𝑡)]. This type of coupling is referred
to as a diffusive coupling. In addition, all connections are symmetric, meaning
that the strength of the connection seen from node signal 𝑤𝑖 (𝑡) is equal to the
strength of the connection (in opposite direction) seen from node signal 𝑤𝑘 (𝑡),
which emerge in (5.1) from the symmetric relations D 𝑗𝑘 = D𝑘 𝑗 and K 𝑗𝑘 = K𝑘 𝑗 ,
𝑗 , 𝑘 = 1, 2, . . . , 𝐿.

Further, a network is allowed to have higher-dimensional node signals 𝑤 𝑗 (𝑡),
but without loss of generality, we will restrict our attention to scalar-valued node
signals 𝑤 𝑗 (𝑡).
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Figure 5.1: An electrical circuit with capacitors (𝐶 𝑗), resistors (𝑅 𝑗𝑘), inductors
(𝐿 𝑗𝑘), current injection (𝑖 𝑗), and electric potentials (𝑣 𝑗).

An example of a physical linear system with diffusive couplings is an elec-
trical circuit. Electrical circuits consist of interconnected capacitors, resistors,
and inductors, where voltage or current sources can be present. The electrical
circuit shown in Figure 5.1 consists of three nodes that are interconnected through
resistors 𝑅 𝑗𝑘 and inductors 𝐿 𝑗𝑘 with 𝑘 ≠ 0 and are connected to the ground (or
earth) with capacitors𝐶 𝑗 , resistors 𝑅 𝑗0, and inductors 𝐿 𝑗0. Further, each node can
be subject to an external current injection 𝑢 𝑗 (𝑡) := 𝑖 𝑗 (𝑡) and the electric potentials
at the nodes are the signals of interest and therefore the measurable node signals:
𝑤 𝑗 (𝑡) := 𝑣 𝑗 (𝑡). The couplings are diffusive, because capacitors, resistors, and
inductors are symmetric components. The behaviour of the circuit is derived by
using the constitutive laws of the components and by applying Kirchhoff’s current
and voltage laws, leading to a second-order vector differential equation (5.1) with
M 𝑗0 = 𝐶 𝑗 , D 𝑗0 = 𝑅−1

𝑗0 , K 𝑗0 = 𝑍−1
𝑗0 , D 𝑗𝑘 = 𝑅

−1
𝑗𝑘

, and K 𝑗𝑘 = 𝐿−1
𝑗𝑘

, 𝑗 , 𝑘 = 1, 2, . . . , 𝐿.

5.2.2 Higher order network

A physical network, such as the electrical circuit described in Section 5.2.1,
is typically of second order, while all node signals are collected in 𝑤(𝑡). In this
section, the theory will be extended to include higher-order dynamics. One reason
for doing so is to be able to describe networks that explain only a subset of the
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node signals. These networks can be constructed by removing node signals from
the network through a Gaussian elimination procedure that is referred to as Kron
reduction (Dörfler and Bullo, 2013; Dörfler et al., 2018) or immersion (Dankers
et al., 2016). The elimination of node signals will generally lead to higher-order
dynamics between the remaining node signals.

Definition 5.1 (Diffusively coupled linear network). A diffusively coupled
linear network is a network consisting of 𝐿 node signals 𝑤1(𝑡), . . . , 𝑤𝐿 (𝑡)
interconnected through diffusive couplings and with possibly connections
of node signals to a ground. The behaviour of the node signals 𝑤 𝑗 (𝑡),
𝑗 = 1, . . . , 𝐿, is described by

𝑛𝑥∑︁
ℓ=0

x 𝑗 𝑗 ,ℓ𝑤 (ℓ )𝑗 (𝑡) +
∑︁
𝑘∈N𝑗

𝑛𝑦∑︁
ℓ=0

y 𝑗𝑘,ℓ [𝑤 (ℓ )𝑗 (𝑡) − 𝑤
(ℓ )
𝑘
(𝑡)] = 𝑢 𝑗 (𝑡), (5.2)

with 𝑛𝑥 and 𝑛𝑦 the order of the dynamics in the network, with real-valued
coefficients x 𝑗 𝑗 ,ℓ ≥ 0, y 𝑗𝑘,ℓ ≥ 0, y 𝑗𝑘,ℓ = y𝑘 𝑗,ℓ , with N𝑗 is the set of indices
of node signals 𝑤𝑘 (𝑡), 𝑘 ≠ 𝑗 , with connections to node signal 𝑤 𝑗 (𝑡), where
𝑤
(ℓ )
𝑗
(𝑡) is the ℓ-th derivative of 𝑤 𝑗 (𝑡), and where 𝑢 𝑗 (𝑡) is the external signal

entering the 𝑗-th node.

The graphical interpretation of the coefficients is as follows: x 𝑗 𝑗 ,𝑛𝑥 represent
the buffers, that is the components intrinsically related to the node signals 𝑤 𝑗 (𝑡);
x 𝑗 𝑗 ,ℓ with ℓ ≠ 𝑛𝑥 represent the components connecting the node signals 𝑤 𝑗 (𝑡)
to the ground (or reference); and y 𝑗𝑘,ℓ represent the components in the diffusive
couplings between the node signals 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡). The ground is characterised
by 𝑤𝑔𝑟𝑜𝑢𝑛𝑑 (𝑡) = 0 for all time 𝑡 and therefore can be seen as a node with an infinite
buffer, see also Dörfler and Bullo (2013).

Graphically, diffusively coupled linear networks can be represented by an
undirected graph, where every undirected interconnection actually represents a
symmetric bi-directional interconnection. A graphical representation of a diffus-
ively coupled linear network is shown in Figure 5.2. The network dynamics is
represented by the blue boxes containing the polynomials 𝑥 𝑗 𝑗 (𝑝) =

∑𝑛𝑥
ℓ=0 x 𝑗 𝑗 ,ℓ 𝑝ℓ

and 𝑦 𝑗𝑘 (𝑝) =
∑𝑛𝑦

ℓ=0 y 𝑗𝑘,ℓ 𝑝ℓ , with differential operator 𝑝meaning 𝑝𝑤(𝑡) = 𝑑
𝑑𝑡
𝑤(𝑡),

and the node signals are represented by the blue circles, which sum the diffus-
ive couplings and the external signals. For example, 𝑤5(𝑡) = x55

(
𝑤5(𝑡) − 0

)
+

y45
(
𝑤5(𝑡) − 𝑤4(𝑡)

)
+ 𝑢5(𝑡).
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Figure 5.2: A diffusively coupled linear network as defined in Definition 5.1, with
node signals 𝑤 𝑗 (𝑡), input signals 𝑢 𝑗 (𝑡), and dynamics between the node signals
(𝑦 𝑗𝑘) and to the ground (𝑥 𝑗 𝑗).

Proposition 5.2 (Diffusively coupled linear network). A diffusively
coupled linear network (5.2) can be described in matrix form as

𝑋 (𝑝)𝑤(𝑡) + 𝑌 (𝑝)𝑤(𝑡) = 𝑢(𝑡), (5.3)

with diagonal 𝑋 (𝑝) and Laplacian 𝑌 (𝑝) polynomial matrices in the dif-
ferential operator 𝑝 meaning 𝑝𝑤(𝑡) = 𝑑

𝑑𝑡
𝑤(𝑡) and composed of elements

𝑥 𝑗𝑘 (𝑝) =
{∑𝑛𝑥

ℓ=0 x 𝑗 𝑗 ,ℓ 𝑝ℓ , if 𝑘 = 𝑗

0, otherwise
(5.4a)

𝑦 𝑗𝑘 (𝑝) =


∑
𝑚∈N𝑗

∑𝑛𝑦

ℓ=0 y 𝑗𝑚,ℓ 𝑝ℓ , if 𝑘 = 𝑗

−∑𝑛𝑦

ℓ=0 y 𝑗𝑘,ℓ 𝑝ℓ , if 𝑘 ∈ N𝑗
0, otherwise.

(5.4b)

Proof: The expressions for the node signals (5.2) can be stacked for𝑤1(𝑡), . . . ,
𝑤𝐿 (𝑡) and combined in a matrix equation. ■

Every matrix 𝑋ℓ composed of elements 𝑥 𝑗 𝑗 ,ℓ := x 𝑗 𝑗 ,ℓ is diagonal and every
matrix 𝑌ℓ composed of elements 𝑦 𝑗 𝑗 ,ℓ :=

∑
𝑘∈N𝑗 y 𝑗𝑘,ℓ and 𝑦 𝑗𝑘,ℓ := −y 𝑗𝑘,ℓ for
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𝑘 ≠ 𝑗 is Laplacian1. The Laplacian matrices 𝑌ℓ represent an undirected graph of
a specific physical component (i.e. of a symmetric diffusive coupling of a specific
order).

The diffusively coupled network (5.3) is assumed to be connected, which
means that there is a path between every pair of nodes2. In addition, the network is
assumed to have at least one connection to the ground, implying the well-posedness
of the network. These two assumptions, together with the semi-positiveness of
the component values, induce stability of the network by the stability of

(
𝑋 (𝑝) +

𝑌 (𝑝)
)−1.

5.2.3 A diagonal and hollow system representation

The module representation is often used for system identification in dynamic
networks using prediction error methods. There is much literature available on
various identification questions about dynamic networks in this framework. In
order to connect with this system identification framework, a slightly different,
but equivalent, network description will be used.

Proposition 5.3 (Diffusively coupled linear network). A diffusively
coupled linear network as in Proposition 5.2 with 𝑋 (𝑝) diagonal and 𝑌 (𝑝)
Laplacian, can equivalently be described by

𝑄(𝑝)𝑤(𝑡) = 𝑃(𝑝)𝑤(𝑡) + 𝑢(𝑡), (5.5)

with diagonal polynomial matrix 𝑄(𝑝) and symmetric, hollow polynomial
matrix 𝑃(𝑝) defined by

𝑄(𝑝) := 𝑋 (𝑝) + diag
(
𝑌 (𝑝)

)
, (5.6a)

𝑃(𝑝) := −𝑌 (𝑝) + diag
(
𝑌 (𝑝)

)
, (5.6b)

with diag
(
𝑌 (𝑝)

)
the diagonal of 𝑌 (𝑝).

Proof: The definitions of 𝑄(𝑝) and 𝑃(𝑝) show that 𝑢(𝑡) =
(
𝑄(𝑝) −

𝑃(𝑝)
)
𝑤(𝑡) =

(
𝑋 (𝑝) + 𝑌 (𝑝)

)
𝑤(𝑡). ■

1A Laplacian matrix is a symmetric matrix with nonpositive off-diagonal elements and with
nonnegative diagonal elements that are equal to the negative sum of all other elements in the
same row (or column) (Mesbahi and Egerstedt, 2010), see also Chapter 2 for the Laplacian of a
polynomial matrix.

2The network is connected if its Laplacian matrix has a positive second-smallest eigenvalue
(Mesbahi and Egerstedt, 2010; Dörfler and Bullo, 2013).
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The diagonal elements of 𝑃(𝑝) are zero (𝑝 𝑗 𝑗 (𝑝) = 0) and the off-diagonal
elements of 𝑃(𝑝) are equal to 𝑝 𝑗𝑘 (𝑝) = −𝑦 𝑗𝑘 (𝑝) for 𝑘 ≠ 𝑗 . These polynomial
elements 𝑝 𝑗𝑘 (𝑝) contain the dynamics of all components in the interconnection
between the node signals 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡).

The off-diagonal elements of 𝑄(𝑝) are zero (𝑞 𝑗𝑘 (𝑝) = 0 for 𝑘 ≠ 𝑗) and
the diagonal elements of 𝑄(𝑝) are equal to 𝑞 𝑗 𝑗 (𝑝) = 𝑥 𝑗 𝑗 (𝑝) + 𝑦 𝑗 𝑗 (𝑝). These
polynomial elements 𝑞 𝑗 𝑗 (𝑝) contain the dynamics of all components that are
related to (or connected to) the node signal 𝑤 𝑗 (𝑡).

There exists a bijective relationship between the polynomial matrices(
𝑋 (𝑝), 𝑌 (𝑝)

)
and

(
𝑃(𝑝), 𝑄(𝑝)

)
, because of their particular structure. The

polynomial matrices 𝑋 (𝑝) and 𝑌 (𝑝) are obtained from 𝑃(𝑝) and 𝑄(𝑝) as

𝑋 (𝑝) = 𝑄(𝑝) − diag
(
rowsum

(
𝑃(𝑝)

) )
, (5.7a)

𝑌 (𝑝) = −𝑃(𝑝) + diag
(
rowsum

(
𝑃(𝑝)

) )
, (5.7b)

with diag(·) a diagonal, square matrix and with rowsum
(
𝑃(𝑝)

)
a column vector

with the (𝑖, 1)th element equal to the sum of all elements in the 𝑖th row of 𝑃(𝑝).

5.2.4 A symmetric system representation

Polynomial models constitute a popular framework for system identification using
prediction error methods. There is much literature available on various identi-
fication questions about systems in this framework. For example, autoregressive
with exogeneous input (ARX) and autoregressive-moving average with exogen-
eous input (ARMAX) model structures are well-studied in the prediction error
identification framework (Ljung, 1999; Hannan and Deistler, 2012). By Proposi-
tion 5.3, the diffusively coupled linear model as presented above, is closely related
to these polynomial models. In order to connect with this system identification
framework, we will formulate an equivalent network description and provide some
additional details.

First of all, the node signals in the network might be affected by a user-applied
excitation signal and subject to a disturbance signal. This needs to be included in
the network description (5.5), which is achieved by splitting the external signal as

𝑢(𝑡) := 𝐵(𝑝)𝑟 (𝑡) + 𝑣(𝑡), (5.8)

where the known excitation signals 𝑟 (𝑡) enter the network through dynamics
described by polynomial matrix 𝐵(𝑝) and where the unknown disturbance signals
acting on the network are modeled by 𝑣(𝑡).
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In addition, not all node signals might be measured. This needs to be included
in the network description, which is achieved by adding a measurement equation
as

𝑦(𝑡) := 𝐶 (𝑝)𝑤(𝑡), (5.9)

where the internal node signals are observed from the environment through dy-
namics described by polynomial matrix 𝐶 (𝑝). This polynomial matrix 𝐶 (𝑝) can
be used to change the quantity of the measured signals. For example, if the node
signal 𝑤(𝑡) is a position, while the velocity is measured, then this is captured by
(5.9) through 𝐶 (𝑝) = 𝑝.

Proposition 5.4 (Diffusively coupled linear network). A diffusively
coupled linear network as in Proposition 5.2 or in Proposition 5.3 with
external signal 𝑢(𝑡) described by (5.8) and measured signals 𝑦(𝑡) described
by (5.9), can equivalently be described by

𝐴(𝑝)𝑤(𝑡) = 𝐵(𝑝)𝑟 (𝑡) + 𝑣(𝑡), 𝑦(𝑡) = 𝐶 (𝑝)𝑤(𝑡), (5.10)

with
𝐴(𝑝) = 𝑋 (𝑝) + 𝑌 (𝑝) = 𝑄(𝑝) − 𝑃(𝑝) (5.11)

and with

1. 𝐴(𝑝) = ∑𝑛𝑎
𝑘=0 𝐴𝑘 𝑝

𝑘 ∈ R𝐿×𝐿 [𝑝], with 𝑎 𝑗𝑘 (𝑝) = 𝑎𝑘 𝑗 (𝑝),∀𝑘, 𝑗 and
𝐴−1(𝑝) stable.

2. 𝐵(𝑝) ∈ R𝐿×𝐾 [𝑝].

3. 𝐶 (𝑝) ∈ R𝑐×𝐿 [𝑝].

Proof: The definitions of 𝐴(𝑝) and 𝑢(𝑡) show that 𝐴(𝑝)𝑤(𝑡) = 𝐵(𝑝)𝑟 (𝑡) +
𝐹 (𝑝)𝑒(𝑡) = 𝑢(𝑡) =

(
𝑋 (𝑝) + 𝑌 (𝑝)

)
𝑤(𝑡) =

(
𝑄(𝑝) − 𝑃(𝑝)

)
𝑤(𝑡). ■

There exists a bijective relationship between the polynomial 𝐴(𝑝) and the poly-
nomials

(
𝑋 (𝑝), 𝑌 (𝑝)

)
and

(
𝑃(𝑝), 𝑄(𝑝)

)
. The polynomials 𝑋 (𝑝), 𝑌 (𝑝), 𝑄(𝑝),

and 𝑃(𝑝) are obtained from 𝐴(𝑝) as

𝑋 (𝑝) = diag
(
rowsum

(
𝐴(𝑝)

) )
, 𝑌 (𝑝) = 𝐴(𝑝) − 𝑋 (𝑝) (5.12a)

𝑄(𝑝) = diag
(
𝐴(𝑝)

)
, 𝑃(𝑝) = 𝑄(𝑝) − 𝐴(𝑝). (5.12b)

Figure 5.3 shows an overview of these three representations and the relations
between them. There exist bijective mappings between all three representations,
because of the particular structure of the polynomial matrices. This means that if
one representation is given, the other two can always be obtained.
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Figure 5.3: Overview of the relations between the three polynomial representations
for diffusively coupled linear networks (5.3), (5.5), and (5.10) as presented in (5.11)
and (5.12).

The diffusive character of the model is now represented by the symmetry of
𝐴(𝑝), where the polynomial elements 𝑎 𝑗𝑘 (𝑝) characterise the dynamics in the
link between node signals 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡). The considered networks lead to
polynomial models3 with the particular properties that 𝐴(𝑝) is symmetric and
nonmonic. Observe that 𝐵(𝑝) and 𝐶 (𝑝) are nonmonic as well, but often they are
chosen to be binary, diagonal, and known, implying that each excitation signal
directly enters the network at a distinct node and that each measured signal is
directly extracted from a distinct internal node signal.

The mapping from the external input signals 𝑟 (𝑡) and 𝑣(𝑡) to the measured
output signal 𝑦(𝑡) of (5.10) is given by

𝑦(𝑡) = 𝑇𝑦𝑟 (𝑝)𝑟 (𝑡) + �̄�(𝑡), (5.13)

with

𝑇𝑦𝑟 (𝑝) = 𝐶 (𝑝)𝐴−1(𝑝)𝐵(𝑝), �̄�(𝑡) = 𝐶 (𝑝)𝐴−1(𝑝)𝑣(𝑡). (5.14)

3Polynomial models are linear time-invariant dynamic models of the form 𝐴(𝑝)𝑦(𝑡) =

𝐸−1 (𝑝)𝐵(𝑝)𝑢(𝑡) + 𝑣(𝑡), where 𝐴(𝑝), 𝐵(𝑝), and 𝐶 (𝑝) are polynomials in 𝑝 that are all monic
except for 𝐵(𝑝) (Ljung, 1999; Hannan and Deistler, 2012).
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Observe that for binary 𝐵(𝑝) and 𝐶 (𝑝), a subset of rows and columns of 𝐴−1(𝑝)
constitutes 𝑇𝑦𝑟 (𝑝).

5.3 A physical perspective

5.3.1 Introduction

It is well-known that there are many similarities among various physical domains
(Paynter, 1961; Ljung and Glad, 1994; Borutzky, 2010, 2011; van der Schaft and
Jeltsema, 2014). These processes include electrical resistor-inductor-capacitor
circuits, mechanical mass-spring-damper systems and their analogous rotational
system consisting of inertias, springs, and dampers, hydraulic processes in which
vessels are interconnected with each other, thermodynamic systems, and chemical
processes. In this section, we discuss how these physical linear networks can be
represented by the diffusively coupled linear network model (5.10).

The behaviour of physical systems and networks is often described by using en-
ergy preservation and power balance relations (Paynter, 1961). These descriptions
are generally based on two types of variables, effort and flow,which together are
measures of energy and power. These variables originate from bond-graph models
(Paynter, 1961) and are used in this section to explain how physical processes from
various domains can be expressed by diffusively coupled linear networks (5.10).

5.3.2 Tetrahedron of state

The effort variable 𝑒(𝑡) and the flow variable 𝑓 (𝑡) represent a generalised force
and a generalised velocity, respectively. Their product results in power

𝑃(𝑡) = 𝑒⊤(𝑡) 𝑓 (𝑡), (5.15)

and hence, the energy is given by

𝐸 (𝑡) =
∫

𝑃(𝑡)𝑑𝑡 =
∫

𝑒⊤(𝑡) 𝑓 (𝑡)𝑑𝑡. (5.16)

In association with the effort (generalised force) and flow (generalised velo-
city), define the generalised momentum 𝑝(𝑡) and the generalised displacement
𝑞(𝑡), respectively, according to the relations

𝑒(𝑡) = 𝑑

𝑑𝑡
𝑝(𝑡), or 𝑝(𝑡) =

∫
𝑒(𝑡)𝑑𝑡, (5.17a)
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Figure 5.4: The tetrahedron of state illustrating the relations between the effort (𝑒),
the flow ( 𝑓 ), the generalised momentum (𝑝), and the generalised displacement (𝑞)
given by (5.17) and (5.18), with d/dt and ∫ the derivative and integrator operators,
respectively.

𝑓 (𝑡) = 𝑑

𝑑𝑡
𝑞(𝑡), or 𝑞(𝑡) =

∫
𝑓 (𝑡)𝑑𝑡. (5.17b)

The four variables (𝑒(𝑡), 𝑓 (𝑡), 𝑝(𝑡), 𝑞(𝑡)) are the variables of state with which
the dynamical and energetic conditions of physical systems can be described. The
relations between these four variables are visualised by the tetrahedron of state
(Paynter, 1961), which is shown in Figure 5.4. This figure shows the relations
(5.17) and the following three additional characteristic relations, which are static
by definition:

𝐹𝑅
(
𝑒(𝑡), 𝑓 (𝑡)

)
= 0, 𝐹𝐶

(
𝑞(𝑡), 𝑒(𝑡)

)
= 0, 𝐹𝐿

(
𝑝(𝑡), 𝑓 (𝑡)

)
= 0, (5.18)

where 𝐹𝑅 (·), 𝐹𝐶 (·), and 𝐹𝐿 (·) are generalised resistive, generalised capacitive,
and generalised inertive functions. In general, these relations can be nonlinear.
For linear time-invariant (LTI) systems, these relations are static and given by

𝑒(𝑡) = 𝑅 𝑓 (𝑡), 𝑞(𝑡) = 𝐶𝑒(𝑡), 𝑝(𝑡) = 𝐿 𝑓 (𝑡), (5.19)

with constant resistance 𝑅, capacitance 𝐶, and inertance 𝐿, respectively.
The three characteristic relations (5.18) are closely related to power and energy.

Moreover, in the linear case, the generalised power loss, the generalised potential
energy, and the generalised kinetic energy are, respectively, given by

𝑃ℓ (𝑡) = 𝑓 ⊤(𝑡)𝑅 𝑓 (𝑡) = 𝑒⊤(𝑡)𝑅−1𝑒(𝑡), (5.20a)
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𝐸𝑝 (𝑡) =
1
2
𝑒⊤(𝑡)𝐶𝑒(𝑡) = 1

2
𝑞⊤(𝑡)𝐶−1𝑞(𝑡), (5.20b)

𝐸𝑘 (𝑡) =
1
2
𝑓 ⊤(𝑡)𝐿 𝑓 (𝑡) = 1

2
𝑝⊤(𝑡)𝐿−1𝑝(𝑡). (5.20c)

Together these lead to the power balance of the system, which is given by

𝑑

𝑑𝑡

(
𝐸𝑝 (𝑡) + 𝐸𝑘 (𝑡)

)
+ 𝑃ℓ (𝑡) = 𝑃𝑠 (𝑡), (5.21)

where 𝑃𝑠 (𝑡) is the power supplied to the system from all energy sources. The total
stored energy is represented by the Hamiltonian

𝐻
(
𝑞(𝑡), 𝑝(𝑡)

)
= 𝐸𝑝 (𝑡) + 𝐸𝑘 (𝑡) =

1
2
𝑞⊤(𝑡)𝐶−1𝑞(𝑡) + 1

2
𝑝⊤(𝑡)𝐿−1𝑝(𝑡). (5.22)

5.3.3 Diffusively coupled linear network model

Interconnections are made via junctions, of which two types are considered. An
effort junction is characterised by

𝑘∑︁
𝑖

𝑓𝑖 (𝑡) = 0, 𝑒1(𝑡) = 𝑒2(𝑡) = . . . = 𝑒𝑘 (𝑡), (5.23)

and it is a generalisation of Kirchhoff’s loop law. A flow junction is characterised
by

𝑘∑︁
𝑖

𝑒𝑖 (𝑡) = 0, 𝑓1(𝑡) = 𝑓2(𝑡) = . . . = 𝑓𝑘 (𝑡), (5.24)

and it is a generalisation of Kirchhoff’s node law. Consider multidimensional
state vectors 𝑒(𝑡), 𝑓 (𝑡), 𝑝(𝑡), and 𝑞(𝑡) consisting of elements 𝑒𝑖1(𝑡) = 𝑒𝑖 (𝑡),
𝑓𝑖1(𝑡) = 𝑓𝑖 (𝑡), 𝑝𝑖1(𝑡) = 𝑝𝑖 (𝑡), and 𝑞𝑖1(𝑡) = 𝑞𝑖 (𝑡), respectively.

Describing a network based on its effort junctions results in a diffusively
coupled network representation in terms of the flows (or generalised velocities)
𝑓 (𝑡) and generalised momenta 𝑝(𝑡). On the other hand, a network that is described
based on its flow junctions results in a diffusively coupled network representation
in terms of its efforts (or generalised forces) 𝑒(𝑡) and generalised displacements
𝑞(𝑡). These results are formalised in the following two analogous propositions.

Proposition 5.5 (Diffusively coupled linear network). Consider a
physical linear network that is modelled with the variables of state
(𝑒(𝑡), 𝑓 (𝑡), 𝑝(𝑡), 𝑞(𝑡)) satisfying (5.17) and (5.19). Based on a descrip-
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tion of its effort junctions, this network can be represented by a diffusively
coupled linear network as

𝐶
𝑑2

𝑑𝑡2
𝑝(𝑡) + 𝑅−1 𝑑

𝑑𝑡
𝑝(𝑡) + 𝐿−1𝑝(𝑡) = 𝑓𝑠 (𝑡), (5.25)

that is (5.10) with

1. 𝑤(𝑡) = 𝑝(𝑡), the generalised momenta.

2. 𝑟 (𝑡) = 𝑓𝑠 (𝑡), the flow coming from sources.

3. 𝑦(𝑡) = 𝑒(𝑡), the effort.

4. 𝐴(𝑝) = 𝐶𝑝2 + 𝑅−1𝑝 + 𝐿−1, with 𝑝 the differential operator.

5. 𝐵(𝑝) = 𝐼.

6. 𝐶 (𝑝) = 𝑝𝐼, with 𝑝 the differential operator.

Proof: Using (5.17) and (5.19), an effort junction can be characterised by∑︁
𝑖

𝑓𝑖 (𝑡) =
𝑑

𝑑𝑡
𝑞(𝑡) + 𝑅−1𝑒(𝑡) + 𝐿−1𝑝(𝑡) − 𝑓𝑠 (𝑡),

0 = 𝐶
𝑑2

𝑑𝑡2
𝑝(𝑡) + 𝑅−1 𝑑

𝑑𝑡
𝑝(𝑡) + 𝐿−1𝑝(𝑡) − 𝑓𝑠 (𝑡),

with 𝑓𝑠 (𝑡) the flow coming from sources. ■

Proposition 5.6 (Diffusively coupled linear network). Consider a
physical linear network that is modelled with the variables of state
(𝑒(𝑡), 𝑓 (𝑡), 𝑝(𝑡), 𝑞(𝑡)) satisfying (5.17) and (5.19). Based on a descrip-
tion of its flow junctions, this network can be represented by a diffusively
coupled linear network as

𝐿
𝑑2

𝑑𝑡2
𝑞(𝑡) + 𝑅 𝑑

𝑑𝑡
𝑞(𝑡) + 𝐶−1𝑞(𝑡) = 𝑒𝑠 (𝑡), (5.26)

that is (5.10) with

1. 𝑤(𝑡) = 𝑞(𝑡), the generalised displacements.

2. 𝑟 (𝑡) = 𝑒𝑠 (𝑡), the effort coming from sources.

3. 𝑦(𝑡) = 𝑓 (𝑡), the flow.
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4. 𝐴(𝑝) = 𝐿𝑝2 + 𝑅𝑝 + 𝐶−1, with 𝑝 the differential operator.

5. 𝐵(𝑝) = 𝐼.

6. 𝐶 (𝑝) = 𝑝𝐼, with 𝑝 the differential operator.

Proof: Using (5.17) and (5.19), a flow junction can be characterised by∑︁
𝑖

𝑒𝑖 (𝑡) =
𝑑

𝑑𝑡
𝑝(𝑡) + 𝑅 𝑓 (𝑡) + 𝐶−1𝑞(𝑡) − 𝑒𝑠 (𝑡),

0 = 𝐿
𝑑2

𝑑𝑡2
𝑞(𝑡) + 𝑅 𝑑

𝑑𝑡
𝑞(𝑡) + 𝐶−1𝑞(𝑡) − 𝑒𝑠 (𝑡),

with 𝑒𝑠 (𝑡) the effort coming from sources. ■

In the diffusively coupled network of Proposition 5.5, the network is excited
by generalised velocities and the generalised momenta are observed from the
environment. In contrast, in the diffusively coupled network of Proposition 5.6,
the network is excited by generalised forces and the generalised displacements are
observed from the environment. This means that the diffusively coupled network
model depends on the choice of junction on which the description is based, or
equivalently, on the state variables that are interested and chosen as outputs (and
inputs). In other words, the experiment is co-determining the model.

In both diffusively coupled network models (5.25) and (5.26), the nodes are
interconnected with generalised capacitive, resistive, and inductive components.
Components of the same types also connect the nodes to the ground node or relate
the node to a reference node. These components are intrinsically related to the
nodes and the buffers in which energy can be stored. The ground can be seen as a
node where the node signal is zero at all times. The components interconnect node
signals without posing any causality, which means that there is no predetermined
direction of information flow in the network.

The diffusively coupled network of Proposition 5.5 is based on the generalised
Kirchhoff’s loop law and therefore, this model describes the relations of physical
elements that are interconnected in parallel between junctions. In contrast, the
diffusively coupled network of Proposition 5.6 is based on the generalisation of
Kirchhoff’s node law and therefore, this model describes the relations of physical
elements that are interconnected in series between junctions. From Proposition 5.5
and 5.6 it follows that the role of the resistance 𝑅, capacitance 𝐶, and inertance 𝐿
is opposite in both representations.

The matrices 𝐶, 𝐺 := 𝑅−1, and 𝑍 := 𝐿−1 in (5.25) as well as the matrices 𝐿,
𝑅, and 𝑌 := 𝐶−1 in (5.26) consist of a diagonal matrix plus a Laplacian matrix,
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that is, all these matrices are constructed as 𝑋 = 𝑋𝑑 + 𝑋L with 𝑋𝑑 diagonal and
𝑋L Laplacian (see also (5.11)). The diagonal matrix represents the components
intrinsically related to the nodes with 𝑋𝑑𝑖𝑖 the value of the component intrinsically
related to node 𝑤𝑖 (𝑡), while the Laplacian matrix represents the components in
the interconnections with −[𝑋L]𝑖 𝑗 , 𝑖 ≠ 𝑗 , the value of the component between
node 𝑤𝑖 (𝑡) and 𝑤 𝑗 (𝑡). In addition, the matrices 𝐶, 𝑅, and 𝐿 contain generalised
capacitances, resistances, and inertances, respectively. The matrices 𝑌 := 𝐶−1,
𝐺 := 𝑅−1, 𝑍 := 𝐿−1 contain the inverses of the capacitances, resistances, and
inductances, respectively, meaning that𝑌𝑖 𝑗 = 𝑐−1 with 𝑐 a generalised capacitance
and with 𝐺𝑖 𝑗 and 𝑍𝑖 𝑗 mutatis mutandis.

The topology of the network can be interpreted as follows: In a network
that is described based on the effort junction as in Proposition 5.5, nodes are
interconnected through parallel interconnected components. In this network, a
resistive connection between the 𝑖th and 𝑗 th nodes is missing if 𝐺𝑖 𝑗 = 0 implying
that 𝑅𝑖 𝑗 = ∞, which represents an open connection. Then there can still be
capacitive or inertive (parallel) connections between the 𝑖th and 𝑗 th nodes. On
the other hand, in a network that is described based on the flow junction (5.26),
nodes are interconnected through series interconnections of components. Hence,
the interconnection between two nodes is a series interconnection of (possibly) a
capacitive, resistive, and inertive component. A resistive connection between the
𝑖th and 𝑗 th nodes is missing if 𝑅𝑖 𝑗 = 0, which represents a shortcut connection.
Then there can still be capacitive or inertive (series) components in the connection
between the 𝑖th and 𝑗 th nodes.

5.3.4 Dissipativity and stability

For both diffusively coupled linear networks (5.25) and (5.26), the total amount
of stored energy is given by the Hamiltonian (5.22). These representations (5.25)
and (5.26) can be expressed in terms of the Hamiltonian (as a port-Hamiltonian
system) as

𝑑

𝑑𝑡

[
𝑞(𝑡)
𝑝(𝑡)

]
=

[
0 𝐼

−𝐼 −𝑅

]
∇𝐻 +

[
0
𝐼

]
𝑒𝑠 (𝑡), 𝑦(𝑡) =

[
𝐼 0

]
∇𝐻, (5.27a)

𝑑

𝑑𝑡

[
𝑞(𝑡)
𝑝(𝑡)

]
=

[
−𝑅 −𝐼
𝐼 0

]
∇𝐻 +

[
𝐼

0

]
𝑓𝑠 (𝑡), 𝑦(𝑡) =

[
0 𝐼

]
∇𝐻, (5.27b)

respectively, with ∇𝐻 =

[
𝜕
𝜕𝑞

⊤
𝐻
(
𝑞(𝑡), 𝑝(𝑡)

)
𝜕
𝜕𝑝

⊤
𝐻
(
𝑞(𝑡), 𝑝(𝑡)

) ]⊤
.
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Definition 5.7 (Dissipativity (Willems, 1972)). A system with a supply
rate 𝑠(𝑡) is said to be dissipative if there exists a nonnegative real function
𝑆(𝑥) : X → R+, called the storage function, such that, for all 𝑡 ≥ 0,

𝑑

𝑑𝑡
𝑆
(
𝑥(𝑡)

)
≤ 𝑠(𝑡). (5.28)

Definition 5.8 (Passivity (Byrnes et al., 1991)). A system is said to be
passive if it is dissipative with respect to the supply rate 𝑠(𝑡) = 𝑟⊤(𝑡)𝑦(𝑡)
and the storage function 𝑆(𝑥) satisfies 𝑆(0) = 0.

It is well-known that port-Hamiltonian systems are passive and therefore, also
dissipative and stable (Willems, 1972; Byrnes et al., 1991; Khalil, 2014), where
stability was defined in Definition 2.6.

Proposition 5.9 (Passive, dissipative, and stable). The diffusively coupled
linear networks (5.25) and (5.26) with𝐶 ⪰ 0, 𝑅 ⪰ 0, and 𝐿 ⪰ 0 are passive,
dissipative, and stable.

Proof: Take the supply function 𝑠(𝑡) = 𝑟⊤(𝑡)𝑦(𝑡) and as the storage function
the Hamiltonian (5.22). Then

𝑑

𝑑𝑡
𝐻
(
𝑞(𝑡), 𝑝(𝑡)

)
= ∇⊤𝐻

[
𝑞(𝑡)
𝑝(𝑡)

]
.

Express the diffusively coupled linear networks (5.25) and (5.26) by (5.27), which
leads to

𝑑

𝑑𝑡
𝐻
(
𝑞(𝑡), 𝑝(𝑡)

)
= −𝑝⊤(𝑡)𝐿−1𝑅𝐿−1𝑝(𝑡) + 𝑟⊤(𝑡)𝑦(𝑡) ≤ 𝑟⊤(𝑡)𝑦(𝑡),

𝑑

𝑑𝑡
𝐻
(
𝑞(𝑡), 𝑝(𝑡)

)
= −𝑞⊤(𝑡)𝐶−1𝑅𝐶−1𝑞(𝑡) + 𝑟⊤(𝑡)𝑦(𝑡) ≤ 𝑟⊤(𝑡)𝑦(𝑡),

respectively, where the inequality holds because 𝐿−1𝑅𝐿−1 ⪰ 0 and 𝐿−1𝑅𝐿−1 ⪰ 0,
because 𝐶 ⪰ 0, 𝑅 ⪰ 0, and 𝐿 ⪰ 0. Stability follows from the fact that the
Hamiltonian storage function is a Lyapunov function (Willems, 1972). ■

Remark 5.10 (Stability). Here we use the notion of stability to indicate
bounded-input bounded-output (BIBO) stability. In the proof of Proposi-
tion 5.9, Lyapunov stability is proven. Lyapunov stability implies (BIBO)
stability (Willems, 1972).
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Eliminating node signals from the network model results in higher-order rep-
resentation. This process only changes the network representation, not the network
itself. Hence, dissipativity and stability are preserved under the elimination of
node signals. This raises the question of whether general higher-order diffusively
coupled linear networks are also dissipative and stable. Before going into this,
consider the following lemma.

Lemma 5.11 (Positive semi-definite). If all components that are present in
the network have a positive value, then all 𝐴𝑖 ⪰ 0 in 𝐴(𝑝) in (5.10).

Proof: Each 𝐴𝑖 is symmetric and thus has real eigenvalues. Each 𝐴𝑖 is
constructed as the sum of a diagonal matrix plus a Laplacian matrix (5.11). The
diagonal matrix has nonnegative elements if all components in the network have
a positive value. Hence, the diagonal matrix is positive semi-definite. If all
components in the network have a positive value, then the Laplacian matrix is
positive semi-definite by definition (Mesbahi and Egerstedt, 2010). The sum of
two positive semi-definite matrices is positive semi-definite. ■

To prove whether diffusively coupled linear networks are dissipative and stable,
a supply rate and a storage function have to be found. The supply rate can again
be chosen to be 𝑠(𝑡) = 𝑟⊤(𝑡)𝑦(𝑡), which is also needed for passivity. The storage
function can be chosen to be the Hamiltonian function, which can, for example,
be derived once the network is represented in port-Hamiltonian form. Then
dissipativity can be proven along the same line of reasoning as in Proposition 5.9,
in which the result of Lemma 5.11 can be applied. Our expectation is that
general higher-order diffusively coupled linear networks are dissipative and stable.
Determining the storage function or Hamiltonian function for general diffusively
coupled linear networks is saved for future research, because no results have been
found in the literature yet and it is currently beyond the scope of this thesis.

5.4 Analogies among various physical domains

As mentioned, physical processes from various domains can be described by the
variables of state (𝑒(𝑡), 𝑓 (𝑡), 𝑝(𝑡), 𝑞(𝑡)). In this section, it is explained what
the diffusively coupled network model looks like for specific physical processes,
including electrical resistor-inductor-capacitor circuits, mechanical mass-spring-
damper systems, mechanical rotational systems, hydraulic processes, thermody-
namic systems, and chemical processes.

Table 5.1 shows an overview of the variables of state and the generalised
capacitive, resistive, and inertive components for these domains. The analogies
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Table 5.1: The variables of state and the generalised components for various
physical processes (Breedveld, 1982; Ljung and Glad, 1994; Borutzky, 2011).

(a) The variables of state (𝑒(𝑡), 𝑓 (𝑡), 𝑝(𝑡), 𝑞(𝑡)).

𝑒(𝑡) 𝑓 (𝑡) 𝑝(𝑡) 𝑞(𝑡)
Electromagnetic Voltage Current Flux linkage Charge
Mechanical Force Velocity Momentum Displacement
translational
Mechanical Torque Angular Angular Angular
rotational velocity momentum displacement
Hydraulic Pressure Volume Fluid Volume
(pneumatic) flow rate momentum
Thermodynamic Temperature Entropy Entropy

flow rate
Chemical Chemical Molar Molar mass

potential flow

(b) The generalised capacitive, resistive, and inertive components.

Capacitive Resistive Inertive
Electromagnetic Capacitor Resistor Inductor
Mechanical Spring Damper Body or mass
translational
Mechanical Torsion Friction Axis
rotational
Hydraulic Tank Pipe or hose Water wheel
(pneumatic)
Thermodynamic Heater or cooler Barrier

(conductivity)
Chemical Substance (amount) Substance

(resistance time)

among the different fields become clear from the relations to the generalised
variables and components. The components yield static relations among the
variables of state, which are combined to form the second-order vector differential
equations that lead to the diffusively coupled linear network representations (5.25)
and (5.26). Thermodynamic systems and chemical processes naturally do not
have a generalised displacement state and no generalised inertive component
(Breedveld, 1982).
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Electrical circuits with capacitors, resistors, and inductors are described by
the diffusively coupled linear network model as

𝐶 ¥𝜑(𝑡) +𝐺 ¤𝜑(𝑡) + 𝑍𝜑(𝑡) = 𝑖(𝑡), or 𝐿 ¥𝑞(𝑡) + 𝑅 ¤𝑞(𝑡) +𝑌𝑞(𝑡) = 𝑣(𝑡) (5.29)

with signals 𝜑(𝑡) the flux linkage, 𝑖(𝑡) the injected current, 𝑞(𝑡) the charge, and
𝑣(𝑡) the injected voltage; with matrices 𝐶, 𝑅, and 𝐿 containing the capacitances,
resistances, and inductances, respectively; and with matrices𝑌 , 𝐺, and 𝑍 contain-
ing the inverses of the capacitances, resistances, and inductances, respectively,
meaning that 𝐺𝑖 𝑗 = 𝑅−1

𝑖 𝑗
for 𝑖 ≠ 𝑗 and 𝑌𝑖 𝑗 and 𝑍𝑖 𝑗 are found mutatis mutandis.

Mechanical translational systems consist of masses interconnected with each
other through dampers and springs. Dampers and springs can also connect the
mass to the ground (or wall). The positions of the masses are selected as the
node signals and external forces can be applied to the masses. These mechanical
mass-spring-damper systems are typically described as

𝑀 ¥𝑥(𝑡) + 𝐷 ¤𝑥(𝑡) + 𝐾𝑥(𝑡) = 𝑓 (𝑡), (5.30)

which is of the form (5.26) with 𝑥(𝑡) the positions of the masses; 𝑓 (𝑡) the external
forces applied to the masses; 𝑀 is a diagonal matrix containing the masses at
the nodes; 𝐷 contains the damper coefficients of the dampers; and 𝐾 contains
the spring coefficients. Of course, a mechanical translational system can also
be described by a diffusively coupled linear network of the form (5.25), but the
representation (5.30) is most commonly used.

Mechanical rotational systems are very similar to mechanical translational sys-
tems, where the masses are replaced by axes. For rotational mechanical systems,
the node signals are the angular positions of the axes and the network is driven by
external torques.

Hydraulic processes can be described by a diffusively coupled linear network
model (5.26) or (5.25), with 𝐶 the capacitance of valves that are interconnected
through (narrowed) tubes with resistance 𝑅 and water wheels with inertance 𝐿.
The ground node can be seen as an infinitely large valve (like the ocean). Pneumatic
processes are similar to hydraulic processes, with the difference that air travels
instead of fluid.

Thermodynamic processes can only be described by a diffusively coupled
network of the form (5.26), because there is no generalised momentum. Moreover,
they can be described by first-order relations between the effort (temperature) and
flow (entropy rate). Thermodynamic processes can approximately be represented
by a space with heat capacitance 𝐶 interconnected through barriers with thermal
conductivity 𝐺 (the inverse of the thermal resistivity), such as walls. The first-
order diffusively coupled network model describing these thermodynamic systems
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is given by
𝐶𝑇 ¤𝑇 (𝑡) + 𝐺𝑇 (𝑡) = 𝑞(𝑡), (5.31)

with 𝑇 (𝑡) the temperatures of the spaces; 𝑞(𝑡) the external entropy flow rate of
the injected entropy; 𝐶 is a diagonal matrix containing the thermal capacitances;
and 𝐺 contains the thermal conductivity. The reference node can be seen as in
infinitely large space (like the universe). The reference temperature can also be
taken constant instead of zero, which means that the temperatures at the nodes are
relative temperatures with respect to the reference temperature.

Figure 5.5-5.8 show four examples of physical networks that are typically de-
scribed by a diffusively coupled network model of the form (5.26), because the
nodes are interconnected through parallel interconnected components. Figure 5.5
and 5.6 show analogous networks from the electromagnetic and mechanical do-
mains. Figure 5.7 shows a hydraulic system without inertive components and
Figure 5.8 shows a thermodynamic system.

As a result of the fact that all these physical processes can be described
by a diffusively coupled linear network model (5.10), this network model can
also describe networks in which multiple physical processes from different fields
are combined. Various physical processes can be interconnected through power
conversion components, such as transformers, motors, generators, and pumps
(also think of gear boxes, electrostats, and loudspeakers).

When multiple physical processes from different domains are combined in
a single network, the overall network description becomes a combination of the
network descriptions of the individual physical processes. Flow-junction-based
(5.26) and effort-junction-based (5.25) diffusively coupled network models from
the same physical domain can be combined as well. Processes are linked to each
other through the power conversion components, which describe a linear relation
between the node signals 𝑤(𝑡) of the different physical processes. As a result,
the network description can contain node signals and input signals of multiple
physical quantities.

5.5 Other diffusively coupled networks

5.5.1 Multiagent networks

The main objective in multiagent systems is cooperative control, which can be
split into formation and nonformation control problems. The necessity for agents
to share information for coordination, requires agents to cooperate in order to
achieve a mutual agreement. This means that the coordination data for each agent
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Figure 5.5: An electrical circuit with capacitances𝐶𝑖, resistances 𝑅𝑖𝑘 , inductances
𝐿𝑖𝑘 , electric potentials 𝑣𝑖 (𝑡) and external current 𝑖2(𝑡).
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Figure 5.6: A mechanical system with masses 𝑀𝑖, damper coefficients 𝐷𝑖𝑘 , spring
coefficients 𝐾𝑖𝑘 , positions 𝑥𝑖 (𝑡) and external force 𝑓2(𝑡).
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Figure 5.7: A hydraulic system with
valve capacitances𝐶𝐻𝑖 , pipe resistances
𝑅𝑖𝑘 , pressures 𝑝𝑖 (𝑡) and external volume
flow rate 𝜙2(𝑡).
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Figure 5.8: A thermodynamic system
with thermal capacitances 𝐶𝑇𝑖 , thermal
resistivity 𝑅𝑖𝑘 , temperatures 𝑇𝑖 (𝑡) and
entropy flow rate 𝑞2(𝑡).
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need to converge to a common value. This problem is referred to as a consensus
or agreement problem (Ren et al., 2005).

Networks of multiagent systems are often visualised by directed or undirected
graphs with the agents at the nodes. The behaviour of the agents can be modelled
by any modelling technique; often state-space models are used. The communic-
ation between the agents takes place according to a (continuous-time) consensus
protocol (Ren et al., 2005; Mesbahi and Egerstedt, 2010):

¤𝑥𝑖 (𝑡) = −
∑︁

𝑗∈N𝑗 (𝑡 )
𝑎𝑖 𝑗 (𝑡)

(
𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)

)
, (5.32)

where 𝑥𝑖 (𝑡) is the state of agent 𝑖, N𝑗 (𝑡) represents the set of agents who can
communicate to agent 𝑖 at time 𝑡, and 𝑎𝑖 𝑗 (𝑡) is the time-varying weighting factor
of the communication from agent 𝑗 to agent 𝑖. Often, 𝑎𝑖 𝑗 (𝑡) > 0 ∀𝑡. Observe
that (5.32) describes a time-varying diffusive coupling as the strength of the
communication depends on the difference between the states 𝑥𝑖 (𝑡) and 𝑥 𝑗 (𝑡).

The consensus protocol of the complete graph can be written in matrix form
as

¤𝑥(𝑡) = −𝐿 (𝑡)𝑥(𝑡), (5.33)
where 𝐿 (𝑡) is the time-varying graph-Laplacian and 𝑥(𝑡) is a vectorised version of
𝑥𝑖 (𝑡). If 𝑎𝑖 𝑗 (𝑡) = 𝑎 𝑗𝑖 (𝑡) ∀𝑖, 𝑗 , then the communication protocol is symmetric. If
𝑎𝑖 𝑗 (𝑡) = 𝑎𝑖 𝑗 ∀𝑡, the communication protocol is time invariant and (5.33) describes
a diffusively coupled linear network. Multiagent networks can also have external
inputs, which are added to the right-hand side of (5.32) and (5.33) (Talukdar et al.,
2020).

5.5.2 Kuramoto model

There are many processes and actions that rely on precise timing, occurring in
biological, chemical, physical, and social systems. These actions take place as a
result of synchronisation of the individual actions in a population. Some everyday
examples one can think of are musicians in an orchestra or the audience applauding.
The most successful model of these rhythmic actions was developed by Kuramoto
(1975) by analysing coupled phase oscillators. This model is also applied to neural
information processing in the brain, laser networks, chemical reactions, and power
networks (Acebrón et al., 2005; Boccaletti et al., 2006; Mesbahi and Egerstedt,
2010; Guo et al., 2021).

The Kuramoto model captures the dynamics of coupled phase oscillators by

¤𝜃𝑖 (𝑡) = 𝜔𝑖 +
∑︁
𝑗∈N𝑗

𝐾𝑖 𝑗 sin(𝜃 𝑗 (𝑡) − 𝜃𝑖 (𝑡)), (5.34)
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where 𝜃𝑖 (𝑡) and 𝜔𝑖 are the angular position and the natural frequency of the 𝑖th
oscillator, respectively, N𝑗 represents the set of oscillators that is connected to
the 𝑖th oscillator, and 𝐾𝑖 𝑗 is the strength of the coupling. This model can be
interpreted as each oscillator trying to run independently, while the couplings try
to synchronise it with the others. It describes a nonlinear time-varying diffusive
coupling, because the strength of the coupling depends on a nonlinear (sinusoidal)
function of the difference between the angular positions of the oscillators. Of-
ten 𝐾𝑖 𝑗 (𝑡) > 0 ∀𝑡 and if 𝐾𝑖 𝑗 (𝑡) = 𝐾 𝑗𝑖 (𝑡), ∀𝑖, 𝑗 , then the couplings are symmetric.
Sometimes, the dynamics of synchronisation systems is linearised around an oper-
ating point, leading to a linear second-order vector differential equation (Talukdar
et al., 2020).

5.6 Conclusion

The diffusively coupled linear network model (5.10) has been introduced to de-
scribe physical linear networks of any order. This multivariable polynomial model
has particular structural properties to incorporate the symmetric nature of the
physical components and the linear diffusive couplings. Graphically, diffusively
coupled linear networks are represented by undirected graphs. Various physical
linear networks can be described by this network model in two analogous rep-
resentations. Even interconnections of physical networks from different domains
can be captured by the diffusively coupled network model. It has been shown
that physical linear networks that are described by the diffusively coupled linear
network model are passive, dissipative, and stable. Some other diffusively coupled
networks are shown as well.

In the remaining research, the diffusively coupled linear network model (5.10)
will be used to describe physical linear networks for identification purposes,
because it is capable of incorporating the structural properties of physical linear
networks, including the symmetry of the components and the diffusive couplings.
The next step in this research will be to use this diffusively coupled linear network
model for identification purposes.
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6 | Linear dynamic network
identification tools

Many identification tools are available in the literature, but which ones are at-
tractive and supportive for identification in diffusively coupled linear networks?
Diffusively coupled linear networks are modelled by polynomial models with
specific structural properties. These characteristics need to be incorporated
into the identification procedure. The first candidate identification framework
includes prediction error methods for linear polynomial models, because the
modelling framework is close to that of diffusively coupled linear networks. The
second candidate includes prediction error methods for dynamic networks, be-
cause they incorporate the interconnection structure. In addition, the weighted
null-space fitting (WNSF) algorithm is discussed, because it is a computation-
ally attractive algorithm for solving the (often) nonconvex optimisation problems
resulting from prediction error methods.

6.1 Introduction

Diffusively coupled linear networks can describe various physical processes,
among which are electrical circuits, chemical processes, and mechanical and
hydraulic systems, as explained in Chapter 5. These networks possess the char-
acteristic property that interconnections are based on the difference of signals
instead of causal directions of information flow. Therefore, diffusively coupled
networks are graphically represented by undirected graphs. Mathematically, they
are described by polynomial models with specific structural properties to capture
the symmetric interconnections.

These mathematical models can be obtained from the laws of nature or from
experimental data. The process of obtaining mathematical models from data is
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referred to as system identification. The main challenges in data-driven modelling
of physical linear networks are to exploit the interconnection structure and the
specific structural conditions in the system identification method as much as
possible.

The two classical approaches for system identification are subspace identific-
ation methods (Verhaegen and Verdult, 2012) and prediction error identification
methods (Ljung, 1999). Subspace identification concerns the identification of
state-space representations from experimental data, while prediction error iden-
tification methods identify polynomial models from experimental data. For the
latter, conditions for convergence and consistency are discussed, as are algorithms
for computing the estimates (Ljung, 1999; Hannan and Deistler, 2012). Sys-
tem identification can also be performed in the frequency domain (Pintelon and
Schoukens, 2012), for example, by the local polynomial method. These methods
all identify systems in an open-loop configuration. The extension to closed-loop
system identification is addressed by Ljung (1999), Van den Hof (1998), and
Forssell and Ljung (1999).

Van den Hof et al. (2013) generalise closed-loop identification to more complex
interconnections of linear dynamic systems. These dynamic networks describe
measured signals of interest (node signals) that are interconnected through linear
dynamic transfer function modules. Various identification questions are being
studied, among which are full network identification methods (Weerts et al.,
2016) and related algorithms (Galrinho et al., 2019; Fonken et al., 2022). These
network identification questions are considered in a discrete-time prediction error
framework.

The overall objective of this research is to develop a comprehensive theory for
the identification of diffusively coupled linear networks. This includes three main
network identification purposes: identification of the complete network dynamics,
identification of subnetwork dynamics, and identification of the interconnection
structure. In order to develop the necessary identification tools, the identification
tools from the literature that are useful for the identification of diffusively coupled
linear networks are reviewed.

Several identification tools are available in the literature. Both time and fre-
quency domain identification methods and identifiability results are interesting,
because diffusively coupled linear networks are also described by polynomial
models (with specific structural properties). Network identification methods and
algorithms in the module representation exploit the interconnection structure of
dynamic networks and therefore, are interesting for the identification of diffus-
ively coupled linear networks. Subspace identification methods are not selected,
because it is more difficult to incorporate the structural properties of diffusively
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coupled linear networks in state-space models and because there are no statistical
guarantees for subspace identification.

In this chapter, identification tools from the literature are discussed. The se-
lected tools are most promising for the identification of diffusively coupled linear
networks and they are used as a basis in the remaining part of this thesis. Identific-
ation tools for dynamic networks have typically been developed for discrete-time
systems. In order to fully exploit these tools, we consider only discrete-time
network representations with delay operator 𝑞−1 meaning 𝑞−1𝑤(𝑡) = 𝑤(𝑡 − 1).
In Section 6.2, identification methods and identifiability aspects for scalar and
multivariable polynomial models in the time domain are discussed. Section 6.3
includes a full network identification method and an algorithm for the module
representation. Finally, Section 6.4 concludes the chapter.

6.2 Polynomial models

6.2.1 Introduction

Consider the polynomial model as described in Definition 2.20 of Section 2.4.4,
where we discussed that this model is popular for describing dynamic systems,
especially for identification purposes with prediction error identification methods
(Ljung, 1999; Hannan and Deistler, 2012). As diffusively coupled linear net-
works are described by polynomial models (with particular structural properties),
the identification theory for unstructured polynomial models will be helpful in
the identification of diffusively coupled linear networks. In this section, predic-
tion error identification methods and the identifiability of these (unstructured)
polynomial models are summarised.

6.2.2 Matrix-fraction descriptions

In this section, some concepts regarding polynomial representations and some
properties of polynomial matrices are introduced. First, unimodular matrices are
introduced and then, matrix-fraction descriptions (MFDs) are discussed, including
the concepts of relative primeness and greatest common divisors. For more
information on unimodular matrices, see Polderman and Willems (1998, Chapter
2), and for more information on MFDs, see Kailath (1980, Chapter 6).

A polynomial matrix is said to be nonsingular if its determinant is nonzero.
A special class of nonsingular polynomial matrices are unimodular polynomial
matrices.



168 Linear dynamic network identification tools

Definition 6.1 (Unimodular polynomial matrix (Polderman and
Willems, 1998)). The polynomial matrix 𝑈 (𝜉) ∈ R𝑝×𝑝 [𝜉] is said to be a
unimodular polynomial matrix if the following equivalent statements hold:

1. There exists a polynomial matrix 𝑉 (𝜉) ∈ R𝑝×𝑝 [𝜉] such that

𝑉 (𝜉)𝑈 (𝜉) = 𝐼 .

2. det
(
𝑈 (𝜉)

)
= 𝑐 ∈ R, with 𝑐 ≠ 0.

Observe that 𝑉 (𝜉) in Definition 6.1 is also a unimodular polynomial matrix.
This means that a polynomial matrix is unimodular if its inverse is a polynomial
matrix too.

Now it is clear what unimodular polynomial matrices are, let us move to the
MFDs. An MFD of a rational matrix is the ratio of two polynomial matrices. A
rational matrix can be written as a right matrix-fraction description (RMFD) or
as a left matrix-fraction description (LMFD).

Definition 6.2 (RMFD). A rational matrix 𝑇 (𝑞) ∈ R𝑝×𝑚(𝑞) is written as
an RMFD as

𝑇 (𝑞) = 𝑁𝑅 (𝑞−1)𝐷−1
𝑅 (𝑞−1), (6.1)

with polynomial matrices 𝑁𝑅 (𝑞−1) ∈ R𝑝×𝑚 [𝑞−1] and 𝐷𝑅 (𝑞−1) ∈
R𝑚×𝑚 [𝑞−1].

Definition 6.3 (LMFD). A rational matrix 𝑇 (𝑞) ∈ R𝑝×𝑚(𝑞) is written as
an LMFD as

𝑇 (𝑞) = 𝐷−1
𝐿 (𝑞−1)𝑁𝐿 (𝑞−1) (6.2)

with polynomial matrices 𝐷𝐿 (𝑞−1) ∈ R𝑝×𝑝 [𝑞−1] and 𝑁𝐿 (𝑞−1) ∈
R𝑝×𝑚 [𝑞−1].

Observe that the RMFD and the LMFDs have a duality. As LMFDs are more
common in system identification, the remainder of this section only describes
LMFDs. Dual results hold for RMFDs.

The LMFD in (6.2) can equivalently be written as

𝑇 (𝑞) = �̄�−1
𝐿 (𝑞−1)�̄�𝐿 (𝑞−1), (6.3)

with

�̄�𝐿 (𝑞−1) = 𝑊−1(𝑞−1)𝐷𝐿 (𝑞−1), �̄�𝐿 (𝑞−1) = 𝑊−1(𝑞−1)𝑁𝐿 (𝑞−1), (6.4)
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where the nonsingular polynomial matrix 𝑊 (𝑞−1) ∈ R𝑝×𝑝 [𝑞−1] is a left divisor
of 𝐷𝐿 (𝑞−1) and 𝑁𝐿 (𝑞−1). The LMFD with the minimum degree is found by
extracting a greatest common left divisor of 𝐷𝐿 (𝑞−1) and 𝑁𝐿 (𝑞−1). Then the only
left divisors𝑊 (𝑞−1) of 𝐷𝐿 (𝑞−1) and 𝑁𝐿 (𝑞−1) that remain are the ones that have
a determinant with zero degree and hence, are unimodular. This unimodularity of
greatest common left divisors is a special property and therefore, captured by the
following concept:

Definition 6.4 (Left coprime). Two polynomial matrices 𝐷𝐿 (𝑞−1) ∈
R𝑝×𝑝 [𝑞−1] and 𝑁𝐿 (𝑞−1) ∈ R𝑝×𝑚 [𝑞−1] are said to be relative left prime or
left coprime if they only have unimodular greatest common left divisors.

The properties of LMFDs and left coprime polynomial matrices lead to the
following equivalent statements for left coprime polynomial matrices:

Proposition 6.5 (Left coprime). The two polynomial matrices𝐷𝐿 (𝑞−1) and
𝑁𝐿 (𝑞−1) are left coprime if and only if the following equivalent statements
hold:

1. All greatest common left divisors of 𝐷𝐿 (𝑞−1) and 𝑁𝐿 (𝑞−1) are unim-
odular.

2. All greatest common left divisors of𝐷𝐿 (𝑞−1) and 𝑁𝐿 (𝑞−1) are nonsin-
gular and can only differ by a unimodular (right) factor.

3. There exists polynomial matrices 𝑋 (𝑞−1) ∈ R𝑝×𝑝 [𝑞−1] and 𝑌 (𝑞−1) ∈
R𝑚×𝑚 [𝑞−1] such that 𝐷𝐿 (𝑞−1)𝑋 (𝑞−1) + 𝑁𝐿 (𝑞−1)𝑌 (𝑞−1) = 𝐼.

4.
[
𝐷𝐿 (𝑧) 𝑁𝐿 (𝑧)

]
has full row rank for all values of 𝑧.

5.
[
𝐷𝐿 (𝑞−1) 𝑁𝐿 (𝑞−1)

]
is irreducible, i.e. it has no common factors.

As a result, left coprimeness can be determined by calculating the row rank of[
𝐷𝐿 (𝑧) 𝑁𝐿 (𝑧)

]
.

To conclude, the properties of a minimum-degree LMFD are summarised as
follows: If the LMFD as defined in Definition 6.3 has a minimum degree, it has
the following properties:

1. The polynomial matrices 𝐷𝐿 (𝑞−1) and 𝑁𝐿 (𝑞−1) are left coprime.

2. It has only unimodular greatest common left divisors𝑊 (𝑞−1).
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3. It is irreducible, because the LMFD 𝐷−1
𝐿
(𝑞−1)𝑁𝐿 (𝑞−1) is irreducible if

𝐷𝐿 (𝑞−1) and 𝑁𝐿 (𝑞−1) are left coprime.

4. It is nonunique, because if the LMFD 𝐷−1
𝐿
(𝑞−1)𝑁𝐿 (𝑞−1) is irreducible, then

so is the LMFD
[
𝑊 (𝑞−1)𝐷𝐿 (𝑞−1)

]−1 [
𝑊 (𝑞−1)𝑁𝐿 (𝑞−1)

]
for any unimodu-

lar𝑊 (𝑞−1).

6.2.3 Prediction error methods

As discussed in Section 1.5.1, system identification aims to build a mathemat-
ical model of a dynamical system on the basis of experimental data. The best
possible model is selected from the candidate models through an identification
criterion (Eykhoff, 1974; Ljung, 1999; Pintelon and Schoukens, 2012). In predic-
tion error methods, the selection criterion minimises a prediction error, which is
thoroughly chosen by the user. In the prediction error framework, quasi-stationary
signals are defined as summations of a stationary stochastic process and a bounded
deterministic signal (Ljung, 1999).

The experimental data are generated by the data generating system S. For
open-loop system identification, the data generating system is typically described
by

𝑦(𝑡) = 𝐺0(𝑞)𝑢(𝑡) + 𝑣(𝑡), (6.5)

where 𝐺0(𝑞) is the dynamical system and 𝑦(𝑡), 𝑢(𝑡), and 𝑣(𝑡) are the measured
output signal, known input signal, and unknown disturbance signal, respectively.
The dynamical system 𝐺0(𝑞) is described by a rational transfer function matrix.
The experimental data {𝑦(𝑡), 𝑢(𝑡)}𝑁

𝑡=1 consist of the signals 𝑦(𝑡) and 𝑢(𝑡) at time
instances 𝑡 = 1, 2, . . . , 𝑁 . The data signals 𝑢(𝑡) and 𝑦(𝑡) are assumed to be quasi-
stationary (Ljung, 1999) and the unknown disturbance signal 𝑣(𝑡) is assumed to
be a stationary stochastic process.

In order to evaluate the predictor later on in the prediction error identification
analysis, the unknown disturbance signal 𝑣(𝑡) needs to be modelled, for example,
by filtered white noise

𝑣(𝑡) = 𝐻0(𝑞)𝑒(𝑡), (6.6)

with 𝑒(𝑡) a white noise signal with bounded moments and with 𝐻0(𝑞) a rational
transfer function matrix that is monic, where monic means that lim𝑧→∞ 𝐻0(𝑧) = 𝐼,
with 𝐼 the identity matrix.

The model structureM describes a class of all candidate models of the form
(6.5) and (6.6) by parameterising the system and noise model as

M = {𝑀 (𝑞, 𝜃), 𝜃 ∈ Θ}, (6.7)
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where Θ ⊂ R𝑑 describes the considered parameter space and with particular
models

𝑀 (𝜃) = {𝐺 (𝑞, 𝜃), 𝐻 (𝑞, 𝜃)}, (6.8)
where 𝐺 (𝑞, 𝜃) and 𝐻 (𝑞, 𝜃) satisfy the same assumptions as 𝐺0(𝑞) and 𝐻0(𝑞), for
all 𝜃 ∈ Θ, respectively.

The identification criterion is often chosen to be a (weighted) least-squares
criterion

𝜃𝑁 = arg min
𝜃∈Θ

1
𝑁

𝑁∑︁
𝑡=1

𝜀⊤(𝑡, 𝜃)𝑊𝜀(𝑡, 𝜃), (6.9)

which aims to minimise the power of some error 𝜀(𝑡, 𝜃) that is weighted with
𝑊 ≻ 0.

In prediction error identification methods, the error 𝜀(𝑡, 𝜃) is carefully derived
by first predicting the measured output signal. The one-step-ahead predictor is
defined as the conditional expectation

�̂�(𝑡 |𝑡 − 1) := E{𝑦(𝑡) | 𝑦𝑡−1, 𝑢𝑡−1}, (6.10)

where 𝑦𝑡−1 = {𝑦(1), 𝑦(2), . . . , 𝑦(𝑡 − 1)} and 𝑢𝑡−1 = {𝑢(1), 𝑢(2), . . . , 𝑢(𝑡 − 1)}.
This definition of the predictor results in

�̂�(𝑡 |𝑡 − 1) = 𝐻−1(𝑞)𝐺 (𝑞)𝑢(𝑡) +
(
𝐼 − 𝐻−1(𝑞)

)
𝑦(𝑡), (6.11)

which can be written as

�̂�(𝑡 |𝑡 − 1, 𝜃) = 𝑊 (𝑞)𝑧(𝑡), (6.12)

with the stable predictor filter𝑊 (𝑞) and the data vector 𝑧(𝑡) given by

𝑊 (𝑞) =
[
𝐻−1(𝑞)𝐺 (𝑞) 𝐼 − 𝐻−1(𝑞)

]
, 𝑧(𝑡) =

[
𝑢(𝑡)
𝑦(𝑡)

]
. (6.13)

Using the model structureM (6.7), the parameterised one-step-ahead predictor
becomes

�̂�(𝑡 |𝑡 − 1, 𝜃) = 𝐻−1(𝑞, 𝜃)𝐺 (𝑞, 𝜃)𝑢(𝑡) +
(
𝐼 − 𝐻−1(𝑞, 𝜃)

)
𝑦(𝑡). (6.14)

The prediction error is then defined as the difference between the actually
measured output signals and the predicted output signals, i.e.

𝜀(𝑡, 𝜃) := 𝑦(𝑡) − �̂�(𝑡 |𝑡 − 1, 𝜃), (6.15)

which is given by

𝜀(𝑡, 𝜃) := 𝐻−1(𝑞, 𝜃)
(
𝑦(𝑡) − 𝐺 (𝑞, 𝜃)𝑢(𝑡)

)
. (6.16)

This is the error that is used in the identification criterion (6.9) in prediction error
identification methods.
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6.2.4 Data informativity

Data informativity concerns the information content that is present in the data set.
The data set is denoted by 𝑍𝑁 := {𝑧(𝑡)}𝑡=𝑁

𝑡=1 , meaning all values of 𝑧(𝑡) at time
𝑡 = 1, 2, . . . , 𝑁 . The data set should contain sufficient information to be able to
distinguish between different models in the model structure. Therefore, a data set
is called informative if it is capable of distinguishing between different models.

Definition 6.6 (Data informativity (Ljung, 1999)). A quasi-stationary
data set 𝑍𝑁 := {𝑧(𝑡)}𝑡=𝑁

𝑡=1 is informative enough with respect to the model
setM (with a one-step-ahead predictor as in (6.12)) if, for any two predictor
filters𝑊1(𝑞) and𝑊2(𝑞),

Ē{
(
𝑊1(𝑞) −𝑊2(𝑞)

)
𝑧(𝑡)}2 = 0 (6.17)

implies that𝑊1(𝑒𝑖𝜔) = 𝑊2(𝑒𝑖𝜔) for almost all 𝜔.

The excluded 𝜔 are in a set of Lebesgue measure zero in R.

Proposition 6.7 (Data informativity (Ljung, 1999)). A quasi-stationary
data set 𝑍𝑁 := {𝑧(𝑡)}𝑡=𝑁

𝑡=1 is informative enough with respect to the model
set consisting of all LTI models if Φ𝑧 (𝜔) ≻ 0 for almost all 𝜔, with Φ𝑧 (𝜔)
the spectrum matrix of 𝑧(𝑡).

6.2.5 Identifiability

Identifiability concerns the uniqueness of a system representation in a paramet-
erised model set (or model structure). Using the concepts of a system S and a
model structureM, the identifiability concept can be formalised.

Definition 6.8 (Global identifiability at 𝜃★ (Ljung, 1999)). A model struc-
tureM is globally identifiable at 𝜃★ if

𝑀 (𝜃) = 𝑀 (𝜃★), 𝜃 ∈ Θ, =⇒ 𝜃 = 𝜃★, (6.18)

Definition 6.9 (Global identifiability (Ljung, 1999)). A model structure
M is globally identifiable if it is globally identifiable at almost all 𝜃★ ∈ Θ.

The excluded 𝜃★ are in a set of Lebesgue measure zero in R𝑑 .
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Proposition 6.10 (Global identifiability (Ljung, 1999)). Consider the
model structureM corresponding to the SISO system

𝐴(𝑞−1)𝑦(𝑡) = 𝐵(𝑞−1)
𝐹 (𝑞−1)

𝑢(𝑡) + 𝐶 (𝑞
−1)

𝐷 (𝑞−1)
𝑒(𝑡), (6.19)

with 𝜃 being the coefficients of the polynomials 𝐴(𝑞−1), 𝐵(𝑞−1), 𝐶 (𝑞−1),
𝐷 (𝑞−1) and 𝐹 (𝑞−1), which are all monic except for 𝐵(𝑞−1) and which have
degrees 𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑 , and 𝑛 𝑓 , respectively. The model structure M is
globally identifiable at 𝜃★ if and only if all of the following conditions hold:

1. There is no common factor between all 𝑧𝑛𝑎𝐴(𝑧, 𝜃★), 𝑧𝑛𝑏𝐵(𝑧, 𝜃★), and
𝑧𝑛𝑐𝐶 (𝑧, 𝜃★).

2. There is no common factor between 𝑧𝑛𝑏𝐵(𝑧, 𝜃★) and 𝑧𝑛 𝑓 𝐹 (𝑧, 𝜃★).

3. There is no common factor between 𝑧𝑛𝑐𝐶 (𝑧, 𝜃★) and 𝑧𝑛𝑑𝐷 (𝑧, 𝜃★).

4. If 𝑛𝑎 ≥ 1, then there must be no common factor between 𝑧𝑛 𝑓 𝐹 (𝑧, 𝜃★)
and 𝑧𝑛𝑑𝐷 (𝑧, 𝜃★).

5. If 𝑛𝑑 ≥ 1, then there must be no common factor between 𝑧𝑛𝑎𝐴(𝑧, 𝜃★)
and 𝑧𝑛𝑏𝐵(𝑧, 𝜃★).

6. If 𝑛 𝑓 ≥ 1, then there must be no common factor between 𝑧𝑛𝑎𝐴(𝑧, 𝜃★)
and 𝑧𝑛𝑐𝐶 (𝑧, 𝜃★).

For a generally chosen model set with Θ ∈ R𝑑 , the conditions in Proposi-
tion 6.10 are only violated for a small selection of 𝜃★, i.e. for 𝜃★ in a set of
Lebesgue measure zero in R𝑑 . Therefore, the model structure given in Proposi-
tion 6.10 is said to be globally identifiable and Proposition 6.10 can be formulated
as follows (Ljung, 1999).

Consider the SISO system description S in

𝐴0(𝑞−1)𝑦(𝑡) = 𝐵0(𝑞−1)
𝐹0(𝑞−1)

𝑢(𝑡) + 𝐶
0(𝑞−1)

𝐷0(𝑞−1)
𝑒(𝑡), (6.20)

with true polynomial orders 𝑛0
𝑎, 𝑛0

𝑏
, 𝑛0
𝑐, 𝑛0

𝑑
, and 𝑛0

𝑓
. Consider the model structure

M of Proposition 6.10. Then S ∈ M (i.e. the system lies in the model set) and
corresponds to a globally identifiable 𝜃-value if and only if all of the following
conditions hold (Ljung, 1999, Theorem 4.2):

1. min(𝑛𝑎 − 𝑛0
𝑎, 𝑛𝑏 − 𝑛0

𝑏
, 𝑛𝑐 − 𝑛0

𝑐) = 0.
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2. min(𝑛𝑏 − 𝑛0
𝑏
, 𝑛 𝑓 − 𝑛0

𝑓
) = 0.

3. min(𝑛𝑐 − 𝑛0
𝑐, 𝑛𝑑 − 𝑛0

𝑑
) = 0.

4. If 𝑛𝑎 ≥ 1, then also min(𝑛 𝑓 − 𝑛0
𝑓
, 𝑛𝑑 − 𝑛0

𝑑
) = 0.

5. If 𝑛𝑑 ≥ 1, then also min(𝑛𝑎 − 𝑛0
𝑎, 𝑛𝑏 − 𝑛0

𝑏
) = 0.

6. If 𝑛 𝑓 ≥ 1, then also min(𝑛𝑎 − 𝑛0
𝑎, 𝑛𝑐 − 𝑛0

𝑐) = 0.

If the system lies in the model set, 𝜃0 is often used to indicate the 𝜃-value for
the system, that is, S = 𝑀0 := 𝑀 (𝜃0).

6.2.6 Identifiability of multivariable systems

The above results on global identifiability can also be formulated for multivariable
systems (Ljung, 1999, Appendix 4A).

Let us first introduce some notions for a polynomial matrix 𝑋 (𝑞−1) ∈
R𝑝×𝑚 [𝑞−1]. Let the polynomial elements 𝑥𝑖 𝑗 (𝑞−1) have degree 𝑛𝑥𝑖 𝑗 , let
𝑛𝑥 𝑗 = max

(
𝑛𝑥𝑖 𝑗

)
,∀𝑖, and let the degree of the polynomial matrix 𝑋 (𝑞−1) be

𝑛𝑥 = max
(
𝑛𝑥𝑖 𝑗

)
,∀𝑖, 𝑗 . Correspondingly, let us define the diagonal polynomial

matrix 𝑍𝑥 (𝑧) = diag
(
𝑧𝑛𝑥1 , . . . , 𝑧𝑛𝑥𝑚

)
.

Proposition 6.11 (Global identifiability of multivariable systems (Ljung,
1999)). Consider the model structureM corresponding to the multivariable
system

𝐴(𝑞−1)𝑦(𝑡) = 𝐵−1(𝑞−1)𝐹 (𝑞−1)𝑢(𝑡) + 𝐶−1(𝑞−1)𝐷 (𝑞−1)𝑒(𝑡), (6.21)

with 𝜃 being the coefficients of the polynomials 𝐴(𝑞−1), 𝐵(𝑞−1), 𝐶 (𝑞−1),
𝐷 (𝑞−1) and 𝐹 (𝑞−1), which are all monic except for 𝐵(𝑞−1), and which
have polynomial degrees 𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑 , and 𝑛 𝑓 , respectively. The model
structureM is globally identifiable at 𝜃★ if and only if all of the following
conditions hold:

1. All 𝐴(𝑧, 𝜃★)𝑍𝑎 (𝑧), 𝐵(𝑧, 𝜃★)𝑍𝑏 (𝑧), and𝐶 (𝑧, 𝜃★)𝑍𝑐 (𝑧) are left coprime.

2. 𝐵(𝑧, 𝜃★)𝑍𝑏 (𝑧) and 𝐹 (𝑧, 𝜃★)𝑍 𝑓 (𝑧) are left coprime.

3. 𝐶 (𝑧, 𝜃★)𝑍𝑐 (𝑧) and 𝐷 (𝑧, 𝜃★)𝑍𝑑 (𝑧) are left coprime.

4. If 𝑛𝑎 ≥ 1, then also𝐷 (𝑧, 𝜃★)𝑍𝑑 (𝑧) and 𝐹 (𝑧, 𝜃★)𝑍 𝑓 (𝑧) are left coprime.
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5. If 𝑛𝑑 ≥ 1, then also 𝐴(𝑧, 𝜃★)𝑍𝑎 (𝑧) and 𝐵(𝑧, 𝜃★)𝑍𝑏 (𝑧) are left coprime.

6. If 𝑛 𝑓 ≥ 1, then also 𝐴(𝑧, 𝜃★)𝑍𝑎 (𝑧) and𝐶 (𝑧, 𝜃★)𝑍𝑐 (𝑧) are left coprime.

Similar as before, for a generally chosen model set withΘ ∈ R𝑑 , the conditions
in Proposition 6.11 are only violated for a small selection of 𝜃★. The model
structure given in Proposition 6.11 is said to be globally identifiable (Ljung,
1999).

Hannan and Deistler (2012) analyse identifiability for a specific class of
autoregressive-moving average with exogeneous input (ARMAX) systems. They
consider generalised multivariable systems with 𝐹 (𝑞−1) = 𝐼 and 𝐷 (𝑞−1) = 𝐼

and particularly, without restrictions on any of the parameters. This means that
they consider multivariable ARMAX systems in which 𝐴(𝑞−1, 𝜃) and 𝐶 (𝑞−1, 𝜃)
are not necessarily monic, which leads to different conditions for identifiability.
Moreover, the conditions for identifiability are mainly based on the absence of
transfer function elements instead of on the parameters. As initially no assump-
tions on the parameters are made and the identifiability conditions are based on the
structure of the system, the identifiability of these model structures is sometimes
referred to as structural identifiability.

Proposition 6.12 (Identifiability of multivariable ARMAX systems
(Hannan and Deistler, 2012)). Consider the model structure M corres-
ponding to the multivariable ARMAX system

𝐴(𝑞−1)𝑦(𝑡) = 𝐵(𝑞−1)𝑢(𝑡) + 𝐶 (𝑞−1)𝑒(𝑡), (6.22)

with 𝜃 being the coefficients of the polynomials 𝐴(𝑞−1) ∈ R𝑝×𝑝 [𝑞−1],
𝐵(𝑞−1) ∈ R𝑝×𝑚 [𝑞−1], and 𝐶 (𝑞−1) ∈ R𝑝×𝑝 [𝑞−1], and with det

(
𝐴0

)
≠ 0,

with 𝐴0 := lim𝑧→∞ 𝐴(𝑧). Define the polynomial matrix

𝐷 (𝑞−1, 𝜃) :=
[
𝐴(𝑞−1, 𝜃) 𝐵(𝑞−1, 𝜃) 𝐶 (𝑞−1, 𝜃)

]
and let 𝑑𝑖 (𝑞−1, 𝜃) be the matrix consisting of those columns of 𝐷 (𝑞−1, 𝜃),
where we have a zero prescribed in the 𝑖th row. This class is identifiable if
all of the following conditions hold:

1. In every row of 𝐷 (𝑞−1, 𝜃) there are at least 𝑝 − 1 elements prescribed
to be zero.

2. 𝑑𝑖 (𝑞−1, 𝜃) is assumed to have rank 𝑝 − 1 (as a polynomial matrix, i.e.,
𝑑𝑖 (𝑧, 𝜃) has rank 𝑝 − 1 for all but a finite number of 𝑧’s).
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3. Every row of 𝐷 (𝑞−1, 𝜃) is relatively prime (i.e., there is no common
polynomial factor of degree greater than zero).

4. The diagonal elements of 𝐴0(𝜃) are equal to 1.

Conditions 1 and 2 of Proposition 6.12 are strictly structural conditions on
the absence of transfer functions. Condition 3 of Proposition 6.12 is equivalent
to Condition 1 of Proposition 6.11. Even though the diagonal elements of 𝐴0(𝜃)
are scaled to 1, there are no restrictions on the off-diagonal elements of 𝐴0(𝜃)
in Proposition 6.12. This means that these ARMAX models are not restricted to
being monic.

6.3 Module representations

6.3.1 Introduction

Consider the module representation as described in Section 2.4.8, where we
discussed that many questions related to network identification have been studied
in the literature for this dynamic network model. One of these questions is related
to identifiability in dynamic networks, which is different from identifiability in
general systems as formulated in Section 6.2.

In general, network identification with prediction error methods leads to non-
convex optimisation problems, which are numerically difficult to solve and may
take much computation time, especially for large networks. Therefore, smart
algorithms need to be developed to be able to perform network identification in
foreseeable time. One such algorithm is WNSF (Galrinho et al., 2019), which
takes three (weighted) least-squares steps to solve a nonconvex network optimisa-
tion problem in an optimal way. This algorithm has been extended with additional
least-squares steps to incorporate the estimation of an unknown disturbance topo-
logy (Fonken et al., 2022). The WNSF algorithm is summarised in Section 6.3.4,
and further explored in Chapter 8.

6.3.2 Network identifiability

In Section 6.2.5 and 6.2.6, global identifiability for scalar and multivariable sys-
tems has been discussed. In this section, results for global identifiability of
dynamic networks in the module representation are formulated (Weerts et al.,
2018b). Similar to identifiability, the objective of network identifiability is to
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distinguish different network models in a model set from each other on the basis
of measured data. In contrast to global identifiability for (multivariable) systems
is that global network identifiability is formulated for network models instead of
for parameter vectors.

Consider a well-posed and stable module representation, as in Section 2.4.8,
which is described by

𝑤(𝑡) = 𝐺 (𝑞)𝑤(𝑡) + 𝑅(𝑞)𝑟 (𝑡) + 𝐻 (𝑞)𝑒(𝑡), (6.23)

where the covariance of the noise 𝑒(𝑡) is denoted by Λ. The response of the
module representation (6.23) is given by

𝑤(𝑡) = 𝑇𝑤𝑟 (𝑞)𝑟 (𝑡) + �̄�(𝑡), �̄�(𝑡) := 𝑇𝑤𝑒 (𝑞)𝑒(𝑡), (6.24)

with rational transfer function matrices𝑇𝑤𝑟 (𝑞) =
(
𝐼−𝐺 (𝑞)

)−1
𝑅(𝑞) and𝑇𝑤𝑒 (𝑞) =(

𝐼 − 𝐺 (𝑞)
)−1
𝐻 (𝑞).

The network model corresponding to this module representation is defined by
𝑀 =

(
𝐺 (𝑞), 𝑅(𝑞), 𝐻 (𝑞),Λ

)
with 𝐺 (𝑞) ∈ R𝐿×𝐿 (𝑞) with all diagonal elements

equal to zero and with all off-diagonal elements proper, 𝑅(𝑞) ∈ R𝐿×𝐾 (𝑞) with
all elements proper, 𝐻 (𝑞) ∈ R𝐿×𝐿 (𝑞) is monic and stable with a stable inverse,
Λ ∈ R𝐿×𝐿 , the covariance of 𝑒(𝑡), that is positive definite, and the network is
assumed to be well-posed and stable. The corresponding parameterised network
model set is denoted by M := {𝑀 (𝑞, 𝜃), 𝜃 ∈ Θ} and consists of particular
parameterised models

𝑀 (𝑞, 𝜃) := {𝐺 (𝑞, 𝜃), 𝑅(𝑞, 𝜃), 𝐻 (𝑞, 𝜃),Λ(𝜃)}, (6.25)

where 𝐺 (𝑞, 𝜃), 𝑅(𝑞, 𝜃), 𝐻 (𝑞, 𝜃), and Λ(𝜃) satisfy for all 𝜃 ∈ Θ the same assump-
tions as 𝐺 (𝑞), 𝑅(𝑞), 𝐻 (𝑞), and Λ, respectively.

The second-order statistical properties of the measured data set {𝑤(𝑡), 𝑟 (𝑡)}
can be represented by the cross- and autocorrelation functions and spectral dens-
ities of these signals. They can be further utilised to obtain 𝑇𝑤𝑟 (𝑒𝑖𝜔) and Φ�̄� (𝜔).
The relation with the parameterised model 𝑀 (𝜃) is given by

𝑇𝑤𝑟 (𝑞, 𝜃) :=
(
𝐼 − 𝐺 (𝑞, 𝜃)

)−1
𝑅(𝑞, 𝜃), (6.26a)

𝑇𝑤𝑒 (𝑞, 𝜃) :=
(
𝐼 − 𝐺 (𝑞, 𝜃)

)−1
𝐻 (𝑞, 𝜃), (6.26b)

Φ�̄� (𝜔, 𝜃) =𝑇𝑤𝑒 (𝑒𝑖𝜔, 𝜃)Λ(𝜃)𝑇∗𝑤𝑒 (𝑒𝑖𝜔 , 𝜃), (6.26c)

where (·)∗ indicates the complex conjugate transpose and (·)−∗ =
(
(·)−1)∗, i.e.

(·)−∗ is the (·)∗ of its inverse. A standard open-loop identification of (6.24) in
case 𝑟 (𝑡) and �̄�(𝑡) are uncorrelated can typically lead to consistent estimation of
𝑇𝑤𝑟 (𝑞) and Φ�̄� (𝜔). Using these relations, global network identifiability is defined
in accordance with Definition 6.8 as follows:
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Definition 6.13 (Global network identifiability at 𝑀 (𝜃∗) (Weerts et al.,
2018b)). The network model set M is globally network identifiable at
𝑀 (𝜃★) if for all 𝑀 (𝜃) ∈ M

𝑇𝑤𝑟 (𝑞, 𝜃) = 𝑇𝑤𝑟 (𝑞, 𝜃★)
Φ�̄� (𝜔, 𝜃) = Φ�̄� (𝜔, 𝜃★)

}
⇒ 𝑀 (𝜃) = 𝑀 (𝜃★). (6.27)

Definition 6.14 (Global network identifiability (Weerts et al., 2018b)). A
model structureM is globally network identifiable if it is globally network
identifiable at all 𝑀 (𝜃★) ∈ M.

Remark 6.15 (Generic network identifiability). Global identifiability is
defined for almost all 𝜃∗ ∈ Θ in Definition 6.9, while global network identi-
fiability is defined for all 𝑀 (𝜃∗) ∈ M in Definition 6.14. Globally network
identifiable at almost all 𝑀 (𝜃★) ∈ M is referred to as generic network
identifiability (Hendrickx et al., 2019).

A transfer function module 𝐺𝑖 𝑗 (𝑞) possesses a direct feedthrough term if it
satisfies 𝐺∞

𝑖 𝑗
:= lim𝑧→∞𝐺𝑖 𝑗 (𝑧) ≠ 0. A dynamic network has an algebraic loop

if there exists a loop (i.e. a path that starts and ends at the same vertex) that
has a nonzero direct feedthrough term. The direct feedthrough term of a path is
the product of the direct feedthrough terms of the subsequent modules. In the
constant term of the noise spectrum, that isΦ�̄� (0), the direct feedthrough terms are
multiplied with the covariance matrix of the noise Λ, which makes it impossible
to separate the direct feedthrough terms from Λ.

If there are no direct feedthrough terms present in the network, i.e. if 𝐺∞, 𝜃 :=
lim𝑧→∞𝐺 (𝑧, 𝜃) = 0 for all 𝜃 ∈ Θ, then

𝑇𝑤𝑟 (𝑞, 𝜃) = 𝑇𝑤𝑟 (𝑞, 𝜃★)
Φ�̄� (𝜔, 𝜃) = Φ�̄� (𝜔, 𝜃★)

}
⇒


𝑇𝑤𝑟 (𝑞, 𝜃) = 𝑇𝑤𝑟 (𝑞, 𝜃★)
𝑇𝑤𝑒 (𝑞, 𝜃) = 𝑇𝑤𝑒 (𝑞, 𝜃★)
Λ(𝜃) = Λ(𝜃★),

(6.28)

such that (6.27) in Definition 6.13 is equivalently formulated as

𝑇𝑤𝑟 (𝑞, 𝜃) = 𝑇𝑤𝑟 (𝑞, 𝜃★)
𝑇𝑤𝑒 (𝑞, 𝜃) = 𝑇𝑤𝑒 (𝑞, 𝜃★)

}
⇒


𝐺 (𝑞, 𝜃) = 𝐺 (𝑞, 𝜃★)
𝑅(𝑞, 𝜃) = 𝑅(𝑞, 𝜃★)
𝐻 (𝑞, 𝜃) = 𝐻 (𝑞, 𝜃★).

(6.29)

The spectral factorisation of Φ�̄� (𝜔) into a unique Λ and 𝑇𝑤𝑒 (𝑞) that is stable,
stably invertible, and monic is a result of Youla (1961).
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If there are direct feedthrough terms present in the network and moreover,
if there are algebraic loops present in the network, additional restrictions on the
model set are necessary to force a unique recovery of the direct feedthrough terms
and Λ. These conditions are specified in Weerts et al. (2018b, Proposition 3)
and include two restrictions. The first restriction comprises that the number of
parameterised direct feedthrough terms in 𝐺 (𝑞, 𝜃) and 𝑅(𝑞, 𝜃) should be at most
𝐾 (the number of known external excitation signals. The second restriction is
a condition on the rank of a particular part of the transfer function 𝑇𝑤𝑟 (𝑞, 𝜃)
related to parameterised rows in 𝐺∞(𝜃) and nonparameterised columns 𝑅∞(𝜃).
If the additional restrictions are satisfied, then again the implication (6.28) holds,
such that again (6.27) in Definition 6.13 is equivalently formulated as (6.29).
As a result, conditions for global network identifiability of M (at 𝑀 (𝜃★)) are
formulated (Weerts et al., 2018b, Theorem 2).

6.3.3 Joint-direct method

The Joint-direct method is a prediction error identification method for consistently
identifying all dynamics in a dynamic network that is formulated in the module
representation. To take algebraic loops into account, a specific predictor is formu-
lated that exploits external excitation signals (Weerts et al., 2016). The main idea
of this method is that additional external excitation signals are used to identify the
direct feedthrough terms, while excitation by disturbances is maximally utilised to
identify the remaining dynamics. In the remainder of this section, we summarise
the Joint-direct method (Weerts et al., 2016).

Consider a well-posed module representation as described in Section 2.4.8,
which may contain algebraic loops, in which all node signals 𝑤(𝑡) are measured,
in which some known external excitation signals 𝑟 (𝑡) are present, where the noise
covariance matrix Λ ≻ 0 is diagonal, and where Φ𝑣 (𝜔) may be nondiagonal
and has full rank. Let 𝐺∞ denote the direct feedthrough terms, i.e. 𝐺∞ =

lim𝑧→∞𝐺 (𝑧). Remember that a dynamic network has an algebraic loop if there
exists a loop that has a nonzero direct feedthrough term.

The Joint-direct method is a prediction-error identification method for dynamic
networks. The network predictor is defined as the conditional expectation

�̂�(𝑡 |𝑡 − 1) := E{𝑤(𝑡) | 𝑤𝑡−1, 𝑟 𝑡 }, (6.30)

where the delayed value 𝑤𝑡−1 = {𝑤(1), 𝑤(2), . . . , 𝑤(𝑡 − 1)} and 𝑟 𝑡 =

{𝑟 (1), 𝑟 (2), . . . , 𝑟 (𝑡)}. For the module representation (6.23), this definition of the
network predictor leads to

�̂�(𝑡 |𝑡 − 1) = 𝑊𝑤 (𝑞)𝑤(𝑡) +𝑊𝑟 (𝑞)𝑟 (𝑡), (6.31)
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with predictor filters

𝑊𝑤 (𝑞) =
(
𝐼 − (𝐼 − 𝐺∞)−1𝐻−1(𝑞)

(
𝐼 − 𝐺 (𝑞)

) )
, (6.32a)

𝑊𝑟 (𝑞) = (𝐼 − 𝐺∞)−1𝐻−1(𝑞)𝑅(𝑞). (6.32b)

Observe that lim𝑧→∞𝑊𝑤 (𝑧) =
(
𝐼−(𝐼−𝐺∞)−1𝐼 (𝐼−𝐺∞

)
= 𝐼− 𝐼 = 0 and therefore

𝑊𝑤 (𝑞) is strictly proper, which is consistent with the use of only the past of 𝑤(𝑡)
in (6.30).

The innovation related to the network predictor is defined as

𝑒(𝑡) := 𝑤(𝑡) − �̂�(𝑡 |𝑡 − 1), (6.33)

which results in a scaled version of the driving noise process 𝑒(𝑡):

𝑒(𝑡) = (𝐼 − 𝐺∞)−1𝑒(𝑡). (6.34)

The scaling creates correlation over the (white noise) innovation signals.

The parameterised network model setM leads to the parameterised network
predictor

�̂�(𝑡 |𝑡 − 1; 𝜃) = 𝑊𝑤 (𝑞, 𝜃)𝑤(𝑡) +𝑊𝑟 (𝑞, 𝜃)𝑟 (𝑡), (6.35)

with 𝜃 ∈ Θ and with filters

𝑊𝑤 (𝑞, 𝜃) =
(
𝐼 −

(
𝐼 − 𝐺∞(𝜃)

)−1
𝐻−1(𝑞, 𝜃)

(
𝐼 − 𝐺 (𝑞, 𝜃)

) )
, (6.36a)

𝑊𝑟 (𝑞, 𝜃) =
(
𝐼 − 𝐺∞(𝜃)

)−1
𝐻−1(𝑞, 𝜃)𝑅(𝑞, 𝜃), (6.36b)

and to the parameterised prediction error, that is defined as 𝜀(𝑡, 𝜃) := 𝑤(𝑡) −
�̂�(𝑡 |𝑡 − 1; 𝜃),

𝜀(𝑡, 𝜃) =
(
𝐼 − 𝐺∞(𝜃)

)−1
𝜀(𝑡, 𝜃), (6.37)

with residual

𝜀(𝑡, 𝜃) = 𝐻−1(𝑞, 𝜃)
( (
𝐼 − 𝐺 (𝑞, 𝜃)

)
𝑤(𝑡) − 𝑅(𝑞, 𝜃)𝑟 (𝑡)

)
. (6.38)

For the true parameter vector 𝜃0, the parameterised prediction error 𝜀(𝑡, 𝜃0) re-
duces to the innovation 𝑒(𝑡) and 𝜃0, 𝜀(𝑡, 𝜃0) reduces to the driving noise process
𝑒(𝑡).
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The identification is performed by optimising a weighted least-squares cri-
terion

𝜃𝑁 = arg min
𝜃∈Θ

1
𝑁

𝑁∑︁
𝑡=1

𝜀⊤(𝑡, 𝜃)𝑆−1𝜀(𝑡, 𝜃), (6.39)

where the weighting matrix 𝑆 ≻ 0 is chosen by the user and ideally equal to the
covariance matrix of the noise.

Now conditions for consistency of the resulting estimate 𝑀 (𝜃𝑁 ) are formu-
lated.

Proposition 6.16 (Consistent estimate (Weerts et al., 2016)). The estim-
ated model 𝑀 (𝜃𝑁 ) is a consistent estimate if the following three conditions
are satisfied:

1. The network system is contained in the model set M, meaning that
∃ 𝜃0 ∈ Θ such that𝐺 (𝑞, 𝜃0) = 𝐺 (𝑞), 𝑅(𝑞, 𝜃0) = 𝑅(𝑞), and 𝐻 (𝑞, 𝜃0) =
𝐻 (𝑞).

2. The data are informative with respect to the model set M, meaning
that Ē{𝜀(𝑞, 𝜃1) − 𝜀(𝑞, 𝜃2)}⊤𝑆−1Ē{𝜀(𝑞, 𝜃1) − 𝜀(𝑞, 𝜃2)} = 0 implies
that �̂�𝑤 (𝑒𝑖𝜔 , 𝜃1) = �̂�𝑤 (𝑒𝑖𝜔, 𝜃2) and �̂�𝑟 (𝑒𝑖𝜔 , 𝜃1) = �̂�𝑟 (𝑒𝑖𝜔 , 𝜃2) for
almost all 𝜔 and for any two 𝜃1, 𝜃2 ∈ Θ.

3. The network model set M is globally network identifiable, meaning
that for any two 𝜃1, 𝜃2 ∈ Θ, 𝑊𝑤 (𝑞, 𝜃1) = 𝑊𝑤 (𝑞, 𝜃2) and 𝑊𝑟 (𝑞, 𝜃1) =
𝑊𝑟 (𝑞, 𝜃2) together imply 𝑀 (𝑞, 𝜃1) = 𝑀 (𝑞, 𝜃2).

Physical linear networks very often contain static elements, which cause direct
feedthrough terms and algebraic loops in the relations between the signals of
interest. Therefore, it is crucial to be able to incorporate these terms into the
identification procedure. The Joint-direct method is the only network identification
method that allows for algebraic loops in the network and incorporates them in
the identification procedure. This makes the Join-direct method interesting for
network identification of physical linear networks.

6.3.4 Weighted null-space fitting

Identification in dynamic networks often takes place through prediction error
methods, such as the joint-direct method presented in Section 6.3.3. One major
drawback of these methods is that the optimisation is nonconvex if the prediction
error is not affine in the parameters. As a result, the optimisation may lead to local
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optima instead of the global optimum. As an alternative, the WNSF algorithm
has been developed, which consists of multiple (weighted) least-squares steps
(Galrinho et al., 2019). First, an intermediate high-order model is estimated using
least-squares. Then a maximum-likelihood model reduction step is applied using
weighted least-squares. As the optimal weighting in the second step depends
on the parameters, an additional weighted least-squares step is needed to achieve
asymptotic efficiency. Additional iterations are possible in the third step to improve
the estimate for a finite sample size. Due to the several convex steps, this method
has attractive computational properties. Another advantage of this algorithm is
that the dynamics and the noise model are estimated simultaneously.

WNSF has first been developed for scalar polynomial models (Galrinho et al.,
2019) and was related to sequential least-squares, which is a multistep algorithm
for identification of module representations with a specific structure (Weerts et al.,
2018a). WNSF has also been extended to general module representations (Fonken
et al., 2020), including the estimation of the noise topology (Fonken et al., 2022).
In the latter situation, the role of the intermediate high-order model has been
revised to estimate the residuals instead of the network dynamics, in accordance
with Dankers (2019). In this section, the WNSF algorithm for scalar polynomial
models with a BJ model structure is presented (Galrinho et al., 2019).

Consider the (scalar) polynomial system as presented in Section 2.4.4

𝑦(𝑡) = 𝐺0(𝑞)𝑢(𝑡) + 𝐻0(𝑞)𝑒(𝑡), (6.40)

with stochastic signals 𝑢(𝑡) and 𝑒(𝑡), with stable and rational transfer functions
𝐺0(𝑞) and 𝐻0(𝑞), with 𝐻0(𝑞) stably invertible, and with a BJ structure according
to

𝐺0(𝑞) = 𝐿0(𝑞−1)
𝐹0(𝑞−1)

=
ℓ1𝑞
−1 + · · · + ℓ𝑚ℓ𝑞−𝑚ℓ

1 + 𝑓1𝑞−1 + · · · + 𝑓𝑚 𝑓 𝑞−𝑚 𝑓
(6.41a)

𝐻0(𝑞) = 𝐶0(𝑞−1)
𝐷0(𝑞−1)

=
1 + 𝑐1𝑞

−1 + · · · + 𝑐𝑚𝑐𝑞−𝑚𝑐
1 + 𝑑1𝑞−1 + · · · + 𝑑𝑚𝑑𝑞−𝑚𝑑

, (6.41b)

where 𝐹0(𝑞−1) and 𝐿0(𝑞−1) as well as𝐶0(𝑞−1) and 𝐷0(𝑞−1) do not have common
factors.

The corresponding parameterised model setM := {𝑀 (𝑞, 𝜃), 𝜃 ∈ Θ} consists
of models

𝑀 (𝜃) = {𝐿 (𝑞−1, 𝜃), 𝐹 (𝑞−1, 𝜃), 𝐶 (𝑞−1, 𝜃), 𝐷 (𝑞−1, 𝜃)}, (6.42)

with 𝜃 being the coefficients of the polynomials 𝐹 (𝑞−1, 𝜃), 𝐿 (𝑞−1, 𝜃), 𝐶 (𝑞−1, 𝜃),
and 𝐷 (𝑞−1, 𝜃), respectively, and where 𝐹 (𝑞−1, 𝜃), 𝐿 (𝑞−1, 𝜃), 𝐶 (𝑞−1, 𝜃), and
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𝐷 (𝑞−1, 𝜃) satisfy for all 𝜃 ∈ Θ the same assumptions as 𝐹0(𝑞−1), 𝐿0(𝑞−1),
𝐶0(𝑞−1), and 𝐷0(𝑞−1), respectively. Let the true system be denoted by S =

𝑀0 := 𝑀 (𝜃0).

Step 1 The true system S can alternatively be written as

𝐴0(𝑞)𝑦(𝑡) = 𝐵0(𝑞)𝑢(𝑡) + 𝑒(𝑡), (6.43)

where the transfer functions

𝐴0(𝑞) :=
1

𝐻0(𝑞)
, 𝐵0(𝑞) = 𝐺0(𝑞)

𝐻0(𝑞)
, (6.44)

are stable. Hence, an ARX model

𝐴(𝑞, 𝜂𝑛)𝑦(𝑡) = 𝐵(𝑞, 𝜂𝑛)𝑢(𝑡) + 𝑒(𝑡), (6.45)

with 𝜂𝑛 being the parameters of the polynomials 𝐴(𝑞, 𝜂𝑛) = 1 +∑𝑛
𝑘=1 𝑎𝑘𝑞

−𝑘 and
𝐵(𝑞, 𝜂𝑛) = ∑𝑛

𝑘=1 𝑏𝑘𝑞
−𝑘 , that is

𝜂𝑛 =
[
𝑎1 𝑎2 · · · 𝑎𝑛 𝑏1 𝑏2 · · · 𝑏𝑛

]
, (6.46)

with 𝜂𝑛0 the true parameter values, approximates (6.43) arbitrarily well if the
model order 𝑛 is chosen large enough.

The ARX model (6.45) can be rewritten in a linear regressor form as

𝑦(𝑡) =
(
𝜙𝑛 (𝑡)

)⊤
𝜂𝑛 + 𝑒(𝑡), (6.47)

with

𝜙𝑛 (𝑡) =



−𝑦(𝑡 − 1)
−𝑦(𝑡 − 2)

...

−𝑦(𝑡 − 𝑛)
𝑢(𝑡 − 1)
𝑢(𝑡 − 2)

...

𝑢(𝑡 − 𝑛)


. (6.48)

Now 𝜂𝑛 is estimated from (6.47) through least-squares as

𝜂𝑛𝑁 =
(
𝑅𝑛𝑁

)−1
𝑟𝑛𝑁 , (6.49)

with

𝑅𝑛𝑁 =
1
𝑁

𝑁∑︁
𝑡=𝑛+1

𝜙𝑛 (𝑡)
(
𝜙𝑛 (𝑡)

)⊤
, 𝑟𝑛𝑁 =

1
𝑁

𝑁∑︁
𝑡=𝑛+1

𝜙𝑛 (𝑡)𝑦(𝑡). (6.50)
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Step 2 The high-order ARX model is used to identify the original model (6.42).
The relations (6.41), and (6.44) can be rewritten as

𝐶0(𝑞)𝐴0(𝑞) − 𝐷0(𝑞) = 0, 𝐹0(𝑞)𝐵0(𝑞) − 𝐿0(𝑞)𝐴0(𝑞) = 0, (6.51)

or in regression form as
𝜂∞0 −𝑄𝑛 (𝜂∞0 )𝜃

0 = 0, (6.52)

with 𝜂∞0 the true parameter values of the infinitely high order ARX model (6.45)
exactly describing the true system (6.43).

Now 𝜃 is estimated from (6.52) through least-squares as

𝜃𝑙𝑠𝑁 =
(
𝑄⊤𝑛 (𝜂𝑛𝑁 )𝑄𝑛 (𝜂𝑛𝑁 )

)−1
𝑄⊤𝑛 (𝜂𝑛𝑁 )𝜂𝑛𝑁 , (6.53)

where 𝜂∞0 is substituted by its 𝑛th order estimate 𝜂𝑛
𝑁

obtained in Step 1 (6.49).

Step 3 In Step 2, the residuals of Step 1 have not been taken into account. This
can be done by replacing 𝐴0(𝑞) and 𝐵0(𝑞) in (6.51) by their estimates 𝐴(𝑞, 𝜂𝑛

𝑁
)

and 𝐵(𝑞, 𝜂𝑛
𝑁
), leading to

𝐶0(𝑞)𝐴(𝑞, 𝜂𝑛𝑁 ) − 𝐷0(𝑞) = 𝐶0(𝑞)
(
𝐴(𝑞, 𝜂𝑛𝑁 ) − 𝐴0(𝑞)

)
, (6.54a)

𝐹0(𝑞)𝐵(𝑞, 𝜂𝑛𝑁 ) − 𝐿0(𝑞)𝐴(𝑞, 𝜂𝑛𝑁 ) =
𝐹0(𝑞)

(
𝐵(𝑞, 𝜂𝑛𝑁 ) − 𝐵0(𝑞)

)
− 𝐿0(𝑞)

(
𝐴(𝑞, 𝜂𝑛𝑁 ) − 𝐴0(𝑞)

)
,

(6.54b)

or in regression form

𝜂𝑛𝑁 −𝑄𝑛 (𝜂𝑛𝑁 )𝜃0 = 𝑇𝑛 (𝜃0) (𝜂𝑛𝑁 − 𝜂∞0), (6.55)

on the basis of which 𝜃 is estimated through weighted least-squares as

𝜃𝑤𝑙𝑠𝑁 =
(
𝑄⊤𝑛 (𝜂𝑛𝑁 )𝑊𝑛 (𝜃𝑙𝑠𝑁 )𝑄𝑛 (𝜂

𝑛
𝑁 )

)−1
𝑄⊤𝑛 (𝜂𝑛𝑁 )𝑊𝑛 (𝜃𝑙𝑠𝑁 )𝜂

𝑛
𝑁 , (6.56)

where again 𝜂∞0 is replaced by its 𝑛th order estimate 𝜂𝑛
𝑁

obtained in Step 1 (6.49),
where 𝜃0 substituted its estimate 𝜃𝑙𝑠

𝑁
obtained in Step 2 (6.53), and with weighting

matrix
𝑊𝑛 (𝜃𝑙𝑠𝑁 ) =

(
𝑇𝑛 (𝜃𝑙𝑠𝑁 )

(
𝑅𝑛𝑁

)−1
𝑇⊤𝑛 (𝜃𝑙𝑠𝑁 )

)−1
. (6.57)

6.4 Conclusion

Several identification tools from two identification frameworks have been dis-
cussed that seem to be attractive for identification in diffusively coupled linear
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networks. First, ingredients from the identification of polynomial models have
been considered. These models are identified through prediction error methods
in the time domain. Data informativity and identifiability aspects have been dis-
cussed. For multivariable systems, MFDs and relative primeness play a crucial
role in identifiability. These ingredients are used to formulate data informativ-
ity and network identifiability conditions for the identification of physical linear
networks.

Second, identification tools from the network identification framework have
been discussed. In this context, linear dynamic networks that are described in the
module representation are considered. The joint-direct method can incorporate
algebraic loops in the identification procedure, which is again a prediction error
method, but with a newly defined predictor. This predictor is used to formulate
a prediction error identification method for the identification of physical linear
networks. Finally, the WNSF algorithm has been presented, which is a mul-
tistep convex (and therefore computationally attractive) algorithm for solving the
nonconvex optimisation problem resulting from prediction error methods. This
algorithm is adapted to the structure of physical linear networks to perform the
identification of these networks.





7 | Identification through a
dynamic network
approach

This chapter is a revised and extended version of

E.M.M. Kivits and P.M.J. Van den Hof. A dynamic network approach to
identification of physical systems. In Proceedings of the 58th IEEE Conference
on Decision and Control (CDC), pages 4533–4538, 2019.

System identification problems utilizing a prediction error approach are typ-
ically considered in an input/output setting, where a directional cause-effect
relationship is presumed and transfer functions are used to estimate the causal
relationships. In more complex interconnection structures, as e.g. appear-
ing in dynamic networks, the cause-effect relationships can be encoded by a
directed graph. Physical dynamic networks are most commonly described by
diffusive couplings between node signals, implying that cause-effect relation-
ships between node signals are symmetric and therefore can be represented by
an undirected graph. This chapter shows how (prediction error) identification
methods developed for linear dynamic networks can be configured to identify
components in (undirected) physical networks with known topology.

7.1 Introduction

Physical networks are only one example of dynamic networks, which are inter-
connections of dynamic units. Dynamic networks receive increasing attention
from a variety of scientific fields, since systems are growing in complexity and

187



188 Identification through a dynamic network approach

size. Other examples of dynamic networks are biological and chemical processes,
neural networks, consensus networks, synchronisation, social interactions, the
Internet, the stock market, and multiagent systems (Ren et al., 2005; Boccaletti
et al., 2006; Mesbahi and Egerstedt, 2010).

By representing a dynamic network as an interconnection structure of dynamic
transfer function modules (Gonçalves et al., 2007; Van den Hof et al., 2013), a
framework for system identification in dynamic networks has been developed by
Van den Hof et al. (2013), by extending classical closed-loop prediction error
methods. Other developments focus on topology estimation (Materassi and Inno-
centi, 2010; Chiuso and Pillonetto, 2012), full network identification (Weerts et al.,
2018c), local module identification (Materassi and Salapaka, 2015; Dankers et al.,
2016; Ramaswamy and Van den Hof, 2021), and network identifiability (Weerts
et al., 2018b; van Waarde et al., 2018; Gevers et al., 2019). In this framework,
dynamic networks are considered to consist of directed interconnections of dy-
namic modules that can be of any dynamic order. In contrast, physical systems are
typically considered as undirected dynamic interconnections between node sig-
nals, where the interconnections represent diffusive couplings (Cheng et al., 2017)
and the model is typically described by a vector difference equation of maximum
second order. The most well-known example is a mechanical mass-spring-damper
system, with the positions of masses as node (state) signals and the dynamics be-
ing described by a second-order vector difference equation. Identification of these
physical models can be done by converting the model into a state-space form,
after which matrix transformations (Friswell et al., 1999; Lopes dos Santos et al.,
2015) or eigenvalue decompositions (Fritzen, 1986; Luş et al., 2003) are applied
to estimate the model parameters. However, during these operations, the network
structure in the model is generally lost.

The overall objective of this research is to develop a comprehensive theory for
the identification of individual interconnections (modules) in physical (undirected)
networks, where the order of the individual modules is not restricted and possibly
correlated disturbances can be present. The objective includes questions like
which nodes to measure (sense) and which nodes to excite (actuate) in order to
identify a particular (local) module in the network or to identify the full dynamics
and topology of the network. In addition, the consistency and minimum variance
properties of estimates have to be specified. In this way, the (prediction error)
identification theory for directed networks is extended to undirected networks.

This chapter includes the first steps towards achieving the above-mentioned
objective, by addressing the question of how current identification methods can
be made applicable to undirected networks. The physical networks that will be
considered in this chapter are defined in Section 7.2. Currently, extensive tools
are under development for choosing which nodes to measure and/or excite for
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identifying a local module in directed networks. In order to use the insights into
the identification in directed networks also for physical/undirected networks, the
relationship between physical networks and directed networks needs to be clear.
This relationship is described in Section 7.3. Next, insights into the identification
in directed networks are applied to these networks for estimating the dynamics
of the full network (Section 7.4). Some first results are presented for addressing
the local identification problem (Section 7.5). An alternative formulation for both
full and local network identification is given in Section 7.6 . Finally, Section 7.7
concludes the chapter.

7.2 Physical network

7.2.1 Network model

Physical systems are often described by second-order vector differential equations.
They can be considered to consist of 𝐿 interconnected node signals 𝑤 𝑗 (𝑡), 𝑗 =
1, . . . , 𝐿, of which the behaviour is described according to

𝑀 𝑗 ¥𝑤 𝑗 (𝑡) + 𝐷 𝑗0 ¤𝑤 𝑗 (𝑡) +
∑︁
𝑘∈N𝑗

𝐷 𝑗𝑘

(
¤𝑤 𝑗 (𝑡) − ¤𝑤𝑘 (𝑡)

)
+ 𝐾 𝑗0𝑤 𝑗 (𝑡) +

∑︁
𝑘∈N𝑗

𝐾 𝑗𝑘
(
𝑤 𝑗 (𝑡) − 𝑤𝑘 (𝑡)

)
= 𝑢 𝑗 (𝑡), (7.1)

where 𝑀 𝑗 ≥ 0, 𝐷 𝑗𝑘 ≥ 0, 𝐾 𝑗𝑘 ≥ 0, 𝐷 𝑗 𝑗 = 0, 𝐾 𝑗 𝑗 = 0, N𝑗 is the set of indices
of node signals 𝑤𝑘 (𝑡) 𝑘 ≠ 𝑗 with connections to node signals 𝑤 𝑗 (𝑡), 𝑢 𝑗 (𝑡) are
the external input signals, and ¤𝑤 𝑗 (𝑡) and ¥𝑤 𝑗 (𝑡) are the first and second-order
derivatives of the node signals 𝑤 𝑗 (𝑡), respectively.

In physical systems, all connections are symmetric, meaning that the strength
of the connection from node signal 𝑤𝑖 (𝑡) to node signal 𝑤𝑘 (𝑡) is equal to the
strength of the connection (in opposite direction) from node signal 𝑤𝑘 (𝑡) to node
signal 𝑤𝑖 (𝑡). This means that the interconnections of the nodes are diffusive
couplings, which emerge in (7.1) from the symmetric connections: 𝐷 𝑗𝑘 = 𝐷𝑘 𝑗
and 𝐾 𝑗𝑘 = 𝐾𝑘 𝑗 ∀ 𝑗 , 𝑘 .

An example of a physical system with diffusive couplings is the mass-spring-
damper system shown in Figure 7.1, in which masses 𝑀 𝑗 are interconnected
through dampers 𝐷 𝑗𝑘 and springs 𝐾 𝑗𝑘 with 𝑘 ≠ 0 and are connected to the earth
with dampers 𝐷 𝑗0 and springs 𝐾 𝑗0. The positions of the masses are the signals
of interest and therefore chosen to be the node signals: 𝑤 𝑗 (𝑡) := 𝑥 𝑗 (𝑡). The
couplings between the masses are diffusive, because springs and dampers are
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Figure 7.1: A network of masses (𝑀 𝑗), dampers (𝐷 𝑗𝑘), and springs (𝐾 𝑗𝑘).

symmetric components. Further, a network as shown in Figure 7.1 would require
at least a two-dimensional position vector 𝑤 𝑗 (𝑡), but without loss of generality,
we will restrict our attention to scalar-valued node signals 𝑤 𝑗 (𝑡).

7.2.2 Higher-order network

A physical system, such as the mass-spring-damper system in Section 7.2, is
typically of second order when all node signals are collected in 𝑤(𝑡). The theory
can easily be extended to higher-order terms, which is useful in, for example,
immersion as explained in Section 7.5.2.

Definition 7.1 (Physical network). A physical network is a network con-
sisting of 𝐿 node signals 𝑤1(𝑡), . . . , 𝑤𝐿 (𝑡) interconnected through diffusive
couplings and with possibly connections of nodes to a ground node. The
behaviour of the node signals 𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿, is described by

𝑛𝑋∑︁
ℓ=0

x 𝑗 𝑗 ,ℓ𝑤 (ℓ )𝑗 (𝑡) +
∑︁
𝑘∈N𝑗

𝑛𝑌∑︁
ℓ=0

y 𝑗𝑘,ℓ [𝑤 (ℓ )𝑗 (𝑡) − 𝑤
(ℓ )
𝑘
(𝑡)] = 𝑢 𝑗 (𝑡), (7.2)

with 𝑛𝑋 and 𝑛𝑌 the order of the dynamics in the network, with real-valued
coefficients x 𝑗 𝑗 ,ℓ ≥ 0, y 𝑗𝑘,ℓ ≥ 0, y 𝑗𝑘,ℓ = y𝑘 𝑗,ℓ , where 𝑤 (ℓ )

𝑗
(𝑡) is the ℓ-th

derivative of 𝑤 𝑗 (𝑡), and where 𝑢 𝑗 (𝑡) is the external signal entering the 𝑗-th
node.

The graphical interpretation of the coefficients is as follows: x 𝑗 𝑗 ,𝑛 represent
the components intrinsically related to the nodes 𝑤 𝑗 ; x 𝑗 𝑗 ,ℓ with ℓ ≠ 𝑛 represent
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the components connecting the node 𝑤 𝑗 to the ground node (or earth); and y 𝑗𝑘,ℓ
represent the components in the diffusive couplings between the nodes 𝑤 𝑗 (𝑡)
and 𝑤𝑘 (𝑡). Further, every matrix 𝑋ℓ composed of elements 𝑥 𝑗 𝑗 ,ℓ := x 𝑗 𝑗 ,ℓ is
diagonal and every matrix 𝑌ℓ composed of elements 𝑦 𝑗 𝑗 ,ℓ :=

∑
𝑘∈N𝑗 y 𝑗𝑘,ℓ and

𝑦 𝑗𝑘,ℓ := −y 𝑗𝑘,ℓ for 𝑘 ≠ 𝑗 is Laplacian1 representing an undirected graph of a
specific physical component (i.e. the diffusive couplings of a specific order).

7.2.3 Discretisation

For the purpose of identification in a discrete-time setting, the continuous-time
network is converted to an equivalent discrete-time network.

Proposition 7.2 (Discrete time). By using the approximation

𝑑𝑤(𝑡)
𝑑𝑡

=
𝑤(𝑡𝑑𝑇𝑠) − 𝑤((𝑡𝑑 − 1)𝑇𝑠)

𝑇𝑠
, (7.3)

the continuous time physical network (7.2) can be approximated in discrete
time by

𝑛𝑋∑︁
ℓ=0

x̄ 𝑗 𝑗 ,ℓ𝑞−ℓ𝑤 𝑗 (𝑡𝑑) +
∑︁
𝑘∈N𝑗

𝑛𝑌∑︁
ℓ=0

ȳ 𝑗𝑘,ℓ𝑞−ℓ [𝑤 𝑗 (𝑡𝑑) − 𝑤𝑘 (𝑡𝑑)] = 𝑢 𝑗 (𝑡𝑑), (7.4)

with 𝑞−1 the shift operator, meaning 𝑞−1𝑤 𝑗 (𝑡𝑑) = 𝑤 𝑗 (𝑡𝑑 − 1), and with
matrices

x̄ 𝑗 𝑗 ,ℓ = (−1)ℓ ∑𝑛𝑋
𝑖=ℓ

( 𝑖
ℓ

)
𝑇−𝑖𝑠 x 𝑗 𝑗 ,𝑖 , (7.5a)

ȳ 𝑗𝑘,ℓ = (−1)ℓ ∑𝑛𝑌
𝑖=ℓ

( 𝑖
ℓ

)
𝑇−𝑖𝑠 y 𝑗𝑘,𝑖 , (7.5b)

where
( 𝑖
ℓ

)
is a binomial coefficient and where 𝑇𝑠 is the time interval defined

by 𝑡 := 𝑡𝑑𝑇𝑠.

Proof: Equation (7.2) is discretised by a similar approach as by Ramos et al.
(2013) by using a backward shift (7.3). ■

In the sequel, 𝑡 is used for 𝑡𝑑 . The expressions for the node signals (7.4) can
be combined in a matrix equation describing the network as

�̄� (𝑞−1)𝑤(𝑡) + 𝑌 (𝑞−1)𝑤(𝑡) = 𝑢(𝑡), (7.6)

1A Laplacian matrix is a symmetric matrix with nonpositive off-diagonal elements and with
nonnegative diagonal elements that are equal to the negative sum of all other elements in the same
row (or column) (Mesbahi and Egerstedt, 2010).
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with �̄� (𝑞−1) and 𝑌 (𝑞−1) polynomial matrices in the shift operator 𝑞−1 and com-
posed of elements

�̄� 𝑗𝑘 (𝑞−1) =
{∑𝑛𝑋

ℓ=0 x̄ 𝑗 𝑗 ,ℓ𝑞−ℓ , if 𝑘 = 𝑗

0, otherwise
(7.7a)

𝑌 𝑗𝑘 (𝑞−1) =


∑
𝑚∈N𝑗

∑𝑛𝑌
ℓ=0 ȳ 𝑗𝑚,ℓ𝑞−ℓ , if 𝑘 = 𝑗

−∑𝑛𝑌
ℓ=0 ȳ 𝑗𝑘,ℓ𝑞−ℓ , if 𝑘 ∈ N𝑗

0, otherwise.
(7.7b)

Note that �̄� (𝑞−1) is diagonal and 𝑌 (𝑞−1) is Laplacian, implying that the
structural properties of (7.2) are maintained in (7.6)-(7.7).

7.2.4 Identification set-up

In order to connect with the system identification framework formulated for dy-
namic networks, we will use a slightly different, but equivalent, network descrip-
tion for identification purposes.

Proposition 7.3 (Physical network). A physical network (7.6) with �̄� (𝑞−1)
diagonal and 𝑌 (𝑞−1) Laplacian, can uniquely be described by

𝑄(𝑞−1)𝑤(𝑡) = 𝑃(𝑞−1)𝑤(𝑡) + 𝑢(𝑡), (7.8)

with diagonal polynomial matrix𝑄(𝑞−1) := �̄� (𝑞−1)+diag
(
𝑌 (𝑞−1)

)
and hol-

low and symmetric polynomial matrix 𝑃(𝑞−1) := −𝑌 (𝑞−1) + diag
(
𝑌 (𝑞−1)

)
,

with diag
(
𝑌 (𝑞−1)

)
the diagonal of 𝑌 (𝑞−1).

Proof: The definitions of 𝑄(𝑞−1) and 𝑃(𝑞−1) show that 𝑢(𝑡) =
(
𝑄(𝑞−1) −

𝑃(𝑞−1)
)
𝑤(𝑡) =

(
�̄� (𝑞−1) + 𝑌 (𝑞−1)

)
𝑤(𝑡). ■

Note that there exists a one-to-one relationship between
(
�̄� (𝑞−1), 𝑌 (𝑞−1)

)
and(

𝑃(𝑞−1), 𝑄(𝑞−1)
)
.

In the identification setting that will be considered, the node signals might be
affected by a user-applied excitation signal and subject to a disturbance signal. This
is achieved by splitting the input signal as 𝑢(𝑡) := 𝐵𝑟 (𝑡)+𝐹 (𝑞)𝑒(𝑡) with 𝐵 a known
binary and diagonal matrix, 𝐹 (𝑞) a rational matrix, 𝑟 (𝑡) a known excitation signal,
and 𝑒(𝑡) a stationary white noise process. Applying this partitioning to (7.8) gives
the following identification set-up:
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Definition 7.4 (Identification set-up). The physical network that will be
considered during identification is defined as

𝑄(𝑞−1)𝑤(𝑡) = 𝑃(𝑞−1)𝑤(𝑡) + 𝐵𝑟 (𝑡) + 𝐹 (𝑞)𝑒(𝑡), (7.9)

with

1. 𝑄(𝑞−1) ∈ Q := {𝑄 ∈ R𝐿×𝐿 [𝑞−1] | 𝑞𝑖 𝑗 (𝑞−1) = 0 for 𝑖 ≠ 𝑗}.

2. 𝑃(𝑞−1) ∈ P := {𝑃 ∈ R𝐿×𝐿 [𝑞−1] | 𝑝𝑖 𝑗 (𝑞−1) = 𝑝 𝑗𝑖 (𝑞−1), 𝑝𝑖𝑖 (𝑞−1) =
0 ∀𝑖, 𝑗}.

3. 𝐵 ∈ B := {𝐵 ∈ R𝐿×𝐿 | 𝑏𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗 , 𝑏𝑖𝑖 ∈ {0, 1} ∀𝑖}.

4. 𝐹 (𝑞) ∈ F := {𝐹 ∈ R𝐿×𝐿 (𝑞) | 𝐹 monic, stable, and stably invertible}.

Further, the network is assumed to be well-posed and stable, implying that(
𝑄(𝑞−1) − 𝑃(𝑞−1)

)−1 exists and is proper and stable.

In order to address the questions formulated in Section 7.1, we will now show
how this network description can be written as a so-called module representation,
which is typically used in prediction error identification (Van den Hof et al., 2013).

7.3 Module representation

A commonly used description of dynamic networks is the module representation
(Van den Hof et al., 2013), in which a network is considered to be the intercon-
nection of modules through measured node signals. Every node signal 𝑤 𝑗 (𝑡) is
described by

𝑤 𝑗 (𝑡) =
∑︁
𝑘∈N𝑗

𝐺 𝑗𝑘 (𝑞)𝑤𝑘 (𝑡) + 𝑅 𝑗 𝑗 (𝑞)𝑟 𝑗 (𝑡) +
𝐿∑︁
𝑝=1

𝐻 𝑗 𝑝 (𝑞)𝑒𝑝 (𝑡), (7.10)

where 𝐺 𝑗𝑘 (𝑞), 𝑅 𝑗 𝑗 (𝑞) and 𝐻 𝑗 𝑝 (𝑞) are proper rational transfer functions, 𝑟 𝑗 (𝑡)
are known external excitation signals, and 𝑒𝑝 (𝑡) are white noises. The module
representation does not allow for self-loops, implying that 𝐺 𝑗 𝑗 (𝑞) = 0. The
expressions for the node signals (7.10) can be combined in a matrix equation
describing the network as

𝑤(𝑡) = 𝐺 (𝑞)𝑤(𝑡) + 𝑅(𝑞)𝑟 (𝑡) + 𝐻 (𝑞)𝑒(𝑡), (7.11)

with matrices 𝐺 (𝑞), 𝑅(𝑞), and 𝐻 (𝑞) composed of elements 𝐺 𝑗𝑘 (𝑞), 𝑅 𝑗 𝑗 (𝑞), and
𝐻 𝑗 𝑝 (𝑞), respectively, and where 𝑤(𝑡), 𝑟 (𝑡), and 𝑒(𝑡) are vectorised versions of
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Figure 7.2: Module representation of a physical network.

𝑤 𝑗 (𝑡), 𝑟 𝑗 (𝑡), and 𝑒𝑝 (𝑡), respectively. Note that 𝐺 (𝑞) is hollow, 𝑅(𝑞) is diagonal,
and 𝐻 (𝑞) ∈ F . In addition,

(
𝐼 − 𝐺 (𝑞)

)−1 must be stable to ensure network
stability and 𝐼 − 𝐺 (𝑞) must be proper and full rank to ensure the well-posedness
of the network.

The relationship between the module representation and physical networks is
as follows:

Definition 7.5 (Equivalent network models). A physical network (7.9)
and a module representation (7.11) are called equivalent if the following
equalities hold:

𝐺 (𝑞) = 𝑄−1(𝑞−1)𝑃(𝑞−1), (7.12a)
𝑅(𝑞) = 𝑄−1(𝑞−1)𝐵, (7.12b)
𝐻 (𝑞) = 𝑄−1(𝑞−1)𝑄0𝐹 (𝑞), (7.12c)

with 𝑄0 = lim𝑧→∞𝑄(𝑧).

As a result, physical networks lead to module representations that satisfy the
following particular symmetric properties: in the factorisations (7.12), 𝐺 𝑗𝑘 (𝑞)
and 𝐺𝑘 𝑗 (𝑞) have the same numerator for all 𝑗 , 𝑘; 𝐺 𝑗𝑘 (𝑞) and 𝑅 𝑗 𝑗 (𝑞) have the
same denominator for all 𝑘; 𝐺 𝑗𝑘 (𝑞) and 𝐻 𝑗 𝑗 (𝑞) have the same denominator for
all 𝑘 if 𝐶 (𝑞) is polynomial.

The structure of 𝐺 (𝑞) and 𝑅(𝑞) for a physical network with two nodes is
illustrated by Figure 7.2. It shows that the modules 𝐺12(𝑞) =

𝑝12 (𝑞−1 )
𝑞11 (𝑞−1 ) and

𝐺21(𝑞) = 𝑝12 (𝑞−1 )
𝑞22 (𝑞−1 ) between 𝑤1(𝑡) and 𝑤2(𝑡) have the same numerator related to

their interconnection and a different denominator related to the node they enter.
It can also be seen that both paths entering node 𝑤2(𝑡) indeed have the same
denominator. Since 𝐺12(𝑞) and 𝐺21(𝑞) have the same numerator, they will either
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be both present or both absent, which is in accordance with the fact that they
represent a single physical interconnection.

Furthermore, the connections to the earth are only present in the denominators,
because they are only present in 𝑄(𝑞−1). This means that they do not have an
effect on the topology in the module representation, although they are part of the
topology in the physical network.

Next, the relationship between the module representation and physical net-
works is specified further, leading to a unique mapping between the models.

Lemma 7.6 (left matrix-fraction description (LMFD)). Consider two
left coprime matrices 𝑄(𝑞−1) ∈ Q and 𝑃(𝑞−1) ∈ P. Given the LMFD
𝑄(𝑞−1)−1𝑃(𝑞−1), 𝑄(𝑞−1) and 𝑃(𝑞−1) are unique up to a scalar factor.

Proof: According to Kailath (1980), the LMFD of any two polynomial and
left coprime matrices is unique up to a unimodular matrix multiplication. In order
to preserve the diagonality of 𝑄(𝑞−1) and symmetry of 𝑃(𝑞−1), the unimodular
matrix is restricted to be diagonal with equal elements. ■

Using Lemma 7.6, the following result for equivalent network models is for-
mulated.

Proposition 7.7 (Unique equivalent network models). Given a module
representation (7.11) with

1. 𝐺 (𝑞) ∈ G := {𝐺 ∈ R𝐿×𝐿 (𝑞) | ∃𝑄 ∈ Q, 𝑃 ∈ P that satisfy 𝐺 =

𝑄−1𝑃 with 𝑄, 𝑃 left coprime}.

2. 𝑅(𝑞) ∈ R := {𝑅 ∈ R𝐿×𝐿 (𝑞) | ∃𝑄 ∈ Q, 𝐵 ∈ B that satisfy 𝑅 = 𝑄−1𝐵}.

3. 𝐻 (𝑞) ∈ F .

There exists a unique equivalent network model (7.9) with
(
𝑄(𝑞−1), 𝑃(𝑞−1),

𝐵, 𝐹 (𝑞)
)
∈ Q × P × B × F if the following conditions are satisfied:

1. 𝑄(𝑞−1) and 𝑃(𝑞−1) are left coprime.

2. 𝐵 is nonzero.

Proof: According to Lemma 7.6, the LMFD (7.12a) is unique up to a scalar
factor if 𝑄(𝑞−1) and 𝑃(𝑞−1) are left coprime. If, in addition, 𝐵 is nonzero, this
scalar factor is fixed to 1 in order to preserve binarity in 𝐵. 𝐹 (𝑞) ∈ F is uniquely
obtained from (7.12c). ■
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7.4 Full network identification

The module representation of a physical network can now be used to identify
a dynamic network on the basis of measured data. The main difference with a
general prediction error network identification problem (Weerts et al., 2018c),
is that the symmetric structure of the interconnections has to be accommodated.
This symmetry can simply be encoded in the parameterised model set that will
be used for identification. This identification can be directed towards identifying
particular dynamic modules while the topology of the network is given (it is known
which nodes are interconnected) or towards identifying a full network in which
all interconnections are being identified.

Definition 7.8 (Data generating network). Consider a data generating
network S (7.9), defined according to

𝑄0(𝑞−1)𝑤(𝑡) = 𝑃0(𝑞−1)𝑤(𝑡) + 𝐵0𝑟 (𝑡) + 𝐹0(𝑞)𝑒(𝑡), (7.13)

with 𝑄0(𝑞−1) ∈ Q, 𝑃0(𝑞−1) ∈ P, 𝐵0 ∈ B, 𝐹0(𝑞) ∈ F , external excitations
𝑟 (𝑡) being uncorrelated with white noise process 𝑒(𝑡) with bounded moments
of order higher than 4a.

aThis is the typical assumption for consistency of prediction error estimation (Ljung,
1999).

Definition 7.9 (Network model structure). A network model structure
used for identifying (7.13) is defined as a set of parameterised matrices

M := {𝑄(𝑞−1, 𝜃), 𝑃(𝑞−1, 𝜃), 𝐵, 𝐹 (𝑞, 𝜃), 𝜃 ∈ Θ}, (7.14)

with 𝑄(𝑞−1, 𝜃) ∈ Q, 𝑃(𝑞−1, 𝜃) ∈ P, 𝐹 (𝑞, 𝜃) ∈ F , and with known 𝐵 = 𝐵0.

Since𝑄(𝑞−1, 𝜃) is not monic, special attention is required for the identification
set-up. We denote the parameterised residual 𝜀(𝑡, 𝜃) as

𝜀(𝑡, 𝜃) :=
(
𝑄0(𝜃) − 𝑃0(𝜃)

)−1
𝐹−1(𝑞, 𝜃)

[
𝑄(𝑞−1, 𝜃) − 𝑃(𝑞−1, 𝜃)

]
𝑤(𝑡)

−
(
𝑄0(𝜃) − 𝑃0(𝜃)

)−1
𝐹−1(𝑞, 𝜃)𝐵𝑟 (𝑡). (7.15)

Theorem 7.10 (Joint-direct method). Consider a network that has gen-
erated data according to (7.13) with 𝐹0(𝑞) := 𝐹0(𝑞−1) polynomial and
an “ARMAX” network model structure according to (7.14) with 𝐹 (𝑞, 𝜃) :=
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𝐹 (𝑞−1, 𝜃) being polynomial. The joint-direct method with identification
criterion

𝜃𝑁 = arg min
𝜃∈Θ

1
𝑁

𝑁∑︁
𝑡=1

𝜀⊤(𝑡, 𝜃)𝜀(𝑡, 𝜃), (7.16)

with 𝜀(𝑡, 𝜃) given by (7.15), results in consistent estimates of the transfer
functions 𝐺 (𝑞, 𝜃𝑁 ), 𝑅(𝑞, 𝜃𝑁 ), and 𝐻 (𝑞, 𝜃𝑁 ) determined by

𝐺 (𝑞, 𝜃𝑁 ) = 𝑄−1(𝑞−1, 𝜃𝑁 )𝑃(𝑞−1, 𝜃𝑁 ), (7.17a)
𝑅(𝑞, 𝜃𝑁 ) = 𝑄−1(𝑞−1, 𝜃𝑁 )𝐵, (7.17b)
𝐻 (𝑞, 𝜃𝑁 ) = 𝑄−1(𝑞−1, 𝜃𝑁 )𝑄0(𝜃𝑁 )𝐹 (𝑞−1, 𝜃𝑁 ), (7.17c)

provided that all of the following conditions hold:

1. The data generating network S is in the model setM.

2. The data are sufficiently informative (Weerts et al., 2016).

3. The model setM is globally network identifiable at S (Weerts et al.,
2018b).

If in addition, there exists at least one external excitation signal 𝑟 (𝑡) (i.e.
𝐵0 ≠ 0), and𝑄0, 𝑃0 are left coprime, then the consistency result also applies
to the polynomials 𝑄(𝑞−1, 𝜃𝑁 ), 𝑃(𝑞−1, 𝜃𝑁 ), 𝐹 (𝑞−1, 𝜃𝑁 ).

Proof: If 𝐹0(𝑞) := 𝐹0(𝑞−1) and 𝐹 (𝑞, 𝜃) := 𝐹 (𝑞−1, 𝜃) are polynomial, the
network model structure is “ARMAX” and the identification problem is similar
to the joint-direct identification method of Weerts et al. (2016), for the particular
situation that 𝑃0 and 𝑃(𝑞−1, 𝜃) are symmetric. Consistency of the polynomial
terms follows from Proposition 7.7. ■

Remark 7.11 (Properness). The estimated module dynamics is proper but
not necessarily strictly proper. This has consequences for the conditions
under which the network is identifiable. In the presence of algebraic loops,
additional conditions on the presence of excitation signals need to be satis-
fied for achieving network identifiability (Weerts et al., 2018b, 2016).

Proposition 7.12 (Linear regression). Consider a network that has gener-
ated data according to (7.13) with 𝐹0(𝑞) := 𝐼, 𝐵0 ≠ 0, 𝑄0

0 = 𝐼, 𝑃0
0 = 0, and

an “ARX” network model structure according to (7.14), that is 𝐹 (𝑞, 𝜃) := 𝐼,
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with S ∈ M. Under the conditions of Theorem 7.10, the polynomials
𝑃(𝑞−1) and 𝑄(𝑞−1) are consistently estimated through a linear regression
according to

𝜃𝑁 =

[
1
𝑁

∑︁
𝑡

𝜑(𝑡)𝜑⊤(𝑡)
]−1 [

1
𝑁

∑︁
𝑡

𝜑(𝑡)𝐵𝑟 (𝑡)
]
, (7.18)

with 𝜑(𝑡) defined as

𝜑⊤(𝑡) =
[
𝜑⊤
𝑄0
(𝑡) · · · 𝜑⊤

𝑄𝑛𝑄
(𝑡) 𝜑⊤

𝑃0
(𝑡) · · · 𝜑⊤

𝑃𝑛𝑃
(𝑡)

]
, (7.19)

with

𝜑⊤𝑄𝑖 (𝑡) =

𝑞−𝑖𝑤1(𝑡)

· · ·
𝑞−𝑖𝑤𝐿 (𝑡)

 ,
𝜑⊤𝑃𝑖 (𝑡) = −

©«


𝑍0,𝐿−1
𝑞−𝑖𝑊2,𝐿 (𝑡)

𝑞−𝑖𝑑𝐿−1(𝑤1(𝑡))




𝑍1,𝐿−2
𝑞−𝑖𝑊3,𝐿 (𝑡)

𝑞−𝑖𝑑𝐿−2(𝑤2(𝑡))

 · · ·


𝑍𝐿−2,1
𝑞−𝑖𝑊𝐿,𝐿 (𝑡)

𝑞−𝑖𝑑1(𝑤𝐿−1(𝑡))

ª®¬ ,
where 𝑍 𝑗 ,𝑘 is a matrix of size 𝑗 × 𝑘 with all elements equal to 0,

𝑊 𝑗 ,𝐿 (𝑡) =
[
𝑤 𝑗 (𝑡) · · · 𝑤𝐿 (𝑡)

]
, (7.20)

and

𝑑𝑖
(
𝑤 𝑗 (𝑡)

)
=


𝑤 𝑗 (𝑡)

. . .

𝑤 𝑗 (𝑡)

 , (7.21)

which is a square (and diagonal) matrix of dimension 𝑖 × 𝑖 with 𝑖 = 𝐿 − 𝑗 .

Proof: The proof is provided in Appendix 7.A. ■

The symmetry in 𝑃(𝑞−1, 𝜃) is included in the parameterisation and therefore,
the resulting optimisation problem is unconstrained. That is, the identification
procedure of the network results in an unconstrained least squares optimisation
problem in which the structure of 𝑃(𝑞−1, 𝜃) is taken into account.
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7.5 Local network identification

7.5.1 Problem definition

The local identification problem in networks is in general formulated as the ob-
jective of identifying a single module in the network (Van den Hof et al., 2013;
Materassi and Salapaka, 2015; Dankers et al., 2016; Ramaswamy and Van den
Hof, 2021). However, due to the symmetry in the symmetric couplings in the net-
works considered in this chapter, it is attractive to formulate the local identification
problem slightly differently.

Definition 7.13 (Local identification problem). The local identification
problem concerns the identification of a single coupling between two nodes
in the physical network.

A single coupling in the physical network is described by two modules in
the module representation, meaning that the objective is to identify two mod-
ules simultaneously. For the nodes 𝑤 𝑗 and 𝑤𝑘 , these modules are 𝐺 𝑗𝑘 (𝑞) =
𝑞−1
𝑗 𝑗
(𝑞−1)𝑝 𝑗𝑘 (𝑞−1) and 𝐺𝑘 𝑗 (𝑞) = 𝑞−1

𝑘𝑘
(𝑞−1)𝑝𝑘 𝑗 (𝑞−1), which contain the full in-

formation on how the nodes 𝑤 𝑗 and 𝑤𝑘 interact with each other. Due to the
symmetry in 𝑃(𝑞−1), 𝑝 𝑗𝑘 (𝑞−1) = 𝑝𝑘 𝑗 (𝑞−1) and hence, this identification prob-
lem concerns the identification of three polynomials: 𝑞 𝑗 𝑗 (𝑞−1), 𝑞𝑘𝑘 (𝑞−1), and
𝑝 𝑗𝑘 (𝑞−1). In order to take account of the symmetric properties of physical network
interconnections, the currently available methods for local module identification
need to be reconsidered.

7.5.2 Immersion

In order to decide which of the node signals need to be taken into account for the
identification of a local module, the procedure introduced by Dankers et al. (2016)
suggests to remove (immerse) node signals from the network, while adapting the
dynamic modules such that the retained node signals are kept invariant. If node
signals can be removed (immersed) while the target module remains invariant,
the immersed node signals can be discarded in the identification. The results for
target module invariance under immersion are described by Dankers et al. (2016).
Applying these results to the two modules 𝐺 𝑗𝑘 (𝑞) and 𝐺𝑘 𝑗 (𝑞) simultaneously,
leads to the following conditions on the graph of the network:

1. Every loop around 𝑤 𝑗 (𝑡) and every loop around 𝑤𝑘 (𝑡) needs to pass through
a retained node.



200 Identification through a dynamic network approach

2. Every parallel path2 from 𝑤 𝑗 (𝑡) to 𝑤𝑘 (𝑡) and every parallel path from 𝑤𝑘 (𝑡)
to 𝑤 𝑗 (𝑡) needs to pass through a retained node.

Because of the symmetric properties of a physical network, these conditions lead
to the following result:

Proposition 7.14 (Immersion in physical network). Immersion in module
representations of physical networks keeps two modules𝐺 𝑗𝑘 (𝑞) and𝐺𝑘 𝑗 (𝑞)
invariant if 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡) and all their neighbour nodes are retained.

Proof: Since 𝑃(𝑞−1) is symmetric, all nodes are bilaterally connected. There-
fore, all loops around 𝑤 𝑗 (𝑡) and all loops around 𝑤𝑘 (𝑡) contain a retained node
if and only if all neighbour nodes of 𝑤 𝑗 (𝑡) and all neighbour nodes of 𝑤𝑘 (𝑡) are
retained, respectively. As a consequence, all parallel paths from 𝑤 𝑗 (𝑡) to 𝑤𝑘 (𝑡)
and from 𝑤𝑘 (𝑡) to 𝑤 𝑗 (𝑡) contain a retained node as well. ■

This proposition shows that for the identification of a single coupling between
two nodes 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡), all nodes that are not neighbours of 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡)
can be immersed from the network.

Remark 7.15. Note that immersion of nodes can lead to higher-order dy-
namics in the modules after immersion. This order increase can simply be
accommodated in the module representation of physical networks, i.e. the
modules do not need to be restricted to second-order dynamics.

Remark 7.16. By using immersion, nodes are removed from the network
and the identification problem can be solved locally, meaning that not all
nodes are needed and not all dynamics in the network needs to be modelled
in order to identify the dynamics of a specific coupling in the network.

7.5.3 Identification set-up

After immersion, the system representation is as follows:
𝑤 𝑗 (𝑡)
𝑤𝑘 (𝑡)
𝑤D (𝑡)

 =


0 𝐺 𝑗𝑘 (𝑞) 𝐺 𝑗D (𝑞)
𝐺𝑘 𝑗 (𝑞) 0 𝐺𝑘D (𝑞)
�̆�D 𝑗 (𝑞) �̆�D𝑘 (𝑞) �̆�DD (𝑞)



𝑤 𝑗 (𝑡)
𝑤𝑘 (𝑡)
𝑤D (𝑡)

 + �̆�(𝑞)𝑟 (𝑡) + �̆� (𝑞)𝑒(𝑡),
(7.22)

2A parallel path from 𝑤 𝑗 (𝑡) to 𝑤𝑘 (𝑡) is a path from 𝑤 𝑗 (𝑡) to 𝑤𝑘 (𝑡) that does not pass through
𝐺𝑘 𝑗 (𝑞).
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where 𝑤D (𝑡) is the set of node signals that are being retained, i.e. the neighbour
node signals of 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡). Following the local identification approaches of
Ramaswamy and Van den Hof (2021) and Weerts et al. (2016), (7.22) are used for
locally identifying the two modules𝐺 𝑗𝑘 (𝑞) and𝐺𝑘 𝑗 (𝑞). The output signals of this
local identification problem are 𝑤𝑦 (𝑡) =

[
𝑤 𝑗 (𝑡) 𝑤𝑘 (𝑡)

]⊤ and the input signals
are 𝑤𝑚(𝑡) =

[
𝑤⊤𝑦 (𝑡) 𝑤⊤D (𝑡)

]⊤ and 𝑟 (𝑡) =
[
𝑟 𝑗 (𝑡) 𝑟𝑘 (𝑡)

]⊤. This means that the
first two rows of (7.22) will be estimated. In order to do so, the disturbances
affecting 𝑤D (𝑡) have to be uncorrelated with the disturbances affecting 𝑤 𝑗 (𝑡) and
𝑤𝑘 (𝑡), but the disturbances affecting 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡) can be mutually correlated,
as well as the disturbances affecting 𝑤D (𝑡). This identification set-up has the
parameterised residual

𝜀(𝑡, 𝜃) =
(
�̃�0(𝜃) − �̃�0(𝜃)

)−1
�̃�−1(𝑞, 𝜃)

[
�̃�(𝑞−1, 𝜃)𝑤𝑦 (𝑡) − �̃�(𝑞−1, 𝜃)𝑤𝑚(𝑡)

]
−
(
�̃�0(𝜃) − �̃�0(𝜃)

)−1
�̃�−1(𝑞, 𝜃)�̃�𝑟 (𝑡), (7.23)

with

�̃�(𝑞−1, 𝜃) =
[
𝑞 𝑗 𝑗 (𝑞−1, 𝜃)

𝑞𝑘𝑘 (𝑞−1, 𝜃)

]
, (7.24a)

�̃�(𝑞−1, 𝜃) =
[

0 𝑝 𝑗𝑘 (𝑞−1, 𝜃) 𝑝 𝑗D (𝑞−1, 𝜃)
𝑝𝑘 𝑗 (𝑞−1, 𝜃) 0 𝑝𝑘D (𝑞−1, 𝜃)

]
, (7.24b)

�̃� =

[
𝑏 𝑗 𝑗

𝑏𝑘𝑘

]
, (7.24c)

�̃� (𝑞, 𝜃) =
[
𝐹𝑗 𝑗 (𝑞, 𝜃) 𝐹𝑗𝑘 (𝑞, 𝜃)
𝐹𝑘 𝑗 (𝑞, 𝜃) 𝐹𝑘𝑘 (𝑞, 𝜃)

]
. (7.24d)

The results of Ramaswamy and Van den Hof (2021) and Weerts et al. (2016)
for single module identification can now be used to formulate conditions for
consistent estimation of the two modules 𝐺 𝑗𝑘 (𝑞) and 𝐺𝑘 𝑗 (𝑞) simultaneously. If
in the original network, the disturbances affecting 𝑤D (𝑡) are uncorrelated to the
disturbances affecting 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡), then the identification set-up described
above will lead to consistent estimates 𝐺 𝑗𝑘 (𝑞, 𝜃𝑁 ) and 𝐺𝑘 𝑗 (𝑞, 𝜃𝑁 ) under the
usual conditions on data informativity (sufficient excitation), as formalised by
Ramaswamy and Van den Hof (2021).

Once 𝐺 𝑗𝑘 (𝑞) and 𝐺𝑘 𝑗 (𝑞) have been identified consistently, the physical com-
ponents in the network model (7.2) can be retrieved from the estimated model(
�̃�(𝑞−1), �̃�(𝑞−1), �̃�, �̃� (𝑞)

)
.
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7.6 Alternative formulation

The presented results for both full network identification and local network iden-
tification are based on network description (7.9). Alternatively, (7.6) can be used
instead, leading to similar results. In particular, for full network identification, the
linear regression formulated in Proposition 7.12 can similarly be formulated with
a corresponding new regressor 𝜑(𝑡).

Proposition 7.17 (Alternative linear regression). Consider a network that
has generated data according to S̄:

�̄�0(𝑞−1)𝑤(𝑡) + 𝑌0(𝑞−1)𝑤(𝑡) = 𝐵0𝑟 (𝑡) + 𝐹0(𝑞)𝑒(𝑡), (7.25)

with �̄�0(𝑞−1) ∈ Q, 𝑌0(𝑞−1) ∈ Y := {𝑌 ∈ R𝐿×𝐿 [𝑞−1] | �̄�𝑖 𝑗 (𝑞−1) =

�̄� 𝑗𝑖 (𝑞−1), �̄�𝑖𝑖 (𝑞−1) = ∑
𝑖 �̄�𝑖 𝑗 (𝑞−1) ∀𝑖, 𝑗}, �̄�0

0 + 𝑌
0
0 = 𝐼, 𝐵0 ∈ B, 𝐵0 ≠ 0,

𝐹0(𝑞) := 𝐼, and an “ARX” network model structure according to

M̄ := {�̄� (𝑞−1, 𝜃), 𝑌 (𝑞−1, 𝜃), 𝐵, 𝐹 (𝑞, 𝜃), 𝜃 ∈ Θ}, (7.26)

with �̄� (𝑞−1, 𝜃) ∈ Q, 𝑌 (𝑞−1, 𝜃) ∈ Y, with known 𝐵 = 𝐵0, 𝐹 (𝑞, 𝜃) := 𝐼,
and with S̄ ∈ M̄. Under the conditions of Theorem 7.10 (with S̄ and M̄
instead of S andM, respectively), the physical components represented by
the polynomials �̄� (𝑞−1) and 𝑌 (𝑞−1) are consistently estimated through a
linear regression according to (7.18) with 𝜑(𝑡) defined as

𝜑⊤(𝑡) =
[
𝜑⊤
�̄�0
(𝑡) · · · 𝜑⊤

�̄�𝑛𝑥
(𝑡) 𝜑⊤

�̄�0
(𝑡) · · · 𝜑⊤

�̄�𝑛𝑦
(𝑡)

]
, (7.27)

with

𝜑⊤
�̄�𝑖
(𝑡) =


𝑞−𝑖𝑤1(𝑡)

. . .

𝑞−𝑖𝑤𝐿 (𝑡)

 ,
𝜑⊤
�̄�𝑖
(𝑡) = ©«


𝑍0,𝐿−1

𝑞−𝑖𝑉2,𝐿 (𝑡)
−𝑞−𝑖𝑑

(
𝑉2,𝐿 (𝑡)

)


𝑍1,𝐿−2
𝑞−𝑖𝑉3,𝐿 (𝑡)
−𝑞−𝑖𝑑

(
𝑉3,𝐿 (𝑡)

) · · ·


𝑍𝐿−2,1
𝑞−𝑖𝑉𝐿,𝐿 (𝑡)
−𝑞−𝑖𝑑

(
𝑉𝐿,𝐿 (𝑡)

)ª®¬ ,
where 𝑍 𝑗 ,𝑘 is a matrix of size 𝑗 × 𝑘 with all elements equal to 0 and where

𝑉 𝑗 ,𝐿 (𝑡) =
[
𝑤 𝑗 (𝑡) − 𝑤 𝑗−1(𝑡) · · · 𝑤𝐿 (𝑡) − 𝑤 𝑗−1(𝑡)

]
(7.28)

and 𝑑
(
𝑉 𝑗 ,𝐿 (𝑡)

)
= diag

(
𝑉 𝑗 ,𝐿 (𝑡)

)
.
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Proof: The proof is provided in Appendix 7.B. ■

In Proposition 7.12, the node signals are directly visible in the regressor,
see, for example, 𝑊 𝑗 ,𝐿 (𝑡)(7.20) and 𝑑𝑖

(
𝑤 𝑗 (𝑡)

)
(7.21), while in Proposition 7.17,

the diffusive couplings are directly visible in the regressor as the differences of
node signals are visible in 𝑉 𝑗 ,𝐿 (𝑡) (7.28) and 𝑑

(
𝑉 𝑗 ,𝐿 (𝑡)

)
. In addition, observe

that 𝜑⊤
𝑄𝑖
(𝑡) In Proposition 7.12 and 𝜑⊤

�̄�𝑖
(𝑡) In Proposition 7.17 are the same. To

make the structure of the regressors more clearly visible, consider the following
example:

Example 7.18 (Regressors). Consider a network with four node signals,
that is 𝐿 = 4. The regressors 𝜑⊤

𝑄𝑖
(𝑡) and 𝜑⊤

𝑃𝑖
(𝑡) in Proposition 7.12 are

given by (for notational convenience, the argument 𝑡 − 𝑖 of the node signals
is omitted)

𝜑⊤𝑄𝑖 (𝑡) =


𝑤1

𝑤2
𝑤3

𝑤4

 ,
𝜑⊤𝑃𝑖 (𝑡) =


𝑤2 𝑤3 𝑤4 0 0 0
𝑤1 𝑤3 𝑤4 0

𝑤1 𝑤2 𝑤4
𝑤1 𝑤2 𝑤3

 .
The regressors 𝜑⊤

�̄�𝑖
(𝑡) and 𝜑⊤

�̄�𝑖
(𝑡) in Proposition 7.17 are given by (for

notational convenience, the argument 𝑡 − 𝑖 of the node signals is omitted)

𝜑⊤
�̄�𝑖
(𝑡) =


𝑤1

𝑤2
𝑤3

𝑤4

 ,
𝜑⊤
�̄�𝑖
(𝑡) =


𝑤2 − 𝑤1 𝑤3 − 𝑤1 𝑤4 − 𝑤1 0 0 0
𝑤1 − 𝑤2 𝑤3 − 𝑤2 𝑤4 − 𝑤2 0

𝑤1 − 𝑤3 𝑤2 − 𝑤3 𝑤4 − 𝑤3
𝑤1 − 𝑤4 𝑤2 − 𝑤4 𝑤3 − 𝑤4

 .
Observe that in Example 7.18 indeed 𝜑⊤

𝑄𝑖
(𝑡) and 𝜑⊤

�̄�𝑖
(𝑡) are the same and that

𝜑⊤
𝑃𝑖
(𝑡) and 𝜑⊤

�̄�𝑖
(𝑡) are very similar. The difference is that 𝜑⊤

𝑃𝑖
(𝑡) shows node signals,

while 𝜑⊤
�̄�𝑖
(𝑡) shows differences of node signals. This is due to the hollow structure

of 𝑃𝑖 and the Laplacian structure of 𝑌𝑖, respectively. Hence, 𝜑⊤
�̄�𝑖
(𝑡) clearly shows
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the diffusive couplings through the differences of node signals being incorporated
into the regression vector.

7.7 Conclusion

The undirected network description of physical networks has been extended by
allowing for higher-order diffusive couplings. Undirected network descriptions
of physical systems with diffusive couplings can be represented as directed dy-
namic networks with particular structural properties. This allows for effective
identification of the global and local properties of the physical network.

The directed dynamic network representation of physical networks typically
leads to modules with direct feedthrough terms, resulting in algebraic loops in the
network. Additional excitation signals are required to account for algebraic loops.
In addition, the identifiability analysis is based on independently parameterised
modules, while the modules in the directed network representation of physical
networks have common parameters. The structural properties of physical net-
works lead to too strict identifiability conditions and expensive experiments for
identification in the module framework.

Therefore, it is more attractive to preserve the polynomial representation of
physical networks, in which the structural properties of physical networks are
simply incorporated by symmetry. These polynomial representations are typically
nonmonic and therefore, the identification theory for monic polynomial models
has to be extended. The next step in this research is to accomplish this extension
and to develop an identification method for full and local network identification
of physical networks in the polynomial representation.



Appendix

7.A Proof of Proposition 7.12

If 𝐹0(𝑞) := 𝐼 and 𝐹 (𝑞, 𝜃)
(
𝑄0(𝜃) − 𝑃0(𝜃)

)
= 𝐼, the network model structure is

“ARX” and the residual 𝜀(𝑡, 𝜃) is affine in the parameters 𝜃, meaning that it can
be written as

𝜑⊤(𝑡)𝜃 − 𝐵𝑟 (𝑡) =
[
𝑄(𝑞−1, 𝜃) − 𝑃(𝑞−1, 𝜃)

]
𝑤(𝑡) − 𝐵𝑟 (𝑡), (7.29)

=

[
𝑛𝑄∑︁
𝑖=0

𝑄𝑖 (𝜃)𝑞−𝑖 −
𝑛𝑃∑︁
𝑖=0

𝑃𝑖 (𝜃)𝑞−𝑖
]
𝑤(𝑡) − 𝐵𝑟 (𝑡), (7.30)

where the structure of 𝑄(𝑞−1, 𝜃) and 𝑃(𝑞−1, 𝜃) is retained in 𝑄𝑖 (𝜃) and 𝑃𝑖 (𝜃),
respectively, and with parameter vector

𝜃 =
(
𝜃⊤𝑄0
· · · 𝜃⊤𝑄𝑛𝑄 𝜃

⊤
𝑃0
· · · 𝜃⊤𝑃𝑛𝑃

)⊤
, (7.31)

with 𝜃𝑄𝑖 =
[
𝑞𝑖,1 · · · 𝑞𝑖,𝐿

]⊤, 𝜃𝑃𝑖 =
[
𝑝𝑖,1 · · · 𝑝𝑖,𝐿 (𝐿−1)/2

]⊤, where these
parameter vectors parameterise the matrices according to

𝑄𝑖 (𝜃) =
©«
𝑞𝑖,1

𝑞𝑖,2
. . .

𝑞𝑖,𝐿

ª®®®®¬
, (7.32a)

𝑃𝑖 (𝜃) =

©«

0 𝑝𝑖,1 𝑝𝑖,2 · · · 𝑝𝑖,𝐿−1
★ 0 𝑝𝑖,𝐿 · · · 𝑝𝑖,2𝐿−3

★ ★ 0 . . .
...

★ ★ ★ 0 𝑝𝑖,𝐿 (𝐿−1)/2
★ ★ ★ ★ 0

ª®®®®®®¬
, (7.32b)

where the elements ★ follow from the symmetry.

205



206 Identification through a dynamic network approach

7.B Proof of Proposition 7.17

If 𝐹0(𝑞) := 𝐼 and 𝐹 (𝑞, 𝜃)
(
�̄�0(𝜃) + 𝑌0(𝜃)

)
= 𝐼, the network model structure is

“ARX” and the residual 𝜀(𝑡, 𝜃) (7.15) is affine in the parameters 𝜃 (remember that
�̄� (𝑞−1) + 𝑌 (𝑞−1) = 𝑄(𝑞−1) − 𝑃(𝑞−1)), meaning that it can be written as

𝜑⊤(𝑡)𝜃 − 𝐵𝑟 (𝑡) =
[
�̄� (𝑞−1, 𝜃) + 𝑌 (𝑞−1, 𝜃)

]
𝑤(𝑡) − 𝐵𝑟 (𝑡), (7.33)

=

[
𝑛𝑋∑︁
𝑖=0

�̄�𝑖 (𝜃)𝑞−𝑖 +
𝑛𝑌∑︁
𝑖=0
𝑌𝑖 (𝜃)𝑞−𝑖

]
𝑤(𝑡) − 𝐵𝑟 (𝑡), (7.34)

where the structure of �̄� (𝑞−1, 𝜃) and 𝑌 (𝑞−1, 𝜃) is retained in �̄�𝑖 (𝜃) and 𝑌𝑖 (𝜃),
respectively, and with parameter vector

𝜃 =

[
𝜃⊤
�̄�0
· · · 𝜃⊤

�̄�𝑛𝑋
𝜃⊤
�̄�0
· · · 𝜃⊤

�̄�𝑛𝑌

]⊤
, (7.35)

with 𝜃�̄�𝑖 =
[
𝑥𝑖,1 · · · 𝑥𝑖,𝐿

]⊤, 𝜃�̄�𝑖 =
[
�̄�𝑖,1 · · · �̄�𝑖,𝐿 (𝐿−1)/2

]⊤, where these para-
meter vectors parameterise the matrices according to

�̄�𝑖 (𝜃) =
©«
𝑥𝑖,1

𝑥𝑖,2
. . .

𝑥𝑖,𝐿

ª®®®®¬
, (7.36a)

𝑌𝑖 (𝜃) =

©«

★ �̄�𝑖,1 �̄�𝑖,2 · · · �̄�𝑖,𝐿−1
★ ★ �̄�𝑖,𝐿 · · · �̄�𝑖,2𝐿−3

★ ★ ★
. . .

...

★ ★ ★ ★ �̄�𝑖,𝐿 (𝐿−1)/2
★ ★ ★ ★ ★

ª®®®®®®¬
, (7.36b)

where the elements ★ follow from the Laplacian structure.
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This chapter is equivalent to
E.M.M. Kivits and P.M.J. Van den Hof. Identification of diffusively coupled

linear networks through structured polynomial models. In IEEE Transactions on
Automatic Control, vol. 68, no. 6, pages 3513-3528, 2023.

Physical dynamic networks most commonly consist of interconnections of
physical components that can be described by diffusive couplings. These diffus-
ive couplings imply that the cause-effect relationships in the interconnections
are symmetric and therefore physical dynamic networks can be represented
by undirected graphs. This chapter shows how prediction error identification
methods developed for linear time-invariant systems in polynomial form can
be configured to consistently identify the parameters and the interconnection
structure of diffusively coupled networks. Further, a multistep least squares
convex optimisation algorithm is developed to solve the nonconvex optimisation
problem that results from the identification method.

8.1 Introduction

8.1.1 Dynamic Networks

Physical networks can describe many physical processes from different domains,
such as mechanical, magnetic, electrical, hydraulic, acoustic, thermal, and chem-
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Figure 8.1: A network of masses (M 𝑗0), dampers (D 𝑗𝑘) and springs (K 𝑗𝑘).

ical processes. Their dynamic behaviour is typically described by undirected
dynamic interconnections between nodes, where the interconnections represent
diffusive couplings (Cheng et al., 2017; Dörfler and Bullo, 2013; Dörfler et al.,
2018). A corresponding representation can be considered to consist of 𝐿 inter-
connected node signals 𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿, of which the behaviour is described
according to a second-order vector differential equation:

M 𝑗0 ¥𝑤 𝑗 (𝑡) + D 𝑗0 ¤𝑤 𝑗 (𝑡) +
∑︁
𝑘∈N𝑗

D 𝑗𝑘 [ ¤𝑤 𝑗 (𝑡) − ¤𝑤𝑘 (𝑡)]

+ K 𝑗0𝑤 𝑗 (𝑡) +
∑︁
𝑘∈N𝑗

K 𝑗𝑘 [𝑤 𝑗 (𝑡) − 𝑤𝑘 (𝑡)] = 𝑟 𝑗 (𝑡) + 𝑣 𝑗 (𝑡)︸         ︷︷         ︸
𝑢 𝑗 (𝑡 )

, (8.1)

with real-valued coefficients M 𝑗0 ≥ 0, D 𝑗𝑘 ≥ 0, K 𝑗𝑘 ≥ 0, D 𝑗 𝑗 = 0; K 𝑗 𝑗 = 0;
N𝑗 the set of indices of node signals 𝑤𝑘 (𝑡), 𝑘 ≠ 𝑗 , with connections to node
signals 𝑤 𝑗 (𝑡); 𝑢 𝑗 (𝑡) the external signals composed of measured excitation signals
𝑟 𝑗 (𝑡) and unmeasured disturbances 𝑣 𝑗 (𝑡); and with ¤𝑤 𝑗 (𝑡) and ¥𝑤 𝑗 (𝑡) the first and
second-order derivative of the node signals 𝑤 𝑗 (𝑡), respectively. The diffusive type
of coupling induces the symmetry constraints D 𝑗𝑘 = D𝑘 𝑗 and K 𝑗𝑘 = K𝑘 𝑗 ∀ 𝑗 , 𝑘 .

An obvious physical example of such a network is the mass-spring-damper
system shown in Figure 8.1, in which masses M 𝑗0 are interconnected through
dampers D 𝑗𝑘 and springs K 𝑗𝑘 with 𝑘 ≠ 0 and are connected to the ground with
dampers D 𝑗0 and springs K 𝑗0. The positions 𝑤 𝑗 (𝑡) of the masses M 𝑗0 are the
signals that are considered to be the node signals1. The couplings between the

1Note that a system as the one shown in Figure 8.1 would require at least a two-dimensional
position vector 𝑤 𝑗 (𝑡), but for notational convenience and without loss of generality, we will restrict
our attention to scalar-valued node signals 𝑤 𝑗 (𝑡).
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masses are diffusive, because springs and dampers are symmetric components.

The considered type of networks occurs in many other applications, such as
RLC circuits, power grids, and climate control systems.

8.1.2 Network identification

In this chapter, we address the problem of identifying the physical components
in the network on the basis of measured node signals 𝑤(𝑡) and possibly external
excitation signals 𝑟 (𝑡). We develop a general framework for identifying such net-
works. Currently available methods for solving this problem can be classified into
different categories. Black-box prediction error identification methods (Ljung,
1999) can be used to model the transfer functions from measured 𝑟 𝑗 (𝑡) signals
to node signals 𝑤 𝑗 (𝑡), leading to a nontrivial second step in which the estimated
models need to be converted to the structure representation of the physical network
for arriving at estimated component values. Moreover, this modelling procedure
and the required conversion would become essentially dependent on the particular
location of the external signals 𝑟 𝑗 (𝑡). In a second category, black-box state-space
models can be estimated from which the model parameters can be derived by
applying matrix transformations (Friswell et al., 1999; Lopes dos Santos et al.,
2015; Ramos et al., 2013) or eigenvalue decompositions (Fritzen, 1986; Luş et al.,
2003). However, these methods typically do not have any guarantees on the statist-
ical accuracy of the estimates and lack a consistency analysis. In another approach,
state-space models with tailor-made physical parameterisations can be employed
in a prediction error/maximum likelihood setting, typically leading to the situation
that the network parameters appear nonlinearly in the state-space model, resulting
in highly nonconvex optimisation problems to solve (The Mathworks, Inc., 2021).

In this chapter, we follow an approach that starts with the network representa-
tion of the model, while we maintain and exploit the network structure during the
identification procedure.

Dynamic networks are currently a topic of research in different areas, while
exploiting different network representations. Often, state-space models are used,
possibly involving diffusive couplings, e.g. in model reduction (Cheng and
Scherpen, 2021), estimating network connectivity (Timme, 2007), multiagent
consensus-type algorithms (Nabi-Abdolyousefi and Mesbahi, 2012), and subspace
identification (Haber and Verhaegen, 2014). A different model setting is used by
Gonçalves et al. (2007), where transfer functions are being used to represent the
dynamic interactions between node signals, exploited further by Materassi and
Salapaka (2012); van Waarde et al. (2021) for topology identification and by Van
den Hof et al. (2013) for prediction error identification of the network dynamics
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(modules). In the realistic situation where not all states of a network can be meas-
ured, the transfer function approach appears attractive for identifying the network,
but at the same time it is less fit for representing the physical diffusive types of
couplings that would need to be included. As a result, an identification framework
that can effectively exploit the physical structure of diffusive couplings, while
identifying the dynamics on the basis of selected measurements, is still missing.

8.1.3 Research objective and contribution

The overall objective of this research is to develop a comprehensive theory for the
identification of the physical component in diffusively coupled linear networks,
where the order of the dynamics is not restricted and possibly correlated dis-
turbances can be present. The objective includes questions like which nodes to
measure (sense) and which nodes to excite (actuate) in order to identify particular
local dynamics in the network or to identify the full dynamics and topology of the
network. In addition, the consistency and minimum variance properties of estim-
ates have to be specified. In this chapter, we focus on the problem of identifying
the full dynamics and topology of diffusively coupled linear networks.

We will develop a prediction error framework for identifying the compon-
ents in a diffusively coupled network of linear time-invariant systems, by fully
adhering to the structure of the underlying constitutive model equations. We de-
velop a polynomial representation of diffusively coupled networks, that is special
due to its non-monicity and symmetric structure. For this representation, the
standard (prediction error) identification algorithms cannot be applied directly.
A dedicated prediction error identification method is developed that exploits the
structured polynomial representation of the network and allows for handling dy-
namics of any finite order representing the interconnections and therefore, also
allows for identifying the topology of the network. New conditions for identifiab-
ility and consistent estimation of the network components are derived. While the
developed prediction error method in general relies on nonconvex optimisation,
which is poorly scalable to large dimensions, an alternative multistep algorithm is
presented, following the recent developments in the so-called weighted null-space
fitting (WNSF) algorithm (Galrinho et al., 2019). This algorithm is adapted to
accommodate the particular structured models that are considered by involving
constrained optimisations rather than unconstrained ones.

This chapter builds further on the preliminary work presented in Chapter 7,
in which the first results on the polynomial representation are presented in the
scope of particular linear regression schemes. These results are extended to the
general situation of rational noise models, including detailed identifiability and
consistency results as well as the implementation of an adapted WNSF algorithm.
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After specifying the notation of our networks in continuous- and discrete-
time in Section 8.2, the set-up for identification of the full network dynamics
is described in Section 8.3. In order to be able to consistently identify the
network dynamics, data informativity and network identifiability conditions need
to be satisfied. These conditions are formulated in Section 8.4 as well as the
results for consistent identification of the networks. Section 8.5 contains the
multistep algorithm for consistently identifying the network dynamics and Section
8.6 consists of a simulation example that illustrates and supports these results.
Section 8.7 contains some extensions, after which conclusions are formulated in
Section 8.8.

We consider the following notation throughout the chapter: A polynomial
matrix 𝐴(𝑧−1) in complex indeterminate 𝑧−1, consists of matrices 𝐴ℓ and ( 𝑗 , 𝑘)th
polynomial elements 𝑎 𝑗𝑘 (𝑧−1) such that 𝐴(𝑧−1) = ∑𝑛𝑎

ℓ=0 𝐴ℓ 𝑧
−ℓ and 𝑎 𝑗𝑘 (𝑧−1) =∑𝑛𝑎

ℓ=0 𝑎 𝑗𝑘,ℓ 𝑧
−ℓ . Hence, the ( 𝑗 , 𝑘)th element of the matrix 𝐴ℓ is denoted by 𝑎 𝑗𝑘,ℓ .

Physical components are indicated in sans serif font: A or a. A 𝑝 × 𝑚 rational
function matrix 𝐹 (𝑧) is proper if lim𝑧→∞ 𝐹 (𝑧) = 𝑐 ∈ R𝑝×𝑚; it is strictly proper if
𝑐 = 0, and monic if 𝑝 = 𝑚 and 𝑐 is the identity matrix. 𝐹 (𝑧) is stable if all its poles
are within the unit circle |𝑧 | < 1. As a signal framework we adopt the prediction
error framework of Ljung (1999), where quasi-stationary signals are defined as
summations of a stationary stochastic process and a bounded deterministic signal,
and Ē := lim𝑁→∞

1
𝑁

∑𝑁
𝑡=1 E, with E the expectation operator.

8.2 Physical network

8.2.1 Higher-order network

A physical network as described in the previous section is typically of second
order, where all node signals are collected in 𝑤(𝑡). Network models that explain
only a selection of the node signals can be constructed by removing nodes from
the network through a Gaussian elimination procedure that is referred to as Kron
reduction (Dörfler and Bullo, 2013; Dörfler et al., 2018) or immersion (Dankers
et al., 2016), which will generally lead to higher-order dynamics between the
remaining node signals. In order to accommodate this, we will include higher-
order terms in our model.

Definition 8.1 (Physical network). A physical network is a network con-
sisting of 𝐿 node signals 𝑤1(𝑡), . . . , 𝑤𝐿 (𝑡) interconnected through diffusive
couplings and with at least one connection of a node to the ground node.
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The behaviour of the node signals 𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿, is described by

𝑛𝑥∑︁
ℓ=0

x 𝑗 𝑗 ,ℓ𝑤 (ℓ )𝑗 (𝑡) +
∑︁
𝑘∈N𝑗

𝑛𝑦∑︁
ℓ=0

y 𝑗𝑘,ℓ [𝑤 (ℓ )𝑗 (𝑡) − 𝑤
(ℓ )
𝑘
(𝑡)] = 𝑢 𝑗 (𝑡), (8.2)

with 𝑛𝑥 and 𝑛𝑦 the order of the dynamics in the network, with real-valued
coefficients x 𝑗 𝑗 ,ℓ ≥ 0, y 𝑗𝑘,ℓ ≥ 0, y 𝑗𝑘,ℓ = y𝑘 𝑗,ℓ , where 𝑤 (ℓ )

𝑗
(𝑡) is the ℓth

derivative of 𝑤 𝑗 (𝑡) and where 𝑢 𝑗 (𝑡) is the external signal entering the 𝑗 th
node. The network is assumed to be connected, which means that there is a
path between every pair of nodesa.

aThe network is connected if its Laplacian matrix (i.e. the degree matrix minus the
adjacency matrix) has a positive second smallest eigenvalue (Dörfler and Bullo, 2013).

The graphical interpretation of the coefficients is as follows: x 𝑗 𝑗 ,𝑛 represent
the buffers, that is, the components intrinsically related to the nodes 𝑤 𝑗 (𝑡); x 𝑗 𝑗 ,ℓ
with ℓ ≠ 𝑛 represent the components connecting the node 𝑤 𝑗 (𝑡) to the ground
node; and y 𝑗𝑘,ℓ represent the components in the diffusive couplings between the
nodes 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡). The ground node is characterised by 𝑤𝑔𝑟𝑜𝑢𝑛𝑑 (𝑡) = 0 and
therefore can be seen as a node with an infinite buffer; see also Dörfler and Bullo
(2013).

A graphical representation of a physical network is shown in Figure 8.2. The
network dynamics is represented by the blue boxes containing the polynomials
𝑥 𝑗 𝑗 =

∑𝑛𝑥
ℓ=0 x 𝑗 𝑗 ,ℓ 𝑝ℓ and 𝑦 𝑗𝑘 =

∑𝑛𝑦

ℓ=0 y 𝑗𝑘,ℓ 𝑝ℓ , with 𝑝 the differential operator
𝑑/𝑑𝑡, and the node signals are represented by the blue circles, which sum the
diffusive couplings and the external signals. For example, 𝑤5(𝑡) = x55

(
𝑤5(𝑡) −

0
)
+ y45

(
𝑤5(𝑡) − 𝑤4(𝑡)

)
+ 𝑢5(𝑡).

Furthermore, every matrix 𝑋ℓ composed of elements 𝑥 𝑗 𝑗 ,ℓ := x 𝑗 𝑗 ,ℓ is diagonal
and every matrix 𝑌ℓ composed of elements 𝑦 𝑗 𝑗 ,ℓ :=

∑
𝑘∈N𝑗 y 𝑗𝑘,ℓ and 𝑦 𝑗𝑘,ℓ :=

−y 𝑗𝑘,ℓ for 𝑘 ≠ 𝑗 is Laplacian2 representing an undirected graph of a specific
physical component, i.e., the diffusive couplings of a specific order.

8.2.2 Discretisation

In order to fully exploit the results of network identification that typically have been
developed for discrete-time systems, the continuous-time network is converted

2A Laplacian matrix is a symmetric matrix with nonpositive off-diagonal elements and with
nonnegative diagonal elements that are equal to the negative sum of all other elements in the same
row (or column) (Mesbahi and Egerstedt, 2010).
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Figure 8.2: A physical network as defined in Definition 8.1, with node signals
𝑤 𝑗 (𝑡), input signals 𝑢 𝑗 (𝑡), and dynamics between the nodes (𝑦 𝑗𝑘 (𝑞−1)) and to the
ground node (𝑥 𝑗 𝑗 (𝑞−1)).

into an equivalent discrete-time form. Out of the group of discretisation methods
that commute with series, parallel, and feedback connections of systems (Mori
et al., 1987) we select the backward difference method. This method is relatively
simple, results in a causal network representation, and describes a unique bijective
mapping between the continuous-time and discrete-time model, by substituting

𝑑𝑤(𝑡)
𝑑𝑡

����
𝑡=𝑡𝑑

=
𝑤(𝑡𝑑) − 𝑤(𝑡𝑑−1)

𝑇𝑠
, (8.3)

with discrete-time sequence 𝑡𝑑 = 𝑑𝑇𝑠, 𝑑 = 0, 1, . . . and time interval 𝑇𝑠. Using
(8.3), the continuous-time diffusively coupled network (8.2) can be approximated
in discrete time by

𝑛𝑥∑︁
ℓ=0

x̄ 𝑗 𝑗 ,ℓ𝑞−ℓ𝑤 𝑗 (𝑡𝑑) +
∑︁
𝑘∈N𝑗

𝑛𝑦∑︁
ℓ=0

ȳ 𝑗𝑘,ℓ𝑞−ℓ [𝑤 𝑗 (𝑡𝑑) − 𝑤𝑘 (𝑡𝑑)] = 𝑢 𝑗 (𝑡𝑑), (8.4)

with 𝑞−1 the shift operator meaning 𝑞−1𝑤 𝑗 (𝑡𝑑) = 𝑤 𝑗 (𝑡𝑑−1) and with

x̄ 𝑗 𝑗 ,ℓ = (−1)ℓ ∑𝑛𝑥
𝑖=ℓ

( 𝑖
ℓ

)
𝑇−𝑖𝑠 x 𝑗 𝑗 ,𝑖 , (8.5a)

ȳ 𝑗𝑘,ℓ = (−1)ℓ ∑𝑛𝑦

𝑖=ℓ

( 𝑖
ℓ

)
𝑇−𝑖𝑠 y 𝑗𝑘,𝑖 , (8.5b)

where
( 𝑖
ℓ

)
is a binomial coefficient. In the sequel, (𝑡 − 𝑖) is used for 𝑡𝑑−𝑖 = 𝑡𝑑 − 𝑖𝑇𝑠.

The expressions for the node signals (8.4) can be combined in a matrix equation
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describing the network as

�̄� (𝑞−1)𝑤(𝑡) + 𝑌 (𝑞−1)𝑤(𝑡) = 𝑢(𝑡), (8.6)

with �̄� (𝑞−1) and 𝑌 (𝑞−1) polynomial matrices in the shift operator 𝑞−1 and com-
posed of elements

�̄� 𝑗𝑘 (𝑞−1) =
{∑𝑛𝑥

ℓ=0 x̄ 𝑗 𝑗 ,ℓ𝑞−ℓ , if 𝑘 = 𝑗

0, otherwise
(8.7a)

𝑌 𝑗𝑘 (𝑞−1) =


∑
𝑚∈N𝑗

∑𝑛𝑦

ℓ=0 ȳ 𝑗𝑚,ℓ𝑞−ℓ , if 𝑘 = 𝑗

−∑𝑛𝑦

ℓ=0 ȳ 𝑗𝑘,ℓ𝑞−ℓ , if 𝑘 ∈ N𝑗
0, otherwise.

(8.7b)

Observe that �̄� (𝑞−1) is diagonal and 𝑌 (𝑞−1) is Laplacian, implying that the
structural properties of (8.2) are maintained in (8.6)-(8.7). In the sequel, we will
use the notation 𝐴(𝑞−1) = �̄� (𝑞−1) +𝑌 (𝑞−1) while �̄� (𝑞−1) and𝑌 (𝑞−1) can always
be uniquely recovered from 𝐴(𝑞−1), because of their particular structure.

8.3 Identification set-up

As mentioned before, the objective of this chapter is to identify the full dynamics
and topology of diffusively coupled networks. In this section, the identification
setting is described, which includes the network model, the network predictor, the
model set, and the identification criterion.

The node signals in the network might be affected by a user-applied excitation
signal and subject to a disturbance signal. This needs to be included in the network
description, which is achieved by splitting the external signal as

𝑢(𝑡) := 𝐵(𝑞−1)𝑟 (𝑡) + 𝐹 (𝑞)𝑒(𝑡), (8.8)

where, the known excitation signals 𝑟 (𝑡) enter the network through dynamics
described by polynomial matrix 𝐵(𝑞−1) and where the unknown disturbance
signals acting on the network are modelled as filtered white noise, i.e. 𝐹 (𝑞) is
a rational matrix and 𝑒(𝑡) is a vector-valued wide-sense stationary white noise
process, i.e. E[𝑒(𝑡)𝑒⊤(𝑡 − 𝜏)] = 0 for 𝜏 ≠ 0.

Definition 8.2 (Network model). The network that will be considered dur-
ing identification is assumed to be connected, with at least one connection
to the ground node; it consists of 𝐿 node signals 𝑤(𝑡) and 𝐾 excitation
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signals 𝑟 (𝑡); and is defined as

𝐴(𝑞−1)𝑤(𝑡) = 𝐵(𝑞−1)𝑟 (𝑡) + 𝐹 (𝑞)𝑒(𝑡), (8.9)

with

1. 𝐴(𝑞−1) = ∑𝑛𝑎
𝑘=0 𝐴𝑘𝑞

−𝑘 ∈ R𝐿×𝐿 [𝑞−1], with 𝑎 𝑗𝑘 (𝑞−1) = 𝑎𝑘 𝑗 (𝑞−1), for
all 𝑘, 𝑗 , and 𝐴−1(𝑞−1) stable.

2. 𝐵(𝑞−1) ∈ R𝐿×𝐾 [𝑞−1].

3. 𝐹 (𝑞) ∈ H := {𝐹 ∈ R𝐿×𝐿 (𝑞) | 𝐹 monic, stable and tably invertible}.

4. Λ ≻ 0 the covariance matrix of the noise 𝑒(𝑡).

5. 𝑟 (𝑡) is a deterministic and bounded sequence.

6. 𝑒(𝑡) is a zero-mean white noise process with bounded moments of an
order larger than 4 (Ljung, 1999).

Lemma 8.3. In (8.9) it holds that rank(𝐴0) = 𝐿.

Proof: The proof is provided in Appendix 8.A. ■

rank(𝐴0) = 𝐿 also implies that 𝐴−1(𝑞−1) exists and is proper, which means
that the network is well-posed. The network is also stable as 𝐴−1(𝑞−1) is stable.

Often, 𝐵(𝑞−1) is chosen to be binary, diagonal, and known, which represents
the assumption that each external excitation signal directly enters the network at a
distinct node.

As a result, the considered networks lead to polynomial models3 with the
particular properties that 𝐴(𝑞−1) is symmetric and nonmonic. Moreover, if 𝐹 (𝑞)
is polynomial or even stronger if 𝐹 (𝑞) = 𝐼, the network (8.9) leads to an ARMAX-
like or ARX-like4 model structure, respectively.

Now that the network representation and its properties have been defined, the
next step is to formulate the identification setting.

3Polynomial models are linear time-invariant dynamic models of the form 𝐴(𝑞−1)𝑦(𝑡) =
𝐸−1 (𝑞−1)𝐵(𝑞−1)𝑢(𝑡) + 𝐷−1 (𝑞−1)𝐶 (𝑞−1)𝑒(𝑡), where 𝐴(𝑞−1), 𝐵(𝑞−1), 𝐶 (𝑞−1), 𝐷 (𝑞−1), and
𝐸 (𝑞−1) are polynomials in 𝑞−1 that are all monic except for 𝐵(𝑞−1) (Ljung, 1999; Hannan
and Deistler, 2012).

4The structure is formally only an ARMAX (autoregressive-moving average with exogenous
variables) or ARX (autoregressive with exogenous variables) structure if the 𝐴(𝑞−1) polynomial
is monic (Hannan and Deistler, 2012).
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8.3.1 Network predictor

The objective is to identify the dynamics of the complete network. This estimation
is performed using a prediction error method, which is the most common system
identification method and it is applicable to networks (Van den Hof et al., 2013).
In order to identify the network dynamics, all node signals 𝑤(𝑡) are predicted
based on the measured signals that are available in the network. This leads to the
following predictor.

Definition 8.4 (Network predictor). In line with Weerts et al. (2016), the
network predictor is defined as the conditional expectation

�̂�(𝑡 |𝑡 − 1) := E{𝑤(𝑡) | 𝑤𝑡−1, 𝑟 𝑡 }, (8.10)

where 𝑤𝑡−1 represents the past of 𝑤(𝑡), that is, 𝑤(𝑡 − 1), 𝑤(𝑡 − 2), . . . and
𝑟 𝑡 represents 𝑟 (𝑡), 𝑟 (𝑡 − 1), . . .

Proposition 8.5 (Network predictor). For a network model (8.9), the one-
step-ahead network predictor (8.10) is given by

�̂�(𝑡 |𝑡 − 1) =
[
𝐼 − 𝐴−1

0 𝐹−1(𝑞)𝐴(𝑞−1)
]
𝑤(𝑡) + 𝐴−1

0 𝐹−1(𝑞)𝐵(𝑞−1)𝑟 (𝑡).
(8.11)

Proof: The proof is provided in Appendix 8.B. ■

Proposition 8.6 (Innovation). The innovation corresponding to the network
predictor (8.11) is

𝑒(𝑡) := 𝑤(𝑡) − �̂�(𝑡 |𝑡 − 1) = 𝐴−1
0 𝑒(𝑡), (8.12)

which has covariance matrix Λ̄ = 𝐴−1
0 Λ𝐴−1

0 .

Proof: This follows directly from subsequently substituting �̂�(𝑡 |𝑡 − 1) (8.11)
and 𝑤(𝑡) (8.9) into (8.12). ■

The innovation is a scaled version of the driving noise process. As 𝐴0 is not
necessarily diagonal, the scaling may cause correlations among the noise channels,
but the innovation signal 𝑒(𝑡) remains a white noise process.
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8.3.2 Model set and prediction error

The network models that will be considered during identification are gathered in
the network model set.

Definition 8.7 (Network model set). The model set is defined as a set of
parameterised functions as

M := {𝑀 (𝜃), 𝜃 ∈ Θ ⊂ R𝑑}, (8.13)

with 𝑑 ∈ N, with all particular models

𝑀 (𝜃) :=
(
𝐴(𝑞−1, 𝜃), 𝐵(𝑞−1, 𝜃), 𝐹 (𝑞, 𝜃),Λ(𝜃)

)
(8.14)

satisfying the properties in Definition 8.2.

In this setting, 𝜃 contains all the unknown coefficients that appear in the entries
of the model matrices 𝐴(𝑞−1), 𝐵(𝑞−1), 𝐹 (𝑞), and Λ.

The experimental data that are available for identification are generated by the
true system.

Definition 8.8 (Data generating system). The data generating system S is
denoted by the model

𝑀0 := (𝐴0, 𝐵0, 𝐹0,Λ0). (8.15)

The true system is in the model set (S ∈ M) if∃𝜃0 ∈ Θ such that𝑀 (𝜃0) = 𝑀0,
where 𝜃0 indicate the true parameters.

Using the parameterised network model set, the parameterised one-step-ahead
network predictor is defined.

Definition 8.9 (Parameterised predictor). The parameterised network pre-
dictor is defined in accordance with (8.11) as

�̂�(𝑡 |𝑡 − 1; 𝜃) = 𝑊 (𝑞, 𝜃)𝑧(𝑡), (8.16)

with data 𝑧(𝑡) :=
[
𝑤(𝑡)
𝑟 (𝑡)

]
, and predictor filter

𝑊 (𝑞, 𝜃) :=
[
𝐼 −𝑊𝑤 (𝑞, 𝜃) 𝑊𝑟 (𝑞, 𝜃)

]
, (8.17)

where
𝑊𝑤 (𝑞, 𝜃) = 𝐴−1

0 (𝜃)𝐹
−1(𝑞, 𝜃)𝐴(𝑞−1, 𝜃), (8.18a)
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𝑊𝑟 (𝑞, 𝜃) = 𝐴−1
0 (𝜃)𝐹

−1(𝑞, 𝜃)𝐵(𝑞−1, 𝜃). (8.18b)

The parameterised predictor leads to the prediction error.

Proposition 8.10 (Prediction error). The prediction error corresponding
to the parameterised predictor (8.16) is defined as

𝜀(𝑡, 𝜃) := 𝑤(𝑡) − �̂�(𝑡 |𝑡 − 1; 𝜃), (8.19)

which is obtained as

𝜀(𝑡, 𝜃) = 𝐴−1
0 (𝜃)𝐹

−1(𝑞, 𝜃)
[
𝐴(𝑞−1, 𝜃)𝑤(𝑡) − 𝐵(𝑞−1, 𝜃)𝑟 (𝑡)

]
, (8.20a)

= 𝑊𝑤 (𝑞, 𝜃)𝑤(𝑡) −𝑊𝑟 (𝑞, 𝜃)𝑟 (𝑡), (8.20b)

which equals the innovation 𝑒(𝑡) (8.12) for 𝜃 = 𝜃0.

Proof: The proof is provided in Appendix 8.C. ■

8.3.3 Identification criterion

In order to estimate the parameters, a weighted least squares identification criterion
is applied:

𝜃𝑁 = arg min
𝜃∈Θ

𝑉𝑁 (𝜃), (8.21a)

𝑉𝑁 (𝜃) :=
1
𝑁

𝑁∑︁
𝑡=1

𝜀⊤(𝑡, 𝜃)𝑆𝜀(𝑡, 𝜃), (8.21b)

Λ̄(𝜃𝑁 ) :=
1
𝑁

𝑁∑︁
𝑡=1

𝜀(𝑡, 𝜃𝑁 )𝜀⊤(𝑡, 𝜃𝑁 ), (8.21c)

with weight 𝑆 ≻ 0 that has to be chosen by the user. It is a standard result in predic-
tion error identification (Ljung, 1999, Theorem 8.2), that under uniform stability
conditions on the parameterised model set, (8.21a) converges with probability 1
to

𝜃∗ := arg min
𝜃∈Θ

�̄� (𝜃), (8.22a)

with �̄� (𝜃) :=Ē
{
𝜀⊤(𝑡, 𝜃)𝑆𝜀(𝑡, 𝜃)

}
. (8.22b)
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8.4 Consistent identification

In order to consistently identify the network, the experimental data need to sat-
isfy certain conditions. These conditions are referred to as data informativity
conditions. In addition, the network itself needs to satisfy certain conditions so
that it can be uniquely recovered. These conditions are referred to as network
identifiability conditions. This section describes these conditions, after which the
results for consistent network identification can be formulated.

The network (8.9) can be represented as

𝑤(𝑡) = 𝑇𝑤𝑟 (𝑞)𝑟 (𝑡) + �̄�(𝑡), �̄�(𝑡) = 𝑇𝑤�̄� (𝑞)𝑒(𝑡), (8.23)

where 𝑒(𝑡) is the innovation (8.12) and

𝑇𝑤𝑟 (𝑞) = 𝐴−1(𝑞−1)𝐵(𝑞−1), (8.24a)
𝑇𝑤�̄� (𝑞) = 𝐴−1(𝑞−1)𝐹 (𝑞)𝐴0. (8.24b)

For estimating a network model, prediction error identification methods typically
use the second-order statistical properties of the measured data, which are rep-
resented by the spectral densities of 𝑤(𝑡) and 𝑟 (𝑡). As 𝑟 (𝑡) is measured, but 𝑒(𝑡)
is not, the second-order properties of 𝑤(𝑡) are generated by the transfer function
𝑇𝑤𝑟 (𝑞) and spectral density

Φ�̄� (𝜔) : = F
{
E
[
�̄�(𝑡)�̄�⊤(𝑡 − 𝜏)

]}
, (8.25a)

= 𝑇𝑤�̄� (𝑒𝑖𝜔)Λ̄𝑇∗𝑤�̄� (𝑒𝑖𝜔), (8.25b)

with F the discrete-time Fourier transform and (·)∗ the complex conjugate trans-
pose. Observe that the spectral factorisation in (8.25b) is unique, as 𝑇𝑤�̄� (𝑞) ∈ H
and Λ̄ ≻ 0 (Youla, 1961).

8.4.1 Data informativity

The data are called informative if they contain sufficient information to uniquely
recover the predictor filter𝑊 (𝑞, 𝜃) from the second-order statistical properties of
the data 𝑧(𝑡). This can be formalised in line with Ljung (1999) as follows:

Definition 8.11 (Data informativity). A quasi-stationary data sequence
{𝑧(𝑡)} is called informative with respect to the model setM (8.13) if for any
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two 𝜃1, 𝜃2 ∈ Θ

Ē
{
∥ [𝑊 (𝑞, 𝜃1) −𝑊 (𝑞, 𝜃2)]𝑧(𝑡)∥2

}
= 0⇒ {𝑊 (𝑒𝑖𝜔 , 𝜃1) = 𝑊 (𝑒𝑖𝜔, 𝜃2)}

(8.26)
for almost all 𝜔.

Applying this definition to physical networks leads to the following conditions
for data informativity:

Proposition 8.12 (Data informativity). The quasi-stationary data se-
quence 𝑧(𝑡) is informative with respect to the model setM if Φ𝑧 (𝜔) ≻ 0 for
a sufficiently high number of frequenciesa. In the situation 𝐾 ≥ 1, this is
guaranteed by Φ𝑟 (𝜔) ≻ 0 for a sufficiently high number of frequencies.

aThe number of frequencies for which Φ𝑧 (𝜔) ≻ 0 is required, is dependent on the
number of parameters inM.

Proof: The proof is provided in Appendix 8.D. ■

The condition that Φ𝑟 (𝜔) ≻ 0 for a sufficiently high number of frequencies
seems to be a general condition. However, observe that the dimensions of Φ𝑟 (𝜔)
depend on the number of excitation signals 𝑟 (𝑡), denoted by 𝐾 , which is specified
in the model set. Thus, all excitation signals 𝑟 (𝑡) that are present (according to
the model set), need to be persistently exciting. This is because each additional
excitation signal 𝑟 𝑗 (𝑡) also introduces new polynomials 𝑏𝑘 𝑗 (𝑞−1) that need to be
identified.

Informativity of 𝑧(𝑡) implies that 𝑊 (𝑞) can uniquely be recovered from data,
which by (8.18) and (8.24) implies that the pair (𝑇𝑤𝑟 (𝑞),Φ�̄� (𝜔)) can uniquely be
recovered from data.

8.4.2 Network identifiability

The concept of network identifiability has been defined for general linear dynamic
networks by Weerts et al. (2018b) as follows:

Definition 8.13 (Network identifiability). The network model setM (8.13)
is globally network identifiable from 𝑧(𝑡) if the parameterised model 𝑀 (𝜃)
can uniquely be recovered from 𝑇𝑤𝑟 (𝑞, 𝜃) and Φ�̄� (𝜔, 𝜃), that is, if for all
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models 𝑀 (𝜃1), 𝑀 (𝜃2) ∈ M

𝑇𝑤𝑟 (𝑞, 𝜃1) = 𝑇𝑤𝑟 (𝑞, 𝜃2)
Φ�̄� (𝜔, 𝜃1) = Φ�̄� (𝜔, 𝜃2)

}
⇒ 𝑀 (𝜃1) = 𝑀 (𝜃2). (8.27)

Whereas the original definition has been applied to network models with all
transfer function elements, here we apply it to our choice of models (8.14), where
through the particular parameterisation of the polynomials 𝐴(𝑞, 𝜃) and 𝐵(𝑞, 𝜃),
equality of models implies equality of the physical parameters in these polynomial
matrices. Before formulating the conditions for the identifiability of our particular
networks, a result on left matrix-fraction descriptions (LMFDs) is presented.

Lemma 8.14 (LMFD). Consider a network model setM (8.13). Given the
LMFD 𝐴(𝑞−1)−1𝐵(𝑞−1), 𝐴(𝑞−1) and 𝐵(𝑞−1) are unique withinM up to a
scalar factor if the following conditions are satisfied:a

1. 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime inM.

2. Within M, at least one of the matrices in the set {𝐴𝑘 , 𝑘 =

0, · · · 𝑛𝑎; 𝐵ℓ , ℓ = 0, · · · 𝑛𝑏} is diagonal and full rank.
aThis lemma is slightly different formulated than by Kivits and Van den Hof (2023b).

Proof: According to Kailath (1980), the LMFD of any two polynomial and left
coprime matrices is unique up to a premultiplication with a unimodular matrix.
To preserve the diagonality of 𝐴𝑘 or 𝐵ℓ , the unimodular matrix is restricted to be
diagonal. To preserve the symmetry of 𝐴(𝑞−1), this diagonal matrix is further
restricted to have equal elements. ■

In general polynomial models, like ARMAX (Deistler, 1983), 𝐴(𝑞−1) is monic
and therefore 𝐴0 = 𝐼 is diagonal. Then the LMFD 𝐴(𝑞−1)−1𝐵(𝑞−1) is unique, as
the conditions of Lemma 8.14 are satisfied and scaling with a scalar factor is not
possible anymore, since the diagonal elements of 𝐴0 are equal to 1. Hence, both
Condition 2. in Lemma 8.14 and the scaling factor freedom are a result of the fact
that 𝐴(𝑞−1) is not necessarily monic.

Now the conditions for global network identifiability can be formulated.

Proposition 8.15 (Network identifiability). A network model setM (8.13)
is globally network identifiable from 𝑧(𝑡) if the following conditions are
satisfied:a

1. 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime inM.
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2. Within M, at least one of the matrices in the set {𝐴𝑘 , 𝑘 =

0, · · · 𝑛𝑎; 𝐵ℓ , ℓ = 0, · · · 𝑛𝑏} is diagonal and full rank.

3. At least one excitation signal 𝑟 𝑗 (𝑡) is present: 𝐾 ≥ 1.

4. There is at least one constraint on the parameters of 𝐴(𝑞−1, 𝜃𝑎) and
𝐵(𝑞−1, 𝜃𝑏) of the form Γ̃𝜃 = 𝛾 ≠ 0, with 𝜃 :=

[
𝜃⊤𝑎 𝜃⊤

𝑏

]⊤.
aThis proposition is slightly different formulated than by Kivits and Van den Hof

(2023b).

Proof: Condition 3. implies that 𝑇𝑤𝑟 (𝑞, 𝜃) is nonzero. According to Lemma
8.14, Conditions 1. and 2. imply that 𝐴(𝑞−1, 𝜃) and 𝐵(𝑞−1, 𝜃) are found up to
a scalar factor 𝛼. 𝑇𝑤�̄� (𝑞, 𝜃) and Λ̄(𝜃) are uniquely recovered from Φ�̄� (𝜔, 𝜃) as
𝑇𝑤�̄� (𝑞) ∈ H and Λ̄ ≻ 0 (Youla, 1961). Together with the fact that 𝐴(𝑞−1, 𝜃) is
found up to a scalar factor 𝛼, 𝑇𝑤�̄� (𝑞, 𝜃) gives a unique 𝐹 (𝑞, 𝜃), and Λ̄(𝜃) gives
Λ(𝜃) up to a scalar factor 𝛼2. Finally, Condition 4. implies that the parameters
cannot be scaled anymore and therefore 𝛼 is fixed. ■

The coprimeness of 𝐴(𝑞−1) and 𝐵(𝑞−1) ensures that 𝐴(𝑞−1) and 𝐵(𝑞−1) have
no common factors. This condition is also necessary for the global identifiability of
typical polynomial model structures (Ljung, 1999, Theorem 4.1). The parameter
𝛼 is a scaling factor that is introduced by the nonmonicity of 𝐴(𝑞−1). The scaling
factor needs to be fixed by additional constraints induced by Conditions 2. and 4.
in Proposition 8.15. The parameter constraint in Condition 4. of Proposition 8.15
can, for example, be

1. One nonzero element in 𝐵(𝑞−1, 𝜃) is known, i.e. one excitation signal enters
a node through known dynamics.

2. One nonzero parameter is known.

3. The fraction of two nonzero parameters is known.

4. The sum of some nonzero parameters is known.

Remark 8.16. In general, dynamic network conditions for global network
identifiability typically include algebraic conditions verifying the rank of
particular transfer functions from external signals to internal node signals
(Weerts et al., 2018b). For the generic version of network identifiability, this
entails a related graph-based check on vertex disjoint paths in the network
model (Hendrickx et al., 2019; Cheng et al., 2022). In contrast to these
conditions, the current conditions in Proposition 8.15 are very simple and
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require only a single excitation signal 𝑟 (𝑡) to be present in the network. This
is induced by the structural properties of the diffusive couplings between the
nodes, reflected by the fact that the polynomial matrix 𝐴(𝑞−1) is restricted
to being symmetric.

8.4.3 Consistency

Now, we can formulate the consistency result as follows:

Theorem 8.17 (Consistency). Consider a data generating system S as
defined in Definition 8.8 and a model set M in which the predictor filter
(8.17) is uniformly stable. Then 𝑀 (𝜃𝑁 ) is a consistent estimate of 𝑀0 if the
following conditions hold:

1. The true system is in the model set (S ∈ M).

2. The data are informative with respect to the model set.

3. The model set is globally network identifiable.

Proof: The proof is provided in Appendix 8.E ■

Observe that any weight 𝑆 ≻ 0 leads to consistent estimates, but that minimum
variance is only achieved for 𝑆 = Λ̄−1.

Now it has been proven that diffusively coupled networks can be identified
consistently, the next step is to formulate algorithms for obtaining these estimates.

8.5 A multistep algorithm

The parameterised prediction error (8.20a) is not affine in the parameters 𝜃. Only
in the very special situation where 𝐹 (𝑞, 𝜃) = 𝐼 and 𝐴0(𝜃) = 𝐼, the structure
of (8.20a) is affine. This situation causes the optimisation problem (8.21a) to
be nonconvex. Especially for networks with many nodes, this results in high
computational complexity and the occurrence of local optima. One approach
to reduce the problem is to solve multiple multiple-input single-output (MISO)
problems instead of one large multiple-input multiple-output (MIMO) problem
(Van den Hof et al., 2013; Dankers et al., 2016; Gevers et al., 2018). However, since
the dynamics is coupled (that is, 𝐴(𝑞−1) is symmetric and therefore its elements are
not independently parameterised), a decomposition into MISO problems cannot
be made without loss of accuracy.
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In this section, as an alternative, a multistep algorithm is developed, where
in each step a quadratic problem is solved using a linear regression scheme.
With that, the developed method contains steps that are similar to sequential
least squares (SLS) (Weerts et al., 2018a), weighted null-space fitting (WNSF)
(Galrinho et al., 2019), and the multistep least squares method of Fonken et al.
(2022), but particularly tuned to the network model structure of the current chapter.

In Step 1, an unstructured nonparametric ARX model is estimated from the
data. This ARX model is reduced to a structured parametric ARMAX network
model in Step 2, which is improved in Step 3. Once the network dynamics
has been estimated, the noise model is found in Step 4 and the discrete-time
components are extracted in Step 5. Finally, the components are mapped back
to the continuous-time domain in Step 6. The particular difference between our
method and the aforementioned methods is that the structure of the parameterised
objects in Steps 2 and 3 is different and that the optimisation problem in Step 2
is a constrained optimisation problem. Furthermore, Steps 4, 5, and 6 have been
added.

As only quadratic problems are solved, the optimisations are convex and
have unique solutions. In this way, the formulated algorithm achieves a consistent
parameter estimation with minimum variance and limited computation complexity.
This makes the algorithm also applicable to networks with many nodes.

For the development of the algorithm, we will restrict attention to the situation
of an ARMAX-like model structure, where we consider a data generating system
S = (𝐴0, 𝐵0, 𝐹0,Λ0) with 𝐹0(𝑞) := 𝐶0(𝑞−1) being a monic polynomial, leading
to the network equation

𝐴0(𝑞−1)𝑤(𝑡) = 𝐵0(𝑞−1)𝑟 (𝑡) + 𝐶0(𝑞−1)𝑒(𝑡), (8.28)

which would have an ARMAX structure if 𝐴0(𝑞−1) would be monic. Multiplying
both sides of (8.28) with [𝐶0(𝑞−1)𝐴0

0]
−1 leads to

�̆�0(𝑞−1)𝑤(𝑡) = �̆�0(𝑞−1)𝑟 (𝑡) + 𝑒(𝑡), (8.29)

where �̆�0(𝑞−1) is monic, 𝑒(𝑡) is the innovation (8.12), and

�̆�0(𝑞−1) = [�̄�0(𝑞−1)]−1𝐴0(𝑞−1), (8.30a)
�̆�0(𝑞−1) = [�̄�0(𝑞−1)]−1𝐵0(𝑞−1), (8.30b)
�̄�0(𝑞−1) = 𝐶0(𝑞−1)𝐴0

0. (8.30c)

Now consider the model structure 𝐴(𝑞−1, 𝜃𝑎), 𝐵(𝑞−1, 𝜃𝑏), and �̄� (𝑞−1, 𝜂𝑐, 𝜃𝑎), as
models of 𝐴0(𝑞−1), 𝐵0(𝑞−1), and �̄�0(𝑞−1), respectively, with �̄� (𝑞−1, 𝜂𝑐, 𝜃𝑎) =
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𝐶 (𝑞−1, 𝜃𝑐)𝐴0(𝜃𝑎), and with 𝜗 :=
[
𝜃⊤𝑎 𝜃⊤

𝑏
𝜂⊤𝑐

]⊤.As 𝐶 (𝑞−1) is monic and 𝐴0 is
constant, �̄�0 = 𝐴0 and therefore parameterised as such. All other matrices �̄�ℓ are
independently parameterised with parameters 𝜂𝑐. The exact parameterisation is
given in Appendix 8.F.

Step 1: Estimating the nonparametric ARX model

As a first step, we are going to estimate a nonparametric ARX model for (8.29), by
parameterising the infinite series expansions �̆�0(𝑞−1) and �̆�0(𝑞−1) by high-order
polynomial (finite) expansions �̆�(𝑞−1, 𝜁𝑛) and �̆�(𝑞−1, 𝜁𝑛), according to

𝜀𝐴(𝑡, 𝜁𝑛) = �̆�(𝑞−1, 𝜁𝑛)𝑤(𝑡) − �̆�(𝑞−1, 𝜁𝑛)𝑟 (𝑡), (8.31a)
= 𝑤(𝑡) − [𝜑𝑛 (𝑡)]⊤𝜁𝑛, (8.31b)

with 𝑛 the finite order of the polynomials, which is typically chosen to be high.
The parameter vector 𝜁𝑛 and the matrix [𝜑𝑛 (𝑡)]⊤ are given in Appendix 8.G. The
nonparametric ARX model (8.29) is then estimated by estimating its parameters
𝜁𝑛. As this step serves to make an initial estimate of the network, the network
structure is not taken into account. Further, consistency of this step is only
achieved if the order 𝑛 tends to infinity as a function of the data length 𝑁 at an
appropriate rate, according to Ljung and Wahlberg (1992). However, the bias will
be negligibly small if the order 𝑛 is chosen sufficiently large. The least-squares
estimate of 𝜁𝑛 is found by

𝜁𝑛𝑁 =

[
1
𝑁

𝑁∑︁
𝑡=𝑛+1

𝜑𝑛 (𝑡) [𝜑𝑛 (𝑡)]⊤
]−1 [

1
𝑁

𝑁∑︁
𝑡=𝑛+1

𝜑𝑛 (𝑡)𝑤(𝑡)
]
. (8.32)

Under conditions of consistent estimation, and so if 𝑛 and 𝑁 approach infinity,
𝜀𝐴(𝑡, 𝜁𝑛𝑁 ) will be an accurate estimate of the innovation 𝑒(𝑡). The covariance of
the innovation is estimated as the covariance of the residual as

Λ̄(𝜁𝑛𝑁 ) =
1
𝑁

𝑁∑︁
𝑡=𝑛+1

𝜀𝐴(𝑡, 𝜁𝑛𝑁 )𝜀⊤𝐴(𝑡, 𝜁
𝑛
𝑁 ), (8.33)

with residual (8.31a) evaluated at 𝜁𝑛
𝑁

. The covariance of the parameter estimation
error 𝜖 (𝑡, 𝜁𝑛

𝑁
) := 𝜁𝑛

𝑁
− 𝜁𝑛0 with 𝜁𝑛0 the actual coefficients of the expansions in

(8.29), is estimated by

𝑃(𝜁𝑛𝑁 ) =
[

1
𝑁

𝑁∑︁
𝑡=𝑛+1

𝜑𝑛 (𝑡)Λ̄−1(𝜁𝑛𝑁 ) [𝜑𝑛 (𝑡)]⊤
]−1

. (8.34)
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Remark 8.18. As each row in (8.31b) is independently parameterised, the
parameters 𝜁𝑛 can be estimated for each row independently, resulting in
𝐿 MISO problems instead of one MIMO problem. This is attractive for
networks with many nodes.

Step 2: Reducing to the structured network model

The high-order ARX model is used to identify the structured network model
through the relations (8.30a) and (8.30b). In this step, the structural properties of
𝐴0(𝑞−1) are incorporated and the parameter constraint is taken into account to fix
the scaling parameter and obtain a unique solution.

The relations (8.30a) and (8.30b) are equivalently written as

𝐴0(𝑞−1) − �̄�0(𝑞−1) �̆�0(𝑞−1) = 0, (8.35a)
𝐵0(𝑞−1) − �̄�0(𝑞−1)�̆�0(𝑞−1) = 0. (8.35b)

Then from (8.35) we can extract:

−𝑄(𝜁𝑛0)𝜗0 = 0, (8.36)

where 𝜗0 represents the coefficients of the actual underlying system described
by 𝐴0(𝑞−1), 𝐵0(𝑞−1), and �̄�0(𝑞−1) (8.28) and where the nonparametric ARX
representation �̆�0(𝑞−1) and �̆�0(𝑞−1) of the system is incorporated into 𝑄(𝜁𝑛0).
The specific structure of 𝑄(𝜁𝑛0) is provided in Appendix 8.H. The polynomial
terms in (8.35) are considered up to time lag 𝑛, and the row dimension of 𝑄(𝜁𝑛0)
is equal to dim(𝜁𝑛0).

On the basis of the estimated nonparametric ARX model parameters 𝜁𝑛
𝑁

, an
initial least-squares5 estimate of 𝜗0 is obtained by the linear constrained optim-
isation problem

�̂�
(0)
𝑁

= min
𝜗

𝜗⊤𝑄⊤(𝜁𝑛𝑁 )𝑄(𝜁𝑛𝑁 )𝜗 (8.37a)

subject to Γ𝜗 = 𝛾, (8.37b)

where the constraint (8.37b) results from Condition 4. in Proposition 8.15.
The optimisation problem can be solved using the Lagrangian and the
Karush–Kuhn–Tucker conditions (Chong and Żak, 2008), giving[

�̂�
(0)
𝑁

�̂�
(0)
𝑁

]
=

[
𝑄⊤(𝜁𝑛

𝑁
)𝑄(𝜁𝑛

𝑁
) Γ⊤

Γ 0

]−1 [0
𝛾

]
, (8.38)

5Weighted least-squares can be used as well (see Step 3) with weighting matrix 𝑊 (𝜁𝑛
𝑁
) =

𝑃−1 (𝜁𝑛
𝑁
) (Galrinho, 2016).
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where �̂� (0)
𝑁

are the estimated Lagrange multipliers. The covariance of the residuals
is updated according to (initially for 𝑘 = 0):

Λ̄(�̂� (𝑘 )
𝑁
) = 1

𝑁

𝑁∑︁
𝑡=𝑛+1

𝜀(𝑡, �̂� (𝑘 )
𝑁
)𝜀⊤(𝑡, �̂� (𝑘 )

𝑁
), (8.39)

with residual

𝜀(𝑡, �̂� (𝑘 )
𝑁
) = �̄�−1(𝑞−1, �̂�

(𝑘 )
𝑁
)
[
𝐴(𝑞−1, �̂�

(𝑘 )
𝑁
)𝑤(𝑡) − 𝐵(𝑞−1, �̂�

(𝑘 )
𝑁
)𝑟 (𝑡)

]
. (8.40)

Step 3: Improving the structured network model

This step aims to correct for the residuals in (8.36) that are not accounted for in
(8.38), due to the fact that only a high-order approximation of the nonparametric
ARX model is used.

Substituting �̆�(𝑞−1, 𝜁𝑛
𝑁
) and �̆�(𝑞−1, 𝜁𝑛

𝑁
) for �̆�0(𝑞−1) and �̆�0(𝑞−1), respect-

ively, into (8.35) gives

𝐴0(𝑞−1) − �̄�0(𝑞−1) �̆�0(𝑞−1) =
�̄�0(𝑞−1) [ �̆�(𝑞−1, 𝜁𝑛𝑁 ) − �̆�0(𝑞−1)], (8.41a)

𝐵0(𝑞−1) − �̄�0(𝑞−1)�̆�0(𝑞−1) =
�̄�0(𝑞−1) [�̆�(𝑞−1, 𝜁𝑛𝑁 ) − �̆�0(𝑞−1)], (8.41b)

which are equivalently written as (by using (8.36))

−𝑄(𝜁𝑛𝑁 )𝜗0 = 𝑇 (𝜗0) (𝜁𝑛𝑁 − 𝜁𝑛𝑜), (8.42)

where the matrix 𝑇 (𝜗0) is given in Appendix 8.H. The estimate of 𝜗0 with
minimum variance is obtained by solving a weighted least-squares problem, where
the weighting matrix is given by the inverse covariance matrix of the right-hand
side expression in (8.42). As this term depends on 𝜗 this problem is solved
iteratively by

�̂�
(𝑘 )
𝑁

= min
𝜗

𝜗⊤𝑄⊤(𝜁𝑛𝑁 )𝑊 (�̂�
(𝑘−1)
𝑁
)𝑄(𝜁𝑛𝑁 )𝜗 (8.43a)

subject to Γ𝜗 = 𝛾, (8.43b)

where the weighting matrix 𝑊 (�̂� (𝑘−1)
𝑁
) is iteratively updated for 𝑘 = 1, 2, · · ·

according to

𝑊 (�̂� (𝑘−1)
𝑁
) = 𝑇−⊤(�̂� (𝑘−1)

𝑁
)𝑃−1(�̂� (𝑘−1)

𝑁
)𝑇−1(�̂� (𝑘−1)

𝑁
), (8.44)
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where 𝑃(�̂� (𝑘−1)
𝑁
) is updated according to

𝑃−1(�̂� (𝑘−1)
𝑁
) = 1

𝑁

𝑁∑︁
𝑡=𝑛+1

𝜑𝑛 (𝑡)Λ̄−1(�̂� (𝑘−1)
𝑁
) [𝜑𝑛 (𝑡)]⊤. (8.45)

Similar to Step 2, this optimisation problem can be solved through[
�̂�
(𝑘 )
𝑁

�̂�
(𝑘 )
𝑁

]
=

[
𝑄⊤(𝜁𝑛

𝑁
)𝑊 (�̂� (𝑘−1)

𝑁
)𝑄(𝜁𝑛

𝑁
) Γ⊤

Γ 0

]−1 [0
𝛾

]
, (8.46)

where �̂� (𝑘 )
𝑁

are the estimated Lagrange multipliers. Finally, the covariance of the
residuals is updated according to (8.39).

Remark 8.19. Although this step is asymptotically efficient, iterating may
improve the estimate for finite data length 𝑁 . The cost

𝑉𝑁 (�̂� (𝑘 )𝑁 ) =
1
𝑁

det
𝑁∑︁
𝑡=1

𝜀(𝑡, �̂� (𝑘 )
𝑁
)𝜀⊤(𝑡, �̂� (𝑘 )

𝑁
) (8.47)

is evaluated at each iteration to decide whether the parameter estimation has
improved. However, as (8.47) is not affine in the parameters, an improved
cost may still result in deteriorated parameter estimates. The cost (8.47)
is used as it is independent of Λ(𝜃) and under Gaussian assumptions,
minimising (8.47) results in the minimum variance of the estimates if Λ(𝜃)
is independently parameterised from 𝐴(𝑞−1, 𝜃), 𝐵(𝑞−1, 𝜃), and 𝐶 (𝑞−1, 𝜃).
In this situation, the asymptotic (minimum) variance resulting from (8.22b)
is equal to the asymptotic variance of the maximum likelihood estimator
(Ljung, 1999).

Step 4: Obtaining the noise model

Having estimated 𝐴0(𝑞−1), 𝐵0(𝑞−1), and �̄�0(𝑞−1), the noise model represented
by 𝐶0(𝑞−1) and Λ0 can be recovered. On the basis of (8.30c), the estimate of
𝐶0(𝑞−1) is constructed as

𝐶 (𝑞−1, 𝜃
(𝑘 )
𝑁
) = �̄� (𝑞−1, �̂�𝑘𝑁 )𝐴−1

0 (�̂�
𝑘
𝑁 ). (8.48)

Further, as Λ0 = 𝐴0
0Λ̄

0𝐴0
0, the estimate of Λ0 is given by

Λ(𝜃 (𝑘 )
𝑁
) = 𝐴0(�̂� (𝑘 )𝑁 )Λ̄(�̂�

(𝑘 )
𝑁
)𝐴0(�̂� (𝑘 )𝑁 ). (8.49)
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Step 5: Estimating the discrete-time components

With the estimate of 𝐴0(𝑞−1) from Step 3, the dynamics of the discrete-time
network has been estimated. The components, represented by �̄� (𝑞−1) and𝑌 (𝑞−1),
are obtained through the inverse mapping of 𝐴(𝑞−1) = �̄� (𝑞−1) + 𝑌 (𝑞−1), with
�̄� (𝑞−1) diagonal and 𝑌 (𝑞−1) Laplacian, given by

𝑥 𝑗𝑘,ℓ =

{
0 if 𝑗 ≠ 𝑘
𝑎 𝑗 𝑗 ,ℓ +

∑
𝑖≠ 𝑗 𝑎𝑖 𝑗 ,ℓ , if 𝑗 = 𝑘

(8.50a)

�̄� 𝑗𝑘,ℓ =

{
𝑎 𝑗𝑘,ℓ , if 𝑗 ≠ 𝑘
−∑𝑖≠ 𝑗 𝑎𝑖 𝑗 ,ℓ , if 𝑗 = 𝑘.

(8.50b)

Step 6: Estimating the continuous-time components

The continuous-time representation 𝑋 (𝑝), 𝑌 (𝑝), �̄�(𝑝) can be obtained from the
estimated discrete-time model from Steps 5 and 3 through the inverse mapping of
(8.5), given by

𝑥 𝑗𝑘,ℓ = (−𝑇𝑠)ℓ
∑𝑛𝑎
𝑖=ℓ

( 𝑖
ℓ

)
𝑥 𝑗𝑘,𝑖, (8.51a)

𝑦 𝑗𝑘,ℓ = (−𝑇𝑠)ℓ
∑𝑛𝑎
𝑖=ℓ

( 𝑖
ℓ

)
�̄� 𝑗𝑘,𝑖 , (8.51b)

�̄� 𝑗 𝑗 ,ℓ = (−𝑇𝑠)ℓ
∑𝑛𝑏
𝑖=ℓ

( 𝑖
ℓ

)
𝑏 𝑗 𝑗 ,𝑖 . (8.51c)

The complete algorithm

The above steps describe the procedure for identifying the physical components of
a diffusively coupled linear network with an ARMAX-like model structure. This
procedure leads to the following algorithm:

Algorithm 8.20 (ARMAX-like model structure). Consider a data gener-
ating system S with 𝐹0(𝑞) := 𝐶0(𝑞−1) a monic polynomial and a network
model setM (8.13) with 𝐹 (𝑞, 𝜃) := 𝐶 (𝑞−1, 𝜃) a monic polynomial. Then
𝑀 (𝜃𝑁 ), a consistent estimate of𝑀0, is obtained through the following steps:

1. Estimate the nonparametric ARX model (8.29) by least squares (8.32)
to obtain 𝜁𝑛

𝑁
.

2. Reduce the nonparametric ARX model to a parametric model (8.9) by
weighted least-squares (8.38) to obtain �̂� (0)

𝑁
.
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3. Improve the parametric model (8.9) by weighted least-squares (8.38)
to obtain �̂� (𝑘 )

𝑁
for 𝑘 = 1, 2, . . ..

4. Obtain the noise model by calculating (8.48) and (8.49) to obtain
𝐶 (𝑞−1, 𝜃

(𝑘 )
𝑁
) and Λ(𝜃 (𝑘 )

𝑁
).

5. Obtain the discrete-time component values through (8.50) to estimate
�̄� (𝑞−1) and 𝑌 (𝑞−1).

6. Obtain the continuous-time parametric model through (8.51) to es-
timate 𝑋 (𝑝), 𝑌 (𝑝), and �̄�(𝑝).

Consistency and minimum variance of the estimates obtained with Algorithm
8.20 follow from the similarity with WNSF and its proof, under technical condi-
tions on the rates with which 𝑛 and 𝑁 tend to infinity (Galrinho et al., 2019). The
main difference is that 𝐴(𝑞−1, 𝜃) is nonmonic and symmetrically parameterised,
resulting in a different structure in (8.36). In particular, the structure in𝑄(𝜁𝑛) and
𝑇 (𝜗0) is different and the optimisation problem (8.37) is constrained. For consist-
ency, 𝑄(𝜁𝑛

𝑁
) needs to have full column rank, which can be shown to be satisfied

if the identifiability conditions in Proposition 8.15 are satisfied. Consistency in
Step 4, 5, and 6 follows naturally.

Remark 8.21 (Orders). In order to perform Algorithm 8.20, the measured
data {𝑧(𝑡)} are needed; the order 𝑛 of the ARX model needs to be chosen; and
the true orders 𝑛𝑎, 𝑛𝑏, and 𝑛𝑐 of 𝐴(𝑞−1), 𝐵(𝑞−1), and𝐶 (𝑞−1), respectively,
need to be known.

Remark 8.22 (Simplification to an ARX-like model structure). If the
noise is not filtered, that is, 𝐹 (𝑞) := 𝐶 (𝑞−1) = 𝐼, the network has an
ARX-like model structure and the ARX model (8.29) can exactly describe
the diffusively coupled network, where �̆�(𝑞−1) and �̆�(𝑞−1) are of the same
order as 𝐴(𝑞−1) and 𝐵(𝑞−1), respectively. Algorithm 8.20 improves in
the sense that Step 1 is consistent for sufficiently large data length 𝑁 and
therefore, no additional estimation error is made in Step 2, which makes
Step 3 superfluous.

Remark 8.23 (Simplification to an ARX model structure). If 𝐴0 = 𝐼 in
addition to unfiltered noise (𝐹 (𝑞) := 𝐶 (𝑞−1) = 𝐼), the network has an ARX
model structure. In this case, the network can consistently be identified
in a single step by incorporating the symmetric structure into Step 1 of
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Figure 8.3: The continuous-time network model with interconnection dynamics
described by the polynomials 𝑦 𝑗𝑘 (𝑝), dynamics to the ground described by the
polynomial 𝑥 𝑗 𝑗 (𝑝), and static excitation filter 𝑏11.

Algorithm 8.20 and by choosing the order of �̆�(𝑞−1) and �̆�(𝑞−1) equivalent
to the order of 𝐴(𝑞−1) and 𝐵(𝑞−1), respectively. The resulting identification
procedure has been described in Chapter 7.

8.6 Simulation example

This section contains a simulation example that serves to illustrate the theory and
to show that indeed, the topology and the physical components of a network can
be identified using a single excitation signal only. The identification is performed
with the algorithm presented above.

8.6.1 Experimental set-up

Consider the continuous-time diffusively coupled network (8.2) consisting of four
one-dimensional nodes, with an external signal 𝑢(𝑡) = 𝐵0𝑟 (𝑡) + 𝑣(𝑡), described by

(𝑋0 + 𝑌0)𝑤(𝑡) + (𝑋1 + 𝑌1)
𝑑

𝑑𝑡
𝑤(𝑡) + 𝑋2

𝑑2

𝑑𝑡2
𝑤(𝑡) = 𝐵0𝑟 (𝑡) + 𝑣(𝑡), (8.52)
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where 𝑟 (𝑡) is one-dimensional and known, and 𝐵0 has dimension 4 × 1 and has
only the first element nonzero. Figure 8.3 shows the structure of this network,
where it can be seen that the excitation signal 𝑟 (𝑡) = 𝑟1(𝑡) enters the network
only at node 𝑤1(𝑡). One can think of this network as a mechanical mass-spring-
damper network as explained in Section 8.2, where 𝑋0 and 𝑌0 contain the spring
constants, 𝑋1 and 𝑌1 contain the damper coefficients, 𝑋2 contains the masses,
the node signals 𝑤(𝑡) represent the positions of the masses, and the excitation
signal 𝑟 (𝑡) is a force. One can also think of this network as an electrical circuit
with nodes that are interconnected through capacitors, resistors, and inductors (in
parallel). The matrices 𝑋0 and 𝑌0 contain the capacitances, 𝑋1 and 𝑌1 contain the
conductance values of the resistors, 𝑋2 contain the inverses of the inductances, the
node signals 𝑤(𝑡) represent the electric potentials of the interconnection points,
and the excitation signal 𝑟 (𝑡) is the derivative of a current flow.

The discrete-time representation is obtained by applying the discretisation
method described in Section 8.2.2 with the sampling frequency 𝑓𝑠 = 100 Hz. In
addition, the disturbance 𝑣(𝑡) acting on the network is modelled in discrete time as
white noise filtered by a first-order filter. This results in the discrete-time network
model (8.9)

[𝐴0 + 𝐴1𝑞
−1 + 𝐴2𝑞

−2]𝑤(𝑡) = 𝐵0𝑟 (𝑡) + [𝐼 + 𝐶1𝑞
−1]𝑒(𝑡), (8.53)

with 𝐴𝑖 = �̄�𝑖 + 𝑌𝑖 and 𝐴𝑖 , 𝑌𝑖 symmetric and �̄�𝑖 diagonal for 𝑖 = 0, 1, 2. The
network topology is assumed to be unknown, as reflected by the fact that in
the model there are parameterised second-order connections between all pairs of
nodes. As 𝐴2 = �̄�2 is diagonal, identifiability Condition 2. in Proposition 8.15 is
satisfied. The location where 𝑟 (𝑡) enters and the first nonzero parameter of 𝐵0 are
assumed to be known, which imply that 𝐵0 is fixed and not parameterised. This
guarantees that identifiability Condition 4. in Proposition 8.15 is satisfied.

The symmetric structure of 𝑌 (𝑝) is taken into account in the parameterisation
of the continuous-time model. The continuous-time model matrices (8.52) are
parameterised as

𝑋0 =


𝜃𝑐1 0 0 0
0 𝜃𝑐4 0 0
0 0 𝜃𝑐7 0
0 0 0 𝜃𝑐10

 , 𝑋1 =


𝜃𝑐2 0 0 0
0 𝜃𝑐5 0 0
0 0 𝜃𝑐8 0
0 0 0 𝜃𝑐11

 , (8.54)

𝑋2 =


𝜃𝑐3 0 0 0
0 𝜃𝑐6 0 0
0 0 𝜃𝑐9 0
0 0 0 𝜃𝑐12

 , (8.55)
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𝑌0 =


★ 𝜃𝑐13 𝜃𝑐15 𝜃𝑐17
𝜃𝑐13 ★ 𝜃𝑐19 𝜃𝑐21
𝜃𝑐15 𝜃𝑐19 ★ 𝜃𝑐23
𝜃𝑐17 𝜃𝑐21 𝜃𝑐23 ★

 , 𝑌1 =


★ 𝜃𝑐14 𝜃𝑐16 𝜃𝑐18
𝜃𝑐14 ★ 𝜃𝑐20 𝜃𝑐22
𝜃𝑐16 𝜃𝑐20 ★ 𝜃𝑐24
𝜃𝑐18 𝜃𝑐22 𝜃𝑐24 ★

 , (8.56)

where the elements ★ follow from the Laplacian structure. Observe that 𝜃𝑐
𝑖
≥ 0

for 𝑖 = 1, . . . , 12 and 𝜃𝑐
𝑖
≤ 0 for 𝑖 = 13, . . . , 24 as all components have positive

values; see Section 8.2.1. The exact true parameter values, represented by 𝜃𝑐0 are
given in Table 8.1.

The external excitation signal 𝑟1(𝑡) is an independent white noise process with
mean 0 and variance 𝜎2

𝑟 = 1. All nodes are subject to disturbances 𝑒𝑖 (𝑡), which
are independent white noise processes (uncorrelated with 𝑟1(𝑡)) with mean 0 and
variance 𝜎2

𝑒 = 10−4. In Step 2 of the algorithm, the possibility to apply the
weighting𝑊 (𝜁𝑛

𝑁
) = 𝑃−1(𝜁𝑛

𝑁
) is exploited. In Step 3 of the algorithm, at most 50

iterations are allowed to improve the result of Step 2.

Experiment 1 serves to show that the parameters can consistently be identified
with a single excitation signal only. In order to do so, the identification is performed
for different orders 𝑛 of the ARX model in Step 1 and different data lengths 𝑁 ,
such that they increase at an appropriate rate, guaranteeing that 𝑛4/𝑁 decreases
for increasing 𝑛 and 𝑁 (Galrinho et al., 2019). The chosen values 𝑛, 𝑁 and the
rate 𝑛4/𝑁 are given in Table 8.2. For each experimental set, 20 Monte-Carlo
simulations are performed, where in each run new excitation and noise signals are
generated.

Experiment 2 serves to identify the parameters and topology with a single
excitation signal only and to show that using more excitation signals at different
nodes improves the results. In order to show this, two sets of experiments are
performed, one set with a single excitation signal (𝐾 = 1) entering at node 𝑤1(𝑡)
and one set with three excitation signals (𝐾 = 3) entering the network at node
𝑤1(𝑡), 𝑤2(𝑡), and 𝑤3(𝑡). In the former case, 𝐵0 is a 4 × 1 unit vector that is fully
known and in the latter case, 𝐵0 is a 4 × 3 selection matrix with 𝑏11,0 = 1; with
parameterised elements 𝑏22,0 = 𝜃𝑐24 and 𝑏33,0 = 𝜃𝑐25 with true values 𝜃𝑐0

24 = 1 and
𝜃𝑐0

25 = 1; and with all other elements equal to 0. The order of the ARX model
in Step 1 of the algorithm is 𝑛 = 5 and the number of samples generated for
each data set is 𝑁 = 10, 000. Both experimental sets consist of 100 Monte-Carlo
simulations, where in each run new excitation and noise signals are generated.

8.6.2 Simulation results

The simulation results of Experiment 1 are shown in Figure 8.4. This figure shows
a Boxplot of the relative mean squared error (RMSE) of the continuous-time model
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Table 8.2: The order 𝑛 of the ARX fit, the data length 𝑁 , and the rate 𝑛4/𝑁 for
each set of Experiment 1.

Set 1 2 3 4 5 6 7 8 9 10
𝑛 3 4 5 6 7 8 9 10 11 12
𝑁 96 320 834 1852 3694 6827 11930 20000 32536 51841
𝑛4/𝑁 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40

parameters, where the RMSE is determined as

RMSE =
∥𝜃𝑐0 − 𝜃𝑐

𝑁
∥22

∥𝜃𝑐0∥22
, (8.57)

where 𝜃𝑐 contains the parameters of 𝑋 (𝑝) and 𝑌 (𝑝). From Figure 8.4 it can be
seen that the RMSE decreases if both 𝑛 and 𝑁 increase, such that the rate 𝑛4/𝑁
decreases. This observation supports the statement that consistent identification
is achieved if the order of the ARX model 𝑛 tends to infinity as a function of the
data length 𝑁 at an appropriate rate (Galrinho et al., 2019).

The simulation results of Experiment 2 are shown in Figures 8.5-8.8 and Table
8.1.

Figure 8.5 and 8.6 show a Boxplot of the relative parameter estimation errors
for 𝐾 = 1 and 𝐾 = 3, respectively, for parameters for which their underlying true
value is unequal to 0. For the other parameters, the mean values are provided in
Figures 8.7 and 8.8. From Figures 8.5 and 8.6, it can be seen that the median of
the relative errors is around 0 for all parameters, which means that the medians
of the estimated parameter values are close to the true values. This supports the
statement that the parameters can be identified with a single excitation signal only.
However, Figure 8.5 also shows that for the experiment with a single excitation
signal (𝐾 = 1), 50% of the relative parameter errors are within a range of 10%
deviation. This is quite a large deviation. From Figure 8.6, it can be seen that this
range reduces to 2% deviation if the number of excitation signals is increased to
three (𝐾 = 3). Increasing the number of excitation signals improves the signal-to-
noise ratio, which has a clear effect on the variance of the estimated parameters.

Table 8.1 contains the mean and standard deviation of the estimated model
parameters. The experiment with three external excitation signals has two ad-
ditional parameters 𝜃𝑐25 and 𝜃𝑐26, which have true values 1 and which are estim-
ated with mean 1.000 and 9.9983 × 10−1, respectively, and standard deviation
6.6505 × 10−4 and 9.2690 × 10−4, respectively. Although the estimates are quite
accurate, small biases can still occur because of the finite values of 𝑛 and 𝑁 . For
all parameters, this bias is within a bound of 1 standard deviation.
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Figure 8.4: Boxplot of the relative mean squared error (RMSE) (8.57) of the
parameters of 𝑋 (𝑝) and 𝑌 (𝑝) for each experimental set.

Figure 8.7 and 8.8 show the true values and the mean estimated values of the
parameters, focusing on those parameters whose true values are equal to 0. For
𝐾 = 1 it would be hard to identify the correct topology of the network, i.e. estimate
which parameters are unequal to 0, on the basis of the estimated mean values only.
Note that for example, the zero parameter 𝜃𝑐19 has a mean value that is higher than
the nonzero parameter 𝜃𝑐3 . For 𝐾 = 3 this situation improves drastically.

8.7 Discussion

In this section, three extensions of the presented theory are discussed. First, the
connection with dynamic networks is made. Second, networks with unmeasured
nodes are considered. Third, parameter constraints are discussed.
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Figure 8.5: Boxplot of the relative estimation errors of the parameters of 𝑋 (𝑝)
and 𝑌 (𝑝) for the experimental set with a single excitation signal (𝐾 = 1), for
parameters with a nonzero true value.
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Figure 8.6: Boxplot of the relative estimation errors of the parameters of 𝑋 (𝑝),
𝑌 (𝑝) and 𝐵(𝑝) for the experimental set with three excitation signals (𝐾 = 3), for
parameters with a nonzero true value.



238 Identification through structured polynomial models

Parameters

-2

0

2

4

6

8

10

12

14

16

M
E

A
N

10
-3 The mean of the estimated parameters for K=1

Figure 8.7: The true parameter values (blue) and the mean of the estimated
parameter values (red) of 𝑋 (𝑝) and 𝑌 (𝑝) for the experimental set with a single
excitation signal (𝐾 = 1), focusing on parameters with a true value of 0.
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Figure 8.8: The true parameter values (blue) and the mean of the estimated
parameter values (red) of 𝑋 (𝑝),𝑌 (𝑝) and 𝐵(𝑝) for the experimental set with three
excitation signals (𝐾 = 3), focusing on parameters with a true value of 0.
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8.7.1 Dynamic networks

A commonly used description of dynamic networks is the module representation
(Van den Hof et al., 2013), in which a network is considered to be the intercon-
nection of directed transfer functions (modules) through measured node signals
as

𝑤(𝑡) = 𝐺 (𝑞)𝑤(𝑡) + 𝑅(𝑞)𝑟 (𝑡) + 𝐻 (𝑞)𝑒(𝑡), (8.58)

with white noise process 𝑒(𝑡) and with proper rational transfer function matrices
𝐺 (𝑞), 𝑅(𝑞), and 𝐻 (𝑞) ∈ H , where the matrix entries 𝐺 𝑗𝑘 (𝑞), 𝑅 𝑗𝑘 (𝑞), and
𝐻 𝑗𝑘 (𝑞) describe the dynamics in the paths from 𝑤𝑘 (𝑡), 𝑟𝑘 (𝑡), and 𝑒𝑘 (𝑡) to 𝑤 𝑗 (𝑡),
respectively. A diffusively coupled network (8.9) can be described as a mod-
ule representation with the following particular symmetrical properties: (see
Chapter 7)

1. The transfer functions 𝐺 𝑗𝑘 (𝑞) and 𝐺𝑘 𝑗 (𝑞) have the same numerator for all
𝑗 , 𝑘 .

2. The transfer functions 𝐺 𝑗𝑘 (𝑞) and 𝑅 𝑗𝑚(𝑞) have the same denominator for
all 𝑘, 𝑚.

3. The transfer functions 𝐺 𝑗𝑘 (𝑞) and 𝐻 𝑗𝑚(𝑞) have the same denominator for
all 𝑘, 𝑚 if 𝐹 (𝑞) is polynomial.

Moreover, conditions for a unique mapping between a module representation and
a diffusively coupled network are formulated in Chapter 7.

The structure of𝐺 (𝑞) and 𝑅(𝑞) corresponding to a diffusively coupled network
with three nodes is illustrated by Figure 8.9. It shows that the modules 𝐺 𝑗𝑘 (𝑞) =
−𝑎−1

𝑗 𝑗
(𝑞−1)𝑎 𝑗𝑘 (𝑞−1) and 𝐺𝑘 𝑗 (𝑞) = −𝑎−1

𝑘𝑘
(𝑞−1)𝑎 𝑗𝑘 (𝑞−1) have the same numerator

(𝑎 𝑗𝑘 (𝑞−1)) and all transfer functions in the paths towards a specific node 𝑤 𝑗 (𝑡)
have the same denominator (𝑎 𝑗 𝑗 (𝑞−1)). Since 𝐺 𝑗𝑘 (𝑞) and 𝐺𝑘 𝑗 (𝑞) have the same
numerator, they will either be both present or both absent, which is in accordance
with the fact that they represent a single diffusively coupled interconnection. In
addition, the connections to the ground node are only present in the denominators,
because they are only present in 𝑎 𝑗 𝑗 (𝑞−1). This means that they do not have an
effect on the topology in the module representation, although they are part of the
topology in the diffusively coupled network.

8.7.2 Partial measurements

Throughout this chapter, we assumed that all node signals are measured, which
is a situation to which the identification method that we presented is particularly
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Figure 8.9: A module representation of a diffusively coupled network with three
nodes.

tuned. From the literature, it is known (Friswell et al., 1999; Lopes dos Santos
et al., 2015) that network identifiability can be achieved if all nodes are measured
and one node is excited, or if all nodes are excited and one node is measured.
The former situation is covered in this chapter, see Proposition 8.15, as the latter
situation seems less common and leads to higher experimental costs. In this latter
situation, a different identification method would be required, further exploiting
the role of the different excitation signals, leading to a so-called indirect method
of identification.

For the situation where only a subset of nodes is measured and/or excited,
general identifiability conditions are not yet known, but some particular situations
are considered by Bazanella et al. (2019) for the case of directed networks.

For estimating only a particular component or a particular connection in the
network, the identifiability conditions will be less severe. In the partial measure-
ment situation, unmeasured node signals can be removed from the representation
by Gaussian elimination, which is equivalent to Kron reduction (Dörfler and Bullo,
2013) and immersion (Dankers et al., 2016), which has been effectively applied
in the local module identification problem of directed networks; see e.g. Dankers
et al. (2016). Related results for the situation of undirected networks will be
reported in a follow-up chapter.

8.7.3 Parameter constraints

Physical networks that consist of interconnected physical components, such as
mass-spring-damper systems and RLC circuits, are known to have positive real-
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valued component values in the continuous-time representation (8.2). This also
leads to coefficients with known signs in the corresponding discrete-time repres-
entation. In both the consistency proof and the presented algorithm, these sign
constraints are not taken into account. They can be taken into account in the
algorithm by adding inequality constraints of the form Γ𝑢𝜗 < 0 to the optimisa-
tion problems (8.37) and (8.43). A priori known parameter values can easily be
taken into account by the equality constraint Γ𝜗 = 𝛾 in the optimisation problems
(8.37) and (8.43). Known (continuous-time) component values can be taken into
account as well, by splitting 𝜗 as 𝜗 = 𝜗𝑢 + 𝜗𝑘 , where 𝜗𝑢 and 𝜗𝑘 represent the
unknown and known part of 𝜗, respectively. Then the linear form −𝑄(𝜁𝑛)𝜗 = 0
leads to −𝑄(𝜁𝑛)𝜗𝑢 + 𝛾𝑘 (𝜁𝑛, 𝜗𝑘) = 0, where 𝛾𝑘 (𝜁𝑛, 𝜗𝑘) := −𝑄(𝜁𝑛)𝜗𝑘 is known.

8.8 Conclusion

Undirected networks of diffusively coupled systems can be represented by poly-
nomial representations with particular structural properties. This has enabled the
development of an effective prediction error identification method for identifying
the physical components and the topology of the network. Conditions for consist-
ent parameter estimates have been formulated for the situation where all network
nodes are measured, showing that only a single excitation signal is needed for
consistency. The identification is performed through a multistep algorithm that
relies on convex optimisations and is a reworked version of the recently introduced
weighted null-space fitting method, adapted to the situation of the structured net-
work models. The results of identifying the topology and parameters of a network
are illustrated in a Monte Carlo simulation example. It shows that, while con-
sistency is guaranteed for a single excitation signal, the variance of parameter
estimates improves considerably when increasing the number of excitations.



Appendix

8.A Proof of Lemma 8.3

𝐴0 = �̄�0 + 𝑌0, with diagonal �̄�0 =
∑𝑛𝑎
𝑖=1 𝑇

−𝑖
𝑠 𝑋𝑖 and Laplacian 𝑌0 =

∑𝑛𝑎
𝑖=1 𝑇

−𝑖
𝑠 𝑌𝑖,

following from (8.5a) with 𝑛𝑥 = 𝑛𝑎 and (8.5b) with 𝑛𝑦 = 𝑛𝑎, respectively. Since
𝑌0 is Laplacian, the sum of each row is equal to 0, that is, 𝑌01 = 0, with 1 =[
1 1 . . . 1

]⊤ ∈ R𝐿 (Mesbahi and Egerstedt, 2010). Because the network is
connected, 𝑌0 has one-dimensional kernel ker(𝑌0) = span(1) (Dörfler and Bullo,
2013). Since the network has at least one connection to the ground node, ∃ 𝑗 , ℓ such
that 𝑥 𝑗 𝑗 ,ℓ > 0, implying that 𝑥 𝑗 𝑗 ,0 > 0 and thus �̄�0 ⪰ 0. The vectors that span the
kernel of �̄�0 will have at least one zero element, implying that ker(𝑌0) ⊄ ker( �̄�0).
Because both𝑌0 ⪰ 0 and �̄�0 ⪰ 0, ker(𝐴0) = ker(𝑌0 + �̄�0) = ker(𝑌0) ∩ker( �̄�0) = ∅
and hence, rank(𝐴0) = 𝐿.

8.B Proof of Proposition 8.5

The network (8.9) can be described by

𝐴(𝑞−1)𝑤(𝑡) = 𝐵(𝑞−1)𝑟 (𝑡) + 𝐹 (𝑞)𝑒(𝑡) = 𝐵(𝑞−1)𝑟 (𝑡) + 𝐹 (𝑞)𝐴0𝐴
−1
0 𝑒(𝑡). (8.59)

Premultiplying with 𝐴−1
0 𝐹−1(𝑞) gives

𝐴−1
0 𝐹−1(𝑞)𝐴(𝑞−1)𝑤(𝑡) = 𝐴−1

0 𝐹−1(𝑞)𝐵(𝑞−1)𝑟 (𝑡) + 𝐴−1
0 𝑒(𝑡). (8.60)

Adding 𝑤(𝑡) to both sides of the equality and rewriting gives

𝑤(𝑡) =
[
𝐼 − 𝐴−1

0 𝐹−1(𝑞)𝐴(𝑞−1)
]
𝑤(𝑡) +𝐴−1

0 𝐹−1(𝑞)𝐵(𝑞−1)𝑟 (𝑡) +𝐴−1
0 𝑒(𝑡) (8.61)

where the factor 𝐴−1
0 makes the filter

[
𝐼 − 𝐴−1

0 𝐹−1(𝑞)𝐴(𝑞−1)
]

strictly proper and
where 𝐴−1

0 𝐹−1(𝑞)𝐵(𝑞−1) is proper. The one-step-ahead network predictor (8.11)
follows directly by applying its definition (8.10) to (8.61).

242
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8.C Proof of Proposition 8.10

The expression for the parameterised prediction error (8.20a) directly follows from
its definition (8.19) and the network predictor (8.16). Expressing the paramet-
erised prediction error (8.20a) in terms of 𝑟 (𝑡) and 𝑒(𝑡) yields

𝜀(𝑡, 𝜃) = 𝑊 �̄�𝑟 (𝑞, 𝜃)𝑟 (𝑡) +𝑊 �̄�𝑒 (𝑞, 𝜃)𝑒(𝑡) + (𝐴0
0)
−1𝑒(𝑡), (8.62)

with

𝑊 �̄�𝑟 (𝑞, 𝜃) = 𝐴−1
0 (𝜃)𝐹

−1(𝑞, 𝜃)
[
𝐴(𝑞−1, 𝜃)

(
𝐴0(𝑞−1)

)−1
𝐵0(𝑞−1) − 𝐵(𝑞−1, 𝜃)

]
,

(8.63a)

𝑊 �̄�𝑒 (𝑞, 𝜃) = 𝐴−1
0 (𝜃)𝐹

−1(𝑞, 𝜃)𝐴(𝑞−1, 𝜃)
(
𝐴0(𝑞−1)

)−1
𝐹0(𝑞) − (𝐴0

0)
−1. (8.63b)

The latter two terms in (8.62) are uncorrelated since 𝑒(𝑡) is white noise and
𝑊 �̄�𝑒 (𝑞, 𝜃) is strictly proper. If the true system is in the model set, the prediction
error for the true system is equal to the innovation (8.12):

𝜀(𝑡, 𝜃0) = (𝐴0
0)
−1𝑒(𝑡) = 𝑒(𝑡). (8.64)

8.D Proof of Proposition 8.12

The premise of implication (8.26) is satisfied if and only if

Δ𝑊 (𝑞, 𝜃) := 𝑊 (𝑞, 𝜃1) −𝑊 (𝑞, 𝜃2) = 0. (8.65)

Applying Parseval’s theorem gives

1
2𝜋

∫ 𝜋

−𝜋
Δ𝑊 (𝑒𝑖𝜔 , 𝜃)Φ𝑧 (𝜔)Δ⊤𝑊 (𝑒−𝑖𝜔 , 𝜃)𝑑𝜔 = 0. (8.66)

This implies Δ𝑊 (𝑞, 𝜃) = 0 only if Φ𝑧 (𝜔) ≻ 0 for a sufficiently high number of
frequencies. In the situation 𝐾 ≥ 1, 𝑤(𝑡) depends on 𝑟 (𝑡) and substituting the
open-loop response (8.9) for 𝑤(𝑡) gives

𝑧(𝑡) = 𝐽 (𝑞)𝜅(𝑡). (8.67)

with

𝐽 (𝑞) =
[
𝐴−1𝐹 𝐴−1𝐵

0 𝐼

]
, 𝜅(𝑡) =

[
𝑒(𝑡)
𝑟 (𝑡)

]
. (8.68)
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As 𝐽 (𝑞) has always full rank, Φ𝑧 (𝜔) ≻ 0 if and only if Φ𝜅 (𝜔) ≻ 0. As 𝑒(𝑡) and
𝑟 (𝑡) are assumed to be uncorrelated and 𝐸{𝑒(𝑡)} = 0, we have that Φ𝑟𝑒 = Φ𝑒𝑟 = 0
and

Φ𝜅 =

[
Φ𝑟 Φ𝑟𝑒
Φ𝑒𝑟 Φ𝑒

]
=

[
Φ𝑟 0
0 Λ

]
. (8.69)

Then Φ𝜅 (𝜔) ≻ 0 if and only if Λ ≻ 0 (which is assumed) and Φ𝑟 (𝜔) ≻ 0. The
condition Φ𝑧 (𝜔) ≻ 0 reduces to Φ𝑟 (𝜔) ≻ 0.

8.E Proof of Theorem 8.17

The proof consists of three steps. First, convergence of𝑉𝑁 (𝜃) to �̄� (𝜃) for 𝑁 →∞
follows directly from applying Ljung (1999, Theorem 2B.1) and the fact that 𝑆 ≻ 0
as the conditions for convergence are satisfied by the network model set. Second,
by Condition 1., 𝜃0 is a minimum of �̄� (𝜃), which can be seen as follows. As
𝑟 (𝑡) and 𝑒(𝑡) are uncorrelated and 𝑊 �̄�𝑒 (𝑞, 𝜃) is strictly proper, the power of any
cross term between the three terms in the prediction error (8.62) is zero, so the
power of each term can be minimised individually. As a result, 𝑊 �̄�𝑟 (𝑞, 𝜃0) = 0
and 𝑊 �̄�𝑒 (𝑞, 𝜃0) = 0 and thus the cost function reaches its minimum value when
the prediction error is equal to the innovation as in (8.12). Third, following
the result of Ljung (1999, Theorem 8.3), under Condition 2., this minimum of
�̄� (𝜃) at 𝜃0 provides a unique predictor filter 𝑊 (𝑞, 𝜃) and therefore also a unique
pair (𝑇𝑤𝑟 (𝑞),Φ�̄� (𝜔)). With Condition 3. this implies that the resulting model
𝑀 (𝜃) = 𝑀 (𝜃0) is unique. Therefore, 𝑀 (𝜃𝑁 ) converges to 𝑀 (𝜃0) with probability
1.

8.F Parameters of the structured network

Remember that a polynomial matrix 𝐴(𝑞−1) as its (𝑖, 𝑗)th element has 𝑎𝑖 𝑗 (𝑞−1) =∑𝑛𝑎
ℓ=0 𝑎 𝑗𝑘,ℓ𝑞

−ℓ . The model structure 𝐴(𝑞−1, 𝜃𝑎), 𝐵(𝑞−1, 𝜃𝑏), 𝐶 (𝑞−1, 𝜃𝑐) of the
network model (8.28) is parameterised in terms of the parameters 𝜃𝑎, 𝜃𝑏, and
𝜂𝑐, where �̄� (𝑞−1, 𝜂𝑐, 𝜃𝑎) = 𝐶 (𝑞−1, 𝜃𝑐)𝐴0(𝜃𝑎), having its constant term paramet-
erised by 𝜃𝑎 and its dynamic terms by parameters 𝜃𝑐. 𝐴(𝑞−1) is parameterised
symmetrically. The parameter vectors 𝜃𝑎, 𝜃𝑏, 𝜃𝑐, and 𝜂𝑐 are given by

𝜃𝑎 =


𝜃𝑎1

𝜃𝑎2
...

𝜃𝑎𝐿


, 𝜃𝑎𝑖 =


𝜃𝑎𝑖i
𝜃𝑎𝑖i1
...

𝜃𝑎𝑖𝐿


, 𝜃𝑎𝑖 𝑗 =


𝑎𝑖 𝑗 ,0
𝑎𝑖 𝑗 ,1
...

𝑎𝑖 𝑗 ,𝑛𝑎


, (8.70a)
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𝜃𝑏 =


𝜃𝑏1

𝜃𝑏2
...

𝜃𝑏𝐿


, 𝜃𝑏𝑖 =


𝜃𝑏𝑖1
𝜃𝑏𝑖2
...

𝜃𝑏𝑖𝐾


, 𝜃𝑏𝑖 𝑗 =


𝑏𝑖 𝑗 ,0
𝑏𝑖 𝑗 ,1
...

𝑏𝑖 𝑗 ,𝑛𝑏


, (8.70b)

𝜃𝑐 =


𝜃𝑐1

𝜃𝑐2
...

𝜃𝑐𝐿


, 𝜃𝑐𝑖 =


𝜃𝑐𝑖1
𝜃𝑐𝑖2
...

𝜃𝑐𝑖𝐿


, 𝜃𝑐𝑖 𝑗 =


𝑐𝑖 𝑗 ,1
𝑐𝑖 𝑗 ,2
...

𝑐𝑖 𝑗 ,𝑛𝑐


, (8.70c)

𝜂𝑐 =


𝜂𝑐1

𝜂𝑐2
...

𝜂𝑐𝐿


, 𝜂𝑐𝑖 =


𝜂𝑐𝑖1
𝜂𝑐𝑖2
...

𝜂𝑐𝑖𝐿


, 𝜂𝑐𝑖 𝑗 =


𝑐𝑖 𝑗 ,1
𝑐𝑖 𝑗 ,2
...

𝑐𝑖 𝑗 ,𝑛𝑐


. (8.70d)

8.G ARX parameterisation and regressor

The model structure �̆�(𝑞−1, 𝜁𝑛𝑎 ) and �̆�(𝑞−1, 𝜁𝑛
𝑏
) of the nonparametric ARX model

(8.29) is parameterised in terms of the parameters 𝜁𝑛. The parameter vector
𝜁𝑛 :=

[
[𝜁𝑛𝑎 ]⊤ [𝜁𝑛

𝑏
]⊤
]⊤ is given by

𝜁𝑛𝑎 =


𝜁𝑛𝑎1
𝜁𝑛𝑎2
...

𝜁𝑛𝑎𝐿


, 𝜁𝑛𝑎𝑖 =


𝜁𝑛𝑎𝑖1
𝜁𝑛𝑎𝑖2
...

𝜁𝑛𝑎𝑖𝐿


, 𝜁𝑛𝑎𝑖 𝑗 =


�̆�𝑖 𝑗 ,1
�̆�𝑖 𝑗 ,2
...

�̆�𝑖 𝑗 ,𝑛


, (8.71a)

𝜁𝑛𝑏 =


𝜁𝑛
𝑏1
𝜁𝑛
𝑏2
...

𝜁𝑛
𝑏𝐿


, 𝜁𝑛𝑏𝑖 =


𝜁𝑛
𝑏𝑖1
𝜁𝑛
𝑏𝑖2
...

𝜁𝑛
𝑏𝑖𝐾


, 𝜁𝑛𝑏𝑖 𝑗 =


�̆�𝑖 𝑗 ,0
�̆�𝑖 𝑗 ,1
...

�̆�𝑖 𝑗 ,𝑛


. (8.71b)

The regressor [𝜑𝑛 (𝑡)]⊤ in (8.31b) is given by [𝜑𝑛 (𝑡)]⊤ =
[
−[𝜑𝑛𝑤 (𝑡)]⊤ [𝜑𝑛𝑟 (𝑡)]⊤

]
with

[𝜑𝑛𝑤 (𝑡)]⊤ =
[
[𝜑𝑛𝑤1
(𝑡)]⊤ [𝜑𝑛𝑤2

(𝑡)]⊤ · · · [𝜑𝑛𝑤𝐿 (𝑡)]
⊤] , (8.72a)

[𝜑𝑛𝑤𝑖 (𝑡)]
⊤ =

[
𝑤𝑖 (𝑡 − 1) 𝑤𝑖 (𝑡 − 2) · · · 𝑤𝑖 (𝑡 − 𝑛)

]
, (8.72b)

[𝜑𝑛𝑟 (𝑡)]⊤ =
[
[𝜑𝑛𝑟1 (𝑡)]

⊤ [𝜑𝑛𝑟2 (𝑡)]
⊤ · · · [𝜑𝑛𝑟𝐾 (𝑡)]

⊤] , (8.72c)
[𝜑𝑛𝑟𝑖 (𝑡)]

⊤ =
[
𝑟𝑖 (𝑡) 𝑟𝑖 (𝑡 − 1) 𝑟𝑖 (𝑡 − 2) · · · 𝑟𝑖 (𝑡 − 𝑛)

]
. (8.72d)
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8.H Matrices 𝑄(𝜁𝑛0) and 𝑇 (𝜗0)

In order to construct 𝑄(𝜁𝑛0) and 𝑇 (𝜗0), we first define some other matrices.

8.H.1 Zero and identity

Let 0𝑖, 𝑗 denote a matrix of dimension 𝑖× 𝑗 with all its elements equal to 0. Let 𝐼𝑖, 𝑗
denote an identity matrix of dimension 𝑖 × 𝑗 , where 𝐼𝑖, 𝑗 =

[
𝐼𝑖,𝑖 0𝑖, 𝑗−𝑖

]
for 𝑖 ≤ 𝑗

and 𝐼𝑖, 𝑗 =
[
𝐼 𝑗 , 𝑗 0 𝑗 ,𝑖− 𝑗

]⊤ for 𝑖 ≥ 𝑗 . Let 𝐼𝑘 (𝑖, 𝑗 ) denote a block diagonal matrix
of 𝑘 blocks of 𝐼𝑖, 𝑗 and let 𝐼ℓ (𝑘 (𝑖, 𝑗 ) ) denote a block diagonal matrix of ℓ blocks of
𝐼𝑘 (𝑖, 𝑗 ) .

8.H.2 Matrix Π

Define the matrices

Π𝑎𝑖 :=



𝜁𝑎𝑛
𝑖1

0𝑛,𝑛𝑎
...

...

𝜁𝑎𝑛
𝑖 (𝑖−1)

0𝑛,𝑛𝑎
𝜁𝑎𝑛
𝑖𝑖

−𝐼𝑛,𝑛𝑎
𝜁𝑎𝑛
𝑖 (𝑖+1)

0𝑛,𝑛𝑎
...

...

𝜁𝑎𝑛
𝑖𝐿

0𝑛,𝑛𝑎


, Π𝑏𝑖 :=


𝜁𝑏𝑛
𝑖1

0𝑛+1,𝑛𝑎
𝜁𝑏𝑛
𝑖2

0𝑛+1,𝑛𝑎
...

...

𝜁𝑏𝑛
𝑖𝐾

0𝑛+1,𝑛𝑎


, (8.73)

and observe that Π𝑎
𝑖

has dimensions 𝐿𝑛 × (𝑛𝑎 + 1) and that Π𝑏
𝑖

has dimensions
𝐾 (𝑛 + 1) × (𝑛𝑎 + 1).

For 𝑥 ∈ {𝑎, 𝑏}, define the block matrix

Π̄𝑥𝐿 :=


𝑍 𝑥0,𝐿 𝑍 𝑥1,𝐿−1 · · · 𝑍 𝑥
𝐿−1,1

𝑅(Π𝑥1 ,Π
𝑥
𝐿
) 𝑅(Π𝑥2 ,Π

𝑥
𝐿
) · · · 𝑅(Π𝑥

𝐿
,Π𝑥

𝐿
)

𝑆𝐿−1(Π𝑥1 ) 𝑆𝐿−2(Π𝑥2 ) · · · 𝑆𝐿−𝐿 (Π𝑥𝐿)

 , (8.74)

with 𝑍𝑎
𝑖, 𝑗

an 𝑖 × 𝑗 block matrix with blocks 0𝐿𝑛, (𝑛𝑎+1) and with 𝑍𝑏
𝑖, 𝑗

an 𝑖 × 𝑗
block matrix with blocks 0𝐾 (𝑛+1) , (𝑛𝑎+1) (that is, 𝑍𝑎

𝑖, 𝑗
:= 0𝑖𝐿𝑛, 𝑗 (𝑛𝑎+1) and 𝑍𝑏

𝑖, 𝑗
:=

0𝑖𝐾 (𝑛+1) , 𝑗 (𝑛𝑎+1) ), with

𝑅(Π𝑥𝑖 ,Π𝑥𝑗 ) :=
[
Π𝑥
𝑖

Π𝑥
𝑖+1 · · · Π𝑥

𝑗

]
, for 𝑖 ≤ 𝑗 , (8.75)
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and with
𝑆𝑖 (Π𝑥𝑗 ) :=

[
𝑍 𝑥
𝑖,1 𝐷𝑖 (Π𝑥𝑗 )

]
, (8.76)

with 𝐷𝑖 (Π𝑥𝑗 ) a block diagonal matrix consisting of 𝑖 blocks of Π𝑥
𝑗
. Observe that

Π̄𝑎
𝐿

has dimensions 𝐿2𝑛× 1
2𝐿 (𝐿 + 1) (𝑛𝑎 + 1) and Π̄𝑏

𝐿
has dimensions 𝐿𝐾 (𝑛 + 1) ×

1
2𝐿 (𝐿 + 1) (𝑛𝑎 + 1).

8.H.3 Toeplitz matrix

Let T𝑖, 𝑗 (𝑥) denote a Toeplitz matrix of dimension 𝑖 × 𝑗 (with 𝑖 ≥ 𝑗) given by

T𝑖, 𝑗 (𝑥) := T𝑖, 𝑗
( [
𝑥0 𝑥1 · · · 𝑥𝑖−1

] )
=



𝑥0 0
...

. . .

𝑥 𝑗−1 · · · 𝑥0
...

. . .
...

𝑥𝑖−1 · · · 𝑥𝑖− 𝑗−1


. (8.77)

Define the following Toeplitz matrices of dimension 𝑘 × ℓ:

T𝑘,ℓ (�̆�𝑖 𝑗) := T𝑘,ℓ (
[
�̆�𝑖 𝑗 ,0 �̆�𝑖 𝑗 ,1 · · · �̆�𝑖 𝑗 ,𝑘

]
), (8.78a)

T𝑘,ℓ (�̆�𝑖 𝑗) := T𝑘,ℓ (
[
0 �̆�𝑖 𝑗 ,0 �̆�𝑖 𝑗 ,1 · · · �̆�𝑖 𝑗 ,𝑘

]
), (8.78b)

T𝑘,ℓ (𝑐𝑖 𝑗) := T𝑘,ℓ (
[
𝑎𝑖 𝑗 ,0 𝑐𝑖 𝑗 ,1 · · · 𝑐𝑖 𝑗 ,𝑘

]
), (8.78c)

Note that for �̆�𝑖 𝑗 it is known that �̆�𝑖 𝑗 ,0 = 1 for 𝑖 = 𝑗 and �̆�𝑖 𝑗 ,0 = 0 for 𝑖 ≠ 𝑗 ; and
note that for 𝑐𝑖 𝑗 it is known that 𝑐𝑖 𝑗 ,0 = 𝑎𝑖 𝑗 ,0 = 𝑎 𝑗𝑖,0 and 𝑐𝑖 𝑗 ,𝑘 = 0 for 𝑘 > 𝑛𝑐.

Define the following block matrices

T̄𝑘,ℓ ( �̆�) :=


T𝑘,ℓ (�̆�11) · · · T𝑘,ℓ (�̆�𝐿1)

...
...

T𝑘,ℓ (�̆�1𝐿) · · · T𝑘,ℓ (�̆�𝐿𝐿)

 , (8.79a)

T̄𝑘,ℓ (�̆�) :=


T𝑘,ℓ (�̆�11) · · · T𝑘,ℓ (�̆�𝐿1)

...
...

T𝑘,ℓ (�̆�1𝐾 ) · · · T𝑘,ℓ (�̆�𝐿𝐾 )

 , (8.79b)

where T̄𝑘,ℓ ( �̆�) has dimensions 𝐿𝑘 × 𝐿ℓ and T̄𝑘,ℓ (�̆�) has dimensions 𝐾𝑘 × 𝐿ℓ.
For 𝑥 ∈ {𝑎, 𝑏}, let T̄𝑚(𝑘,ℓ ) ( �̆�) denote a block diagonal matrix consisting of

𝑚 blocks of T̄𝑘,ℓ ( �̆�). Observe that T̄𝑛,𝑛𝑐 ( �̆�) has dimension 𝐿𝑛 × 𝐿𝑛𝑐 and that
T̄𝑛+1,𝑛𝑐 (�̆�) has dimension 𝐾 (𝑛 + 1) × 𝐿𝑛𝑐.
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Let T𝑚(𝑘,ℓ ) (𝑐𝑖 𝑗) denote a block diagonal matrix consisting of 𝑚 blocks of
T𝑘,ℓ (𝑐𝑖 𝑗). Observe thatT𝐿 (𝑛,𝑛) (𝑐𝑖 𝑗) is an 𝐿𝑛×𝐿𝑛 block diagonal matrix consisting
of 𝐿 blocks of T𝑛,𝑛 (𝑐𝑖 𝑗) and that T𝐾 (𝑛+1,𝑛+1) (𝑐𝑖 𝑗) is an 𝐾 (𝑛 + 1) × 𝐾 (𝑛 + 1) block
diagonal matrix consisting of 𝐾 blocks of T𝑛+1,𝑛+1(𝑐𝑖 𝑗). Finally, define

𝑇𝑚(𝑘,ℓ ) (�̄�) :=


T𝑚(𝑘,ℓ ) (𝑐11) · · · T𝑚(𝑘,ℓ ) (𝑐1𝐿)

...
...

T𝑚(𝑘,ℓ ) (𝑐𝐿1) · · · T𝑚(𝑘,ℓ ) (𝑐𝐿𝐿)

 . (8.80)

8.H.4 Matrix 𝑄(𝜁𝑛0)

With the matrices defined above, we can now describe the matrix𝑄(𝜁𝑛0) in (8.36)
by

𝑄(𝜁𝑛0) =
[
Π̄𝑎
𝐿

0 T̄𝐿 (𝑛,𝑛𝑐 ) ( �̆�0)
Π̄𝑏
𝐿
−𝐼𝐿 (𝐾 (𝑛+1,𝑛𝑏 ) ) T̄𝐿 (𝑛+1,𝑛𝑐 ) (�̆�0)

]
, (8.81)

which has dimensions
[
𝐿2𝑛+𝐿𝐾 (𝑛+1)

]
×
[ 1

2𝐿 (𝐿+1) (𝑛𝑎+1)+𝐿𝐾 (𝑛𝑏+1)+𝐿2𝑛𝑐
]
.

8.H.5 Matrix 𝑇 (𝜗0)

With the matrices defined above, we can now describe the matrix 𝑇 (𝜗0) in (8.42)
by

𝑇 (𝜗0) =
[
−𝑇𝐿 (𝑛,𝑛) (�̄�0) 0

0 −𝑇𝐾 (𝑛+1,𝑛+1) (�̄�0)

]
, (8.82)

which has dimensions
[
𝐿2𝑛 + 𝐿𝐾 (𝑛 + 1)

]
×
[
𝐿2𝑛 + 𝐿𝐾 (𝑛 + 1)

]
.



9 | Subnetwork
identification

This chapter adds Section 9.9 and 9.10 to the work that is equivalent to

E.M.M. Kivits and P.M.J. Van den Hof. Local identification in diffusively
coupled linear networks. In Proceedings of the 61st IEEE Conference on Decision
and Control (CDC), pages 874-879, 2022.

Physical dynamic networks most commonly consist of interconnections of
physical components that can be described by diffusive couplings. Diffusive
couplings imply symmetric cause-effect relationships in the interconnections
and therefore diffusively coupled networks can be represented by undirected
graphs. This chapter shows how local dynamics of (undirected) diffusively
coupled networks can be identified on the basis of local signals only. Sensors
and actuators are allocated to guarantee consistent identification. An algorithm
is developed for identifying the local dynamics.

9.1 Introduction

Physical networks can describe a diversity of physical processes from various do-
mains, such as electrical, mechanical, hydraulic, thermal, and chemical processes.
Their dynamic behaviour is typically described by undirected dynamic intercon-
nections between node signals, where the interconnections represent diffusive
couplings (Cheng et al., 2017; Dörfler and Bullo, 2013). The network is typic-
ally described by a vector differential equation of maximum second order. Some
famous examples of physical networks are electrical resistor-inductor-capacitor
circuits and mechanical mass-spring-damper systems.

249
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In the literature, there are several methods available for identifying the physical
components in the network on the basis of measured signals. Black-box prediction
error identification methods (Ljung, 1999) can model the transfer functions from
measured excitation signals to node signals. These models need to be converted to
the structure of the physical network for estimating the component values, which
is nontrivial. Moreover, this modelling procedure depends on the particular
location of the external signals. Second, black-box state-space models can be
estimated from which the model parameters can be derived by applying matrix
transformations (Friswell et al., 1999; Lopes dos Santos et al., 2015; Ramos et al.,
2013) or eigenvalue decompositions (Fritzen, 1986; Luş et al., 2003). However,
these methods typically do not have any guarantees on the statistical accuracy
of the estimates. State-space models of first-order diffusively coupled networks
are considered by van Waarde et al. (2018). Third, physical networks can be
considered to be directed dynamic networks with specific structural properties
(Chapter 7). Dynamic networks can be modelled as directed interconnections
of transfer function modules (Gonçalves and Warnick, 2008; Van den Hof et al.,
2013) for which an identification framework has been developed by Van den Hof
et al. (2013). However, the network structure in the model is generally lost.
Information on the global network structure of undirected graphs can be provided
by spectral network identification (Mauroy and Hendrickx, 2017).

Instead of identifying the full network dynamics, one can also aim for identi-
fying only a part of the network, such that more simple experiments can be used
to obtain a particular component. This is often referred to as ’local’, ’single
module’, or ’subnetwork’ identification, for which several methods have been
developed for dynamic networks (Gevers et al., 2018; Materassi and Salapaka,
2020; Ramaswamy and Van den Hof, 2021). Again, the structural properties of
undirected network models cannot easily be accounted for in these identification
procedures for directed dynamic networks.

This chapter builds further on the preliminary work presented in Chapter 8,
in which the identification of the full diffusively coupled network dynamics is
discussed, including detailed identifiability and consistency results as well as the
implementation into a convex multistep algorithm. This chapter addresses the
problem of identifying a particular (local) dynamics in the diffusively coupled
network. The order of the dynamics is not restricted and possibly correlated
disturbances can be present. The question that is addressed is: Which nodes
to measure (sense) and which nodes to excite (actuate) in order to identify the
dynamics of a local interconnection in the network? An identification procedure
is developed that is shown to lead to consistent estimates thereof.

The networks that will be considered in this chapter are defined in Section 9.2.
The identification problem is specified in Section 9.3. Section 9.4 and Section 9.5
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describe how to remove unmeasured nodes from the network, without affecting the
target component. Section 9.6 describes the identification procedure, including
experiment design and conditions for consistent estimates. Section 9.7 discusses
some algorithmic aspects. Section 9.8 shows a simulation example of local
identification. In Section 9.9, the null-space fitting algorithm in the final step
of the identification procedure is described. Section 9.10 contains an alternative
local identification problem. Finally, Section 9.11 concludes the chapter. For
simplicity, we restrict to representations in the discrete-time domain. This chapter
is equivalent to Kivits and Van den Hof (2022) with Section 9.9 and 9.10 added
to it.

We consider the following notation throughout the chapter: A polynomial
matrix 𝐴(𝑞−1) consists of matrices 𝐴ℓ and ( 𝑗 , 𝑘)th polynomial elements 𝑎 𝑗𝑘 (𝑞−1)
such that 𝐴(𝑞−1) =

∑𝑛𝑎
ℓ=0 𝐴ℓ𝑞

−ℓ and 𝑎 𝑗𝑘 (𝑞−1) =
∑𝑛𝑎
ℓ=0 𝑎 𝑗𝑘,ℓ𝑞

−ℓ . Hence, the
( 𝑗 , 𝑘)th element of the matrix 𝐴ℓ is denoted by 𝑎 𝑗𝑘,ℓ . Further, let 𝐴J•(𝑞−1)
indicate all 𝑗 th rows of 𝐴(𝑞−1) for which 𝑗 ∈ J .

9.2 Diffusively coupled networks

Diffusively coupled networks are linear dynamic networks in which the interaction
between the nodes depends on the difference between the node signals. Such an
interaction implies a symmetric coupling between the nodes. The nodes can also
be a coupled with the zero node, referred to as the ground node. The networks
that will be considered in this chapter are defined in accordance with Chapter 8 as
follows:

Definition 9.1 (Network model). The network that will be considered con-
sists of 𝐿 node signals𝑤(𝑡),𝐾 known excitation signals 𝑟 (𝑡), and 𝐿 unknown
disturbance signals 𝑣(𝑡) and is defined as

𝐴(𝑞−1)𝑤(𝑡) = 𝐵(𝑞−1)𝑟 (𝑡) + 𝑣(𝑡), (9.1)

with 𝑞−1 the delay operator, i.e. 𝑞−1𝑤(𝑡) = 𝑤(𝑡 − 1); with 𝑣(𝑡) modelled
as filtered white noise, i.e. 𝑣(𝑡) = 𝐹 (𝑞)𝑒(𝑡) with 𝑒(𝑡) a vector-valued wide-
sense stationary white noise process, i.e. E[𝑒(𝑡)𝑒⊤(𝑡 − 𝜏)] = 0 for 𝜏 ≠ 0;
and with

1. 𝐴(𝑞−1) =
∑𝑛𝑎
𝑘=0 𝐴𝑘𝑞

−𝑘 ∈ R𝐿×𝐿 [𝑞−1], with 𝐴−1(𝑞−1) stable;
rank(𝐴0) = 𝐿; and 𝑎 𝑗𝑘 (𝑞−1) = 𝑎𝑘 𝑗 (𝑞−1) ∀𝑘, 𝑗 .

2. 𝐵(𝑞−1) ∈ R𝐿×𝐾 [𝑞−1].
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3. 𝐹 (𝑞) ∈ R𝐿×𝐿 (𝑞), monic, stable, and stably invertible.

4. Λ ≻ 0 the covariance matrix of the noise 𝑒(𝑡).

The diffusive character of the model is represented by the symmetry property
of 𝐴(𝑞−1). It is assumed that the network is connected, which means that there is a
path between every pair of nodes1. If the network has at least one connection to the
ground node, then the network is well-posed, which means that 𝐴−1(𝑞−1) exists
and is proper. Stability of the network is induced by the stability of 𝐴−1(𝑞−1).

Both 𝐴(𝑞−1) and 𝐵(𝑞−1) are nonmonic polynomial matrices. In the symmetric
𝐴(𝑞−1), the polynomial 𝑎𝑖 𝑗 (𝑞−1) characterises the dynamics in the link between
node signals 𝑤𝑖 (𝑡) and 𝑤 𝑗 (𝑡). Often, 𝐵(𝑞−1) is chosen to be a submatrix of the
identity matrix, implying that each external excitation signal directly enters the
network at a distinct node. If 𝐹 (𝑞) is polynomial or even stronger if 𝐹 (𝑞) =
𝐼, the network (9.1) leads to an ARMAX-like or ARX-like2 model structure,
respectively.

A diffusively coupled network induces an undirected graph, where the vertices
(nodes) represent the node signals and the links (interconnections) represent the
symmetric couplings. Figure 9.1 shows a diffusively coupled network with the
dynamics captured by the boxes containing the polynomials 𝑎𝑖 𝑗 (𝑞−1) and 𝑏𝑖 𝑗 (𝑞−1)
and with the nodes represented by the circles, which sum the diffusive couplings
and the external signals.

9.3 Identification problem

In view of the symmetric couplings in the considered networks, the local identi-
fication problem is formulated as follows:

Definition 9.2 (Local identification problem). The local identification
problem concerns the identification of a single coupling between two nodes
in the network on the basis of selected measured signals 𝑤(𝑡) and 𝑟 (𝑡).

A single coupling in the network contains the full information on how two
nodes interact with each other. For the nodes 𝑤𝑖 (𝑡) and 𝑤 𝑗 (𝑡), this coupling is

1The network is connected if its Laplacian matrix (i.e. the degree matrix minus the adjacency
matrix) has a positive second-smallest eigenvalue (Fiedler, 1973).

2The structure is formally only an ARMAX (autoregressive-moving average with exogenous
variables) or ARX (autoregressive with exogenous variables) structure if the 𝐴(𝑞−1) polynomial
is monic (Hannan and Deistler, 2012).
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Figure 9.1: Diffusively coupled network as defined in Definition 9.1, with nodes
𝑤 𝑗 (𝑡), excitations 𝑟 𝑗 (𝑡), disturbances 𝑣 𝑗 (𝑡), network dynamics 𝑎 𝑗𝑘 (𝑞−1), and
input dynamics 𝑏 𝑗𝑘 (𝑞−1).

described by the polynomials 𝑎𝑖𝑖 (𝑞−1), 𝑎𝑖 𝑗 (𝑞−1) = 𝑎 𝑗𝑖 (𝑞−1), and 𝑎 𝑗 𝑗 (𝑞−1). One
could interpret this identification problem as the identification of the subnetwork
described by the nodes 𝑤𝑖 (𝑡) and 𝑤 𝑗 (𝑡). For solving this identification problem, it
is assumed to be known which nodes are the neighbour nodes of the subnetwork.

9.4 Immersion

The identification of a subnetwork is preferably based on partial measurement of
the network. This means that only a selected set of node signals is measured.
One way to deal with unmeasured node signals is by eliminating them from the
representation. In the literature, this Gaussian elimination is referred to as Kron
reduction (Dörfler and Bullo, 2013) or immersion (Dankers et al., 2016). In this
section, this reduction procedure is adapted to polynomial representations in order
to preserve the network model structure.

For the purpose of immersion, consider a network as defined in Definition 9.1,
with the node signals partitioned into two groups: the signals that will be immersed
𝑤Z (𝑡) and the signals that will be preserved 𝑤Y (𝑡). Define the sets Z :=
{ℓ | 𝑤ℓ (𝑡) ∈ 𝑤Z (𝑡)} and Y := {ℓ | 𝑤ℓ ∉ 𝑤Z}. The external signal 𝑣(𝑡) is
partitioned accordingly, as well as the network matrices 𝐴(𝑞−1) and 𝐵(𝑞−1). This
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partitioning leads to the equivalent network description[
𝐴YY (𝑞−1) 𝐴YZ (𝑞−1)
𝐴ZY (𝑞−1) 𝐴ZZ (𝑞−1)

] [
𝑤Y (𝑡)
𝑤Z (𝑡)

]
=

[
𝐵Y•(𝑞−1)
𝐵Z•(𝑞−1)

]
𝑟 (𝑡) +

[
𝑣Y (𝑡)
𝑣Z (𝑡)

]
. (9.2)

Proposition 9.3 (Immersion in diffusively coupled networks). Consider
the network in (9.2). Removing the nodes 𝑤Z (𝑡) through a Gaussian elim-
ination procedure results in the immersed network representation

�̆�(𝑞−1)�̆�(𝑡) = �̆�(𝑞−1)𝑟 (𝑡) + �̆�(𝑡), (9.3)

with �̆�(𝑡) = 𝑤Y (𝑡), �̆�(𝑞−1) symmetric, and (omitting arguments 𝑞−1, 𝑡)

�̆�(𝑞−1) = 𝑑ZZ𝐴YY − 𝑑ZZ𝐴YZ𝐴−1
ZZ𝐴ZY , (9.4a)

�̆�(𝑞−1) = 𝑑ZZ𝐵Y• − 𝑑ZZ𝐴YZ𝐴−1
ZZ𝐵Z•, (9.4b)

�̆�(𝑡) = 𝑑ZZ𝑣Y − 𝑑ZZ𝐴YZ𝐴−1
ZZ𝑣Z , (9.4c)

𝑑ZZ (𝑞−1) :=
𝑑𝑒𝑡 (𝐴ZZ)

𝑔𝑐𝑑 (𝑑𝑒𝑡 (𝐴ZZ), 𝑎𝑑𝑗 (𝐴ZZ))
, (9.4d)

where 𝑑𝑒𝑡 (𝐴ZZ) and 𝑎𝑑𝑗 (𝐴ZZ) are the determinant and the adjugate of
the polynomial matrix 𝐴ZZ (𝑞−1), respectively, and 𝑔𝑐𝑑 (𝑥,𝑌 ) is the greatest
common divisor of scalar 𝑥 and all scalar elements of matrix 𝑌 .

Proof: This follows from Gaussian elimination of 𝑤Z (𝑡) and the fact that
�̆�(𝑞−1) is a symmetric polynomial matrix. As 𝐴−1

ZZ (𝑞
−1) is rational, an additional

scaling with the monic scalar polynomial 𝑑ZZ (𝑞−1) is needed in order to make
the representation polynomial again. ■

The immersed network represents the dynamical relations between a selected
subset of nodes in the network. It plays a crucial role in the identification of local
network properties that is based on a selected set of (local) node measurements.

9.5 Invariant local dynamics

As mentioned in Section 9.3, the objective is to identify a subnetwork described
by the nodes 𝑤𝑖 (𝑡) and 𝑤 𝑗 (𝑡). Let this subnetwork be described by node signals
𝑤J (𝑡) and dynamics 𝐴JJ (𝑞−1), where we define the set J := {ℓ | 𝑤ℓ (𝑡) ∈
𝑤J (𝑡)}. From (9.4a), it follows that the dynamics of 𝐴YY (𝑞−1) is preserved after
immersion, up to the scalar polynomial factor 𝑑ZZ (𝑞−1), if the signals 𝑤Y (𝑡) are
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preserved such that 𝐴YZ (𝑞−1) = 0. This can simply be done by preserving the
nodes 𝑤J (𝑡) and all their neighbour nodes and immersing all remaining nodes.

In line with this reasoning, we partition the node signals into three groups:
the signals of interest 𝑤J (𝑡), their neighbour signals 𝑤D (𝑡), and the remaining
signals 𝑤Z (𝑡). Define the set D := {ℓ | 𝑤ℓ (𝑡) ∈ 𝑤D (𝑡)}. The external signal
𝑣(𝑡) is partitioned accordingly, as well as the network matrices 𝐴(𝑞−1), 𝐵(𝑞−1),
and 𝐹 (𝑞). We assume that the disturbance signals 𝑣J (𝑡) are uncorrelated to the
other disturbances in the network (𝑣D (𝑡) and 𝑣Z (𝑡)). This partitioning leads to
the network description

𝐴JJ (𝑞−1) 𝐴JD (𝑞−1) 0
𝐴DJ (𝑞−1) 𝐴DD (𝑞−1) 𝐴DZ (𝑞−1)

0 𝐴ZD (𝑞−1) 𝐴ZZ (𝑞−1)



𝑤J (𝑡)
𝑤D (𝑡)
𝑤Z (𝑡)

 =
𝐵J•(𝑞−1)
𝐵D•(𝑞−1)
𝐵Z•(𝑞−1)

 𝑟 (𝑡) +

𝑣J (𝑡)
𝑣D (𝑡)
𝑣Z (𝑡)

 , (9.5)

where 𝐴JZ (𝑞−1) = 0 = 𝐴⊤ZJ (𝑞
−1), as the node signals 𝑤J (𝑡) are not directly

connected to the node signals 𝑤Z (𝑡).
Immersing the node signals 𝑤Z (𝑡) leads to[
�̆�JJ (𝑞−1) �̆�JD (𝑞−1)
�̆�DJ (𝑞−1) �̆�DD (𝑞−1)

] [
𝑤J (𝑡)
𝑤D (𝑡)

]
=[

�̆�J•(𝑞−1)
�̆�D•(𝑞−1)

]
𝑟 (𝑡) +

[
�̆�JJ (𝑞) 0

0 �̆�DD (𝑞)

] [
𝑒J (𝑡)
𝑒D (𝑡)

]
, (9.6)

that is, �̆�(𝑞−1)�̆�(𝑡) = �̆�(𝑞−1)𝑟 (𝑡) + �̆� (𝑞)𝑒(𝑡), with (omitting arguments 𝑞−1, 𝑞,
𝑡)

�̆�JJ = 𝑑ZZ𝐴JJ , �̆�JD = 𝑑ZZ𝐴JD , (9.7a)
�̆�DJ = 𝑑ZZ𝐴DJ , �̆�J• = 𝑑ZZ𝐵J•, (9.7b)
�̆�DD = 𝑑ZZ𝐴DD − 𝑑ZZ𝐴DZ𝐴−1

ZZ𝐴ZD , (9.7c)

�̆�D• = 𝑑ZZ𝐵D• − 𝑑ZZ𝐴DZ𝐴−1
ZZ𝐵Z•, (9.7d)

�̆�JJ = 𝑑ZZ𝐹JJ , (9.7e)

�̆�DD𝑒𝐷 =

(
𝑑ZZ𝐹DD − 𝑑ZZ𝐴DZ𝐴−1

ZZ𝐹ZD
)
𝑒D (𝑡)+(

𝑑ZZ𝐹DZ − 𝑑ZZ𝐴DZ𝐴−1
ZZ𝐹ZZ

)
𝑒Z (𝑡), (9.7f)

with �̆�DD (𝑞) a monic, stable, and stably invertible transfer function matrix and
with 𝑒D (𝑡) white noise.
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Figure 9.2: Diffusively coupled network with a target subnetwork indicated in red,
with its neighbour dynamics and nodes indicated in orange.

Proposition 9.4 (Invariant local dynamics). Immersion for diffusively
coupled networks, as described in Proposition 9.3, applied to the net-
work (9.5) resulting in (9.6), gives for ℓ ∈ J :

�̆�−1
ℓℓ (𝑞

−1) �̆�ℓ•(𝑞−1) = 𝑎−1
ℓℓ (𝑞

−1)𝐴ℓ•(𝑞−1), (9.8a)
�̆�−1
ℓℓ (𝑞

−1)�̆�ℓ•(𝑞−1) = 𝑎−1
ℓℓ (𝑞

−1)𝐵ℓ•(𝑞−1), (9.8b)
�̆�−1
ℓℓ (𝑞

−1)�̆�ℓ•(𝑞) = 𝑎−1
ℓℓ (𝑞

−1)𝐹ℓ•(𝑞). (9.8c)

Proof: For ℓ ∈ J it holds that

�̆�−1
ℓℓ (𝑞

−1) �̆�ℓ•(𝑞−1) = 𝑎−1
ℓℓ (𝑞

−1)𝑑−1
ZZ (𝑞

−1)𝑑ZZ (𝑞−1)𝐴ℓ•(𝑞−1)
= 𝑎−1

ℓℓ (𝑞
−1)𝐴ℓ•(𝑞−1),

�̆�−1
ℓℓ (𝑞

−1)�̆�ℓ•(𝑞−1) = 𝑎−1
ℓℓ (𝑞

−1)𝑑−1
ZZ (𝑞

−1)𝑑ZZ (𝑞−1)𝐵ℓ•(𝑞−1)
= 𝑎−1

ℓℓ (𝑞
−1)𝐵ℓ•(𝑞−1),

�̆�−1
ℓℓ (𝑞

−1)�̆�ℓ•(𝑞) = 𝑎−1
ℓℓ (𝑞

−1)𝑑−1
ZZ (𝑞

−1)𝑑ZZ (𝑞−1)𝐹ℓ•(𝑞)
= 𝑎−1

ℓℓ (𝑞
−1)𝐹ℓ•(𝑞).

■

The result of Proposition 9.4 is that the local identification problem of identi-
fying a subnetwork really becomes a local problem in the sense that (9.6) can be
used to identify 𝐴JJ (𝑞−1) on the basis of the signals of interest 𝑤J (𝑡) and their
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Figure 9.3: Immersed network representation corresponding to the diffusively
coupled network in Figure 9.2, with the target subnetwork indicated in red.

neighbour node signals 𝑤D (𝑡) only and that all other node signals 𝑤Z (𝑡) can be
discarded.

Figure 9.2 shows a diffusively coupled network with in red the subnetwork de-
scribed by the node signals𝑤J (𝑡) =

[
𝑤1(𝑡) 𝑤2(𝑡)

]⊤ and in orange the neighbour
dynamics and node signals 𝑤D (𝑡) =

[
𝑤3(𝑡) 𝑤4(𝑡)

]⊤. Immersing the remaining
node signals from the network, results in the immersed network representation
shown in Figure 9.3, where �̆�𝑖 𝑗 and �̆�11 are related to 𝑎𝑖𝑘 and 𝑏11 according to the
relations in (9.7).

Remark 9.5 (Module representation). The result of Proposition 9.4 is
a specific version of the condition on parallel paths and loops around the
output as defined by Dankers et al. (2016). To see this, observe that all loops
around 𝑤 𝑗 (𝑡) contain a measured node signal if and only if all neighbour
nodes of𝑤 𝑗 (𝑡) are measured and consequently, all parallel paths from𝑤𝑖 (𝑡)
to 𝑤 𝑗 (𝑡) contain a measured node signal as well; see Chapter 7.
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9.6 Identification procedure

9.6.1 Identifying the immersed network

For identifying the complete immersed network, a predictor model is set up based
on the parameterised model set

M̆ :=
(
�̆�(𝑞−1, 𝜂), �̆�(𝑞−1, 𝜂), �̆� (𝑞, 𝜂), Λ̆(𝜂), 𝜂 ∈ Π

)
, (9.9)

where 𝜂 contains all unknown coefficients that appear in the entries of the model
matrices �̆�, �̆�, �̆�, and Λ̆ and where Π ⊂ R𝑑 with 𝑑 ∈ N. The corresponding data
generating network is denoted by S̆ := { �̆�0(𝑞−1), �̆�0(𝑞−1), �̆�0(𝑞), Λ̆0}. Define
the one-step-ahead predictor of �̆�(𝑡) in line with Chapter 8 as

ˆ̆𝑤(𝑡 |𝑡 − 1) = E{�̆�(𝑡) | �̆�𝑡−1, 𝑟 𝑡 }, (9.10)

where �̆�ℓ and 𝑟ℓ refer to signal samples �̆�(𝜏) and 𝑟 (𝜏), respectively, for all 𝜏 ≤ ℓ.
The resulting prediction error becomes (omitting arguments 𝑞−1, 𝑞)

𝜀(𝑡, 𝜂) = �̆�(𝑡) − ˆ̆𝑤(𝑡 |𝑡 − 1; 𝜂), (9.11a)
= �̆�−1

0 (𝜂)�̆�
−1(𝜂)

[
�̆�(𝜂)�̆�(𝑡) − �̆�(𝜂)𝑟 (𝑡)

]
. (9.11b)

The parameters of the immersed network are estimated through the least-
squares identification criterion

𝜂𝑁 = arg min
𝜂∈Π

1
𝑁

𝑁∑︁
𝑡=1

𝜀⊤(𝑡, 𝜂)Λ𝜀(𝑡, 𝜂) (9.12)

withΛ ≻ 0. Under some mild conditions3 this criterion converges with probability
1 to

𝜂∗ := arg min
𝜂∈Π

lim
𝑁→∞

𝑁∑︁
𝑡=1

E
{
𝜀⊤(𝑡, 𝜂)Λ𝜀(𝑡, 𝜂)

}
. (9.13)

Proposition 9.6 (Consistent full identification). The parameter estimate
𝜂𝑁 provides a consistent estimate of the system S̆ if the following conditions
hold.a

1. The true system is in the model set: S̆ ⊂ M̆.

3The standard conditions for convergence of predictor error estimates include the condition
that the white noise process 𝑒(𝑡) has bounded moments of an order larger than 4 (Ljung, 1999).
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2. At least one excitation signal is present: 𝐾 ≥ 1.

3. Φ𝑟 (𝜔) ≻ 0 for a sufficiently high number of frequencies.

4. �̆�(𝑞−1, 𝜂) and �̆�(𝑞−1, 𝜂) are left coprime in M̆.

5. There exists a permutation matrix 𝑃 such that within M̆,[
�̆�0(𝜂) �̆�1(𝜂) · · · �̆�𝑛𝑎 (𝜂) �̆�0(𝜂) �̆�1(𝜂) · · · �̆�𝑛𝑏 (𝜂)

]
𝑃 =[

𝐷 (𝜂) 𝑅(𝜂)
]

with 𝐷 (𝜂) square, diagonal, and full rank.

6. There is at least one parameter constraint on the parameters of
�̆�(𝑞−1, 𝜂𝐴) and �̆�(𝑞−1, 𝜂𝐵) of the form Γ𝜂 = 𝛾 ≠ 0, with 𝜂 :=[
𝜂⊤
𝐴

𝜂⊤
𝐵

]⊤.
aThis proposition is slightly different formulated than by Kivits and Van den Hof

(2023a).

Proof: A consistent estimate is obtained if the model is uniquely recovered
from the data. Condition 1 is necessary for this. Condition 3 ensures that the
transfer functions from 𝑟 (𝑡) and 𝑒(𝑡) := 𝐴−1

0 𝑒(𝑡) to �̆�(𝑡) (i.e. 𝑇𝑤𝑟 (𝑞, 𝜂) and
𝑇𝑤�̄� (𝑞, 𝜂)) can uniquely be recovered from data (Chapter 8). Condition 2 implies
that𝑇𝑤𝑟 (𝑞, 𝜂) is nonzero. From𝑇𝑤𝑟 (𝑞, 𝜂), Condition 4 ensures that �̆�(𝑞−1, 𝜂) and
�̆�(𝑞−1, 𝜂) are found up to a premultiplication with a unimodular matrix. To satisfy
Condition 5, this unimodular matrix is restricted to being diagonal. To preserve
the symmetry of �̆�(𝑞−1, 𝜂), this diagonal matrix is further restricted to having
equal elements. Condition 6 fixes the remaining scaling factor. As �̆�(𝑞−1, 𝜂) is
uniquely found, 𝑇𝑤�̄� (𝑞, 𝜂) gives unique �̆� (𝑞, 𝜂) and Λ̆(𝜂) (Chapter 8). ■

For Condition 6, it is possible to choose a custom constraint, leading to a
scaled immersed network representation.

9.6.2 Identifying the target subnetwork

Once the complete immersed network representation (9.6) is identified, the target
subnetwork can be estimated. The correct scaling is obtained through a parameter
constraint on the target subnetwork. An additional identification step is needed
for this, because this dynamics is only present in the identified immersed network
with a scaled polynomial factor that needs to be removed. The relations in (9.7)
lead to

�̃�J•(𝑞−1) = 𝛼𝑑ZZ (𝑞−1)𝐴J•(𝑞−1), (9.14a)
�̃�J•(𝑞−1) = 𝛼𝑑ZZ (𝑞−1)𝐵J•(𝑞−1), (9.14b)
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with �̃�J•(𝑞−1) := 𝛼�̆�J•(𝑞−1), �̃�J•(𝑞−1) := 𝛼�̆�J•(𝑞−1), and unknown scaling
factor 𝛼 ∈ R+.

Proposition 9.7 (Consistent local identification). If a nonzero polynomial
element 𝑎𝑖 𝑗 (𝑞−1) or 𝑏𝑖 𝑗 (𝑞−1) of 𝐴J•(𝑞−1) or 𝐵J•(𝑞−1), respectively, is
known, a consistent estimate of the true 𝐴0

J•(𝑞
−1) and 𝐵0

J•(𝑞
−1) is obtained

through (9.14).

Proof: From Proposition 9.6, the true �̃�0
J•(𝑞

−1) and �̃�0
J•(𝑞

−1) have been
estimated consistently with a custom parameter constraint on 𝜂. Using a known
𝑎𝑖 𝑗 (𝑞−1) or 𝑏𝑖 𝑗 (𝑞−1), polynomial factor 𝛼𝑑ZZ (𝑞−1) can be extracted from (9.14).
Then, (9.14) leads to consistent estimates of the true 𝐴0

J•(𝑞
−1) and 𝐵0

J•(𝑞
−1). ■

The constraint that a nonzero polynomial element 𝑎𝑖 𝑗 (𝑞−1) or 𝑏𝑖 𝑗 (𝑞−1) needs
to be known, means that a single interconnection in the network is known or that an
excitation signal enters the network through known dynamics (e.g. 𝑏𝑖 𝑗 (𝑞−1) = 1),
respectively. The identification meant in Proposition 9.7 is performed through a
null-space fitting as explained in Section 9.9. If only one of the parameters of
𝐴J•(𝑞−1) or 𝐵J•(𝑞−1) is constraint (similar to the constraint in Condition 6 of
Proposition 9.6), a consistent estimate of the target subnetwork is obtained through
the same null-space fitting with fewer parameter constraints; see again Section 9.9.
If this constraint is not satisfied, the target subnetwork can be identified up to a
scaling factor that remains unknown.

Remark 9.8 (MIMO identification). The difference with a general MIMO
identification lies in the nonmonicity and symmetry of 𝐴(𝑞−1) and in the
interpretation of the model that leads to the selection of the necessary node
signals.

9.7 Algorithmic aspects

For performing the identification of the immersed network, we adopt the multistep
algorithm for full network identification presented in Chapter 8 for systems with
a polynomial noise model, i.e. 𝐹 (𝑞) = 𝐶 (𝑞−1) polynomial. The prime steps of
this algorithm are: 1) estimate a nonstructured high-order ARX model; 2) reduce
this model to a structured network model through a weighted null-space fitting
(WNSF); 3) improve the structured network model through a WNSF; 4) obtain
the noise model.

While in (9.4) the matrix expressions are forced to become polynomial by
premultiplying with the common polynomial factor 𝑑ZZ (𝑞−1), this causes many
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polynomial terms in (9.4) to have common factors. As this can lead to undesired
effects in our identification algorithm because of cancelling terms, we adopt a dif-
ferent route for arriving at a polynomial model. We remove 𝑑ZZ (𝑞−1) from (9.4)
and approximate the rational term 𝐴−1

ZZ (𝑞
−1) by a symmetric polynomial matrix.

If the order of this polynomial matrix is chosen sufficiently high, 𝐴−1
ZZ (𝑞

−1) is
approximated sufficiently well. The order of �̆�(𝑞−1) can be controlled and no
terms will cancel out. In addition, the target subnetwork appears directly in the
immersed network representation. Because of these advantages, we continue with
this alternative approach. Observe that if 𝐵Z•(𝑞−1) = 0, then 𝐴−1

ZZ (𝑞
−1) only

appears in �̆�DD (𝑞−1) and �̆�DD (𝑞−1) can be approximated by a symmetric poly-
nomial matrix instead. The identification procedure simplifies in the sense that
Condition 6 in Proposition 9.6 directly applies to the target subnetwork and that the
subnetwork can be extracted from the immersed network representation, without
an additional identification step. This means that Proposition 9.6 guarantees a
consistent estimate of the target subnetwork.

9.8 Simulation example

This simulation example serves to illustrate that indeed a subnetwork can be
identified from a single excitation signal and by measuring the nodes of interest
and their neighbour nodes only.

9.8.1 Simulation set-up

Consider the network (9.1) consisting of seven scalar nodes, with a single excitation
signal directly entering the network at node 𝑤1(𝑡) and with a polynomial noise
model 𝐹 (𝑞) = 𝐶 (𝑞−1). This network is shown in Figure 9.1, where 𝑏11 = 1. The
objective is to identify the coupling between the nodes 𝑤1(𝑡) and 𝑤2(𝑡) indicated
in red in Figure 9.2. Hence, 𝑤J (𝑡) =

[
𝑤1(𝑡) 𝑤2(𝑡)

]⊤ and thus 𝑤D (𝑡) =[
𝑤3(𝑡) 𝑤4(𝑡)

]⊤. The corresponding immersed network representation is shown
in Figure 9.3, where �̆�11 = 1.
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The exact parameter values are

𝐴0 =



80 −40 −20 0 0 0 0
−40 80 0 −10 0 0 0
−20 0 50 0 −5 0 0

0 −10 0 35 0 −5 −5
0 0 −5 0 15 0 −5
0 0 0 −5 0 25 −20
0 0 0 −5 −5 −20 30


, (9.15a)

𝐴1 =



−60 30 0 0 0 0 0
30 −60 0 0 0 0 0
0 0 −40 0 0 0 0
0 0 0 −40 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −20 20
0 0 0 0 0 20 −20


, (9.15b)

𝐴2 = diag(
[
20 20 20 20 0 0 0

]
), (9.15c)

𝐵0 =



1
0
0
0
0
0
0


, 𝐶1 = 10−2



2 9 6 3 8 4 1
3 6 1 7 1 6 7
9 6 5 7 6 3 6
7 9 4 6 6 3 7
3 6 4 9 9 5 8
7 8 6 6 5 6 5
8 2 9 5 2 4 4


. (9.15d)

The external excitation signal 𝑟1(𝑡) is an independent white noise process with
mean 0 and variance 𝜎2

𝑟 = 1. All nodes are subject to disturbances 𝑒ℓ (𝑡), which
are independent white noise processes (uncorrelated with 𝑟1(𝑡)) with mean 0 and
variance 𝜎2

𝑒 = 10−2. The experiments consist of 100 Monte-Carlo simulations,
where in each run, new excitation and noise signals are generated. The number of
samples generated for each data set is 𝑁 = 10 000.

In the immersed network representation, �̆�DD (𝑞−1) is approximated by a
second-order polynomial matrix. The full immersed network is identified through
the algorithm in Chapter 8, where in Step 1, the order of the ARX model approx-
imation is chosen to be 10. The network topology of the immersed network is
assumed to be unknown, meaning that all connections between nodes are para-
meterised. However, it is assumed to be known that �̆�2(𝜃) is diagonal and that
�̆�𝑘 (𝜃) = 0, ∀𝑘 ≥ 3, such that Condition 5 in Proposition 9.6 is satisfied. The
knowledge that the excitation signal enters the network directly at node 𝑤1(𝑡)
induces that �̆� is the 4 × 1 unit vector, such that Condition 6 in Proposition 9.6 is
satisfied.
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Table 9.1: True parameters values of 𝐴J•(𝑞−1, 𝜃) and the mean and standard
deviation (SD) of their estimates.

Parameter 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6
True value 80 -60 20 -40 30 0
Mean 79.4219 -59.7437 20.1294 -39.0483 29.3419 0
SD 0.6564 0.3255 0.1626 1.1800 0.7409 0
Parameter 𝜃7 𝜃8 𝜃9 𝜃10 𝜃11 𝜃12
True value -20 0 0 0 0 0
Mean -19.7780 -0.0534 0 -0.1235 0.0339 0
SD 0.3821 0.1623 0 0.2261 0.1078 0
Parameter 𝜃13 𝜃14 𝜃15 𝜃16 𝜃17 𝜃18
True value 80 -60 20 0 0 0
Mean 78.0318 -58.6126 19.6240 -0.0104 -0.0957 0
SD 2.1832 1.6962 0.4578 0.6798 0.4375 0
Parameter 𝜃19 𝜃20 𝜃21
True value -10 0 0
Mean -9.6627 -0.0820 0
SD 0.3790 0.1841 0

The target subnetwork 𝐴J•(𝑞−1) is extracted from the immersed network,
where the symmetric structure of 𝐴(𝑞−1) is incorporated into the parametrisation.
The target subnetwork (the first two rows of (9.15a)-(9.15c)) is parameterised as

𝐴J•,0(𝜃) =
[
𝜃1 𝜃4 𝜃7 𝜃10 0 0 0
𝜃4 𝜃13 𝜃16 𝜃19 0 0 0

]
, (9.16a)

𝐴J•,1(𝜃) =
[
𝜃2 𝜃5 𝜃8 𝜃11 0 0 0
𝜃5 𝜃14 𝜃17 𝜃20 0 0 0

]
, (9.16b)

𝐴J•,2(𝜃) =
[
𝜃3 𝜃6 𝜃9 𝜃12 0 0 0
𝜃6 𝜃15 𝜃18 𝜃21 0 0 0

]
. (9.16c)

Table 9.1 shows the true parameter values of 𝐴J•(𝑞−1, 𝜃). The assumption
that �̆�2 is diagonal implies the constraints 𝜃6 = 𝜃9 = 𝜃12 = 𝜃18 = 𝜃21 = 0.

9.8.2 Simulation results

The simulation results are shown in Table 9.1 and Figure 9.4. Table 9.1 shows the
mean and standard deviation of the estimated parameters of 𝐴J•(𝑞−1, 𝜃). It can



264 Subnetwork identification

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

The relative parameter estimation errors

Figure 9.4: Boxplot of the relative parameter estimation errors of the parameters
of 𝐴J•(𝑞−1, 𝜃) (9.16), for parameters with a nonzero true value.

be seen that the constraints 𝜃6 = 𝜃9 = 𝜃12 = 𝜃18 = 𝜃21 = 0 are incorporated, as
these parameters are estimated without bias and variance. The other parameters
are estimated with a bias that is within a bound of 1 standard deviation. This bias is
less than 3.5% deviation for 𝜃19 and within 2.5% deviation for all other (nonzero)
parameters. The bias is caused by the limited order of the ARX approximation
in Step 1 of the algorithm. Figure 9.4 shows the relative estimation errors of the
parameters of 𝐴J•(𝑞−1, 𝜃) that have a nonzero true value. The bias is visible
through the nonzero median.

To conclude, the subnetwork described by the nodes 𝑤1(𝑡) and 𝑤2(𝑡) has been
identified by measuring only four node signals (𝑤1(𝑡), 𝑤2(𝑡), 𝑤3(𝑡), and 𝑤4(𝑡))
and with a single excitation signal (𝑟1(𝑡)) only. The dynamics between the target
subnetwork and its neighbour nodes has been identified as well. The variance can
be reduced further by adding external excitation signals 𝑟 (𝑡) to the experiment.
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9.9 Null-space fitting

This section is additional to the work presented by Kivits and Van den Hof (2022).
As mentioned, the constraint in Proposition 9.7 can be replaced by a more relaxed
constraint on a single parameter instead of on a single polynomial element. Before
presenting the algorithm for consistent identification of the target dynamics from
the (scaled) immersed network, consider the following manipulations of (9.14).

Equation (9.14a) gives

[𝐴0
JJ (𝑞

−1)]−1 �̃�0
JJ (𝑞

−1) = 𝛼𝑑0
ZZ (𝑞

−1)𝐼, (9.17)

with 𝐼 an identity matrix of appropriate size and 𝐴0
JJ (𝑞

−1) square. Substitut-
ing (9.17) into (9.14) gives

𝐴0
JJ (𝑞

−1) �̃�0
JD (𝑞

−1) − �̃�0
JJ (𝑞

−1)𝐴0
JD (𝑞

−1) = 0, (9.18a)

𝐴0
JJ (𝑞

−1)�̃�0
J•(𝑞

−1) − �̃�0
JJ (𝑞

−1)𝐵0
J•(𝑞

−1) = 0, (9.18b)

which is independent of 𝛼𝑑0
ZZ (𝑞

−1) and from which we can extract

−𝑄(𝜂0)𝜃0 = 0, (9.19)

where �̃�0
JJ (𝑞

−1), �̃�0
JD (𝑞

−1), and �̃�0
J•(𝑞

−1) are incorporated into 𝑄(𝜂0), and
where 𝜃0 represents the actual underlying system described by 𝐴0

JJ (𝑞
−1),

𝐴0
JD (𝑞

−1), and 𝐵0
J•(𝑞

−1). The parameter vectors 𝜂 and 𝜃 and the matrix 𝑄(𝜂)
are given in Appendix 9.A and 9.B, respectively.

If a single polynomial element is known, then all parameters of this polynomial
are known and thus constraint. If only a single parameter is known, then only
this particular parameter is constrained. Linear constraints on the parameters 𝜃 of
𝐴JJ (𝑞−1, 𝜃), 𝐴JD (𝑞−1, 𝜃), and 𝐵J•(𝑞−1, 𝜃) are formulated as

Γ𝜃 = 𝛾 ≠ 0, (9.20)

with Γ full row rank. The least-squares estimate of 𝜃 is obtained from (9.19) and
(9.20) by the linear constraint optimisation problem (Chapter 8)

ˆ̄𝜃𝑁 = min
𝜃

𝜃⊤𝑄⊤(𝜂𝑁 )𝑄(𝜂𝑁 )𝜃

subject to Γ𝜃 = 𝛾,

(9.21)

which can be solved using the Lagrangian and the Karush–Kuhn–Tucker condi-
tions, leading to [ ˆ̄𝜃𝑁

�̂�𝑁

]
=

[
𝑄⊤(𝜂𝑁 )𝑄(𝜂𝑁 ) Γ⊤

Γ 0

]−1 [0
𝛾

]
, (9.22)
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where �̂�𝑁 are the estimated Lagrange multipliers.

Using the resulting constraint least-squares optimisation problem (9.21), Pro-
position 9.7 is reformulated as follows:

Proposition 9.9 (Consistent local identification). If there is at least
one linear parameter constraint on the parameters of 𝐴J•(𝑞−1, 𝜃𝐴) or
𝐵J•(𝑞−1, 𝜃𝐵) of the form Γ𝜃 = 𝛾 ≠ 0, with Γ full row rank and with
𝜃 :=

[
𝜃⊤
𝐴

𝜃⊤
𝐵

]⊤, then a consistent estimate of the true 𝐴0
J•(𝑞

−1) and
𝐵0
J•(𝑞

−1) is obtained through the constraint least-squares optimisation
problem (9.21) as (9.22).

Proof: From Proposition 9.6, the true �̃�0
J•(𝑞

−1) and �̃�0
J•(𝑞

−1) have been
estimated consistently with a custom parameter constraint on 𝜂. Then (9.21) leads
to consistent estimates of the true 𝐴0

J•(𝑞
−1) and 𝐵0

J•(𝑞
−1) (Chapter 8). ■

9.10 Alternative local identification

In this chapter, the focus lies on the local identification problem of identifying a
single coupling between two nodes, as formulated in Definition 9.2. The target
dynamics is captured by the subnetwork of the corresponding nodes. The smallest
possible subnetwork only consists of the single polynomial 𝑎𝑖𝑖 (𝑞−1), which rep-
resents the connection of 𝑤𝑖 (𝑡) to the ground node. The presented identification
procedure for consistent estimation of a subnetwork has the bonus of also obtain-
ing a consistent estimate of the neighbour dynamics of the subnetwork, captured
by the polynomials 𝑎𝑖 𝑗 (𝑞−1) ≠ 0.

A different identification problem that can also be considered is the iden-
tification of a single interaction between two nodes. The interaction between
the nodes 𝑤𝑖 (𝑡) and 𝑤 𝑗 (𝑡) is described by the polynomial 𝑎𝑖 𝑗 (𝑞−1) = 𝑎 𝑗𝑖 (𝑞−1).
These dynamics can be identified by identifying the subnetwork corresponding
to the nodes 𝑤𝑖 (𝑡) and 𝑤 𝑗 (𝑡), corresponding to the identification of the coupling
between the nodes 𝑤𝑖 (𝑡) and 𝑤 𝑗 (𝑡). However, it is also possible to identify only
one of the polynomials 𝑎𝑖 𝑗 (𝑞−1) and 𝑎 𝑗𝑖 (𝑞−1), instead of both of them. Then
an additional node can be immersed, leading to an immersed network with fewer
nodes and, thus, a smaller identification problem. Identification of the subnetwork
corresponding to 𝑤𝑖 (𝑡) (or 𝑤 𝑗 (𝑡)) only, results in a consistent estimate of 𝑎𝑖 𝑗 (𝑞−1)
(or 𝑎 𝑗𝑖 (𝑞−1)), because this polynomial contains neighbour dynamics.
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Remark 9.10 (Module representation). Methods for local identification
in dynamic networks have been developed for the module representation
(Gevers et al., 2018; Materassi and Salapaka, 2020; Ramaswamy and Van
den Hof, 2021). The objective is to identify a single transfer function
module from one node signal to another. The conditions for consistent local
identification contain extensive requirements on the number and location of
excitation signals and the selection of measurement signals.
In contrast, the local identification method proposed in this chapter requires
only a single excitation signal that can be located at any node and a very
simple selection of measurement signals. This simplification is caused by
the symmetry in the network model, which restricts the networks dynamics
sufficiently to achieve identifiability with only a singel excitation signal.
The simple selection of measurement signals also results from the static
relations in the network dynamics.

9.11 Conclusion

A method and an algorithm for identifying a subnetwork in a diffusively coupled
linear network have been presented. For this local identification problem, it is
sufficient to measure only the node signals of interest and their neighbour node
signals, while all other node signals can be discarded. Only a single excitation
signal is required. The identification is performed by identifying the complete
immersed network representation from which the target subnetwork is identified
using a single parameter constraint.



Appendix

9.A Parameter vectors 𝜃 and 𝜂

The target dynamics of the physical network (9.5) is parameterised in terms of
𝜃 :=

[
𝜃⊤
𝐴𝐽

𝜃⊤
𝐴𝐷

𝜃⊤
𝐵

]⊤, with the parameter vectors of the polynomial matrices
𝐴JJ (𝑞−1, 𝜃𝐴𝐽 ), 𝐴JD (𝑞−1, 𝜃𝐴𝐷 ), and 𝐵𝐽•(𝑞−1, 𝜃𝐵), respectively, given by

𝜃𝐴𝐽 =


𝜃𝑎𝐽1

𝜃𝑎𝐽2
...

𝜃𝑎𝐽𝐽


, 𝜃𝑎𝐽𝑖 =


𝜃𝑎𝑖i
𝜃𝑎𝑖i1
...

𝜃𝑎𝑖𝐽


, 𝜃𝑎𝑖 𝑗 =


𝑎0,𝑖 𝑗
𝑎1,𝑖 𝑗
...

𝑎𝑛𝐴,𝑖 𝑗


, (9.23a)

𝜃𝐴𝐷 =


𝜃𝑎𝐷1

𝜃𝑎𝐷2
...

𝜃𝑎𝐷𝐽


, 𝜃𝑎𝐷𝑖 =


𝜃𝑎𝑖J1

𝜃𝑎𝑖J2

...

𝜃𝑎𝑖𝐷


, 𝜃𝑎𝑖 𝑗 =


𝑎0,𝑖 𝑗
𝑎1,𝑖 𝑗
...

𝑎𝑛𝐴,𝑖 𝑗


, (9.23b)

𝜃𝐵 =


𝜃𝑏1

𝜃𝑏2
...

𝜃𝑏𝐽


, 𝜃𝑏𝑖 =


𝜃𝑏𝑖1
𝜃𝑏𝑖2
...

𝜃𝑏𝑖𝐾


, 𝜃𝑏𝑖 𝑗 =


𝑏0,𝑖 𝑗
𝑏1,𝑖 𝑗
...

𝑏𝑛𝐵 ,𝑖 𝑗


. (9.23c)

Observe that 𝐴(𝑞−1) is parameterised symmetrically.
The immersed physical network model (9.6) is parameterised in terms of 𝜂.

The parameter vectors of the polynomials �̆�𝑖 𝑗 (𝑞−1, 𝜂𝑎𝑖 𝑗 ) and �̆�𝑖 𝑗 (𝑞−1, 𝜂𝑏𝑖 𝑗 ) are
respectively given by

𝜂𝑎𝑖 𝑗 =


𝑎0,𝑖 𝑗
𝑎1,𝑖 𝑗
...

𝑎𝑛�̆�,𝑖 𝑗


, 𝑗 ≥ 𝑖, 𝜂𝑏𝑖 𝑗 =


𝑏0,𝑖 𝑗
𝑏1,𝑖 𝑗
...

𝑏𝑛�̆� ,𝑖 𝑗


, (9.24)
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and as �̆�(𝑞−1) is symmetric, 𝜂𝑎𝑖 𝑗 = 𝜂𝑎 𝑗𝑖 for 𝑗 ≤ 𝑖.

9.B Matrix 𝑄(𝜂)

In order to construct 𝑄(𝜂), we first define some other matrices. Let 0𝑖, 𝑗 denote a
matrix of dimension 𝑖 × 𝑗 with all its elements equal to 0.

Let T𝑖, 𝑗 (𝑥) denote a Toeplitz matrix of dimension 𝑖 × 𝑗 (with 𝑖 ≥ 𝑗) given by

T𝑖, 𝑗 (𝑥) := T𝑖, 𝑗
( [
𝑥0 𝑥1 · · · 𝑥𝑖−1

] )
=



𝑥0 0
...

. . .

𝑥 𝑗−1 · · · 𝑥0
...

. . .
...

𝑥𝑖−1 · · · 𝑥𝑖− 𝑗−1


. (9.25)

Define the following block matrices

Π𝑎𝑖 :=


T𝑘,𝑛+

𝐴
(�̃�𝑖 (𝐽+1) )
...

T𝑘,𝑛+
𝐴
(�̃�𝑖𝑆)

 , Π𝑏𝑖 :=


Tℓ,𝑛+

𝐴
(�̃�𝑖1)
...

Tℓ,𝑛+
𝐴
(�̃�𝑖𝐾 )

 , (9.26)

of dimensions 𝐷𝑘 × (𝑛𝐴 + 1) and 𝐾ℓ × (𝑛𝐴 + 1), respectively, with 𝑛+
𝐴

:= 𝑛𝐴 + 1,
𝑛+
𝐵

:= 𝑛𝐵 + 1, 𝑘 := (𝑛𝐴 + 𝑛 �̃� + 1), and ℓ := (𝑛𝐴 + 𝑛�̃� + 1).
For 𝑥 ∈ {𝑎, 𝑏}, define the block matrix

Π̄𝑥𝐽 :=


𝑍 𝑥0,𝐽 𝑍 𝑥1,𝐽−1 · · · 𝑍 𝑥
𝐽−1,1

𝑅(Π𝑥1 ,Π
𝑥
𝐽
) 𝑅(Π𝑥2 ,Π

𝑥
𝐽
) · · · 𝑅(Π𝑥

𝐽
,Π𝑥

𝐽
)

𝑆𝐽−1(Π𝑥1 ) 𝑆𝐽−2(Π𝑥2 ) · · · 𝑆𝐽−𝐽 (Π𝑥𝐽 )

 , (9.27)

with 𝑍𝑎
𝑖, 𝑗

an 𝑖 × 𝑗 block matrix with blocks 0𝐷𝑘, (𝑛𝐴+1) and with 𝑍𝑏
𝑖, 𝑗

an 𝑖 × 𝑗
block matrix with blocks 0𝐾ℓ, (𝑛𝐴+1) (that is 𝑍𝑎

𝑖, 𝑗
:= 0𝑖𝐷𝑘, 𝑗 (𝑛𝐴+1) and 𝑍𝑏

𝑖, 𝑗
:=

0𝑖𝐾ℓ, 𝑗 (𝑛𝐴+1) ), with

𝑅(Π𝑥𝑖 ,Π𝑥𝑗 ) :=
[
Π𝑥
𝑖

Π𝑥
𝑖+1 · · · Π𝑥

𝑗

]
, for 𝑖 ≤ 𝑗 , (9.28)

and with
𝑆𝑖 (Π𝑥𝑗 ) :=

[
𝑍 𝑥
𝑖,1 𝑇𝑖 (Π𝑥𝑗 )

]
(9.29)

with 𝑇𝑖 (Π𝑥𝑗 ) a block diagonal matrix consisting of 𝑖 blocks of Π𝑥
𝑗
. Observe that

Π̄𝑎
𝐽

has dimensions 𝐽𝐷𝑘× 1
2 𝐽 (𝐽 +1) (𝑛𝐴+1) and Π̄𝑏

𝐿
has dimensions 𝐽𝐾ℓ× 1

2 𝐽 (𝐽 +
1) (𝑛𝐴 + 1).
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Define𝑇𝑢,𝑘,𝑣 as an 𝐽×𝐽 block matrix with its (𝑖, 𝑗)-th block equal to𝑇𝑢,𝑘,𝑣 (�̃�𝑖 𝑗),
where 𝑇𝑢,𝑘,𝑣 (�̃�𝑖 𝑗) is a block diagonal matrix consisting of 𝑢 blocks of T𝑘,𝑣 (�̃�𝑖 𝑗).

With the matrices defined above, we can now describe the matrix𝑄(𝜂) in (9.19)
by

𝑄(𝜂) =
[
Π̄𝑎
𝐽

𝑇𝐷,𝑘,𝑛+
𝐴

0𝐽𝐷𝑘,𝐽𝐾𝑛+
𝐵

Π̄𝑏
𝐽

0𝐽𝐾ℓ,𝐽𝐷𝑛+
𝐴

𝑇𝐾,𝑘,𝑛+
𝐵

]
, (9.30)

which has dimensions
[
𝐽 (𝐷𝑘 + 𝐾ℓ)

]
× 𝐽

[
( 12 (𝐽 + 1) + 𝐷) (𝑛𝐴 + 1) + 𝐾 (𝑛𝐵 + 1)

]
.



10 | Identifiability with
partial instrumentation

This chapter adds Remark 10.18 to the work that is equivalent to

E.M.M. Kivits and P.M.J. Van den Hof. Identifiability of diffusively coupled
linear networks with partial instrumentation. Preprints of the 22nd IFAC World
Congress, 2706-2711, July 2023.

This chapter presents identifiability conditions for identifying the complete
dynamics of diffusively coupled linear networks. These conditions are derived
by exploiting the uniqueness of the nonmonic polynomial network description,
given the locations of the actuators and sensors. The analysis is performed
under a more relaxed instrumentation setup than the typical restriction to a
full set of sensors (full measurement) or a full set of actuators (full excitation).
This leads to more general identifiability conditions, including more flexible
instrumentation requirements.

10.1 Introduction

In recent years, large-scale interconnected systems are receiving increasingly more
attention. Diffusively coupled linear networks model interconnected systems with
symmetric cause-effect relationships in the links. Examples are physical linear
networks, which can describe many processes from different domains, such as
electrical circuits, mechanical systems, and chemical and biological processes.

In the literature, there are several methods available for identifying the com-
plete dynamics of diffusively coupled networks from data. For example, black-box
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state-space models can be estimated from which the model parameters can be de-
rived using eigenvalue decompositions (Friswell et al., 1999; Luş et al., 2003).
De Angelis et al. (2002) concluded that the model parameters of a second-order
model can be extracted from an (identified) state-space model if all nodes contain
either a sensor or an actuator with at least one colocated sensor–actuator pair.
Mukhopadhyay et al. (2014) made the same observation and further analysed in-
strumentation conditions and identifiability issues for shear-type systems. These
methods are restricted to second-order models and typically do not consider dis-
turbances. They also do not have any guarantees on the statistical accuracy of the
estimates and lack a consistency analysis.

Van Waarde et al. (2018) considered undirected state-space models, which can
be seen as first-order diffusively coupled linear networks with the states as nodes.
Their identifiability analysis based on Markov parameters resulted in a specific
subset of nodes that is required to have a colocated sensor-actuator pair. For
higher-order diffusively coupled linear networks, the Markov parameters become
more complex, which hinders the analysis.

Diffusively coupled networks can also be modelled as directed dynamic net-
works with specific structural properties (Chapter 7). These networks can be
modelled as interconnections of transfer function modules (Gonçalves and War-
nick, 2008; Van den Hof et al., 2013), for which an identification framework has
been developed by Van den Hof et al. (2013). In this framework, the identifiability
of the complete dynamics or a subset of the dynamics is analysed under partial
instrumentation conditions (Bazanella et al., 2019; Cheng et al., 2023; Shi et al.,
2023). However, the specific network model structure is generally lost, resulting
in conservative conditions.

Hannan and Deistler (2012) analysed the identifiability of polynomial models.
These models have the typical assumption of monicity and therefore do not fit the
diffusively coupled linear network model, where monicity does not hold.

In this chapter, we follow the modelling approach of Chapter 8, who discuss
the identification of the full diffusively coupled network dynamics in the case
of full measurement, including detailed identifiability and consistency results.
The objective of this chapter is to derive conditions for the identifiability of the
full diffusively coupled network dynamics in the case that only some nodes are
excited and only some node signals are measured. We do this by reviewing the
identifiability results for the full measurement case, which are based on nonmonic
matrix-fraction descriptions (MFDs) (Chapter 8 and Chapter 9), combining it with
the dual situation of the full excitation case, and then formulating the conditions
for the generalised case, involving MFDs with three polynomials.

The networks that will be considered are defined in Section 10.2. Section 10.3
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defines identifiability. Section 10.4 recaps the identifiability conditions for full
measurement and Section 10.5 describes the dual conditions for full excitation.
Section 10.6 presents the main result: identifiability conditions for partial instru-
mentation. Finally, section 10.7 concludes the chapter. For simplicity, we restrict
to representations in the discrete-time domain. This chapter is equivalent to Kivits
and Van den Hof (2023a) with Remark 10.18 added to it.

We consider the following notation throughout the chapter: A polynomial
matrix 𝐴(𝑞−1) consists of matrices 𝐴ℓ and ( 𝑗 , 𝑘)th polynomial elements 𝑎 𝑗𝑘 (𝑞−1)
such that 𝐴(𝑞−1) =

∑𝑛𝑎
ℓ=0 𝐴ℓ𝑞

−ℓ and 𝑎 𝑗𝑘 (𝑞−1) =
∑𝑛𝑎
ℓ=0 𝑎 𝑗𝑘,ℓ𝑞

−ℓ . Hence, the
( 𝑗 , 𝑘)th element of the matrix 𝐴ℓ is denoted by 𝑎 𝑗𝑘,ℓ . Let 𝐴CZ (𝑞−1), 𝐴C•(𝑞−1),
and 𝐴•Z (𝑞−1) indicate all 𝑎 𝑗𝑘 (𝑞−1), 𝑎 𝑗𝑚(𝑞−1), and 𝑎𝑚𝑘 (𝑞−1) with 𝑗 ∈ C and
𝑘 ∈ Z, respectively. Let 𝑑𝑒𝑡 (𝐴) and 𝑎𝑑𝑗 (𝐴) denote the determinant and adjugate
of 𝐴(𝑞−1), respectively.

10.2 Diffusively coupled network

10.2.1 Diffusive couplings

Diffusive couplings describe an interaction that depends on the difference between
the signals of interest (or nodes). The nodes can also have diffusive couplings
with a zero node (or ground node). In line with Chapter 8, the behaviour of each
node signal 𝑤 𝑗 (𝑡) can be described by

𝑛𝑥∑︁
ℓ=0

x 𝑗 𝑗 ,ℓ𝑤 (ℓ )𝑗 (𝑡) +
∑︁
𝑘∈N𝑗

𝑛𝑦∑︁
ℓ=0

y 𝑗𝑘,ℓ
[
𝑤
(ℓ )
𝑗
(𝑡) − 𝑤 (ℓ )

𝑘
(𝑡)

]
= 𝑢 𝑗 (𝑡), (10.1)

with 𝑛𝑥 and 𝑛𝑦 the order of the dynamics in the network; with N𝑗 the set of
indices of all neighbour nodes of 𝑤 𝑗 (𝑡); with real-valued coefficients x 𝑗 𝑗 ,ℓ ≥ 0
and y 𝑗𝑘,ℓ = y𝑘 𝑗,ℓ ≥ 0; where 𝑤 (ℓ ) (𝑡) is the ℓth derivative of 𝑤 𝑗 (𝑡); and where
𝑢 𝑗 (𝑡) is the external signal entering the 𝑗 th node. Combining the expressions
(10.1) in a matrix equation gives

𝑋 (𝑝)𝑤(𝑡) + 𝑌 (𝑝)𝑤(𝑡) = 𝑢(𝑡), (10.2)

with differential operator 𝑝, i.e. 𝑝ℓ𝑤(𝑡) = 𝑤 (ℓ ) (𝑡); with diagonal polynomial
matrix 𝑋 (𝑝), with 𝑥 𝑗 𝑗 (𝑝) =

∑𝑛𝑥
ℓ=0 x 𝑗 𝑗 ,ℓ 𝑝ℓ , containing the components intrinsically

related to the nodes (e.g. in the couplings with the zero node); with Laplacian1

1A Laplacian matrix is a symmetric matrix with nonpositive off-diagonal elements and with
nonnegative diagonal elements that are equal to the negative sum of all other elements in the same
row (or column) (Mesbahi and Egerstedt, 2010).
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polynomial matrix 𝑌 (𝑝), with 𝑦 𝑗𝑘 (𝑝) = −
∑𝑛𝑦

ℓ=0 y 𝑗𝑘,ℓ 𝑝ℓ if 𝑘 ∈ N𝑗 and 𝑦 𝑗𝑘 (𝑝) = 0
if 𝑘 ∉ {N𝑗 , 𝑗}, containing the components in the diffusive couplings between the
nodes.

Examples of diffusively coupled networks are physical networks, such as elec-
trical circuits, which are characterised by their symmetric components that imply
diffusive couplings. For example, a resistor describes the relation between the
current and the difference in electric potential on each side of the resistor. A phys-
ical network typically exhibits second-order dynamics between all node signals.
Generalising to include higher-order dynamics is particularly useful for describ-
ing a selection of (measured) node signals by removing the other (unmeasured)
node signals through a Gaussian elimination procedure (called immersion or Kron
reduction (Dankers et al., 2016; Dörfler and Bullo, 2013)).

To exploit the network identification results that have been developed for
discrete-time systems, a backward difference method (describing a bijective map-
ping) is used to approximate (10.2) by the equivalent form

�̄� (𝑞−1)𝑤(𝑡) + 𝑌 (𝑞−1)𝑤(𝑡) = 𝑢(𝑡), (10.3)

with delay operator 𝑞−1, i.e. 𝑞−1𝑤(𝑡) = 𝑤(𝑡 − 1), and with �̄� (𝑞−1) and 𝑌 (𝑞−1)
having the same structural properties as 𝑋 (𝑝) and 𝑌 (𝑝), respectively. In the
sequel, we will use 𝐴(𝑞−1) = �̄� (𝑞−1) + 𝑌 (𝑞−1), from which �̄� (𝑞−1) and 𝑌 (𝑞−1)
can uniquely be recovered due to their structure.

10.2.2 Network model

As explained in Section 10.2.1, diffusively coupled networks exhibit a symmetric
interaction between nodes. We define these networks in line with Chapter 8.

Definition 10.1 (Diffusively coupled linear network model). A diffusively
coupled linear network model consists of 𝐿 internal node signals 𝑤 𝑗 (𝑡),
𝑗 = 1, . . . , 𝐿; 𝐾 ≤ 𝐿 known excitation signals 𝑟 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐾; 𝐿
unknown disturbance signals 𝑣 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿; and 𝑐 ≤ 𝐿 measured
signals 𝑦 𝑗 (𝑡), 𝑗 = 1, . . . , 𝑐 and is defined as

𝐴(𝑞−1)𝑤(𝑡) = 𝐵(𝑞−1)𝑟 (𝑡) + 𝑣(𝑡), 𝑦(𝑡) = 𝐶 (𝑞−1)𝑤(𝑡), (10.4)

with 𝑤(𝑡), 𝑟 (𝑡), 𝑣(𝑡), and 𝑦(𝑡) vectorised versions of 𝑤 𝑗 (𝑡), 𝑟 𝑗 (𝑡), 𝑣 𝑗 (𝑡),
and 𝑦 𝑗 (𝑡), respectively; with 𝑣(𝑡) modelled as filtered white noise, i.e.
𝑣(𝑡) = 𝐹 (𝑞)𝑒(𝑡) with 𝑒(𝑡) a vector-valued white noise process; and with

1. 𝐴(𝑞−1) =
∑𝑛𝑎
𝑘=0 𝐴𝑘𝑞

−𝑘 ∈ R𝐿×𝐿 [𝑞−1], with 𝐴−1(𝑞−1) stable;
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rank(𝐴0) = 𝐿; and 𝑎 𝑗𝑘 (𝑞−1) = 𝑎𝑘 𝑗 (𝑞−1) ∀𝑘, 𝑗 .

2. 𝐵(𝑞−1) =
[
�̃�⊤(𝑞−1) 0

]⊤ ∈ R𝐿×𝐾 [𝑞−1], with �̃�(𝑞−1) ∈
R𝐾×𝐾 [𝑞−1]; and �̃� 𝑗𝑘 (𝑞−1) = 0, ∀ 𝑗 , 𝑗 ≠ 𝑘 .

3. 𝐶 (𝑞−1) =
[
0 �̄� (𝑞−1)

]
∈ R𝑐×𝐿 [𝑞−1], with �̄� (𝑞−1) ∈ R𝑐×𝑐 [𝑞−1];

rank(�̄�0) = 𝑐; and 𝑐 𝑗𝑘 (𝑞−1) = 0, ∀ 𝑗 , 𝑗 ≠ 𝑘 .

4. 𝐹 (𝑞) ∈ R𝐿×𝐿 (𝑞), monic, stable, and stably invertible.

5. Λ ≻ 0 the covariance matrix of the noise 𝑒(𝑡).

Assumption 10.2 (Connected and well-posed). It is assumed that the
network (10.4) is:

1. Connected: Every pair of nodes yields a patha.

2. Well-posed: 𝐴−1(𝑞−1) exists and is proper.
aThe network is connected if its Laplacian matrix (i.e. the degree matrix minus the

adjacency matrix) has a positive second-smallest eigenvalue (Fiedler, 1973).

The polynomial matrices 𝐴(𝑞−1), 𝐵(𝑞−1), and𝐶 (𝑞−1) are nonmonic. Stability
of the network is induced by the stability of 𝐴−1(𝑞−1). The diffusive character of
the model is represented by the symmetry of 𝐴(𝑞−1). The polynomial 𝑎 𝑗𝑘 (𝑞−1)
characterises the dynamics in the link between node signals 𝑤 𝑗 (𝑡) and 𝑤𝑘 (𝑡). Due
to the diagonal structure in 𝐵(𝑞−1) and 𝐶 (𝑞−1), the first 𝐾 nodes are excited and
the last 𝑐 node signals are measured. Often, 𝐵(𝑞−1) and 𝐶 (𝑞−1) are chosen to be
binary, implying that each excitation signal directly enters the network at a distinct
node and that each measured signal is directly extracted from distinct internal
node signals. If 𝐹 (𝑞) is polynomial or even stronger if 𝐹 (𝑞) = 𝐼, the network
(10.4) leads to an ARMAX-like or ARX-like2 model structure, respectively.

The input-output mapping of (10.4) is given by

𝑦(𝑡) = 𝑇𝑦𝑟 (𝑞)𝑟 (𝑡) + �̄�(𝑡), �̄�(𝑡) = 𝑇𝑦𝑒 (𝑞)𝑒(𝑡), (10.5)

with

𝑇𝑦𝑟 (𝑞) = 𝐶 (𝑞−1)𝐴−1(𝑞−1)𝐵(𝑞−1), (10.6a)

2The structure is formally only an ARMAX (autoregressive-moving average with exogenous
variables) or ARX (autoregressive with exogenous variables) structure if the 𝐴(𝑞−1) polynomial
is monic (Hannan and Deistler, 2012).
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𝑇𝑦𝑒 (𝑞) = 𝐶 (𝑞−1)𝐴−1(𝑞−1)𝐹 (𝑞), (10.6b)
Φ�̄� (𝜔) = 𝑇𝑦𝑒 (𝑒𝑖𝜔)Λ𝑇∗𝑦𝑒 (𝑒𝑖𝜔), (10.6c)

with (·)∗ the complex conjugate transpose. A standard open-loop identification of
(10.5) can typically lead to consistent estimation of 𝑇𝑦𝑟 (𝑞) and Φ�̄� (𝜔). Observe
that for binary 𝐵(𝑞−1) and 𝐶 (𝑞−1), (10.6a) leads to a subset of rows and columns
of 𝐴−1(𝑞−1) that constitute 𝑇𝑦𝑟 (𝑞).

10.3 Identifiability

Identifiability concerns the ability to distinguish between different models in a
network model set, given the locations of the external signals in the network.
Therefore, identifiability can be analysed by exploiting the uniqueness of network
models.

Definition 10.3 (Equivalent network models). The two network mod-
els 𝑀1 =

(
𝐴1(𝑞−1), 𝐵1(𝑞−1), 𝐶1(𝑞−1), 𝐹1(𝑞),Λ1

)
and 𝑀2 =

(
𝐴2(𝑞−1),

𝐵2(𝑞−1), 𝐶2(𝑞−1), 𝐹2(𝑞),Λ2
)

are equivalent if

𝑇𝑦𝑟 ,1(𝑞) = 𝑇𝑦𝑟 ,2(𝑞) and Φ�̄�,1(𝜔) = Φ�̄�,2(𝜔). (10.7)

This concept of equivalent network models implies that two network models
can model the same measured data (𝑦, 𝑟), because both models will have the same
transfer function 𝑇𝑦𝑟 (𝑞) and power spectrum Φ�̄� (𝜔). Exploiting the spectral fac-
torisation ofΦ�̄� (𝜔) (10.6c) leads to an equivalent network model with a simplified
noise model. This result is analogous to Shi et al. (2023, Theorem 1).

Proposition 10.4 (Noise model). Any network model

𝑀 =
(
𝐴(𝑞−1), 𝐵(𝑞−1), 𝐶 (𝑞−1), 𝐹 (𝑞),Λ

)
(10.8)

admits an equivalent network model

�̃� ≜
(
𝐴(𝑞−1), 𝐵(𝑞−1), 𝐶 (𝑞−1),

[
0 �̃�∗(𝑞)

]∗
, Λ̃

)
, (10.9)

where �̃� (𝑞) ∈ R𝑐×𝑐 (𝑞) is monic, stable, and stably invertible and Λ̃ ∈
R𝑐×𝑐 ≻ 0.

Proof: The proof is provided in Appendix 10.A. ■

As 𝑇𝑦𝑟 (𝑞) and Φ�̄� (𝜔) only reflect the properties of the measured nodes, there
is freedom in transforming the unmeasured internal signals and in modelling the
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disturbances affecting the measured signals. In �̃� , all unmeasured node signals
are disturbance-free. Hence, there are multiple models 𝑀 (with different noise
processes) that admit the same equivalent model �̃� . As �̃� admits a simpler noise
model, it is more attractive for the identifiability analysis.

Before defining the model set corresponding to the models �̃� , let
us take a deeper look at the power spectrum Φ�̄� (𝜔). As 𝑇𝑦�̃� (𝑞) =

𝐶 (𝑞−1)𝐴−1(𝑞−1)
[
0 �̃�∗(𝑞)

]∗ is not monic, the spectral factorisation of
Φ�̄� (𝜔) into 𝑇𝑦�̃� (𝑒𝑖𝜔) and Λ̃ is not unique. However, the spectral factorisation of
Φ�̄� (𝜔) can be made unique by properly scaling 𝑇𝑦�̃� (𝑒𝑖𝜔) and Λ̃.

Proposition 10.5 (Spectral factorisation). The power spectrum Φ�̄� (𝜔) ad-
mits a unique spectral factorisation into 𝑇𝑦�̆� (𝑒𝑖𝜔) and Λ̆, where 𝑇𝑦�̆� (𝑞) =
�̄� (𝑞−1) �̄�−1(𝑞−1)�̆� (𝑞) is monic, with �̆� (𝑞) = �̃� (𝑞) �̄�0�̄�

−1
0 , and Λ̆ =

�̄�0 �̄�
−1
0 Λ̃�̄�−1

0 �̄�⊤0 ≻ 0.

Proof: Redefine the noise model �̄�(𝑡) = �̃� (𝑞)𝑒(𝑡) as �̄�(𝑡) = �̆� (𝑞)𝑒(𝑡) with
�̆� (𝑞) = �̃� (𝑞) �̄�0�̄�

−1
0 and with Λ̆ ≻ 0 the covariance of 𝑒(𝑡). Then Φ�̄� (𝜔) =

𝑇𝑦�̆� (𝑒𝑖𝜔)Λ̆𝑇∗𝑦�̆� (𝑒
𝑖𝜔), which admits a unique spectral factorisation into 𝑇𝑦�̆� (𝑒𝑖𝜔)

and Λ̆ as 𝑇𝑦�̆� (𝑞) is monic, stable, and stably invertible and Λ̆ ≻ 0 (Youla, 1961).
■

Now, let us define the model set of the models (10.9).

Definition 10.6 (Network model set). The network model set M̃ is defined
as a set of parameterised functions as

M̃ := {�̃� (𝜃), 𝜃 ∈ Θ ⊂ R𝑑}, (10.10)

with 𝑑 ∈ N and with all particular models

�̃� (𝜃) :=
(
𝐴(𝑞−1, 𝜃), 𝐵(𝑞−1, 𝜃), 𝐶 (𝑞−1, 𝜃),

[
0 �̃�∗(𝑞, 𝜃)

]∗
, Λ̃(𝜃)

)
(10.11)

satisfying the properties in Definition 10.1 and Assumption 10.2, where
Property 4 of Definition 10.1 is replaced by

(4) �̃� (𝑞) ∈ R𝑐×𝑐 (𝑞), monic, stable, and stably invertible.

Here, 𝜃 contains all the unknown coefficients that appear in the entries of the
model matrices 𝐴(𝑞−1), 𝐵(𝑞−1), 𝐶 (𝑞−1), �̃� (𝑞), and Λ̃.

Since the network models that will be considered and the corresponding net-
work model set have been defined, we can now continue with the identifiability
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analysis. Let us adopt the concept of network identifiability from Weerts et al.
(2018b).

Definition 10.7 (Global network identifiability). The network model set
M̃ is globally network identifiable from data 𝑧(𝑡) := {𝑦(𝑡), 𝑟 (𝑡)} if the
parameterised model �̃� (𝜃) can uniquely be recovered from 𝑇𝑦𝑟 (𝑞, 𝜃) and
Φ�̄� (𝜔, 𝜃), that is, if for all models �̃� (𝜃1), �̃� (𝜃2) ∈ M̃

𝑇𝑦𝑟 (𝑞, 𝜃1) = 𝑇𝑦𝑟 (𝑞, 𝜃2)
Φ�̄� (𝜔, 𝜃1) = Φ�̄� (𝜔, 𝜃2)

}
=⇒ �̃� (𝜃1) = �̃� (𝜃2). (10.12)

Using the result of Proposition 10.5 on the power spectral factorisation of
Φ�̄� (𝜔), we have the following identifiability result:

Proposition 10.8 (Global network identifiability). For a network model
set M̃, implication (10.12) can equivalently be formulated as

𝑇𝑦𝑟 (𝑞, 𝜃1) = 𝑇𝑦𝑟 (𝑞, 𝜃2)
𝑇𝑦�̆� (𝑞, 𝜃1) = 𝑇𝑦�̆� (𝑞, 𝜃2)
Λ̆(𝜃1) = Λ̆(𝜃2)

 =⇒ �̃� (𝜃1) = �̃� (𝜃2). (10.13)

Proof: From Proposition 10.5, 𝑇𝑦�̆� (𝑞) and Λ̆ are uniquely determined by
Φ�̄� (𝜔) and therefore, Φ�̄� (𝜔, 𝜃) in (10.12) can be replaced by 𝑇𝑦�̆� (𝑞, 𝜃) and Λ̆(𝜃).
■

10.4 Full measurement

Consider a network as defined in Definition 10.1, where all node signals are directly
measured. This is the most common instrumentation setting for identification in
dynamic networks. Let us recap the corresponding identifiability conditions of
Chapter 8 and Chapter 9.

Assumption 10.9 (Full measurement). Assume 𝐶 (𝑞−1) = 𝐼.

Observe that in this case �̃� = 𝐹 and thus �̃� = 𝑀 . The identifiability analysis
is based on the uniqueness of the network model. Therefore, we present a result
on the left MFD (LMFD), before formulating the identifiability conditions for our
particular network models.
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Lemma 10.10 (LMFD). Consider a network model set M̃ satisfying As-
sumption 10.9. Given the LMFD 𝐴(𝑞−1)−1𝐵(𝑞−1), 𝐴(𝑞−1) and 𝐵(𝑞−1)
are unique within M̃ up to a scalar factor if the following conditions are
satisfied:

1. 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime in M̃.

2. There exists a permutation matrix 𝑃𝑏 such that within M̃,[
𝐴0 𝐴1 · · · 𝐴𝑛𝑎 𝐵0 𝐵1 · · · 𝐵𝑛𝑏

]
𝑃𝑏 =

[
𝐷𝑏 𝑅𝑏

]
with 𝐷𝑏

square, diagonal, and full rank.

Proof: According to Kailath (1980), the LMFD of any two polynomial and left
coprime matrices is unique up to a premultiplication with a unimodular matrix.
To satisfy Condition 2, the unimodular matrix is restricted to being diagonal. As
𝐴(𝑞−1) is symmetric, this diagonal matrix is further restricted to having equal
elements. ■

In general polynomial models, like ARMAX (Deistler, 1983), 𝐴(𝑞−1) is
monic, i.e. 𝐴0 = 𝐼. Then the LMFD 𝐴(𝑞−1)−1𝐵(𝑞−1) is unique, as the conditions
of Lemma 10.10 are satisfied and scaling with a scalar factor is not possible any-
more. Hence, both Condition 2 in Lemma 10.10 and the scaling factor freedom
are a result of the fact that 𝐴(𝑞−1) is not necessarily monic.

Now the conditions for global network identifiability can be formulated.

Proposition 10.11 (Identifiability full measurement). A network model
set M̃ satisfying Assumption 10.9 is globally network identifiable from 𝑧(𝑡)
if the following conditions are satisfied:

1. 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime in M̃.

2. There exists a permutation matrix 𝑃𝑏 such that within M̃,[
𝐴0 𝐴1 · · · 𝐴𝑛𝑎 𝐵0 𝐵1 · · · 𝐵𝑛𝑏

]
𝑃𝑏 =

[
𝐷𝑏 𝑅𝑏

]
with 𝐷𝑏

square, diagonal, and full rank.

3. At least one excitation signal 𝑟 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐾 , is present: 𝐾 ≥ 1.

4. There is at least one constraint on the parameters of 𝐴(𝑞−1, 𝜃𝑎) and
𝐵(𝑞−1, 𝜃𝑐) of the form Γ𝜃𝑎𝑏 = 𝛾 ≠ 0, with Γ full row rank and with
𝜃𝑎𝑏 :=

[
𝜃⊤𝑎 𝜃⊤

𝑏

]⊤.

Proof: Condition 3 implies that 𝑇𝑦𝑟 (𝑞, 𝜃) is nonzero. According to Lemma
10.10, Condition 1 and 2 imply that 𝐴(𝑞−1, 𝜃) and 𝐵(𝑞−1, 𝜃) are unique up to a
scalar factor 𝛼. According to Proposition 10.5, 𝑇𝑦�̆� (𝑞, 𝜃) and Λ̆(𝜃) are uniquely
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recovered from Φ�̄� (𝜔, 𝜃). Together with the fact that 𝐴(𝑞−1, 𝜃) is unique up to
a scalar factor 𝛼, 𝑇𝑦�̆� (𝑞, 𝜃) gives a unique �̃� (𝑞, 𝜃), and Λ̆(𝜃) gives Λ̃(𝜃) up to a
scalar factor 𝛼2. Finally, Condition 4 implies that 𝛼 is unique. ■

10.5 Full excitation

Consider a network as defined in Definition 10.1, where now all node signals
are directly excited. This is the dual instrumentation setting compared to the full
measurement setup in Section 10.4. In this section, we present the identifiability
conditions for networks with full excitation.

Assumption 10.12 (Full excitation). Assume 𝐵(𝑞−1) = 𝐼.

Again, the identifiability analysis is based on the uniqueness of the network
model. Here, we present a result on the right MFD (RMFD), before formulating
the identifiability conditions for our particular network models.

Lemma 10.13 (RMFD). Consider a network model set M̃ satisfying As-
sumptions 10.12. Given the RMFD𝐶 (𝑞−1, )𝐴(𝑞−1, )−1,𝐶 (𝑞−1) and 𝐴(𝑞−1)
are unique within M̃ up to a scalar factor if the following conditions are
satisfied:

1. 𝐴(𝑞−1) and 𝐶 (𝑞−1) are right coprime in M̃.

2. There exists a permutation matrix 𝑃𝑐 such that within M̃,[
𝐴0 𝐴1 · · · 𝐴𝑛𝑎 𝐶0 𝐶1 · · · 𝐶𝑛𝑐

]
𝑃𝑐 =

[
𝐷𝑐 𝑅𝑐

]
with 𝐷𝑐

square, diagonal, and full rank.

Proof: According to Kailath (1980), the RMFD of any two polynomial and
right coprime matrices is unique up to a postmultiplication with a unimodular
matrix. To satisfy Condition 2, the unimodular matrix is restricted to being
diagonal. As 𝐴(𝑞−1) is symmetric, this diagonal matrix is further restricted to
having equal elements. ■

Similar to Section 10.4, a monic 𝐴(𝑞−1) implies that the RMFD
𝐶 (𝑞−1)𝐴(𝑞−1)−1 is unique, as the conditions of Lemma 10.13 are satis-
fied and scaling with a scalar factor is not possible anymore. Hence, again,
Condition 2 in Lemma 10.13 and the scaling factor freedom are a result of the
fact that 𝐴(𝑞−1) is not necessarily monic.

Now the conditions for global network identifiability can be formulated.
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Proposition 10.14 (Identifiability full excitation). A network model set M̃
satisfying Assumption 10.12 is globally network identifiable from 𝑧(𝑡) if the
following conditions are satisfied:

1. 𝐴(𝑞−1) and 𝐶 (𝑞−1) are right coprime in M̃.

2. There exists a permutation matrix 𝑃𝑐 such that within M̃,[
𝐴0 𝐴1 · · · 𝐴𝑛𝑎 𝐶0 𝐶1 · · · 𝐶𝑛𝑐

]
𝑃𝑐 =

[
𝐷𝑐 𝑅𝑐

]
with 𝐷𝑐

square, diagonal, and full rank.

3. At least one measured signal 𝑦 𝑗 (𝑡), 𝑗 = 1, . . . , 𝑐, is present: 𝑐 ≥ 1.

4. There is at least one constraint on the parameters of 𝐴(𝑞−1, 𝜃𝑎) and
𝐶 (𝑞−1, 𝜃𝑐) of the form Γ𝜃𝑎𝑐 = 𝛾 ≠ 0, with Γ full row rank and with
𝜃𝑎𝑐 :=

[
𝜃⊤𝑎 𝜃⊤𝑐

]⊤.

Proof: The proof is fully dual to the proof of Proposition 10.11. ■

10.6 Partial instrumentation

10.6.1 Network model analysis

This section contains the main results, which are the identifiability conditions
for networks with partial instrumentation. Consider a network as defined in
Definition 10.1, where now all node signals are either measured or excited and at
least one node signal is both measured and excited:

Assumption 10.15 (Partial instrumentation). Assume 𝐾 + 𝑐 ≥ 𝐿 + 1.

As before, the analysis is based on the uniqueness of the network model. We
present a result on the MFD, before formulating the identifiability conditions for
our particular network models.

Lemma 10.16 (MFD). For a network model set M̃ satisfying Assump-
tions 10.15, the MFD 𝐶 (𝑞−1)𝐴(𝑞−1)−1𝐵(𝑞−1, ), gives unique 𝐶 (𝑞−1),
𝐴(𝑞−1), and 𝐵(𝑞−1) within M̃ if the following conditions are satisfied:

1. 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime in M̃.

2. 𝐴(𝑞−1) and 𝐶 (𝑞−1) are right coprime in M̃.
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3. There exists a permutation matrix 𝑃𝑏 such that within M̃,[
𝐴0 𝐴1 · · · 𝐴𝑛𝑎 𝐵0 𝐵1 · · · 𝐵𝑛𝑏

]
𝑃𝑏 =

[
𝐷𝑏 𝑅𝑏

]
with 𝐷𝑏

square, diagonal, and full rank.

4. There exists a permutation matrix 𝑃𝑐 such that within M̃,[
𝐴0 𝐴1 · · · 𝐴𝑛𝑎 𝐶0 𝐶1 · · · 𝐶𝑛𝑐

]
𝑃𝑐 =

[
𝐷𝑐 𝑅𝑐

]
with 𝐷𝑐

square, diagonal, and full rank.

5. For each 𝑘 = 1, 2, . . . , 𝐿, there is a nonzero linear equality con-
straint on the parameters related to node 𝑤𝑘 (𝑡), i.e. on 𝑎ℓ𝑘 (𝑞−1, 𝜃),
𝑏𝑘𝑘 (𝑞−1, 𝜃), or 𝑐𝑘𝑘 (𝑞−1, 𝜃). These 𝐿 constraints are on 𝐿 different
polynomials.

6. There is at least one extra constraint on the parameters of 𝐴(𝑞−1, 𝜃𝑎),
𝐵(𝑞−1, 𝜃𝑏), and 𝐶 (𝑞−1, 𝜃𝑐) of the form Γ𝜃𝑎𝑏𝑐 = 𝛾 ≠ 0, with Γ full
row rank and with 𝜃𝑎𝑏𝑐 :=

[
𝜃⊤𝑎 𝜃⊤

𝑏
𝜃⊤𝑐

]⊤.

Proof: The proof is provided in Appendix 10.B. ■

Condition 5 and 6 of Lemma 10.16 can, for example, be satisfied by binary
𝐵(𝑞−1) and 𝐶 (𝑞−1), implying that nodes are directly excited and measured, re-
spectively. Condition 6 of Lemma 10.16 is similar to Condition 4 of Propositions
10.11 and 10.14.

Now the main results of this paper are formulated, which are the conditions
for global network identifiability for diffusively coupled networks with partial
instrumentation.

Theorem 10.17 (Identifiability partial instrumentation). A network
model set M̃ satisfying Assumption 10.15 is globally network identifiable
from 𝑧(𝑡) if the conditions in Lemma 10.16 are satisfied.

Proof: Assumption 10.15 implies that 𝐾 ≥ 1 and 𝑐 ≥ 1 and thus 𝑇𝑦𝑟 (𝑞, 𝜃)
is nonzero. Lemma 10.16 implies that 𝐴(𝑞−1, 𝜃), 𝐵(𝑞−1, 𝜃), and 𝐶 (𝑞−1, 𝜃) are
uniquely found from𝑇𝑦𝑟 (𝑞, 𝜃). According to Proposition 10.5, 𝑇𝑦�̆� (𝑞, 𝜃) and Λ̆(𝜃)
are uniquely recovered from Φ�̄� (𝜔, 𝜃). Together with the fact that 𝐴(𝑞−1, 𝜃) and
𝐶 (𝑞−1, 𝜃) are unique, 𝑇𝑦�̆� (𝑞, 𝜃) gives a unique �̃� (𝑞, 𝜃), and Λ̆(𝜃) gives a unique
Λ̃(𝜃). ■

𝐴(𝑞−1, 𝜃), 𝐵(𝑞−1, 𝜃), and 𝐶 (𝑞−1, 𝜃) are uniquely determined from 𝑇𝑦𝑟 (𝑞, 𝜃),
where the required constraints can be imposed on actuators and sensors locations
only. Φ�̄� (𝜔, 𝜃) is used to determine �̃� (𝑞, 𝜃) and Λ̃(𝜃). Extracting information
from Φ�̄� (𝜔, 𝜃) on 𝐴(𝑞−1, 𝜃) and𝐶 (𝑞−1, 𝜃) is limited by the non-monicity of these
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polynomials. In the special case of a known 𝐶 (𝑞−1) and a polynomial 𝐹 (𝑞, 𝜃),
𝑇𝑦�̆� (𝑞−1, 𝜃) can lead to 𝐴(𝑞−1, 𝜃) under 𝐿 additional constraints on the network
dynamics 𝐴(𝑞−1, 𝜃).

10.6.2 Transfer function analysis

The role of the partial instrumentation condition in Assumption 10.15, can also be
understood from analysing𝑇𝑦𝑟 (𝑞) in (10.6a), which shows that the input dynamics
in 𝐵(𝑞−1) and the output dynamics in 𝐶 (𝑞−1) have an equivalent influence on
𝑇𝑦𝑟 (𝑞). For simplicity, we restrict to binary 𝐵 and𝐶 in this section. An equivalent
analysis is presented by De Angelis et al. (2002) for identifying disturbance-free
second-order models from first-order state-space models.

For full instrumentation, 𝐵 = 𝐼 and 𝐶 = 𝐼. Then 𝑇𝑦𝑟 (𝑞−1) = 𝐴−1(𝑞−1) and
𝐴(𝑞−1) can directly be obtained from 𝑇𝑦𝑟 (𝑞−1). For full measurement, 𝐶 = 𝐼

and at least one excitation signal is required, e.g. at 𝑤𝑖 (𝑡). Then 𝑇𝑦𝑟 (𝑞−1) =
(𝐴−1)•𝑖 (𝑞−1), i.e. the 𝑖th column of 𝐴−1(𝑞−1). Due to symmetry, the 𝑖th row
of 𝐴−1(𝑞−1) is also known. For full excitation, 𝐵 = 𝐼 and at least one measured
signal is required, e.g. 𝑤𝑖 (𝑡). Then 𝑇𝑦𝑟 (𝑞−1) = (𝐴−1)𝑖•(𝑞−1), i.e. the 𝑖th row
of 𝐴−1(𝑞−1). Due to symmetry, the 𝑖th column of 𝐴−1(𝑞−1) is also known. It
might seem surprising that knowing only the 𝑖th row and column of 𝐴−1(𝑞−1)
is sufficient for uniquely determining 𝐴(𝑞−1), but this is due to the symmetry
and the other conditions in Propositions 10.11 and 10.14. Observe the equivalent
influence of excitations and measurements on the identifiability of 𝐴(𝑞−1).

Partial instrumentation requires at least one node signal to be both excited and
measured, e.g. 𝑤𝑖 (𝑡). Then 𝐾 + 𝑐 = 𝐿 + 1, 𝐵 =

[
𝐼𝐾 0

]⊤, and 𝐶 =
[
0 𝐼𝑐

]
,

with 𝐼 𝑗 the identity matrix of size 𝑗 × 𝑗 . Then 𝑇𝑦𝑟 (𝑞−1) = [𝐴−1]CK (𝑞−1), i.e. all
[𝑎−1] 𝑗𝑘 (𝑞−1), with 𝑗 ∈ C ≜ { 𝑗 | 𝐿+1−𝑐 ≤ 𝑗 ≤ 𝐿} and 𝑘 ∈ K ≜ { 𝑗 | 1 ≤ 𝑗 ≤ 𝐾}.
Due to symmetry, all [𝑎−1]𝑘 𝑗 (𝑞−1), with 𝑗 ∈ C and 𝑘 ∈ K are also known. As
C ∩K = {𝑖}, the complete 𝑖th row and 𝑖th column of 𝐴−1(𝑞−1) are known, which
is sufficient for uniquely determining 𝐴(𝑞−1). In other words, it is possible to
transform the partial instrumentation case (satisfying Assumption 10.15) to the
full measurement or full excitation case if at least one node signal is both excited
and measured.

Remark 10.18 (Module representation). In the literature, the identifiab-
ility of the complete dynamics or a subset of the dynamics is analysed for
module representations with partial instrumentation conditions (Bazanella
et al., 2019; Cheng et al., 2023; Shi et al., 2023). These analyses lead to
conditions on the rank of the overall input-output transfer function, which
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can be translated into graphical conditions in terms of vertex-disjoint paths,
disconnecting sets, and (pseudo-/anti-)tree coverings. These conditions im-
ply requirements for the number and locations of external excitation signals
and node signal measurements.
In contrast, very simple and more relaxed identifiability conditions are
presented in this chapter for the identification of diffusively coupled networks
with partial instrumentation. This simplification is due to the symmetry
that is present in the network model, which restricts the network dynamics
sufficiently to achieve identifiability with only very simple requirements on
instrumentation locations.

10.7 Conclusion

Identifiability conditions for identifying the complete dynamics of diffusively
coupled linear networks have been formulated. Analysing the uniqueness of the
network description leads to more flexible instrumentation requirements than re-
quiring to measure all node signals or to excite all node signals. For identifiability,
it is sufficient to either measure or excite each node signal and to both measure
and excite (at least) one node signal.



Appendix

10.A Proof of Proposition 10.4

Omit the arguments 𝑞, 𝑞−1, 𝜔, and 𝑒𝑖𝜔 for notational simplicity. The behaviour
of the measured signals 𝑦(𝑡) is described in an immersed network model, which
is obtained by eliminating the unmeasured signals (through immersion or Kron
reduction (Dankers et al., 2016; Dörfler and Bullo, 2013)). Partition the internal
signals as 𝑤(𝑡) =

[
𝑤⊤Z (𝑡) 𝑤⊤C (𝑡)

]⊤, such that 𝑦(𝑡) = �̄�𝑤C (𝑡). Partition 𝐴, 𝐵,
and 𝐹 accordingly and define

�̄� ≜ 𝑑ZZ
(
𝐴CC − 𝐴CZ𝐴−1

ZZ𝐴ZC
)
,

�̄� ≜ 𝑑ZZ
(
𝐵C• − 𝐴CZ𝐴−1

ZZ𝐵Z•
)
,

�̄� ≜ 𝑑ZZ
(
𝐹C• − 𝐴CZ𝐴−1

ZZ𝐹Z•
)
,

𝑑ZZ ≜
𝑑𝑒𝑡 (𝐴ZZ)

𝑔𝑐𝑑 (𝑑𝑒𝑡 (𝐴ZZ), 𝑎𝑑𝑗 (𝐴ZZ))
,

so that �̄� and �̄� are polynomial (Chapter 9). The immersed network model is now
given by

�̄�𝑤C (𝑡) = �̄�𝑟 (𝑡) + �̄�𝑒(𝑡), 𝑦(𝑡) = �̄�𝑤C (𝑡),
which has input-output mapping

𝑦(𝑡) = �̄� �̄�−1�̄�𝑟 (𝑡) + �̄� �̄�−1�̄�𝑒(𝑡).

Together with (10.5), (10.6b), and (10.6c) this gives

Φ�̄� = 𝐶𝐴
−1𝐹Λ𝐹∗𝐴−∗𝐶∗ = �̄� �̄�−1�̄�Λ�̄�∗ �̄�−∗�̄�∗,

where 𝐶 = �̄�
[
0 𝐼

]
and �̄�−1 = 𝑑−1

ZZ
[
0 𝐼

]
𝐴−1 [0 𝐼

]⊤, i.e.

�̄� �̄�−1 = 𝑑−1
ZZ𝐶𝐴

−1
[
0
𝐼

]
.

285
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Further, �̄�Λ�̄�∗ can be refactorised as 𝑑ZZ �̃�Λ̃�̃�∗𝑑∗ZZ (Gevers et al., 2019), where
�̃� and Λ̃ satisfy the properties of this proposition. This leads to

Φ�̄� = 𝐶𝐴
−1

[
0
�̃�

]
Λ̃
[
0 �̃�∗

]
𝐴−∗𝐶∗.

Hence, the input-output mapping

𝑦(𝑡) = 𝐶𝐴−1𝐵𝑟 (𝑡) + 𝐶𝐴−1
[
0
�̃�

]
𝑒(𝑡),

where noise signal 𝑒(𝑡) has covariance matrix Λ̃, leads to the same 𝑇𝑦𝑟 and Φ�̄� as
in (10.6a) and (10.6c), respectively.

10.B Proof of Lemma 10.16

According to Kailath (1980), any matrix-fraction description (MFD) satisfying
Conditions 1 and 2 is unique up to multiplication with unimodular matrices, i.e.

𝐶 (𝑞−1, 𝜃1)𝐴−1(𝑞−1, 𝜃1)𝐵(𝑞−1, 𝜃1) = 𝐶 (𝑞−1, 𝜃2)𝐴−1(𝑞−1, 𝜃2)𝐵(𝑞−1, 𝜃2),

for all 𝜃1, 𝜃2 ∈ Θ, with

𝐶 (𝑞−1, 𝜃2) ≜ 𝐶 (𝑞−1, 𝜃1)𝑍 (𝑞−1),
𝐴(𝑞−1, 𝜃2) ≜ 𝑅(𝑞−1)𝐴(𝑞−1, 𝜃1)𝑍 (𝑞−1),
𝐵(𝑞−1, 𝜃2) ≜ 𝑅(𝑞−1)𝐵(𝑞−1, 𝜃1),

and with unimodular matrices 𝑅(𝑞−1) and 𝑍 (𝑞−1). Conditions 3 and 4, respect-
ively, imply that 𝑅(𝑞−1) =: 𝑅 and 𝑍 (𝑞−1) =: 𝑍 are diagonal (and thus static). To
satisfy Assumption 10.2 in 𝐴(𝑞−1, 𝜃2) = 𝑅𝐴(𝑞−1, 𝜃1)𝑍 , the elements of 𝑅 and 𝑍
need to satisfy

𝑟−1
11 𝑧11 = 𝑟−1

22 𝑧22 = . . . = 𝑟−1
𝐿𝐿𝑧𝐿𝐿 .

Condition 5 fixes 𝑟𝑘𝑘 or 𝑧𝑘𝑘 , 𝑘 = 1, 2, . . . , 𝐿. Finally, Condition 6 fixes the ratios
𝑟−1
𝑘𝑘
𝑧𝑘𝑘 , resulting in 𝑅 = 𝐼 and 𝑍 = 𝐼.
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11 | Mixed linear dynamic
networks

Diffusively coupled linear networks consist of symmetric interconnections and
therefore, can be represented by undirected graphs. On the other hand, digital
controllers and nonsymmetric physical components, such as diodes, can only
be represented by directed graphs. These directed dynamics need to be incor-
porated into the modelling framework, consistency analysis, and identification
procedure. This chapter presents two types of mixed linear dynamic networks
that contain both undirected and directed interconnections between node sig-
nals, for which dynamic network models (in polynomial and rational form) are
derived. In addition, conditions for consistent identification of all dynamics
in the network are formulated and directions for identification algorithms are
developed.

11.1 Introduction

Diffusively coupled linear networks can model a variety of physical processes.
The symmetric cause-effect relationships in the interactions can be represented by
undirected graphs. On the other hand, digital controllers explicitly describe input-
output relationships and therefore, can only be represented by directed graphs. The
same holds for nonsymmetric physical components, such as diodes or one-way
check valves. This chapter investigates how mixed dynamic networks, containing
both undirected and directed interconnections, can be modelled and identified.

In the foregoing chapters, a comprehensive theory has been developed for
the modelling and identification of diffusively coupled linear networks. These
networks are modelled by a new polynomial framework that is able to include
the characteristic symmetric property of the network (Chapter 5). This model is

289
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the basis for prediction error identification methods that are able to incorporate
the characteristics into the identification procedure for identifying the full dy-
namics and topology of the network (Chapter 8) or for identifying a particular
dynamics in the network (Chapter 9) and under different experimental conditions
(Chapter 10). However, the consequences of including nonsymmetric couplings
in this framework are not clear yet.

In the literature, directed dynamic networks are modelled by interconnec-
tions through dynamic transfer function modules (Gonçalves et al., 2007; Van
den Hof et al., 2013), for which a prediction error identification framework
has been developed (Van den Hof et al., 2013). Many identification questions
have been addressed, including topology estimation (Materassi and Innocenti,
2010; van Waarde et al., 2021), full network identification (Weerts et al., 2018c),
local module identification (Materassi and Salapaka, 2015; Dankers et al., 2016;
Ramaswamy and Van den Hof, 2021), and network identifiability (Weerts et al.,
2018b; Gevers et al., 2019). Further, Dreef et al. (2022) analysed identifiability of
networks that contain fixed dynamics, such as known controllers. However, this
framework is less attractive for including symmetric diffusive couplings, because
their structural properties are more difficult to incorporate into the modelling and
identification procedure and cannot be accounted for in the analysis (Chapter 7).

The objective of this chapter is to identify individual interconnections in mixed
dynamic networks that contain both undirected as well as directed linear dynamic
interactions. This includes determining an attractive modelling framework and
selecting the node signals that need to be measured (sensed) and/or need to be
excited (actuated) in order to identify the full dynamics or a particular (local)
dynamics in the network. In addition, the consistency and minimum variance
properties of the estimates have to be specified and algorithms for performing
the identification have to be developed and implemented. These objectives are
achieved by extending the theory for modelling and (prediction error) identification
of diffusively coupled linear networks to include directed dynamics.

This chapter includes the modelling frameworks and the theoretical identi-
fication results that lead towards achieving the above-mentioned objectives. The
mixed networks that will be considered are defined in Section 11.2. Section 11.3
describes the mixed network model for diffusively coupled linear networks with
additional directed dynamics between the nodes. Conditions for consistent iden-
tification of these networks, in particular, including conditions for data inform-
ativity and network identifiability, are presented in Section 11.4. Section 11.5
describes two mixed network models for diffusively coupled linear networks that
are interconnected with directed linear dynamic networks. Conditions for data
informativity, network identifiability, and consistent identification are presented in
Section 11.6 and Section 11.7. Further insights and open questions are discussed
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in Section 11.8, after which Section 11.9 concludes the chapter.
We consider the following notation throughout the chapter: A polynomial

matrix 𝐴(𝑧−1) in complex indeterminate 𝑧−1, consists of matrices 𝐴ℓ and ( 𝑗 , 𝑘)th
polynomial elements 𝑎 𝑗𝑘 (𝑧−1) such that 𝐴(𝑧−1) = ∑𝑛𝑎

ℓ=0 𝐴ℓ 𝑧
−ℓ and 𝑎 𝑗𝑘 (𝑧−1) =∑𝑛𝑎

ℓ=0 𝑎 𝑗𝑘,ℓ 𝑧
−ℓ . Hence, the ( 𝑗 , 𝑘)th element of the matrix 𝐴ℓ is denoted by 𝑎 𝑗𝑘,ℓ

and lim𝑧→∞ 𝐴(𝑧) = 𝐴0. A 𝑝×𝑚 rational function matrix 𝐹 (𝑧) consists of elements
𝐹𝑗𝑘 (𝑧) and is proper if 𝐹∞ := lim𝑧→∞ 𝐹 (𝑧) = 𝑐 ∈ R𝑝×𝑚; it is strictly proper if
𝐹∞ = 0, and monic if 𝑝 = 𝑚 and 𝐹∞ = 𝐼, the identity matrix. 𝐹 (𝑧) is stable if all
its poles are within the unit circle |𝑧 | < 1. A matrix is called hollow if all elements
on the diagonal are zero.

11.2 Linear dynamic networks

11.2.1 Diffusively coupled linear networks

Diffusively coupled linear networks can describe various physical processes, such
as electrical circuits, mechanical rotational and translational systems, chemical
reactions, hydraulic systems, and biological systems. These networks are char-
acterised by symmetric cause-effect relationships in the interactions between the
node signals, which are a result of the symmetric nature of the physical compon-
ents that are present in the interconnections. Diffusively coupled linear networks
are modelled in the polynomial framework of Chapter 8.

Definition 11.1 (Diffusively coupled network model (Definition 8.2)). A
diffusively coupled linear network consists of 𝐿 node signals 𝑤(𝑡) and 𝐾
excitation signals 𝑟 (𝑡) and is defined as

𝐴(𝑞−1)𝑤(𝑡) = 𝐵(𝑞−1)𝑟 (𝑡) + 𝐹 (𝑞)𝑒(𝑡), (11.1)

with 𝑞−1 the shift operator meaning 𝑞−1𝑤(𝑡) = 𝑤(𝑡 − 1) and with

1. 𝐴(𝑞−1) ∈ R𝐿×𝐿 [𝑞−1], with 𝑎 𝑗𝑘 (𝑞−1) = 𝑎𝑘 𝑗 (𝑞−1),∀𝑘, 𝑗 and
𝐴−1(𝑞−1) stable.

2. 𝐵(𝑞−1) ∈ R𝐿×𝐾 [𝑞−1].

3. 𝐹 (𝑞) ∈ H := {𝐹 ∈ R𝐿×𝐿 (𝑞) | 𝐹 monic, stable and stably invertible}.

4. Λ ≻ 0 the covariance matrix of the noise 𝑒(𝑡).

5. 𝑟 (𝑡) is a deterministic and bounded sequence.
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6. 𝑒(𝑡) is a zero-mean white noise process with bounded moments of an
order larger than 4 (Ljung, 1999).

This network is assumed to be connected (there is a path between every pair
of nodes), with at least one connection to the ground nodea.

aThe network is connected if its Laplacian matrix (i.e. the degree matrix minus the
adjacency matrix) has a positive second-smallest eigenvalue (Dörfler and Bullo, 2013). If
the network is connected, it has at least one connection to the ground node if rank

(
𝐴(𝑞−1)

)
=

𝐿 (Chapter 2).

𝐴(𝑞−1) is a symmetric and nonmonic polynomial matrix, which can al-
ways uniquely be decomposed into a diagonal polynomial matrix 𝑄(𝑞−1) :=
diag

(
𝐴(𝑞−1)

)
and a hollow and symmetric polynomial matrix 𝑃(𝑞−1) := 𝑄(𝑞−1)−

𝐴(𝑞−1) (Chapter 5).

11.2.2 Module representations

Directed dynamic networks are modelled as interconnections of transfer functions.
This can be seen as a generalisation of the closed-loop system to a more complex
interconnection structure of linear dynamic systems. The module representation
of Van den Hof et al. (2013) describes measured signals of interest (node signals)
that are interconnected through linear dynamic transfer function modules. We
adopt this framework for modelling directed dynamic networks.

Definition 11.2 (Module representation (Van den Hof et al., 2013)). A
module representation consists of 𝐿 node signals 𝑤(𝑡) and 𝐾 excitation
signals 𝑟 (𝑡) and is defined as

𝑤(𝑡) = 𝐺 (𝑞)𝑤(𝑡) + 𝑅(𝑞)𝑟 (𝑡) + 𝐻 (𝑞)𝑒(𝑡), (11.2)

with 𝑞−1 the shift operator meaning 𝑞−1𝑤(𝑡) = 𝑤(𝑡 − 1) and with

1. 𝐺 (𝑞) ∈ R𝐿×𝐿 (𝑞) consisting of proper elements𝐺𝑖 𝑗 (𝑞) with𝐺 𝑗 𝑗 (𝑞) =
0.

2. 𝑅(𝑞) ∈ R𝐿×𝐾 (𝑞) consisting of proper and stable elements 𝑅𝑖 𝑗 (𝑞).

3. 𝐻 (𝑞) ∈ H .

4. Λ ≻ 0 the covariance matrix of the noise 𝑒(𝑡).

5. 𝑟 (𝑡) is a deterministic and bounded sequence.



11.2 Linear dynamic networks 293

6. 𝑒(𝑡) is a zero-mean white noise process with bounded moments of an
order larger than 4 (Ljung, 1999).

This network is assumed to be well-posed and stablea.
aThe network is stable if

(
𝐼 −𝐺0 (𝑞)

)−1 only consists of stable transfer functions. The
network is well-posed if all principal minors of lim𝑧→∞

(
𝐼 −𝐺0 (𝑧)

)
are nonzero (Dankers,

2014).

11.2.3 Mixed dynamic networks

Undirected networks can describe diffusive interconnections of physical compon-
ents that are characterised by symmetric behaviour. However, there also exist
components with diffusive nonsymmetric behaviour, such as a generic chamber-
valve, which is more likely to have fluid flow in one direction than in the other
direction, i.e. the resistance in one direction is different from the resistance in
the other (similar to a conventional diode). There also exist components with
nondiffusive (directed) behaviour, such as ideal diodes and one-way check valves,
which can be seen as components with zero resistance in one direction and infinite
resistance in the other direction. Another example of a directed interconnection
is the interaction of two robots of which one can communicate to the other, but
not the other way around. In addition, digital controllers describe cause-effect
relations from input signals to output signals. If these directed dynamics are inser-
ted into undirected diffusively coupled linear networks, they ruin the symmetric
structure of the network model. Therefore, the directed behaviour needs to be
accounted for in the identification procedure, as it needs to be compensated by
additional properties to preserve the identifiability of the network dynamics.

Instead of only adding a few directed interconnections to undirected networks,
even more complex combinations of undirected and directed interconnections
might be present in dynamic networks. To this end, we define mixed linear
dynamic networks as follows:

Definition 11.3 (Mixed linear dynamic network). A mixed linear dynamic
network is a linear dynamic network that contains both undirected and
directed connections between the nodes.

Two main cases of mixed linear dynamic networks will be considered in this
chapter.
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Definition 11.4 (Case 1). A mixed linear dynamic network is an undirected
network with additional directed links between the nodes.

Definition 11.5 (Case 2). A mixed linear dynamic network consists of an
undirected diffusively coupled linear network and a directed linear dynamic
network that are interconnected with each other through directed links
between the nodes.

The mixed dynamic networks in Case 1. are (undirected) diffusively coupled
linear networks with additional (input-output) controllers or nonsymmetric com-
ponents. Consequently, the behaviour of the additional directed couplings may
be described by polynomials or by transfer function modules. Both situations
have different implications for modelling the mixed network. In addition, con-
trollers are typically known, while nonsymmetric physical components are often
unknown. Whether or not the dynamics are known has an effect on the identific-
ation procedure, in particular on the identifiability conditions.

An example of such a mixed dynamic network is shown in Figure 11.1, where
two node signals are interconnected through an undirected coupling (indicated in
black) and where a directed connection is added from node signal 𝑤2(𝑡) to node
signal 𝑤1(𝑡) (indicated in red).

The mixed dynamic networks in Case 2. are partially undirected and partially
directed interconnected. The undirected part can be described by the polynomial
framework, while the directed part can be described by the module representation.
It is possible to translate these mixed networks into the polynomial framework
or into the module representation. Similar to the mixed networks in Case 1., an
additional distinction can be made between networks with additional known or
unknown dynamics.

An example of such a mixed dynamic network is shown in Figure 11.2,
where two node signals are interconnected through an undirected coupling and
where two additional nodes are added with directed connections between them.
The interconnection between the two networks is established through directed
connections (indicated in red).

The interconnection between the undirected network and the directed network
can also be established through undirected interconnections. However, in this
modelling procedure, we choose to collect all node signals with undirected coup-
lings in the undirected part and all remaining node signals in the directed part. In
this way, the symmetric nature of the undirected linear diffusive couplings can be
maximally exploited.
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w1 w2r1

Figure 11.1: A mixed dynamic network
in Case 1. consisting of an undirected
diffusive coupling (black) and a direc-
ted link (red) between the node signals
𝑤1(𝑡) and 𝑤2(𝑡) and with the external
excitation signal 𝑟1(𝑡).

r1

r3

w1 w2

w4w3

Figure 11.2: A mixed dynamic network
in Case 2. in which an undirected diffus-
ively coupled network with node signals
𝑤1(𝑡) and𝑤2(𝑡) (blue circles) is connec-
ted through directed links (red arrows)
to a directed dynamic network with node
signals 𝑤3(𝑡) and 𝑤4(𝑡) (red squares)
and with the external excitation signals
𝑟1(𝑡) and 𝑟3(𝑡).

11.2.4 Cases of mixed dynamic networks

Two cases for mixed dynamic networks have been defined in Definition 11.4
and 11.5. In this section, we discuss what types of mixed dynamic networks are
included and excluded by these definitions and how these mixed dynamic networks
can be extended to other situations.

To analyse the mixed dynamic networks, we divide the nodes of the mixed
dynamic network into two sets: one set containing the nodes with undirected
couplings, referred to as undirected nodes, and indicated with the subscript 𝑢;
and one set containing the nodes without undirected couplings (and thus with
only directed interconnections), referred to as directed nodes, and indicated with
the subscript 𝑑. In this way, the node signals of a mixed dynamic network can
always be uniquely separated into two sets of nodes. Consider, for example, the
mixed network shown in Figure 11.2, where 𝑤1(𝑡) and 𝑤2(𝑡) have an undirected
interconnection and 𝑤3(𝑡) and 𝑤4(𝑡) have only directed interconnections. It also
implies that the interconnections between the sets can only be directed, otherwise
the nodes are incorrectly divided into the two sets. As mentioned before, this
choice has been made to maximally exploit the symmetric nature of the linear
diffusive couplings. In addition, we split these sets further, such that each set
of nodes represents a connected network (that is, a single network and not two
or more distinct networks). Figure 11.3 shows four examples of mixed dynamic
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Dif

(a) Mixed dynamic
network in Case 1.

Dif Dif

(b) Mixed dynamic network of
an extension in Case 1.

Dif Dir

(c) Mixed dynamic network of
Case 2

Dif Dir Dif Dir

(d) Mixed dynamic network of an extension in Case 2.

Figure 11.3: An overview of several cases of mixed dynamic networks, with
sets of undirected nodes (blue circles), sets of directed nodes (red squares), and
directed interconnections (red arrows) between the sets of nodes.

networks, which will be discussed further.

Following this classification of nodes in mixed dynamic networks, the most
simple mixed dynamic network is the one in Case 1., as defined in Definition 11.4,
where one set of undirected nodes can have some additional directed intercon-
nections. This mixed dynamic network is graphically depicted in Figure 11.3a.
An extension to this case is the case where multiple sets of undirected nodes are
interconnected through directed connections. In this case, the mixed dynamic
network with all directed interactions removed, is an undirected network that is
not connected and thus consists of multiple distinct undirected networks. Such
mixed dynamic network with two sets of undirected nodes is graphically depicted
in Figure 11.3b.

Another class of mixed dynamic networks is the one in Case 2., as defined in
Definition 11.5, where one set of undirected nodes is interconnected with one set
of directed nodes. Again, we consider two sets of nodes of which each represents
a single distinct network. This mixed dynamic network is graphically depicted in
Figure 11.3c. An extension to this case is the situation in which multiple sets of
undirected nodes and multiple sets of directed nodes are interconnected through
directed connections. If these interconnections are removed from the mixed
dynamic network, the remaining network consists of multiple distinct undirected
networks and directed networks. An example of such mixed dynamic network is
graphically depicted in Figure 11.3d.
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More advanced mixed dynamic networks consist of combinations of the ex-
tended versions in Case 1. and 2. In this chapter, we focus on mixed dynamic
networks in Case 1. or 2. Implications for extended cases of mixed dynamic
network are elaborated on in the discussion in Section 11.8.

11.3 Case 1: Modelling

11.3.1 General model

Consider a diffusively coupled linear network (11.1) to which directed links are
added. These directed links can represent the dynamics of nonsymmetric compon-
ents or digital controllers. The behaviour of the node signals 𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿,
of these mixed dynamic networks is described by

∑︁
𝑖∈{ 𝑗 ,N𝑢

𝑗
}
𝑎 𝑗𝑖 (𝑞−1)𝑤𝑖 (𝑡) =

𝐾∑︁
𝑘=1

𝑏 𝑗𝑘 (𝑞−1)𝑟𝑘 (𝑡)

+
∑︁
𝑖∈N𝑑

𝑗

𝐺 𝑗𝑖 (𝑞)𝑤𝑖 (𝑡) +
𝐿∑︁
𝑖=1

𝐹𝑗𝑖 (𝑞)𝑒𝑖 (𝑡), (11.3)

whereN𝑢
𝑗

andN𝑑
𝑗

are the set of indices of𝑤𝑘 (𝑡), 𝑘 ≠ 𝑗 , with undirected couplings
with node signals𝑤 𝑗 (𝑡) and with directed connections towards node signals𝑤 𝑗 (𝑡),
respectively, and where𝐺𝑖 𝑗 (𝑞)models the (possibly rational) directed dynamics in
the link from node signal𝑤 𝑗 (𝑡) to node signal𝑤𝑖 (𝑡). It is assumed that𝐺𝑖𝑖 (𝑞) = 0,
so that there are no self-loops.

The behaviour of all node signals can be combined in a matrix equation
describing the mixed network as

𝐴(𝑞−1)𝑤(𝑡) = 𝐵(𝑞−1)𝑟 (𝑡) + 𝐺 (𝑞)𝑤(𝑡) + 𝐹 (𝑞)𝑒(𝑡), (11.4)

where 𝐴(𝑞−1) is a symmetric polynomial matrix, 𝐵(𝑞−1) is a polynomial matrix,
𝐺 (𝑞) is a hollow rational matrix with proper elements, and 𝐹 (𝑞) is a rational
matrix that is monic and stable and has a stable inverse.

Remark 11.6 (Well-posed and stable). The network is well-posed and
stable if

(
𝐴(𝑞−1) − 𝐺 (𝑞)

)−1 exists and is proper and stable (Dankers,
2014).
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11.3.2 Polynomial model

Consider the most general situation in which the dynamics in the directed links are
modelled by rational functions. Then the model (11.4) is indeed not polynomial
anymore and hence, it has to be rewritten to fit into the polynomial modelling
framework. This is achieved by an approach that is similar to the approach for
rewriting the network in the second step of immersion (Chapter 9). First, 𝐺 (𝑞) is
factorised, such that

𝐺 (𝑞) = 𝐷−1
𝐺 (𝑞

−1)𝑁𝐺 (𝑞−1), (11.5)
with𝐷𝐺 (𝑞−1) diagonal and full rank and with the notational rule that𝐷𝐺𝑖𝑖 (𝑞−1) :=
1 if 𝐺𝑖 𝑗 = 0 for all 𝑗 . Then, (11.4) is multiplied with 𝑑𝑒𝑡

(
𝐷𝐺 (𝑞−1)

)
, where the

common factors of 𝑑𝑒𝑡
(
𝐷𝐺 (𝑞−1)

)
and 𝑁𝐺 (𝑞−1) are taken out. To be precise,

define the monic polynomial

𝑑𝐺 (𝑞−1) :=
𝑑𝑒𝑡

(
𝐷𝐺 (𝑞−1)

)
𝑔𝑐𝑑

(
𝑑𝑒𝑡

(
𝐷𝐺 (𝑞−1)

)
, 𝑎𝑑𝑗

(
𝐷𝐺 (𝑞−1)

) ) , (11.6)

with 𝑔𝑐𝑑 (𝑥,𝑌 ) the greatest common divisor of scalar 𝑥 and all scalar elements of
matrix 𝑌 .

Proposition 11.7 (Mixed dynamic network model). Every mixed dynamic
network (11.4) can be described by(

�̆�(𝑞−1) − �̆� (𝑞−1)
)
𝑤(𝑡) = �̆�(𝑞−1)𝑟 (𝑡) + �̆� (𝑞)𝑒(𝑡), (11.7)

with

�̆�(𝑞−1) = 𝑑𝐺 (𝑞−1)𝐴(𝑞−1), (11.8a)
�̆�(𝑞−1) = 𝑑𝐺 (𝑞−1)𝐵(𝑞−1), (11.8b)
�̆� (𝑞) = 𝑑𝐺 (𝑞−1)𝐹 (𝑞), (11.8c)

�̆� (𝑞−1) = 𝑑𝐺 (𝑞−1)𝐷−1
𝐺 (𝑞

−1)𝑁𝐺 (𝑞−1), (11.8d)

with
(
𝐴(𝑞−1), 𝐵(𝑞−1), 𝐹 (𝑞−1),Λ

)
satisfying Definition 11.1, with𝐷−1

𝐺
(𝑞−1)

and 𝑁𝐺 (𝑞−1) as in (11.5), and with 𝐺 (𝑞) a hollow rational matrix with
proper elements.

Proof: Consider the mixed dynamic network model in (11.4). Subtract
𝐺 (𝑞)𝑤(𝑡) from both sides of the equation, premultiply both sides of the equation
with 𝑑𝐺 (𝑞−1) (11.6), and substitute (11.5) for 𝐺 (𝑞). ■

In the mixed dynamic network model of Proposition 11.7, �̆�(𝑞−1) is a
symmetric polynomial matrix and �̆� (𝑞−1) is a nonsymmetric polynomial mat-
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rix. Further, �̆�(𝑞−1), �̆�(𝑞−1), �̆� (𝑞−1) (and 𝑁𝐺 (𝑞−1)), and �̆� (𝑞) adopt the
zero structure of 𝐴(𝑞−1), 𝐵(𝑞−1), 𝐺 (𝑞), and 𝐹 (𝑞), respectively. This also
means that the polynomials �̆�𝑖𝑖 (𝑞−1) = 0, ∀𝑖, because the transfer functions
𝐺𝑖𝑖 (𝑞) = 0, ∀𝑖, meaning that there are no directed self-loops. All transfer func-

tions 𝐺𝑖 𝑗 (𝑞) :=
𝑔𝑁
𝑖 𝑗
(𝑞−1 )

𝑔𝐷
𝑖 𝑗
(𝑞−1 ) can be modelled with monic denominator polynomi-

als 𝑔𝐷
𝑖 𝑗
(𝑞−1). Then properness of the transfer functions 𝐺𝑖 𝑗 (𝑞), ∀𝑖, 𝑗 , implies

that 𝑁𝐺 (𝑞−1) and 𝑑𝐺 (𝑞−1)𝐷−1
𝐺
(𝑞−1) = 𝑎𝑑𝑗

(
𝐺 (𝑞)

)
are proper and therefore, all

polynomials �̆�𝑖 𝑗 (𝑞−1), ∀𝑖, 𝑗 , are proper. The directed dynamics destroy the sym-
metric nature of the network, as the internal network dynamics is described by(
�̆�(𝑞−1) − �̆� (𝑞−1)

)
, which is not symmetric anymore. The polynomial model

(11.7) will be used for identification of the mixed dynamic network.

Proposition 11.8 (Well-posed and stable). The network (11.7) is well-
posed and stable if

(
𝐴(𝑞−1) − 𝐺 (𝑞)

)−1(𝑞) exists and is proper and stable.

Proof: From (11.8a), (11.8d), and (11.11) it follows that:

�̆�(𝑞−1) − �̆� (𝑞−1) = 𝑑𝐺 (𝑞−1)
(
𝐴(𝑞−1) − 𝐺 (𝑞)

)
,

with 𝑑𝐺 (𝑞−1) a monic polynomial. So, if
(
𝐴(𝑞−1) −𝐺 (𝑞)

)−1 exists and is proper
and stable, then this also holds for

(
�̆�(𝑞−1) − �̆� (𝑞−1)

)−1. If
(
�̆�(𝑞−1) − �̆� (𝑞−1)

)−1

exists and is proper and stable, then the network is well-posed according to
Remark 11.6. ■

The network (11.7) has input-output relations between the signals that can be
described by

𝑤(𝑡) =
(
�̆�(𝑞−1) − �̆� (𝑞−1)

)−1 [
�̆�(𝑞−1)𝑟 (𝑡) + �̆� (𝑞)𝑒(𝑡)

]
, (11.9a)

=
(
𝐴(𝑞−1) − 𝐺 (𝑞)

)−1
𝐵(𝑞−1)𝑟 (𝑡) +

(
𝐴(𝑞−1) − 𝐺 (𝑞)

)−1
𝐹 (𝑞)𝑒(𝑡), (11.9b)

= 𝑇𝑤𝑟 (𝑞)𝑟 (𝑡) + 𝑇𝑤𝑒 (𝑞)𝑒(𝑡), (11.9c)

where (11.9b) follows from (11.9a) by substituting (11.8) into (11.9a).

If the directed dynamics are modelled by polynomials instead of rational
functions, the network model (11.4) remains polynomial and does not have to be
rewritten.

Proposition 11.9 (Polynomial directed dynamics). If the directed dynam-
ics are polynomial, then (11.7) reduces to(

𝐴(𝑞−1) − 𝐺 (𝑞−1)
)
𝑤(𝑡) = 𝐵(𝑞−1)𝑟 (𝑡) + 𝐹 (𝑞)𝑒(𝑡), (11.10)
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where 𝐺 (𝑞−1) is a nonsymmetric polynomial matrix describing the directed
dynamics.

Proof: If 𝐺 (𝑞) is polynomial, then 𝐷𝐺 (𝑞−1) = 𝐼, 𝑁𝐺 (𝑞−1) = 𝐺 (𝑞−1), and
𝑑𝐺 (𝑞−1) = 1. Substituting this into (11.8) gives �̆�(𝑞−1) = 𝐴(𝑞−1), �̆�(𝑞−1) =
𝐵(𝑞−1), �̆� (𝑞) = 𝐹 (𝑞), and �̆� (𝑞−1) = 𝐺 (𝑞−1). Substituting this into (11.7) results
in (11.10). ■

The implication of Proposition 11.9 is that (11.7) is a generalised model for
both polynomial and rational directed dynamics.

In the next section, we will develop theory for the identification of the mixed
dynamic networks (11.7). Before moving on, consider the special role that known
directed dynamics have in the mixed dynamic networks (11.4) in Case 1. If the
directed dynamics are known, they do not have to be identified and therefore, they
play a different role in the mixed network model.

Remark 11.10 (Known directed dynamics). If the dynamics in the directed
links are known, they act like input dynamics, even though they are coming
from elsewhere in the network. In this situation, the directed dynamics do
not really change the structure of the undirected polynomial network model.
The mixed dynamic network can be modelled as (11.4) with 𝐺 (𝑞) known.

The situation of known directed dynamics can be seen as a special case of
polynomial and rational directed dynamics. The model (11.7) is a general model
that captures the situations of rational directed dynamics, polynomial directed dy-
namics, and known directed dynamics and therefore, it is used in the identification
analysis.

11.4 Case 1: Identification

11.4.1 Identification setup

This chapter involves the full network identification of mixed dynamic networks.
In this section, this problem is dealt with in the polynomial framework, where the
model (11.7) will be used for identification. The identification problem that will
be considered in this section is defined as follows:

Definition 11.11 (Mixed identification problem). The full network iden-
tification problem for mixed dynamic networks concerns the identification
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of all dynamics in the network.

Additionally, some parts of the topology might be identified as well. If the
topology is assumed to be unknown, it can be retrieved from the identification.
However, some parts of the topology might be assumed to be known in order to
perform the identification procedure.

In the particular identification of mixed dynamic networks in Case 1., the
directed dynamics are assumed to be unknown and will be identified as well. The
topology of the undirected part, captured by 𝐴(𝑞−1), is assumed to be unknown
and will be identified. The topology of the directed part, captured by 𝐺 (𝑞), will
later be assumed to be known and incorporated into the identification procedure.

Consider the network model (11.7). For ease of notation, define

Ῠ(𝑞−1) := �̆�(𝑞−1) − �̆� (𝑞−1), (11.11)

with polynomial elements Ῠ𝑖 𝑗 (𝑞−1) = �̆�𝑖 𝑗 (𝑞−1) and with lim𝑧→ Ῠ(𝑧) = Ῠ0.

For solving the mixed identification problem of Definition 11.11, a similar
approach is applied as for full network identification of diffusively coupled linear
networks (Chapter 8), because the mixed dynamic network is modelled in a
similar polynomial framework. The difference is that Ῠ(𝑞−1) is not completely
symmetric.

First, a predictor model is set up based on the parameterised model set

M := {𝑀 (𝜃), 𝜃 ∈ Θ ⊂ R𝑑} (11.12)

with 𝑑 ∈ N and with particular models

𝑀 (𝜃) :=
(
𝐴(𝑞−1, 𝜃), 𝐵(𝑞−1, 𝜃), 𝐹 (𝑞, 𝜃), 𝐺 (𝑞−1, 𝜃),Λ(𝜃)

)
, (11.13)

where 𝜃 contains all unknown coefficients that appear in the entries of the model
matrices 𝐴(𝑞−1), 𝐵(𝑞−1), 𝐹 (𝑞), 𝐺 (𝑞−1), and Λ. The data generating network is
denoted by S :=

(
𝐴0, 𝐵0, 𝐹0, 𝐺0,Λ0) . The true system lies in the model set if

S = 𝑀 (𝜃0), where 𝜃0 ∈ Θ indicate the true parameter values.

In addition, consider the model set

M̆ := {�̆� (𝜂), 𝜂 ∈ Π ⊂ R𝑑} (11.14)

with 𝑑 ∈ N and with particular models

�̆� (𝜂) :=
(
�̆�(𝑞−1, 𝜂), �̆�(𝑞−1, 𝜂), �̆� (𝑞, 𝜂), �̆� (𝑞−1, 𝜂), Λ̆(𝜂)

)
, (11.15)
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where 𝜂 contains all unknown coefficients that appear in the entries of the model
matrices �̆�(𝑞−1), �̆�(𝑞−1), �̆� (𝑞), �̆� (𝑞−1), and Λ̆, with Λ(𝜃) = Λ̆(𝜂). The corres-
ponding data generating network is denoted by S̆ :=

(
�̆�0, �̆�0, �̆�0, �̆�0, Λ̆0) . The

true system lies in the model set if S̆ = �̆� (𝜂0), where 𝜂0 ∈ Π indicate the true
parameter values.

The network predictor is defined as in Definition 8.4 and leads to

�̂�(𝑡 |𝑡 − 1) =
[
𝐼 − Ῠ−1

0 �̆�−1(𝑞)Ῠ(𝑞−1)
]
𝑤(𝑡) + Ῠ−1

0 �̆�−1(𝑞)�̆�(𝑞−1)𝑟 (𝑡). (11.16)

Along the same line of reasoning as in Proposition 8.10, the parameterised pre-
dictor leads to the prediction error, which is defined as

𝜀(𝑡, 𝜂) := 𝑤(𝑡) − �̂�(𝑡 |𝑡 − 1; 𝜂), (11.17)

and obtained as
𝜀(𝑡, 𝜂) = 𝑊𝑤 (𝑞, 𝜂)𝑤(𝑡) −𝑊𝑟 (𝑞, 𝜂)𝑟 (𝑡), (11.18)

with predictor filters

𝑊𝑤 (𝑞, 𝜂) = Ῠ−1
0 (𝜂)�̆�

−1(𝑞, 𝜂)Ῠ(𝑞−1, 𝜂), (11.19a)
𝑊𝑟 (𝑞, 𝜂) = Ῠ−1

0 (𝜂)�̆�
−1(𝑞, 𝜂)�̆�(𝑞−1, 𝜂). (11.19b)

The parameters are estimated through the least-squares identification criterion

𝜂𝑁 = arg min
𝜂∈Π

1
𝑁

𝑁∑︁
𝑡=1

𝜀⊤(𝑡, 𝜂)Λ̆𝜀(𝑡, 𝜂) (11.20)

with Λ̆ ≻ 0. Under mild conditions1 this criterion converges with a probability of
1 to

𝜂∗ := arg min
𝜂∈Π

lim
𝑁→∞

𝑁∑︁
𝑡=1

E
{
𝜀⊤(𝑡, 𝜂)Λ̆𝜀(𝑡, 𝜂)

}
. (11.21)

In order to identify the mixed dynamic network (11.4), first the mixed dynamic
network model in polynomial form (11.7) will be identified from the data, after
which the identified polynomial network model is used to obtain the original
mixed network model.

In the next sections, the consistent identification of the mixed network model
is analysed by considering data informativity and network identifiability. This
leads to sufficient conditions for which a consistent estimate of the data generating
mixed dynamic network S can be found.

1The standard conditions for convergence of predictor error estimates include the condition
that the white noise process 𝑒(𝑡) has bounded moments of an order larger than 4 (Ljung, 1999).
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11.4.2 Data informativity

The data 𝑧(𝑡) are called informative if they contain sufficient information to
uniquely recover the predictor filter𝑊 (𝑞, 𝜂) from second-order statistical proper-
ties of the data 𝑧(𝑡). This is formalised in line with Ljung (1999) as follows:

Definition 11.12 (Data informativity (Ljung, 1999)). A quasi-stationary
data sequence {𝑧(𝑡)} is called informative with respect to the model set M̆
(11.14) if for any two 𝜂1, 𝜂2 ∈ Π

Ē
{
∥ [𝑊 (𝑞, 𝜂1) −𝑊 (𝑞, 𝜂2)]𝑧(𝑡)∥2

}
= 0⇒ {𝑊 (𝑒𝑖𝜔 , 𝜂1) = 𝑊 (𝑒𝑖𝜔 , 𝜂2)}

(11.22)
for almost all 𝜔.

Conditions for data informativity are derived along the same line of reasoning
as in Proposition 8.12. A crucial role is reserved for the relation 𝑧(𝑡) = 𝐽 (𝑞)𝜅(𝑡)
(8.67), with signals 𝑧(𝑡) :=

[
𝑤⊤(𝑡) 𝑟⊤(𝑡)

]⊤ and 𝜅(𝑡) :=
[
𝑒⊤(𝑡) 𝑟⊤(𝑡)

]⊤ (8.68).

Applying Definition 11.12 to mixed dynamic networks, leads to the following
conditions for data informativity:

Proposition 11.13 (Data informativity). The quasi-stationary data se-
quence {𝑧(𝑡)} is informative with respect to the model set M (11.12) if
Φ𝑧 (𝜔) ≻ 0 for a sufficiently high number of frequencies. In the situation
𝐾 ≥ 1, this is guaranteed by Φ𝑟 (𝜔) ≻ 0 for a sufficiently high number of
frequencies.

Proof: The proof is provided in Appendix 11.A. ■

The implication of Proposition 11.13 is that the additional directed links
captured by 𝐺 (𝑞) do not change the data informativity conditions that hold for
diffusively coupled linear networks, as formulated in Proposition 8.12. This means
that the directed links can be identified for free, which is due to the fact that no
node signals are added to the network and that the node signals that are present in
the network already have to be sufficiently excited.

11.4.3 Network identifiability

The concept of network identifiability has been defined for general linear dynamic
networks by Weerts et al. (2018b) as follows (see also Definition 8.13):
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Definition 11.14 (Network identifiability (Weerts et al., 2018b)). The net-
work model setM is globally network identifiable from 𝑧(𝑡) if the paramet-
erised model 𝑀 (𝜃) can uniquely be recovered from𝑇𝑤𝑟 (𝑞, 𝜃) andΦ�̄� (𝜔, 𝜃),
with �̄�(𝑡) := 𝑇𝑤𝑒 (𝑞)𝑒(𝑡). That is, if for all models 𝑀 (𝜃1), 𝑀 (𝜃2) ∈ M

𝑇𝑤𝑟 (𝑞, 𝜃1) = 𝑇𝑤𝑟 (𝑞, 𝜃2)
Φ�̄� (𝜔, 𝜃1) = Φ�̄� (𝜔, 𝜃2)

}
⇒ 𝑀 (𝜃1) = 𝑀 (𝜃2). (11.23)

Conditions for network identifiability are derived along the same line of reas-
oning as in Propositions 8.15 and 10.11. The first step includes the left matrix-
fraction description (LMFD) to recover �̆�(𝑞−1), �̆�(𝑞−1), and �̆� (𝑞−1) from𝑇𝑤𝑟 (𝑞).
Second, �̆�(𝑞−1), �̆�(𝑞−1), and �̆� (𝑞−1) are used to estimate 𝐴(𝑞−1), 𝐵(𝑞−1), and
𝐺 (𝑞). Finally, 𝐹 (𝑞) and Λ are found from Φ�̄� (𝜔) using a spectral factorisation
(Youla, 1961).

Lemma 11.15 (LMFD). Consider a network model set M̆ (11.14). Given
the LMFD Ῠ−1(𝑞−1)�̆�(𝑞−1) with Ῠ(𝑞−1) as in (11.11), the polynomial
matrices �̆�(𝑞−1), �̆� (𝑞−1), and �̆�(𝑞−1) are unique within M̆ up to a scalar
factor if the following conditions are satisfied:

1. The polynomials Ῠ(𝑞−1) and �̆�(𝑞−1) are left coprime in M̆.

2. There exists a permutation matrix 𝑃 such that within M̆,[
Ῠ0 Ῠ1 · · · Ῠ𝑛�̆� �̆�0 �̆�1 · · · �̆�𝑛�̆�

]
𝑃 =

[
�̆� �̆�

]
with �̆�

square, diagonal, and full rank.

3. The zero structure of �̆� (𝑞−1) is known in M̆.

4. If �̆�𝑖 𝑗 (𝑞−1) ≠ 0, then �̆� 𝑗𝑖 (𝑞−1) = 0, ∀𝑖, 𝑗 = 1, 2, . . . , 𝐿, within M̆.

Proof: The proof is provided in Appendix 11.B. ■

The conditions of Lemma 11.15 can be translated into conditions on the
original mixed network model setM, leading to the following lemma:

Lemma 11.16 (LMFD). The conditions of Lemma 11.15 are satisfied if the
following conditions are satisfied:

1. Condition 1. of Lemma 11.15 is satisfied if the polynomials[
𝐴(𝑞−1) 𝑁𝐺 (𝑞−1)

]
and 𝐵(𝑞−1) are left coprime withinM (11.12).

2. Let Υ(𝑞−1) :=
(
𝐴(𝑞−1) − 𝑁𝐺 (𝑞−1)

)
. Condition 2. of Lemma 11.15

is satisfied if there exists a permutation matrix 𝑃 such that within
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M,
[
Υ0 Υ1 · · · Υ𝑛𝜐 𝐵0 𝐵1 · · · 𝐵𝑛𝑏

]
𝑃 =

[
𝐷 𝑅

]
with 𝐷

square, diagonal, and full rank.

3. The zero structure of 𝐺 (𝑞) is known inM.

4. If 𝐺𝑖 𝑗 (𝑞) ≠ 0, then 𝐺 𝑗𝑖 (𝑞) = 0, ∀𝑖, 𝑗 = 1, 2, . . . , 𝐿, withinM.

Proof: The proof is provided in Appendix 11.C. ■

Condition 3. implies that the locations of the directed links are known. In
other words, the topology of the directed part of the network is assumed to be
known for identifiability purposes, while the topology of the undirected part of the
network is still allowed to be unknown. Lemma 11.16 provides conditions under
which �̆�(𝑞−1), �̆�(𝑞−1), and �̆� (𝑞−1) can be estimated up to a scalar factor from
𝑇𝑤𝑟 (𝑞). Next, we prove that 𝐴(𝑞−1), 𝐵(𝑞−1), and 𝐺 (𝑞−1) can be obtained from
scaled versions of �̆�(𝑞−1), �̆�(𝑞−1), and �̆� (𝑞−1). The relations (11.8a), (11.8b),
and (11.8d) lead to

�̃�(𝑞−1) = 𝛼𝑑𝐺 (𝑞−1)𝐴(𝑞−1), (11.24a)
�̃�(𝑞−1) = 𝛼𝑑𝐺 (𝑞−1)𝐵(𝑞−1), (11.24b)
�̃� (𝑞−1) = 𝛼𝑑𝐺 (𝑞−1)𝐺 (𝑞), (11.24c)

with �̃�(𝑞−1) := 𝛼�̆�(𝑞−1), �̃�(𝑞−1) := 𝛼�̆�(𝑞−1), and �̃� (𝑞−1) := 𝛼�̆� (𝑞−1), the
scalar scaled versions of �̆�(𝑞−1), �̆�(𝑞−1), and �̆� (𝑞−1), respectively, and with
scaling factor 𝛼 ∈ R+.

Lemma 11.17 (Uniqueness of 𝐴(𝑞−1), 𝐵(𝑞−1), and 𝐺 (𝑞)). If there is at
least one linear constraint on the coefficients of 𝐴(𝑞−1, 𝜃𝐴) and 𝐵(𝑞−1, 𝜃𝐵)
of the form Γ𝜃 = 𝛾 ≠ 0, with Γ full row rank and with 𝜃⊤ :=

[
𝜃⊤
𝐴

𝜃⊤
𝐵

]
, then

𝐴(𝑞−1), 𝐵(𝑞−1), and 𝐺 (𝑞) are uniquely obtained from �̃�(𝑞−1), �̃�(𝑞−1),
and �̃� (𝑞) through (11.24).

Proof: Because 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime, the polynomial 𝑑𝐺 (𝑞−1)
is the greatest monic common divisor of the polynomial matrices �̃�(𝑞−1) and
�̃�(𝑞−1), which can be found uniquely (Kailath, 1980). The scalar factor 𝛼 is fixed
with the parameter constraint, leading to unique 𝐴(𝑞−1), 𝐵(𝑞−1), and 𝐺 (𝑞). ■

Computing the greatest monic common divisor 𝑑𝐺 (𝑞−1) of the polynomial
matrices �̃�(𝑞−1) and �̃�(𝑞−1) leads to a nonconvex optimisation problem for which
many algorithms are available in the literature, see, for example, Fazzi et al. (2019)
and their references.
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The problem reduces to a convex optimisation problem consisting of two
steps if a nonzero polynomial element 𝑎𝑖 𝑗 (𝑞−1) or 𝑏𝑖 𝑗 (𝑞−1) of 𝐴(𝑞−1) or 𝐵(𝑞−1)
is known, which means that a single interconnection in the network is known
or that an excitation signal enters the network through known dynamics (e.g.
𝑏𝑖 𝑗 (𝑞−1) = 1), respectively. In this case, the first step of the optimisation includes
the estimation of the polynomial factor 𝛼𝑑𝐺 (𝑞−1) from the polynomial relation in
(11.24a) or (11.24b) corresponding to the known polynomial. This optimisation
problem is convex and thus leads to a consistent result. Second, the estimated
polynomial factor is substituted into (11.24a), (11.24b), and (11.24c) to formulate
new linear regressions for estimating 𝐴(𝑞−1), 𝐵(𝑞−1), and𝐺 (𝑞), respectively. The
resulting optimisation problems are again convex, leading to consistent estimates
of 𝐴(𝑞−1), 𝐵(𝑞−1), and 𝐺 (𝑞).

Lemmas 11.15, 11.16, and 11.17 are combined to obtain the following identi-
fiability result:

Proposition 11.18 (Identifiability). A network model set M is globally
network identifiable from 𝑧(𝑡) if the following conditions are satisfied:

1.
[
𝐴(𝑞−1) 𝑁𝐺 (𝑞−1)

]
and 𝐵(𝑞−1) are left coprime withinM.

2. LetΥ(𝑞−1) :=
(
𝐴(𝑞−1)−𝑁𝐺 (𝑞−1)

)
. There exists a permutation matrix

𝑃 such that withinM,
[
Υ0 Υ1 · · · Υ𝑛𝜐 𝐵0 𝐵1 · · · 𝐵𝑛𝑏

]
𝑃 =[

𝐷 𝑅
]

with 𝐷 square, diagonal, and full rank.

3. The zero structure of 𝐺 (𝑞) is known inM.

4. If 𝐺𝑖 𝑗 (𝑞) ≠ 0, then 𝐺 𝑗𝑖 (𝑞) = 0, ∀𝑖, 𝑗 = 1, 2, . . . , 𝐿, withinM.

5. At least one excitation signal 𝑟 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐾 , is present: 𝐾 ≥ 1.

6. There is at least one constraint on the parameters of 𝐴(𝑞−1, 𝜃𝐴) and
𝐵(𝑞−1, 𝜃𝐵) of the form Γ𝜃 = 𝛾 ≠ 0, with Γ full row rank and with
𝜃⊤ :=

[
𝜃⊤
𝐴

𝜃⊤
𝐵

]
.

Proof: The proof is provided in Appendix 11.D. ■

If the directed dynamics are polynomial: 𝐺 (𝑞) = 𝐺 (𝑞−1), then these dynamics
can also be used to find unique 𝐴(𝑞−1), 𝐵(𝑞−1), and 𝐺 (𝑞) from �̃�(𝑞−1), �̃�(𝑞−1),
and �̃� (𝑞).

Proposition 11.19 (Identifiability for polynomial directed dynamics). If
the directed dynamics are polynomial: 𝐺 (𝑞) = 𝐺 (𝑞−1), then Condition 6.
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of Proposition 11.18 can be replaced by

6. There is at least one constraint on the parameters of 𝐴(𝑞−1, 𝜃𝐴),
𝐵(𝑞−1, 𝜃𝐵), and 𝐺 (𝑞−1, 𝜃𝐺) of the form Γ𝜃 = 𝛾 ≠ 0, with Γ full row
rank and with 𝜃 :=

[
𝜃⊤
𝐴

𝜃⊤
𝐵

𝜃⊤
𝐺

]⊤.

Proof: If the directed dynamics are polynomial, then 𝑑𝐺 (𝑞−1) = 1, see Pro-
positions 11.9, and (11.24c) changes to �̃� (𝑞−1) = 𝛼𝐺 (𝑞−1). Then Lemma 11.17
only needs to fix the scaling factor 𝛼 in (11.24). ■

The parameter constraint in Condition 6. of Proposition 11.19 means, for
example, that: one parameter, a fraction of two parameters, or the sum of some
nonzero parameters is known; one excitation signal enters a node through (par-
tially) known dynamics; the directed dynamics in one link are (partially) known.
The first one relates to the undirected dynamics in the network, while the second
one relates to the dynamics through which an external excitation signal enters the
network, and the third one relates to the directed dynamics in the network.

Remark 11.20 (Identifiability for known directed dynamics). If the dir-
ected dynamics 𝐺 (𝑞) are known, then Condition 3. of Proposition 11.18
is satisfied and Conditions 4. and 6. of Proposition 11.18 drop, because
(11.24c) leads to unique 𝛼𝑑𝐺 (𝑞−1) (with 𝑑𝑔 (𝑞−1) known from 𝐺 (𝑞)) and
�̆�(𝑞−1) can uniquely be determined from Ῠ(𝑞−1).

11.4.4 Consistency

Now, the consistency result is formulated as follows:

Theorem 11.21 (Consistency). Consider a data generating network S and
a model set M (11.12). Then 𝑀 (𝜃𝑁 ) is a consistent estimate of S if the
following conditions hold:

1. The true system is in the model set (S ∈ M).

2. The data are informative with respect to the model set.

3. The model set is globally network identifiable.

Proof: The proof is provided in Appendix 11.E. ■
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11.4.5 Algorithm

In order to consistently identify the mixed dynamic network model setM (11.12),
multiple identification steps have to be performed. First, the polynomial network
representation (11.7) has to be identified. This can be achieved by an adapted
version of the multistep least-squares algorithm presented in Section 8.5. The
adaptation that has to be made, is that the partially asymmetric structure of
Ῠ(𝑞−1) has to be incorporated. Once the polynomial representation of the mixed
dynamic network (11.7) is identified, it can be used to identify the original mixed
dynamic network (11.4). This is achieved by an additional step, as indicated by
Lemma 11.17. In general, this leads to a nonconvex optimisation problem, which
can be formulated as, for example, a separable least-squares problem or a bilinear
optimisation problem. Several algorithms have been developed for solving the
nonconvex optimisation problem, which leads to local optima (Fazzi et al., 2019;
Golub and Pereyra, 1973). Obtaining the global optimum cannot be guaranteed
due to the nonconvex nature of the optimisation problem.

The mixed dynamic networks in Case 1. can be identified once the proposed
algorithm is implemented. This includes the identification of the full dynamics
and, with that, the identification of the topology of the undirected part. The topo-
logy of the directed part is included in the identification procedure and assumed to
be known for identifiability purposes. In Section 11.8.1, relaxation of the topolo-
gical conditions on the directed part, and particular on identifiability Condition 4.,
(Proposition 11.18) is discussed. Most of the steps in the algorithm are convex
least-squares steps that are the same or similar to the steps for full identification
of diffusively coupled linear networks, as discussed in Chapter 8. The critical
part of the algorithm is the nonconvex optimisation step for determining 𝐴(𝑞−1),
𝐵(𝑞−1), and 𝐺 (𝑞) from �̆�(𝑞−1), �̆�(𝑞−1), and �̆� (𝑞−1); see Lemma 11.17. As
this optimisation is nonconvex, it may lead to local optima instead of the global
optimum. Additional research is required to understand the consequences of this
and to determine a proper approach (possibly applying weighted null-space fitting
(WNSF) to make the optimisation convex).

11.5 Case 2: Modelling

11.5.1 Introduction

In Case 2., we consider a mixed dynamic network that consists of an undirected
and a directed network that are interconnected with each other through directed
links between the nodes. As mentioned before, the node signals in the undirected
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part are referred to as undirected node signals and related signals are indicated
with the subscript 𝑢, while the node signals in the directed part are referred to
as directed node signals and related signals are indicated with the subscript 𝑑.
This separation into two sets of node signals will lead to two different types of
modelling equations for the two different sets.

11.5.2 Directed node signals

The behaviour of the directed node signals 𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿, is described by

𝑤 𝑗 (𝑡) =
∑︁
𝑖∈N𝑑

𝑗

𝐺 𝑗𝑖 (𝑞)𝑤𝑖 (𝑡) +
𝐾∑︁
𝑘=1

𝑅 𝑗𝑘 (𝑞)𝑟𝑘 (𝑡)

+
∑︁
𝑖∈N𝑢

𝑗

𝑊 𝑗𝑖 (𝑞)𝑤𝑖 (𝑡) +
𝐿∑︁
𝑖=1

𝐻 𝑗𝑖 (𝑞)𝑒𝑖 (𝑡), (11.25)

where N𝑑
𝑗

is the set of indices of directed node signals 𝑤𝑘 (𝑡), 𝑘 ≠ 𝑗 , with
connections to node signal 𝑤 𝑗 (𝑡); N𝑢𝑗 is the set of indices of undirected node
signals 𝑤𝑘 (𝑡), 𝑘 ≠ 𝑗 , with connections to node signal 𝑤 𝑗 (𝑡); 𝑊 𝑗𝑖 (𝑞) are proper
rational transfer functions that describe the directed interconnection from the
undirected node signals to the directed node signals.

The behaviour of all directed node signals can be combined in a matrix equation
as

𝑤𝑑 (𝑡) = 𝐺 (𝑞)𝑤𝑑 (𝑡) +𝑊𝑑𝑢 (𝑞)𝑤𝑢 (𝑡) + 𝑅(𝑞)𝑟𝑑 (𝑡) + 𝐻 (𝑞)𝑒𝑑 (𝑡), (11.26)

where 𝑤𝑑 (𝑡) are the directed node signals, 𝑤𝑢 (𝑡) are the undirected node signals,
and 𝑟𝑑 (𝑡) and 𝑒𝑑 (𝑡) are the external excitation and noise signals acting on 𝑤𝑑 (𝑡),
respectively. The expression (11.26) is just a module representation (11.2), where
the undirected node signals𝑤𝑢 (𝑡) enter the model as external input signals through
dynamics𝑊𝑑𝑢 (𝑞).

11.5.3 Undirected node signals

The behaviour of the undirected node signals 𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐿, is described by

𝑥 𝑗 𝑗 (𝑞−1)𝑤 𝑗 (𝑡) +
∑︁
𝑘∈N𝑢

𝑗

𝑦 𝑗𝑘 (𝑞−1)
[
𝑤 𝑗 (𝑡) − 𝑤𝑘 (𝑡)

]
=
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𝐾∑︁
𝑘=1

𝑏 𝑗𝑘 (𝑞−1)𝑟𝑘 (𝑡) +
∑︁
𝑖∈N𝑑

𝑗

𝑊 𝑗𝑖 (𝑞)𝑤𝑖 (𝑡) +
𝐿∑︁
𝑖=1

𝐹𝑗𝑖 (𝑞)𝑒𝑖 (𝑡), (11.27)

where N𝑢
𝑗

is the set of indices of undirected node signals 𝑤𝑘 (𝑡), 𝑘 ≠ 𝑗 , with
connections to node signal 𝑤 𝑗 (𝑡);N𝑑

𝑗
is the set of indices of directed node signals

𝑤𝑘 (𝑡), 𝑘 ≠ 𝑗 , with connections to node signal 𝑤 𝑗 (𝑡); 𝑊 𝑗𝑖 (𝑞) are proper rational
transfer functions that describe the directed interconnection from the directed node
signals to the undirected node signals.

The behaviour of all undirected node signals can be combined in a matrix
equation as

𝐴(𝑞−1)𝑤𝑢 (𝑡) = 𝐵(𝑞−1)𝑟𝑢 (𝑡) +𝑊𝑢𝑑 (𝑞)𝑤𝑑 (𝑡) + 𝐹 (𝑞)𝑒𝑢 (𝑡). (11.28)

where 𝑤𝑢 (𝑡) are the undirected node signals, 𝑤𝑑 (𝑡) are the directed node sig-
nals, and 𝑟𝑢 (𝑡) and 𝑒𝑢 (𝑡) are the external excitation and noise signals acting on
𝑤𝑢 (𝑡), respectively. The expression (11.28) is (almost) an undirected network
model (11.1), where the directed node signals 𝑤𝑑 (𝑡) enter the model as external
input signals through dynamics𝑊𝑢𝑑 (𝑞). The only difference with the diffusively
coupled network model (11.1) is that𝑊𝑢𝑑 (𝑞) is allowed to be rational.

11.5.4 Mixed dynamic network

The mixed network can now be derived by combining (11.26) and (11.28), leading
to [

𝐼 0
0 𝐴(𝑞−1)

] [
𝑤𝑑 (𝑡)
𝑤𝑢 (𝑡)

]
=

[
𝐺 (𝑞) 𝑊𝑑𝑢 (𝑞)
𝑊𝑢𝑑 (𝑞) 0

] [
𝑤𝑑 (𝑡)
𝑤𝑢 (𝑡)

]
+[

𝑅(𝑞) 0
0 𝐵(𝑞−1)

]
𝑟 (𝑡) +

[
𝐻 (𝑞) 0

0 𝐹 (𝑞)

]
𝑒(𝑡), (11.29)

where𝑊𝑑𝑢 (𝑞) and𝑊𝑢𝑑 (𝑞) are generally not square. Define

𝐽 (𝑞) :=
[
𝐼 − 𝐺 (𝑞) −𝑊𝑑𝑢 (𝑞)
−𝑊𝑢𝑑 (𝑞) 𝐴(𝑞−1)

]
(11.30)

then the input-output relations between the signals can be described by

𝑤(𝑡) = 𝐽−1(𝑞)
[
𝑅(𝑞) 0

0 𝐵(𝑞−1)

]
𝑟 (𝑡) + 𝐽−1(𝑞)

[
𝐻 (𝑞) 0

0 𝐹 (𝑞)

]
𝑒(𝑡), (11.31a)

= 𝑇𝑤𝑟 (𝑞)𝑟 (𝑡) + 𝑇𝑤𝑒 (𝑞)𝑒(𝑡), (11.31b)

with 𝐽 (𝑞) as in (11.30).
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Proposition 11.22 (Well-posedness). The network (11.29) is well-posed if
all principal minors of lim𝑧→∞ 𝐽 (𝑧) are nonzero.

Proof: The proof follows from applying Dankers (2014, Proposition 2.14) to
the network (11.29). ■

The well-posedness of the network implies that 𝐽 (𝑞) has full rank.

The network model (11.29) contains both rational matrices (𝐺 (𝑞), 𝑊𝑑𝑢 (𝑞),
𝑊𝑢𝑑 (𝑞), 𝑅(𝑞)) and polynomial matrices (𝐴(𝑞−1), 𝐵(𝑞−1)) and therefore, it is not
written in polynomial form (11.1). It does not satisfy the properties of the module
representation (11.2) either, because of 𝐴(𝑞−1) on the left-hand side (which could
be brought to the right-hand side, but then dynamics of several interconnections
(or modules) get mixed).

The objective is to consistently identify the complete dynamics of the mixed
dynamic network. To achieve this objective, identification theory from the poly-
nomial framework for diffusively coupled networks and from the module repres-
entation for directed interconnected networks is used. In order to analyse the
mixed dynamic network for this purpose, we consider two situations:

a. The network (11.29) is written in polynomial form (11.1).

b. The network (11.29) is written in the module representation (11.2).

11.5.5 Mixed dynamic network in polynomial form

In order to model the mixed network in polynomial form, the directed part (11.26)
needs to be rewritten into a polynomial form. This is done by splitting the transfer
functions into numerator and denominator polynomials. Consider the monic and
diagonal polynomial denominator matrix 𝐷𝑑 (𝑞−1) and polynomial numerator
matrices 𝐺𝑁 (𝑞−1),𝑊𝑁

𝑑𝑢
(𝑞−1), and 𝑅𝑁 (𝑞−1) such that[

𝐺 (𝑞) 𝑊𝑑𝑢 (𝑞) 𝑅(𝑞)
]
= 𝐷−1

𝑑 (𝑞
−1)

[
𝐺𝑁 (𝑞−1) 𝑊𝑁

𝑑𝑢
(𝑞−1) 𝑅𝑁 (𝑞−1)

]
.

(11.32)
Observe that the numerator matrices 𝐺𝑁 (𝑞−1), 𝑊𝑁

𝑑𝑢
(𝑞−1), and 𝑅𝑁 (𝑞−1) adopt

the zero structure of 𝐺 (𝑞), 𝑊𝑑𝑢 (𝑞), and 𝑅(𝑞), respectively. Substituting the
matrix-fraction description (11.32) into (11.26) leads to a polynomial model of
the directed part:(

𝐷𝑑 (𝑞−1) − 𝐺𝑁 (𝑞−1)
)
𝑤𝑑 (𝑡) −𝑊𝑁

𝑑𝑢 (𝑞
−1)𝑤𝑢 (𝑡) =

𝑅𝑁 (𝑞−1)𝑟𝑑 (𝑡) + 𝐷𝑑 (𝑞−1)𝐻 (𝑞)𝑒𝑑 (𝑡). (11.33)
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As 𝐷𝑑 (𝑞−1) is diagonal and 𝐺𝑁 (𝑞−1) is hollow, they can uniquely be found from
the polynomial matrix

(
𝐷𝑑 (𝑞−1) − 𝐺𝑁 (𝑞−1)

)
.

The undirected part (11.28) is only modelled by a polynomial network model
(11.1) if 𝑊𝑢𝑑 (𝑞) is restricted to be polynomial. However, in general, 𝑊𝑢𝑑 (𝑞) is
rational and therefore, it needs to be rewritten into a polynomial form. This is
done similarly as before, by splitting𝑊𝑢𝑑 (𝑞) into a numerator polynomial matrix
𝑊𝑁
𝑢𝑑
(𝑞−1) and a monic and diagonal denominator polynomial matrix 𝐷𝑢 (𝑞−1),

such that
𝑊𝑢𝑑 (𝑞) = 𝐷−1

𝑢 (𝑞−1)𝑊𝑁
𝑢𝑑 (𝑞

−1), (11.34)

where 𝑊𝑁
𝑢𝑑
(𝑞−1) adopts the zero structure of 𝑊𝑢𝑑 (𝑞). In order to make the

expression (11.28) polynomial, we need to premultiply the whole expression with

𝑑 (𝑞−1) :=
𝑑𝑒𝑡

(
𝐷𝑢 (𝑞−1)

)
𝑔𝑐𝑑

(
𝑑𝑒𝑡

(
𝐷𝑢 (𝑞−1)

)
, 𝑎𝑑𝑗

(
𝐷𝑢 (𝑞−1)

) ) , (11.35)

with 𝑔𝑐𝑑 (𝑥,𝑌 ) the greatest common divisor of scalar 𝑥 and all scalar elements of
matrix 𝑌 . This leads to a polynomial model of the undirected part:

𝑑 (𝑞−1)𝐴(𝑞−1)𝑤𝑢 (𝑡) − 𝑑 (𝑞−1)𝐷−1
𝑢 (𝑞−1)𝑊𝑁

𝑢𝑑 (𝑞
−1)𝑤𝑑 (𝑡) =

𝑑 (𝑞−1)𝐵(𝑞−1)𝑟𝑢 (𝑡) + 𝑑 (𝑞−1)𝐹 (𝑞−1)𝑒𝑢 (𝑡). (11.36)

Now, the polynomial descriptions of the directed part (11.33) and the undirec-
ted part (11.36) can be combined to describe the mixed network in a polynomial
form as[

𝐷𝑑 (𝑞−1) − 𝐺𝑁 (𝑞−1) −𝑊𝑁
𝑑𝑢
(𝑞−1)

−𝑑 (𝑞−1)𝐷−1
𝑢 (𝑞−1)𝑊𝑁

𝑢𝑑
(𝑞−1) 𝑑 (𝑞−1)𝐴(𝑞−1)

] [
𝑤𝑑 (𝑡)
𝑤𝑢 (𝑡)

]
=[

𝑅𝑁 (𝑞−1) 0
0 𝑑 (𝑞−1)𝐵(𝑞−1)

] [
𝑟𝑑 (𝑡)
𝑟𝑢 (𝑡)

]
+[

𝐷𝑑 (𝑞−1)𝐻 (𝑞) 0
0 𝑑 (𝑞−1)𝐹 (𝑞)

] [
𝑒𝑑 (𝑡)
𝑒𝑢 (𝑡)

]
. (11.37)

This leads to the following representation of the mixed dynamic network in
polynomial form:

Proposition 11.23 (Mixed dynamic network model in polynomial form).
Every mixed dynamic network (11.29) can be described by

𝐴𝑚(𝑞−1)𝑤(𝑡) = 𝐵𝑚(𝑞−1)𝑟 (𝑡) + 𝐹𝑚(𝑞)𝑒(𝑡), (11.38)
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with

𝐴𝑚(𝑞−1) =
[
𝐴𝑚11(𝑞−1) 𝐴𝑚12(𝑞−1)
𝐴𝑚21(𝑞−1) 𝐴𝑚22(𝑞−1)

]
=

[
𝐷𝑑 (𝑞−1) − 𝐺𝑁 (𝑞−1) −𝑊𝑁

𝑑𝑢
(𝑞−1)

−𝑑 (𝑞−1)𝐷−1
𝑢 (𝑞−1)𝑊𝑁

𝑢𝑑
(𝑞−1) 𝑑 (𝑞−1)𝐴(𝑞−1)

]
,

(11.39a)

𝐵𝑚(𝑞−1) =
[
𝐵𝑚11(𝑞−1) 𝐵𝑚12(𝑞−1)
𝐵𝑚21(𝑞−1) 𝐵𝑚22(𝑞−1)

]
=

[
𝑅𝑁 (𝑞−1) 0

0 𝑑 (𝑞−1)𝐵(𝑞−1)

]
,

(11.39b)

𝐹𝑚(𝑞) =
[
𝐹𝑚11(𝑞) 𝐹𝑚12(𝑞)
𝐹𝑚21(𝑞) 𝐹𝑚22(𝑞)

]
=

[
𝐷𝑑 (𝑞−1)𝐻 (𝑞) 0

0 𝑑 (𝑞−1)𝐹 (𝑞)

]
,

(11.39c)

Λ𝑚 =

[
Λ𝑑 0
0 Λ𝑢

]
, (11.39d)

with
(
𝐴(𝑞−1), 𝐵(𝑞−1), 𝐹 (𝑞−1),Λ𝑢

)
satisfying Definition 11.1, with(

𝐺 (𝑞), 𝑅(𝑞), 𝐻 (𝑞),Λ𝑑
)

satisfying Definition 11.2, and with 𝑊𝑑𝑢 (𝑞) and
𝑊𝑢𝑑 (𝑞) being rational matrices.

Proof: Consider the mixed dynamic network model in (11.29). Substitute
(11.32) and (11.34), premultiply both sides of the equation with[

𝐷𝑑 (𝑞−1) 0
0 𝑑 (𝑞−1)

]
with 𝑑 (𝑞−1) given by (11.37), and subtract[

𝐺𝑁 (𝑞−1) 𝑊𝑁
𝑑𝑢
(𝑞−1)

𝑑 (𝑞−1)𝐷−1
𝑢 (𝑞−1)𝑊𝑁

𝑢𝑑
(𝑞−1) 0

] [
𝑤𝑑 (𝑡)
𝑤 𝑗 (𝑡)

]
from both sides of the equation. This results in (11.37). ■

As a result of Proposition 11.23, 𝐵𝑚(𝑞−1), 𝐹𝑚(𝑞), and Λ𝑚 are block diagonal
and 𝐹𝑚(𝑞) is monic, stable, and stably invertible, because 𝐻 (𝑞) (11.26) and 𝐹 (𝑞)
(11.28) are monic, stable, and stably invertible and 𝐷𝑑 (𝑞−1) and 𝑑 (𝑞−1) are both
monic.

The network is assumed to be well-posed and stable, implying that 𝐴−1
𝑚 (𝑞−1)

exists and is proper and stable. As explained before, the well-posedness of the
mixed dynamic network is satisfied if Proposition 11.22 is satisfied, where this
proposition implies that all principle minors of lim𝑧→∞ 𝐴𝑚(𝑧) are nonzero.
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11.5.6 Mixed dynamic network in the module representation

In order to model the mixed network in the module representation, the undirected
part (11.28) needs to be rewritten into the module representation. This is done by
using the method described in Chapter 72. Define

𝑄(𝑞−1) := diag
(
𝐴(𝑞−1)

)
, 𝑃(𝑞−1) := 𝑄(𝑞−1) − 𝐴(𝑞−1), (11.40)

where 𝑄(𝑞−1) is a diagonal polynomial matrix and 𝑃(𝑞−1) is a hollow and sym-
metric polynomial matrix. Let 𝑃(𝑞−1) and 𝑄(𝑞−1) as in (11.40) and apply
Definition (7.5), which relates module representations with 𝐺 (𝑞), 𝑅(𝑔) and 𝐻 (𝑞)
to diffusively coupled network models with 𝑃(𝑞−1), 𝑄𝑞−1), 𝐵(𝑞−1), and 𝐹 (𝑞−1),
to the mixed dynamic network model (11.28). This leads to

𝑤𝑢 (𝑡) = 𝐺𝑢 (𝑞)𝑤𝑢 (𝑡) + �̃�𝑢𝑑 (𝑞)𝑤𝑑 (𝑡) + 𝑅𝑢 (𝑞)𝑟𝑢 (𝑡) + 𝐻𝑢 (𝑞)𝑒𝑢 (𝑡), (11.41)

with 𝑒𝑢 (𝑡) = 𝑄−1
0 𝑒𝑢 (𝑡), 𝑄0 = lim𝑧→∞𝑄(𝑧), and

𝐺𝑢 (𝑞) = 𝑄−1(𝑞−1)𝑃(𝑞−1), (11.42a)
�̃�𝑢𝑑 (𝑞) = 𝑄−1(𝑞−1)𝑊𝑢𝑑 (𝑞), (11.42b)
𝑅𝑢 (𝑞) = 𝑄−1(𝑞−1)𝐵(𝑞−1), (11.42c)
𝐻𝑢 (𝑞) = 𝑄−1(𝑞−1)𝐹 (𝑞)𝑄0. (11.42d)

Due to the structure of 𝑄(𝑞−1) and 𝑃(𝑞−1), the module representation (11.41)
satisfies the structural properties explained in Chapter 7.

Now, the module representation of the directed part (11.26) and the undir-
ected part (11.41) can be combined to describe the mixed network in a module
representation as[

𝑤𝑑 (𝑡)
𝑤𝑢 (𝑡)

]
=

[
𝐺 (𝑞) −𝑊𝑑𝑢 (𝑞)
−�̃�𝑢𝑑 (𝑞) 𝐺𝑢 (𝑞)

] [
𝑤𝑑 (𝑡)
𝑤𝑢 (𝑡)

]
+[

𝑅(𝑞) 0
0 𝑅𝑢 (𝑞)

] [
𝑟𝑑 (𝑡)
𝑟𝑢 (𝑡)

]
+
[
𝐻 (𝑞) 0

0 𝐻𝑢 (𝑞)

] [
𝑒𝑑 (𝑡)
𝑒𝑢 (𝑡)

]
. (11.43)

This leads to the following description of the mixed dynamic network in the
module representation:

2The difference with the method in Chapter 7 is that the noise model is made monic in a
slightly different way to simplify the relation between 𝑒𝑢 (𝑡) and 𝑒𝑢 (𝑡).
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Proposition 11.24 (Mixed dynamic network model in module represent-
ation). Every mixed dynamic network (11.29) can be described by

𝑤(𝑡) = 𝐺𝑚(𝑞)𝑤(𝑡) + 𝑅𝑚(𝑞)𝑟 (𝑡) + 𝐻𝑚(𝑞)𝑒(𝑡), (11.44)

with 𝑒(𝑡) =
[
𝑒⊤
𝑑
(𝑡) 𝑒⊤𝑢 (𝑡)

]⊤ and

𝐺𝑚(𝑞) =
[
𝐺𝑚11(𝑞) 𝐺𝑚12(𝑞)
𝐺𝑚21(𝑞) 𝐺𝑚22(𝑞)

]
=

[
𝐺 (𝑞) −𝑊𝑑𝑢 (𝑞)
−�̃�𝑢𝑑 (𝑞) 𝐺𝑢 (𝑞)

]
,

(11.45a)

𝑅𝑚(𝑞) =
[
𝑅𝑚11(𝑞) 𝑅𝑚12(𝑞)
𝑅𝑚21(𝑞) 𝑅𝑚22(𝑞)

]
=

[
𝑅(𝑞) 0

0 𝑅𝑢 (𝑞)

]
, (11.45b)

𝐻𝑚(𝑞) =
[
𝐻𝑚11(𝑞) 𝐻𝑚12(𝑞)
𝐻𝑚21(𝑞) 𝐻𝑚22(𝑞)

]
=

[
𝐻 (𝑞) 0

0 𝐻𝑢 (𝑞)

]
, (11.45c)

Λ̃𝑚 =

[
Λ𝑑 0
0 Λ̃𝑢

]
, (11.45d)

with Λ̃𝑢 = 𝑄
−1
0 Λ𝑢𝑄

−1
0 , with

(
𝐴(𝑞−1), 𝐵(𝑞−1), 𝐹 (𝑞−1),Λ𝑢

)
satisfying Defin-

ition 11.1, with
(
𝐺 (𝑞), 𝑅(𝑞), 𝐻 (𝑞),Λ𝑑

)
satisfying Definition 11.2, and with

𝑊𝑑𝑢 (𝑞) and𝑊𝑢𝑑 (𝑞) being rational matrices.

Proof: Consider the mixed dynamic network model in (11.29). Substitute
𝐴(𝑞−1) = 𝑄(𝑞−1) − 𝑃(𝑞−1) with 𝑃(𝑞−1) and 𝑄(𝑞−1) as in (11.40), add[

0 0
0 𝑃(𝑞−1)𝑤𝑢 (𝑡)

]
to both sides of (11.29), premultiply both sides with[

𝐼 0
0 𝑄−1(𝑞−1)

]
,

and rewrite the noise model 𝐻 (𝑞)𝑒𝑢 (𝑡) as 𝐻𝑢 (𝑞)𝑒𝑢 (𝑡). This results in (11.43). ■
As a result of Proposition 11.24, 𝐺𝑚(𝑞), 𝐺 (𝑞), and 𝐺𝑢 (𝑞) are hollow and

𝑅𝑚(𝑞), 𝐻𝑚(𝑞), and Λ̃𝑚 are block diagonal. Further, 𝐻𝑚(𝑞) is monic, stable,
and stably invertible. In addition, the mixed dynamic network model in module
representation (11.44) contains some structural restrictions in terms of symmetry,
which are similar to the ones described in Chapter 7. Observe that the transfer
functions 𝐺 𝑓 𝑗𝑘 (𝑞) and 𝐺 𝑓𝑘 𝑗 (𝑞) have the same numerator; the transfer functions
𝐺 𝑓 𝑗𝑘 (𝑞) and �̃�𝑢𝑑 𝑗ℓ (𝑞) have the same denominator if 𝑊𝑢𝑑 (𝑞) is polynomial;
𝐺 𝑓 𝑗𝑘 (𝑞) and 𝑅 𝑓 𝑗ℓ (𝑞) have the same denominator; 𝐺 𝑓 𝑗𝑘 (𝑞) and 𝐻 𝑓 𝑗ℓ (𝑞) have
the same denominator if 𝐹 (𝑞) is polynomial.
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11.6 Case 2: Identification in polynomial form

11.6.1 Identification setup

This chapter involves the full network identification of mixed dynamic networks.
In this section, this problem is dealt with in the polynomial framework, which
means that the model (11.38) will be used for identification. The identification
problem that will be considered in this section is defined as before, see Defini-
tion 11.11, and concerns the identification of all dynamics in the network. In this
case, the topology of the complete network can be identified as well.

This means that both the directed and undirected dynamics are assumed to be
unknown and will be identified, as well as the topology of the complete network.
The only topological aspect that is assumed to be known, is the separation of
the node signals into a set of directed node signals and a set of undirected node
signals. Both the directed part and the undirected part are assumed to be connected,
meaning that the mixed dynamic network consists of a single undirected network
and a single directed network that are interconnected with each other.

Consider the polynomial representation of the mixed dynamic network model
(11.38). For solving the mixed identification problem formulated above, a similar
approach is applied as for full network identification of diffusively coupled linear
networks (Chapter 8), because the mixed dynamic network is modelled in a similar
polynomial framework. The difference is that a major part of the network dynamics
captured by 𝐴𝑚(𝑞−1) in (11.38) is not symmetric.

First, a predictor model is set up based on the parameterised model set

M := {𝑀 (𝜃), 𝜃 ∈ Θ ⊂ R𝑑} (11.46)

with 𝑑 ∈ N and with particular models

𝑀 (𝜃) :=
(
𝐴(𝑞−1, 𝜃), 𝐵(𝑞−1, 𝜃), 𝐹 (𝑞, 𝜃), 𝐺 (𝑞, 𝜃), 𝑅(𝑞, 𝜃), 𝐻 (𝑞, 𝜃),

𝑊𝑑𝑢 (𝑞, 𝜃),𝑊𝑢𝑑 (𝑞, 𝜃),Λ𝑢 (𝜃),Λ𝑑 (𝜃)
)
, (11.47)

where 𝜃 contains all unknown coefficients that appear in the entries of the model
matrices 𝐴(𝑞−1), 𝐵(𝑞−1), 𝐹 (𝑞), 𝐺 (𝑞−1), 𝑅(𝑞), 𝐻 (𝑞), 𝑊𝑑𝑢 (𝑞), 𝑊𝑢𝑑 (𝑞), and Λ.
The data generating network is denoted by S :=

(
𝐴0, 𝐵0, 𝐹0, 𝐺0, 𝑅0, 𝐻0,𝑊0

𝑑𝑢
,

𝑊0
𝑢𝑑
,Λ0

𝑢,Λ
0
𝑑

)
. The true system lies in the model set if S = 𝑀 (𝜃0), where 𝜃0 ∈ Θ

indicate the true parameter values.

In addition, consider the model set

M𝑚𝑢 := {𝑀𝑚𝑢 (𝜂), 𝜂 ∈ Π ⊂ R𝑑} (11.48)
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with 𝑑 ∈ N and with particular models

𝑀𝑚𝑢 (𝜂) :=
(
𝐴𝑚(𝑞−1, 𝜂), 𝐵𝑚(𝑞−1, 𝜂), 𝐹𝑚(𝑞, 𝜂),Λ𝑚(𝜂)

)
, (11.49)

where 𝜂 contains all unknown coefficients that appear in the entries of the model
matrices 𝐴𝑚(𝑞−1), 𝐵𝑚(𝑞−1), 𝐹𝑚(𝑞), and Λ𝑚, with Λ𝑚 the covariance of 𝑒(𝑡)
given by

Λ𝑚 =

[
Λ𝑑 0
0 Λ𝑢

]
. (11.50)

The data generating network is denoted by S𝑚𝑢 :=
(
𝐴0
𝑚, 𝐵

0
𝑚, 𝐹

0
𝑚,Λ

0
𝑚

)
. The true

system lies in the model set if S𝑚𝑢 = 𝑀𝑚𝑢 (𝜂0), where 𝜂0 ∈ Π indicate the true
parameter values.

The network predictor is defined as in Definition 8.4 and leads to

�̂�(𝑡 |𝑡−1) =
[
𝐼 − 𝐴−1

𝑚0𝐹
−1
𝑚 (𝑞)𝐴𝑚(𝑞−1)

]
𝑤(𝑡)+𝐴−1

𝑚0𝐹
−1
𝑚 (𝑞)𝐵𝑚(𝑞−1)𝑟 (𝑡), (11.51)

with 𝐴𝑚0 := lim𝑧→∞ 𝐴𝑚(𝑧). Along the same lines of reasoning as for Case 1.
presented in Section 11.4.1, the parameterised predictor leads to the prediction
error 𝑒(𝑡, 𝜂) (11.17) resulting in

𝜀(𝑡, 𝜂) = 𝑊𝑤 (𝑞, 𝜂)𝑤(𝑡) −𝑊𝑟 (𝑞, 𝜂)𝑟 (𝑡), (11.52)

with predictor filters

𝑊𝑤 (𝑞, 𝜂) = 𝐴−1
𝑚0(𝜂)𝐹

−1
𝑚 (𝑞, 𝜂)𝐴𝑚(𝑞−1, 𝜂), (11.53a)

𝑊𝑟 (𝑞, 𝜂) = 𝐴−1
𝑚0(𝜂)𝐹

−1
𝑚 (𝑞, 𝜂)𝐵𝑚(𝑞−1, 𝜂). (11.53b)

Again, the parameters are estimated through the least-squares identification cri-
terion (11.20) with prediction error (11.52).

In order to identify the mixed dynamic network (11.29), first the mixed dy-
namic network model in polynomial form (11.38) will be identified from the data,
after which the identified polynomial network model is used to obtain the original
mixed network model.

In the next sections, the consistent identification of the mixed network model
is analysed by considering data informativity and network identifiability. This
leads to conditions for which a consistent estimate of the data generating mixed
dynamic network S can be found.

11.6.2 Data informativity

Conditions for data informativity are again derived along the same line of reasoning
as in Proposition 8.12, where a crucial role is reserved for the relation 𝑧(𝑡) =
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𝐽 (𝑞)𝜅(𝑡) (8.67). We find the following conditions for data informativity for the
mixed dynamic network model (11.29) or, equivalently, (11.38):

Proposition 11.25 (Data informativity). The quasi-stationary data se-
quence 𝑧(𝑡) is informative with respect to the model set M (11.46) if
Φ𝑧 (𝜔) ≻ 0 for a sufficiently high number of frequencies. In the situation
𝐾 ≥ 1, this is guaranteed by Φ𝑟 (𝜔) ≻ 0 for a sufficiently high number of
frequencies.

Proof: The proof is provided in Appendix 11.F. ■

The implication of Proposition 11.25 is that all node signals in the mixed
dynamic network have to be sufficiently excited. The difference with Proposi-
tion 11.13 is that now the directed node signals also have to be sufficiently excited,
while in Case 1., which is considered in Proposition 11.13, there are no node
signals with only directed interconnections present in the mixed network. The
final condition (Φ𝑟 (𝜔) ≻ 0 for a sufficiently high number of frequencies) is the
same in both situations, because it is assumed that all node signals in the network
are excited by disturbances.

11.6.3 Network identifiability

Conditions for network identifiability are derived along the same line of reasoning
as in Proposition 8.15. The first step includes the unique recovery of the LMFD
𝐴−1
𝑚 𝐵𝑚(𝑞−1) from 𝑇𝑤𝑟 (𝑞). Second, 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1) are used to recover

the network dynamics 𝐴(𝑞−1), 𝐵(𝑞−1),𝐺 (𝑞), 𝑅(𝑞),𝑊𝑑𝑢 (𝑞) and𝑊𝑢𝑑 (𝑞). Finally,
the noise model described by 𝐻 (𝑞), 𝐹 (𝑞), Λ𝑢, and Λ𝑑 is uniquely recovered from
Φ�̄� (𝜔).

In the undirected part of the mixed dynamic network, direct feedthrough terms
and algebraic loops are allowed to be present. For the directed part in the mixed
dynamic network, we make the following assumption on properness:

Assumption 11.26 (Properness). Consider the network model set (11.47).
Assume that𝐺 (𝑞) is proper and that𝑊𝑑𝑢 (𝑞) and𝑊𝑢𝑑 (𝑞) are strictly proper.

This means that it is possible that there are direct feedthrough terms in the
directed part of the network. However, the interconnection dynamics between the
directed and the undirected parts of the network has no direct feedthrough term
and therefore, there cannot be algebraic loops in these interconnections.

Before moving to the LMFDs, consider the following result:
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Lemma 11.27 (Left coprime). The polynomials 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1)
are left coprime withinM𝑚𝑢 if 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime within
M.

Proof: The proof is provided in Appendix 11.G. ■

Now, the following result on the LMFD is formulated:

Lemma 11.28 (LMFD). Consider the network model setM (11.47) satisfy-
ing Assumption 11.26 and with 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1) given by (11.39a) and
(11.39b), respectively. Given the LMFD 𝐴−1

𝑚 (𝑞−1)𝐵𝑚(𝑞−1), then withinM,
the polynomial matrices 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1) are unique up to a scalar
factor for 𝐴𝑚22(𝑞−1) and 𝐵𝑚22(𝑞−1), if the following conditions are satis-
fied:

1. The polynomials 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime inM.

2. There exists a permutation matrix 𝑃 such that withinM,[
𝐴0 𝐴1 · · · 𝐴𝑛𝑎 𝐵0 𝐵1 · · · 𝐵𝑛𝑏

]
𝑃 =

[
𝐷 𝑅

]
with 𝐷

square, diagonal, and full rank.

3. There are no algebraic loops in 𝐺 (𝑞).

Proof: The proof is provided in Appendix 11.H. ■

The algebraic loops in 𝐴(𝑞−1) are accounted for by the symmetry that is
present in 𝐴(𝑞−1). This is not possible for the algebraic loops that are present in
𝐺 (𝑞).

Remark 11.29 (LMFD proper interconnection dynamics). If 𝑊𝑑𝑢 (𝑞)
and 𝑊𝑢𝑑 (𝑞) are proper (not necessarily strictly proper), then it is unclear
which conditions need to be satisfied to guarantee that the polynomial
matrices 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1) are unique withinM up to a scalar factor.
Condition 1. of Lemma 11.28 again implies that 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1) are
left coprime and according to Kailath (1980) are unique up to a premulti-
plication with a unimodular matrix 𝑈 (𝑞−1). With proper 𝐺 (𝑞), 𝑊𝑑𝑢 (𝑞),
and𝑊𝑢𝑑 (𝑞), it follows that:

𝐴𝑚0 := lim
𝑧→∞

𝐴𝑚(𝑧) =
[
𝐼 − 𝐺𝑁0 −𝑊𝑁

𝑓 𝑟0
−𝑊𝑁

𝑟 𝑓 0 𝐴0

]
,

because 𝑑 (𝑞−1), 𝐷𝑢 (𝑞−1), and 𝐷𝑑 (𝑞−1) are monic, with 𝐴0 :=
lim𝑧→∞ 𝐴(𝑧), 𝑊𝑁

𝑓 𝑟0 := lim𝑧→∞𝑊𝑁
𝑢𝑑
(𝑧), 𝑊𝑁

𝑟 𝑓 0 := lim𝑧→∞𝑊𝑁
𝑑𝑢
(𝑧), and
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𝐺𝑁0 := lim𝑧→∞𝐺𝑁 (𝑧). It is unclear under what conditions 𝑈 (𝑞−1)𝐴𝑚0
has the same structural properties as 𝐴𝑚0. The expectation is that Condi-
tion 2. of Lemma 11.28 has to hold and that there has to be a condition
like Condition 3. of Lemma 11.28 that has to hold for 𝐺 (𝑞), 𝑊𝑑𝑢 (𝑞), and
𝑊𝑢𝑑 (𝑞) together.

The result of Lemma 11.28 directly leads to unique𝐺 (𝑞), 𝑅(𝑞), and𝑊𝑑𝑢 (𝑞) as
follows: As 𝐷𝑑 (𝑞−1) is diagonal and𝐺𝑁 (𝑞−1) has zero elements on the diagonal,
𝐷𝑑 (𝑞−1) and 𝐺𝑁 (𝑞−1) can directly be determined from 𝐴𝑚(𝑞−1). Polynomials
𝑊𝑁
𝑑𝑢
(𝑞−1) and 𝑅𝑁 (𝑞−1) can directly be extracted from 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1),

respectively. This leads to𝐺 (𝑞), 𝑅(𝑞), and𝑊𝑑𝑢 (𝑞) through the relation in (11.32).

Next, we prove that 𝐴(𝑞−1), 𝐵(𝑞−1), and 𝑊𝑢𝑑 (𝑞−1) can be obtained from
scaled versions of 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1). From 𝐴𝑚(𝑞−1) (11.39a) and 𝐵𝑚(𝑞−1)
(11.39b), the following relations hold:

�̃�𝑚21(𝑞−1) = 𝛼𝑑 (𝑞−1)𝑊𝑢𝑑 (𝑞), (11.54a)
�̃�𝑚22(𝑞−1) = 𝛼𝑑 (𝑞−1)𝐴(𝑞−1), (11.54b)
�̃�𝑚22(𝑞−1) = 𝛼𝑑 (𝑞−1)𝐵(𝑞−1), (11.54c)

with �̃�𝑚21(𝑞−1) := 𝛼𝐴𝑚21(𝑞−1), �̃�𝑚22(𝑞−1) := 𝛼𝐴𝑚22(𝑞−1), �̃�𝑚22(𝑞−1) :=
𝛼𝐵𝑚22(𝑞−1), the scalar scaled versions of 𝐴𝑚21(𝑞−1), 𝐴𝑚22(𝑞−1), and 𝐵𝑚22(𝑞−1),
respectively, and with scaling factor 𝛼 ∈ R+.

Lemma 11.30 (Uniqueness of 𝐴(𝑞−1), 𝐵(𝑞−1), and𝑊𝑢𝑑 (𝑞)). If there is at
least one linear constraint on the coefficients of 𝐴(𝑞−1, 𝜃𝐴) and 𝐵(𝑞−1, 𝜃𝐵)
of the form Γ𝜃 = 𝛾 ≠ 0, with Γ full row rank and with 𝜃⊤ :=

[
𝜃⊤
𝐴

𝜃⊤
𝐵

]
,

then 𝐴(𝑞−1), 𝐵(𝑞−1), and 𝑊𝑢𝑑 (𝑞) are uniquely obtained from �̃�𝑚21(𝑞−1),
�̃�𝑚22(𝑞−1), and �̃�𝑚22(𝑞−1) through (11.54).

Proof: Because 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime, the polynomial 𝑑 (𝑞−1)
is the greatest monic common divisor of the polynomial matrices �̃�𝑚22(𝑞−1) and
�̃�𝑚22(𝑞−1), which can be found uniquely (Kailath, 1980). The scalar factor 𝛼
is fixed with the parameter constraint, leading to unique 𝐴(𝑞−1), 𝐵(𝑞−1), and
𝑊𝑢𝑑 (𝑞). ■

Lemma 11.30 is similar to Lemma 11.17 and therefore the solution is obtained
in a similar fashion. Again, the problem reduces to a convex optimisation problem
if a nonzero polynomial element 𝑎𝑖 𝑗 (𝑞−1) or 𝑏𝑖 𝑗 (𝑞−1) of 𝐴(𝑞−1) or 𝐵(𝑞−1) is
known, which is, for example, satisfied if an excitation signal enters the network
through known dynamics (e.g. 𝑏𝑖 𝑗 (𝑞−1) = 1).



11.6 Case 2: Identification in polynomial form 321

The LMFD results of Lemmas 11.28 and 11.30 are combined to obtain the
following identifiability result:

Proposition 11.31 (Identifiability). A network model set M (11.46) sat-
isfying Assumption 11.26 is globally network identifiable from 𝑧(𝑡) if the
following conditions are satisfied:

1. The polynomials 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime inM.

2. There exists a permutation matrix 𝑃 such that withinM,[
𝐴0 𝐴1 · · · 𝐴𝑛𝑎 𝐵0 𝐵1 · · · 𝐵𝑛𝑏

]
𝑃 =

[
𝐷 𝑅

]
with 𝐷

square, diagonal, and full rank.

3. There are no algebraic loops in 𝐺 (𝑞).

4. At least one excitation signal 𝑟 𝑗 (𝑡), 𝑗 = 1, . . . , 𝐾 , is present: 𝐾 ≥ 1.

5. There is at least one linear constraint on the coefficients of 𝐴(𝑞−1, 𝜃𝐴)
and 𝐵(𝑞−1, 𝜃𝐵) of the form Γ𝜃 = 𝛾 ≠ 0, with Γ full row rank and with
𝜃⊤ :=

[
𝜃⊤
𝐴

𝜃⊤
𝐵

]
.

Proof: The proof is provided in Appendix 11.I. ■

If 𝐺 (𝑞) is strictly proper, then 𝐺 (𝑞) does not have algebraic loops and Condi-
tion 3. in Proposition 11.31 (and Lemma 11.28) is always satisfied; see also Weerts
et al. (2018b, Proposition 1). If𝐺 (𝑞) does have algebraic loops, then Condition 3.
in Proposition 11.31 (and Lemma 11.28) can be replaced by the conditions of
Weerts et al. (2018b, Proposition 3), which restricts the number of paramet-
erised elements in each row of

[
𝐺∞(𝜃) 𝑅∞(𝜃)

]
, with 𝐺∞ := lim𝑧→∞𝐺 (𝑧) and

𝑅∞ := lim𝑧→∞ 𝑅(𝑧), to the number of excitation signals 𝑟𝑑 (𝑡) that are present and
it restricts the rank of each row of the rational matrix

(
𝐼−𝐺∞(𝜃)

)−1
𝑅∞(𝜃) contain-

ing only the parameterised elements of 𝐺∞(𝜃) and the fixed (nonparameterised)
elements of 𝑅∞(𝜃).

If𝑊𝑢𝑑 (𝑞) is polynomial, then these dynamics can also be used to find a unique
𝐴(𝑞−1), 𝐵(𝑞−1), and𝑊𝑢𝑑 (𝑞−1) from 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1), as formulated next.

Proposition 11.32 (Identifiability for partially polynomial interconnec-
tion dynamics). If 𝑊𝑢𝑑 (𝑞) is polynomial, then Condition 5. of Proposi-
tion 11.31 can be replaced by

5. There is at least one constraint on the parameters of 𝐴(𝑞−1, 𝜃𝐴),
𝐵(𝑞−1, 𝜃𝐵), and 𝑊𝑢𝑑 (𝑞−1, 𝜃𝑊 ) of the form Γ𝜃 = 𝛾 ≠ 0, with Γ full
row rank and with 𝜃⊤ :=

[
𝜃⊤
𝐴

𝜃⊤
𝐵

𝜃⊤
𝑊

]⊤.
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Proof: If 𝑊𝑢𝑑 (𝑞) is polynomial, then 𝑑 (𝑞−1) = 1 and (11.54a) changes to
�̃�𝑢𝑑 (𝑞−1) = 𝛼𝑊𝑢𝑑 (𝑞−1). Then Lemma 11.30 only needs to fix the scaling factor
𝛼 in (11.54). ■

11.6.4 Consistency

Now, the consistency result is formulated as follows:

Theorem 11.33 (Consistency). Consider a data generating network S and
a model set M (11.46). Then 𝑀 (𝜃𝑁 ) is a consistent estimate of S if the
following conditions hold:

1. The true system is in the model set (S ∈ M).

2. The data are informative with respect to the model set.

3. The model set is globally network identifiable.

Proof: The proof is provided in Appendix 11.J. ■

11.6.5 Algorithm

In order to consistently identify the mixed dynamic network model setM (11.46),
multiple identification steps have to be performed. First, the polynomial network
representation (11.38) has to be identified. This can be achieved by an adapted
version of the multistep least-squares algorithm presented in Section 8.5. The
adaptation that has to be made, is that the partially asymmetric structure of
𝐴𝑚(𝑞−1) needs to be incorporated into the parameterisation of the model set.
Once the polynomial form of the mixed dynamic network (11.38) is identified, it
is used to identify the original mixed network matrices (11.29). In order to do
so, an additional step is needed, as indicated by Lemma 11.30. In general, this
leads to a nonconvex optimisation problem, for which several algorithms have
been developed (Fazzi et al., 2019).

The mixed dynamic networks in Case 2. that are represented in polynomial
form (11.38) can be identified once the proposed algorithm is implemented. This
includes the identification of all dynamics and the complete topology. The condi-
tions for identifiability are the same as the ones for full network identification of
purely diffusively coupled networks, with an additional condition on the absence
of algebraic loops in the directed part (𝐺 (𝑞)). Most of the steps in the algorithm
are convex least-squares steps that are the same or similar to the steps for mixed
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dynamic networks in Case 1. Similar to Case 1., the critical part of the algorithm
is the nonconvex optimisation step for determining 𝐴(𝑞−1), 𝐵(𝑞−1), and𝑊𝑢𝑑 (𝑞)
from �̆�(𝑞−1), �̆�(𝑞−1), and �̆�𝑢𝑑 (𝑞−1); see Lemma 11.30. As this optimisation is
nonconvex, it may lead to local optima instead of the global optimum. Additional
research is required to understand the consequences of this and to determine a
proper approach (possibly including WNSF to make it convex).

11.7 Case 2: Identification in module representa-
tion

11.7.1 Identification setup

This chapter involves the full network identification of mixed dynamic networks.
In this section, this problem is dealt with in the module representation, which
means that the model (11.44) will be used for identification. The identification
problem that will be considered in this section is equal to the one considered in
Section 11.6, see Definition 11.11, and concerns the identification of all dynamics
in the network and, optionally, the topology of the complete network.

Consider the module representation of the mixed dynamic network model
(11.44). For solving the mixed identification problem formulated above, the
approach for full network identification of module representations of Weerts et al.
(2016) is applied, because the mixed dynamic network is modelled in the same
framework and contains direct feedthrough terms and algebraic loops. After the
model (11.44) is identified, the original mixed dynamic network model matrices
(11.29) are obtained.

Because we consider the same mixed dynamic network as in Section 11.6,
we use the same set of parameterised functions (11.46) with particular models
(11.47). In addition, we define the model set

M𝑚𝑑 := {𝑀𝑚𝑑 (𝜂), 𝜂 ∈ Π ⊂ R𝑑} (11.55)

with 𝑑 ∈ N and with particular models

𝑀𝑚𝑑 (𝜂) :=
(
𝐺𝑚(𝑞, 𝜂), 𝑅𝑚(𝑞, 𝜂), 𝐻𝑚(𝑞, 𝜂),Λ𝑚(𝜂)

)
, (11.56)

where 𝜂 contains all unknown coefficients that appear in the entries of the model
matrices 𝐺𝑚(𝑞−1), 𝑅𝑚(𝑞−1), 𝐻𝑚(𝑞), and Λ𝑚, with Λ𝑚 the covariance of 𝑒(𝑡)
given by

Λ𝑚 =

[
Λ𝑑 0
0 Λ̃𝑢

]
, (11.57)



324 Mixed linear dynamic networks

with Λ̃𝑢 the covariance matrix of 𝑒𝑢 (𝑡), where 𝑒𝑑 (𝑡) and 𝑒𝑢 (𝑡) are uncorrelated.
The data generating network is denoted by S𝑚𝑑 :=

(
𝐺0
𝑚, 𝑅

0
𝑚, 𝐻

0
𝑚,Λ

0
𝑚

)
. The true

system lies in the model set if S𝑚𝑑 = 𝑀𝑚𝑑 (𝜂0), where 𝜂0 ∈ Π indicate the true
parameter values.

The network predictor is defined in line with Weerts et al. (2016) as before,
see Definition 8.4, and leads to

�̂�(𝑡 |𝑡 − 1) =
[
𝐼 −

(
𝐼 − 𝐺∞𝑚

)−1
𝐻−1
𝑚 (𝑞)

(
𝐼 − 𝐺𝑚(𝑞)

) ]
𝑤(𝑡)

+
(
𝐼 − 𝐺∞𝑚

)−1
𝐻−1
𝑚 (𝑞)𝑅𝑚(𝑞)𝑟 (𝑡), (11.58)

with 𝐺∞𝑚 := lim𝑧→∞𝐺𝑚(𝑧). The parameterised predictor leads to the prediction
error 𝑒(𝑡, 𝜂) (11.17) resulting in

𝜀(𝑡, 𝜂) = 𝑊𝑤 (𝑞, 𝜂)𝑤(𝑡) −𝑊𝑟 (𝑞, 𝜂)𝑟 (𝑡), (11.59)

with predictor filters

𝑊𝑤 (𝑞, 𝜂) =
(
𝐼 − 𝐺∞𝑚 (𝜂)

)−1
𝐻−1
𝑚 (𝑞, 𝜂)

(
𝐼 − 𝐺𝑚(𝑞, 𝜂)

)
, (11.60a)

𝑊𝑟 (𝑞, 𝜂) =
(
𝐼 − 𝐺∞𝑚 (𝜂)

)−1
𝐻−1
𝑚 (𝑞, 𝜂)𝑅𝑚(𝑞−1, 𝜂). (11.60b)

Again, the parameters are estimated through the least-squares identification
criterion (11.20) with prediction error (11.59).

In the next sections, the consistent identification of the mixed network model
is analysed by considering network identifiability. Data informativity conditions
have already been derived in Section 11.6.2. The following analysis leads to
conditions for which a consistent estimate of the data generating mixed dynamic
network S can be found.

11.7.2 Network identifiability

Conditions for network identifiability are derived by first applying the identifiabil-
ity results of Weerts et al. (2018b, Proposition 3), because there will be algebraic
loops present in the network, due to the nonmonicity of 𝐴(𝑞−1). Next, the identi-
fiability results of Weerts et al. (2018b, Theorem 2) are applied, which will lead
to conservative results, because parameter dependencies will not be taken into
account. This is because the currently available results from the literature (Weerts
et al., 2018b) are all based on independently parameterisations.

Even though the results will be conservative by definition, they are relevant
for several reasons. They give the opportunity to view and analyse mixed dy-
namic networks from a module representation perspective. This gives insight
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into consistency results in comparison with module representations without any
undirected interconnections. In the future, the results can be improved by studying
how parameter dependencies can be taken into account.

Before presenting the identifiability result, the two matrices 𝑇∞𝑤𝑟 𝑖 (𝜂) and
𝑇𝑖 (𝑞, 𝜂) are defined in line with Weerts et al. (2018b).

First, suppose that the 𝑖th row of 𝐺∞𝑚 (𝜂) has ∧̄𝑖 parameterised entries. Define
the permutation matrix

∧̄
𝑖 such that all parameterised entries in the 𝑖th row

of
(
𝐼 − 𝐺∞𝑚 (𝜂)

)∧̄
𝑖 are gathered on the left-hand side. Similar, suppose that

the 𝑖th row of 𝑅∞𝑚 (𝜂) has ∨̄𝑖 parameterised entries. Define the permutation
matrix

∨̄
𝑖 such that all parameterised entries in the 𝑖th row of 𝑅∞𝑚 (𝜂)

∨̄
𝑖 are

gathered on the right-hand side. Now the matrix 𝑇∞𝑤𝑟 𝑖 (𝜂) is constructed as a
submatrix of 𝑇∞𝑤𝑟 (𝜂) =

(
𝐼 − 𝐺∞𝑚 (𝜂)

)−1
𝑅∞𝑚 (𝜂) by taking the rows that correspond

to the parameterised columns of 𝐺∞𝑚 (𝜂) and the columns that correspond to the
nonparameterised columns of 𝑅∞𝑚 (𝜂). That is,

𝑇∞𝑤𝑟 𝑖 (𝜂) :=
[
𝐼∧̄𝑖 0

] ∧̄−1
𝑖

(
𝐼 − 𝐺∞𝑚 (𝜂)

)−1
𝑅∞𝑚 (𝜂)

∨̄
𝑖

[
𝐼𝐾−∨̄𝑖

0

]
. (11.61)

Second, suppose that the 𝑖th row of 𝐺𝑚(𝑞, 𝜂) has ∧𝑖 parameterised
entries. Define the permutation matrix

∧
𝑖 such that all parameterised

entries in the 𝑖th row of
(
𝐼 − 𝐺𝑚(𝑞, 𝜂)

) ∧
𝑖 are gathered on the left-hand

side. Similar, suppose that the 𝑖th row of
[
𝑅𝑚(𝑞, 𝜂) 𝐻𝑚(𝑞, 𝜂)

]
has ∨𝑖

parameterised entries. Define the permutation matrix
∨
𝑖 such that all para-

meterised entries in the 𝑖th row of
[
𝑅𝑚(𝑞, 𝜂) 𝐻𝑚(𝑞, 𝜂)

] ∨
𝑖 are gathered on

the right-hand side. Now, the matrix 𝑇𝑖 (𝑞, 𝜂) is constructed as a submatrix
of 𝑇 (𝑞, 𝜂) =

(
𝐼 − 𝐺𝑚(𝑞, 𝜂)

)−1 [
𝑅𝑚(𝑞, 𝜂) 𝐻𝑚(𝑞, 𝜂)

]
by taking the rows that

correspond to the parameterised columns of 𝐺𝑚(𝑞, 𝜂) and the columns that
correspond to the nonparameterised columns of

[
𝑅𝑚(𝑞, 𝜂) 𝐻𝑚(𝑞, 𝜂)

]
. That is,

𝑇𝑖 (𝑞, 𝜂) :=
[
𝐼∧𝑖 0

] ∧−1
𝑖

(
𝐼 − 𝐺𝑚(𝑞, 𝜂)

)−1 [
𝑅𝑚(𝑞, 𝜂) 𝐻𝑚(𝑞, 𝜂)

] ∨
𝑖

[
𝐼𝐾+𝐿−∨𝑖

0

]
.

(11.62)
The identifiability result for the model setM𝑚𝑑 (11.55) is now formulated as

follows:

Lemma 11.34 (Identifiability ofM𝑚𝑑). A network model setM𝑚𝑑 (11.55)
is globally network identifiable if and only if the following conditions are
satisfied:

1. Each row of
[
𝐺∞𝑚 (𝜂) 𝑅∞𝑚 (𝜂)

]
has at most 𝐾 parameterised entries.
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2. For each 𝑖, 𝑇∞𝑤𝑟 𝑖 (𝜂) (11.61) has full row rank for all 𝜂 ∈ Π.

3. Every parameterised entry in the model {𝑀𝑚𝑑 (𝜂), 𝜂 ∈ Π} covers the
set of all proper rational transfer functions.

4. All parameterised transfer functions in the model 𝑀𝑚𝑑 (𝜂) are para-
meterised independently (i.e. there are no common parameters).

5. Each row of
[
𝐺𝑚(𝑞, 𝜂) 𝑅𝑚(𝑞, 𝜂) 𝐻𝑚(𝑞, 𝜂)

]
has at most 𝐾 + 𝐿

parameterised entries.

6. For each 𝑖, 𝑇𝑖 (𝑞, 𝜂) (11.62) has full row rank for all 𝜂 ∈ Π.

Proof: This follows directly by applying Weerts et al. (2018b, Proposition 3)
and Weerts et al. (2018b, Theorem 2) to mixed dynamic network model in module
representation (11.44). ■

Condition 4. of Lemma 11.34 states that all parameterised transfer functions
need to be independently parameterised. However, from the relations in (11.42)
it is clear that there are common parameters between the transfer functions in
the model 𝑀𝑚𝑑 (𝜂). The equivalence between these parameters is thus ignored
in the identification analysis. However, it can be incorporated into the identi-
fication procedure by including a linear parameter constraint in the optimisation
problem (11.21). The constraint can be included in the cost function, leading to
a convex least-squares optimisation problem. Including the constraint will keep
the estimated parameters consistent and improve their variance. It only requires a
dedicated optimisation problem implementation.

Once the network model setM𝑚𝑑 (11.55) is identified, it is used to identify
the original network model setM (11.46). The rational matrices 𝐺 (𝑞), 𝑊𝑑𝑢 (𝑞),
𝑅(𝑞), and 𝐻 (𝑞) can directly be extracted from 𝐺𝑚(𝑞), 𝑅𝑚(𝑞), and 𝐻𝑚(𝑞). The
rational matrices𝐺𝑢 (𝑞), �̃�𝑢𝑑 (𝑞), 𝑅𝑢 (𝑞), and 𝐻𝑢 (𝑞) can also directly be extracted
from𝐺𝑚(𝑞), 𝑅𝑚(𝑞), and𝐻𝑚(𝑞) and are used to identify 𝐴(𝑞−1),𝑊𝑢𝑑 (𝑞), 𝐵(𝑞−1),
and 𝐹 (𝑞). For doing so, consider first the following result on the LMFD (11.42a):

Lemma 11.35 (LMFD). Consider a network model setM (11.46). Given
the LMFD 𝐺𝑢 (𝑞) = 𝑄−1(𝑞−1)𝑃(𝑞−1) as in (11.42a) with 𝑄(𝑞−1) diag-
onal and 𝑃(𝑞−1) hollow and symmetric, the polynomial matrix 𝐴(𝑞−1) =
𝑄(𝑞−1) − 𝑃(𝑞−1) is unique withinM up to a scalar factor.

Proof: The proof is provided in Appendix 11.K. ■

Due to their characteristic structure, 𝑄(𝑞−1) and 𝑃(𝑞−1) do not have to be left
coprime.
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The LMFD 𝐺𝑢 (𝑞) = 𝑄−1(𝑞−1)𝑃(𝑞−1) can be calculated through a WNSF
(Galrinho et al., 2019) in which the structure of 𝑄(𝑞−1) and 𝑃(𝑞−1) can be
incorporated. WNSF includes multiple least-squares steps (and thus convex op-
timisations) that lead to a consistent result.

Using this result on the LMFD, identifiability conditions for the original
network model setM (11.46) are derived.

Proposition 11.36 (Identifiability). A network model setM (11.46) is glob-
ally network identifiable from 𝑧(𝑡) if the following conditions are satisfied:

1. Each row of
[
𝐺∞𝑚 (𝜂) 𝑅∞𝑚 (𝜂)

]
has at most 𝐾 parameterised entries.

2. For each 𝑖, 𝑇∞𝑤𝑟 𝑖 (𝜂) (11.61) has full row rank for all 𝜂 ∈ Π.

3. Every parameterised entry in the model {𝑀𝑚𝑑 (𝜂), 𝜂 ∈ Π} covers the
set of all proper rational transfer functions.

4. All parameterised transfer functions in the model 𝑀𝑚𝑑 (𝜂) are para-
meterised independently (i.e. there are no common parameters).

5. Each row of
[
𝐺𝑚(𝑞, 𝜂) 𝑅𝑚(𝑞, 𝜂) 𝐻𝑚(𝑞, 𝜂)

]
has at most 𝐾 + 𝐿

parameterised entries.

6. For each 𝑖, 𝑇𝑖 (𝑞, 𝜂) (11.62) has full row rank for all 𝜂 ∈ Π.

7. There is at least one constraint on the parameters of 𝐴(𝑞−1, 𝜃𝑎) and
𝐵(𝑞−1, 𝜃𝑏) of the form Γ𝜃𝑎𝑏 = 𝛾 ≠ 0, with Γ full row rank and with
𝜃𝑎𝑏 :=

[
𝜃⊤𝑎 𝜃⊤

𝑏

]⊤.

Proof: The proof is provided in Appendix 11.L. ■

Conditions 1.-6. of Proposition 11.36 are the same as the conditions of
Proposition 11.34 and are used to identify the module representation of the mixed
dynamic network model. This leads to a unique representation of the directed part
in the original mixed dynamic network model (11.29), while the undirected part
is unique up to a scalar factor. Condition 7. fixes the scaling factor and ensures
the uniqueness of the undirected part in (11.29).

If𝑊𝑢𝑑 (𝑞) is polynomial, then the parameters of𝑊𝑢𝑑 (𝑞−1, 𝜃𝑤) can be included
in the constraint in Condition 7. of Proposition 11.36, leading to the same
parameter constraint as in Proposition 11.32.
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11.7.3 Consistency

Now, the consistency result is formulated as follows:

Theorem 11.37 (Consistency). Consider a data generating network S and
a model set M (11.46). Then 𝑀 (𝜃𝑁 ) is a consistent estimate of S if the
following conditions hold:

1. The true system is in the model set (S ∈ M).

2. The data are informative with respect to the model set.

3. The model set is globally network identifiable.

Proof: The proof is provided in Appendix 11.M. ■

11.7.4 Algorithm

In order to consistently identify the network model setM (11.46), multiple iden-
tification steps have to be performed. First, the module representation (11.44)
has to be identified. The parameters of this model are estimated through the
least-squares identification criterion (11.20); see also Weerts et al. (2016). This
optimisation problem is not convex due to the fact that the parameterised pre-
diction error (11.59), with filters (11.60), is not affine in the parameters. Using
a WNSF (Galrinho et al., 2019), this optimisation problem can be solved using
several convex steps; see also Section 8.5. Once the module representation of the
mixed dynamic network (11.44) is identified, it is used to identify the original
mixed dynamic network (11.29). Again, a WNSF can be used to calculate the
LMFD of Lemma 11.35.

The mixed dynamic networks in Case 2. in module representation can be
identified once the proposed algorithm is implemented. This includes the identi-
fication of the full dynamics and, with that, the topology of the network. Note,
however, that some topological aspects of the directed part of the network are as-
sumed to be known as the number of parameterised transfer functions is limited by
the identifiability conditions in Proposition 11.36. Additional research is needed
to adapt the identifiability conditions to the case of dependent parameterisations.
Then fewer parameters have to be identified and therefore, it is expected that the
identifiability conditions in Proposition 11.36, and in particular Conditions 1.-2.
and 4.-6., relax. All steps in the identification algorithm are convex least-squares
steps due to the extensive application of WNSF.
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11.8 Discussion

11.8.1 Extended cases of mixed dynamic networks

In this chapter, several mixed dynamic networks are considered, which contain
both undirected and directed interconnections between node signals. This chapter
focused on the mixed dynamic networks defined in Definition 11.4 and 11.5,
which consist either of a single distinct undirected network with additional directed
interconnections, or directed interconnections between a single distinct undirected
network and a single distinct directed network. In Section 11.2.4, the generality of
these mixed dynamic networks is discussed, including extensions to these cases.

For the mixed dynamic network satisfying Definition 11.4, it is assumed that
the undirected part represents a connected graph, meaning that there is a path
between every pair of nodes, even if all directed links are removed from the net-
work. Consider the extended version that is also discussed in Section 11.2.4, where
this condition is relaxed, such that some nodes are only interconnected through
a directed interconnection. Then the mixed dynamic network consists of several
distinct undirected networks that are interconnected with each other through dir-
ected links (and still additional directed links may be present between undirected
nodes). In this situation, the identifiability conditions of Proposition 11.18 slightly
change, in the sense that instead of a single parameter constraint, there has to be a
single parameter constraint for each distinct undirected network and each distinct
undirected network has to be excited by an external excitation signal.

Example 11.38 (Extension in Case 1). Consider the mixed dynamic net-
work shown in Figure 11.4, which has an undirected coupling between node
𝑤1(𝑡) and node𝑤2(𝑡), a directed connection from node𝑤2(𝑡) to node𝑤3(𝑡),
and an undirected coupling between node 𝑤3(𝑡) and node 𝑤4(𝑡). For iden-
tifiability, there has to be a parameter constraint on the dynamics of 𝐴(𝑞−1)
and 𝐵(𝑞−1) related to node 𝑤1(𝑡) and node 𝑤2(𝑡) and a second parameter
constraint on the dynamics of 𝐴(𝑞−1) and 𝐵(𝑞−1) related to node 𝑤3(𝑡)
and node 𝑤4(𝑡). There should be two external excitation signals present,
one located at node 𝑤1(𝑡) or node 𝑤2(𝑡) and one located at node 𝑤3(𝑡) or
node 𝑤4(𝑡).

11.8.2 Relaxation of single directed connection in Case 1

Further, for identifiability in Case 1., it is assumed that there is only one directed
interconnection between a pair of nodes, so either from node 𝑤 𝑗 (𝑡) to node 𝑤𝑘 (𝑡)
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r1 r4

w1 w2 w3 w4

Figure 11.4: A mixed dynamic network, consisting of two diffusively coupled
networks interconnected with a directed link (red arrow), and with the external
excitation signals 𝑟1(𝑡) and 𝑟4(𝑡).

or the other way around, but not both; see Proposition 11.18. There are some
special situations in which this assumption may be violated, while the mixed
dynamic network is still identifiable.

This is, for example, the case when it is known that the 𝑗 th node has no
connection to the ground node and directed interconnections (𝐺 𝑗𝑘 (𝑞) and𝐺𝑘 𝑗 (𝑞))
with only the 𝑘th node. Then Ῠ(𝑞−1) directly leads to polynomial elements
�̆� 𝑗ℓ (𝑞−1), ℓ ∈ {1, . . . , 𝐿} \ {𝑘}. As the 𝑗 th node has no connection to the ground
node, �̆� 𝑗 𝑗 (𝑞−1) = −∑ℓ≠ 𝑗 �̆� 𝑗ℓ (𝑞−1), from which �̆� 𝑗𝑘 (𝑞−1) can be found. This case
can be extended to the case where, in addition, the 𝑘th node has only directed
connections with node ℓ such that either 𝐺ℓ𝑘 (𝑞) = 0 or 𝐺𝑘ℓ (𝑞) = 0, because the
corresponding deviation of �̆�𝑘ℓ (𝑞−1) or �̆�ℓ𝑘 (𝑞−1), respectively, can be identified
from the ℓth node and subsequently be subtracted from �̆� 𝑗 𝑗 (𝑞−1).

Another exception can be made if the directed dynamics are known. The
topological conditions that need to hold for the directed connections only hold for
the unknown dynamics in these interconnections. If the directed dynamics in the
interconnection are known, they can be excluded from the reasoning. So are, for
example, directed connections that are known to be zero, because they are known
to be absent.

To summarise, Condition 4. of Proposition 11.18 can be relaxed as follows:

Proposition 11.39 (Identifiability Condition 4. for Case 1). Condition 4.
of Proposition 11.18 can be replaced by the condition that within M, for
each 𝐺𝑖 𝑗 (𝑞) ≠ 0, 𝑖, 𝑗 = 1, 2, . . . , 𝐿, either one of the following conditions is
satisfied:

1. 𝐺 𝑗𝑖 (𝑞) = 0 withinM.

2. 𝑤𝑖 (𝑡) has no connection to the ground node and withinM,𝐺𝑖𝑘 (𝑞) = 0
for all 𝑘 ≠ 𝑗 for which 𝐺𝑘𝑖 (𝑞) ≠ 0.
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3. 𝑤 𝑗 (𝑡) has no connection to the ground node and withinM,𝐺𝑘 𝑗 (𝑞) = 0
for all 𝑘 ≠ 𝑖 for which 𝐺 𝑗𝑘 (𝑞) ≠ 0.

Proof: The proof is provided in Appendix 11.N. ■

11.8.3 Identifiability conditions

For Case 1. and 2., where the mixed dynamic network is represented in polynomial
form, the identifiability results ask for at least one nonzero parameter constraint;
see Propositions 11.18 and 11.31. This constraint is used to identify the dynamics
related to the undirected nodes; see Lemmas 11.17 and 11.30. This constraint is
equivalent to the one in Condition 7. of Proposition 11.36 and the one for full
network identifiability in diffusively coupled linear networks; see Proposition 8.15.
It has been proven in Propositions 11.19 and 11.32 that if the directed dynamics
entering the undirected nodes are described by polynomials, then the constraint
can include their parameters.

The mixed dynamic network in Case 2., described by Definition 11.5, is
modelled in either the polynomial form or the module representation. Proposi-
tions 11.31 and 11.36 list the conditions for global network identifiability of the
network model setM (11.46) in these modelling frameworks, respectively. These
propositions show that the identifiability conditions are very different from each
other. In the polynomial form, the identifiability conditions stated in Proposi-
tion 11.31 contain one algebraic constraint; two topological constraints, one on
the undirected part and one on the directed part; the requirement of only a single
excitation signal; and one parameter constraint. In the module representation,
the identifiability conditions in Proposition 11.36 also include the parameter con-
straint, while the other conditions are mainly on the number of parameterised
entries and the rank of the transfer function matrices. These conditions lead to
requirements on the number and locations of excitation signals, which can be de-
manding. Observe that in this case, independent parameterisations of all transfer
functions is required. A more extensive study on the identifiability conditions in
Propositions 11.31 and 11.36 can lead to a better understanding of the similarities,
differences, and relations between them; see also Remark 8.16.

In some situations, it might be more attractive to let the undirected node
signals be modelled in the polynomial framework and the directed node signals be
modelled in the module representation, as in the mixed dynamic network model
(11.29) and use this network model for identifiability analysis and consistent
identification. In this model, each part of the network is modelled in its most
advantageous form, which might also lead to the most relaxed identifiability
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conditions and the most accurate identification results. However, no identifiability
analysis for this situation is yet available.

11.8.4 Correlated noise

In the mixed dynamic network model in Case 2. (11.29) it is assumed that the
noise acting on the directed part of the network 𝑒𝑑 (𝑡) and the noise acting on the
undirected part of the network 𝑒𝑢 (𝑡) are uncorrelated. If this is not the case, then
the mixed dynamic network model can be modelled with a noise model 𝐹𝑚(𝑞)
and a noise covariance matrix Λ𝑚 that are not block diagonal, but full matrices
with full rank, with 𝐹𝑚(𝑞) still being monic, stable, and stably invertible, and
with Λ𝑚 ≻ 0 (implying Λ̃𝑚 ≻ 0). In this case, the noise model consisting of
𝐹𝑚(𝑞) and Λ𝑚 is still identifiable under the presented identifiability conditions
for the polynomial form in Proposition 11.31 and for the module representation in
Proposition 11.36.

11.8.5 Future research

In this chapter, theoretical conditions for consistent identification of mixed linear
dynamic networks with both undirected and directed dynamics are presented.
When such a network satisfies these conditions, it can be consistently identified.
In order to do so, the algorithms for the identification procedures described in
Section 11.4.5, Section 11.6.5, and Section 11.7.4 need to be formalised and
implemented.

One of the next steps in this research is to extend the results for Case 1. and
Case 2. to their extensions discussed in Section 11.2.4 and 11.8.1 and to even
more complex mixed linear dynamic networks.

The directed dynamics that are added to undirected linear networks, especially
in Case 1., are often digital controllers. These controllers might be known and
therefore, one of the next steps is to include known dynamics in the identification
procedure. This will relax the identifiability conditions as, for example, explained
in Remark 11.10 and Dreef et al. (2022).

Furthermore, the next step in this research is to consider the identification of a
single interconnection, a single interaction, or a subnetwork. In the literature this
is referred to as ‘local’, ‘single module’, or ‘subnetwork’ identification, where the
concept of immersion (the elimination of irrelevant signals) plays a crucial role.
Of course, the subnetwork identification results for polynomial models (Chapter 9)
can be applied to the network models in Propositions 11.7 and 11.23, and the local
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identification results for module representations (Gevers et al., 2018; Materassi
and Salapaka, 2020; Ramaswamy and Van den Hof, 2021) can be applied to the
network models in Proposition 11.24. The exact implications due to the specific
structural properties of these network models need to be analysed.

11.9 Conclusion

Mixed dynamic network contain both undirected and directed interconnections
between the node signals. Two general cases of mixed dynamic networks have
been modelled and reformulated in either the polynomial framework or the module
representation. For all three mixed dynamic network models that are presented
in this chapter, conditions for consistent parameter estimation of all dynamics in
the network have been formulated. The resulting conditions for consistency are
closely related to the ones for full network identification in diffusively coupled
linear networks (Chapter 8) and for full network identification in the module
representation (Weerts et al., 2018b). Directions for developments of identification
algorithms have been proposed as well. Their formalisation and implementation
are subject for future research.



Appendix

11.A Proof of Proposition 11.13

The proof follows the proof of Proposition 8.12, with the difference that the
presence of the directed dynamics𝐺 (𝑞) changes the rational matrix 𝐽 (𝑞) in (8.68)
to

𝐽 (𝑞) =
[ (
𝐴(𝑞−1) − 𝐺 (𝑞)

)−1
𝐹 (𝑞)

(
𝐴(𝑞−1) − 𝐺 (𝑞)

)−1
𝐵(𝑞−1)

0 𝐼

]
.

Due to well-posedness of the network,
(
𝐴(𝑞−1) − 𝐺 (𝑞)

)
has full rank. This is

true regardless of whether 𝐺 (𝑞) is rational or polynomial. This means that 𝐽 (𝑞)
will always have full rank. Hence, again Φ𝑧 (𝜔) ≻ 0 if and only if Φ𝜅 (𝜔) ≻ 0.
As 𝑒(𝑡) and 𝑟 (𝑡) are assumed to be uncorrelated and 𝐸{𝑒(𝑡)} = 0, Φ𝜅 (𝜔) ≻ 0 if
and only if Λ̆ ≻ 0 (which follows from Λ ≻ 0, which is assumed) and Φ𝑟 (𝜔) ≻ 0.
The condition Φ𝑧 (𝜔) ≻ 0 reduces to Φ𝑟 (𝜔) ≻ 0.

11.B Proof of Lemma 11.15

According to Kailath (1980), the left matrix-fraction description (LMFD) of any
two polynomial and left coprime matrices is unique up to a premultiplication with
a unimodular matrix. To satisfy Condition 2., the unimodular matrix is restricted
to be diagonal. Let �̄�(𝑞−1) denote the symmetric part of Ῠ(𝑞−1) and be consisting
of elements

�̄�𝑖 𝑗 (𝑞−1) =
{
�̆�𝑖 𝑗 (𝑞−1), if �̆�𝑖 𝑗 (𝑞−1) = �̆� 𝑗𝑖 (𝑞−1),
0, otherwise.

This �̄�(𝑞−1) represents a connected network consisting of all node interactions that
do not have directed connections (in either direction). To preserve the symmetry

334
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of �̄�(𝑞−1), the diagonal premultiplication matrix is further restricted to have equal
elements, resulting in unique Ῠ(𝑞−1) and �̆�(𝑞−1) up to a scalar factor. As the
zero structure of �̆� (𝑞−1) is known, �̆� 𝑗𝑖 = 0 if �̆�𝑖 𝑗 ≠ 0, and �̆�(𝑞−1) is symmetric,
the elements of �̆�(𝑞−1) are found as

�̆�𝑖 𝑗 (𝑞−1) =
{
�̆�𝑖 𝑗 (𝑞−1), if �̆�𝑖 𝑗 = 0,
�̆� 𝑗𝑖 (𝑞−1), if �̆�𝑖 𝑗 ≠ 0.

Finally, �̆� (𝑞−1) = �̆�(𝑞−1) − Ῠ(𝑞−1) and thus, �̆�(𝑞−1) and �̆� (𝑞−1) can uniquely
be determined from Ῠ(𝑞−1). As Ῠ(𝑞−1) is unique up to a scalar factor, so are
�̆�(𝑞−1) and �̆� (𝑞−1).

11.C Proof of Lemma 11.16

Condition 1. implies Condition 1. of Lemma 11.15, because if 𝐴(𝑞−1) and
𝐵(𝑞−1) are left coprime withinM, then 𝑑𝐺 (𝑞−1) is exactly the common factor
between �̆�(𝑞−1) and �̆�(𝑞−1) within M̆. The polynomial 𝑑𝐺 (𝑞−1) is constructed
such that all common factors of 𝐷𝐺 (𝑞−1) and 𝑁𝐺 (𝑞−1) are taken out, such that
there are no common terms created in𝐺 (𝑞−1). Therefore, if 𝑁𝐺 (𝑞−1) and 𝐵(𝑞−1)
are left coprime withinM, then also �̆� (𝑞−1) and �̆�(𝑞−1) are left coprime within
M̆.

Condition 2.-4. imply Condition 2.-4. of Lemma 11.15, because �̆�(𝑞−1),
�̆� (𝑞−1), and �̆�(𝑞−1) adopt the zero structure of 𝐴(𝑞−1), 𝑁𝐺 (𝑞−1), and 𝐵(𝑞−1),
respectively, where the zero structure of 𝑁𝐺 (𝑞−1) is the same as the one of 𝐺 (𝑞).

11.D Proof of Proposition 11.18

Condition 5. implies that 𝑇𝑤𝑟 (𝑞, 𝜃) is nonzero. According to Lemma 11.15,
Condition 1.-4. imply that �̆�(𝑞−1, 𝜂), �̆�(𝑞−1, 𝜂), and �̆� (𝑞−1, 𝜂) are unique up
to a scalar factor 𝛼 ∈ R+. According to Lemma 11.17, Condition 6. implies
that 𝐴(𝑞−1, 𝜃), 𝐵(𝑞−1, 𝜃), and 𝐺 (𝑞, 𝜃) are uniquely found from 𝛼�̆�(𝑞−1, 𝜂),
𝛼�̆�(𝑞−1, 𝜂), and 𝛼�̆� (𝑞−1, 𝜂). It also implies that 𝛼𝑑𝐺 (𝑞−1, 𝜂) is uniquely de-
termined and as 𝑑𝐺 (𝑞−1, 𝜂) is monic, 𝛼 is found as well. As 𝐴(𝑞−1, 𝜃) is uniquely
found, Φ�̄� (𝜔, 𝜃) gives unique 𝐹 (𝑞, 𝜃) and Λ(𝜃); see Proposition 8.15.
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11.E Proof of Theorem 11.21

Condition 1. ensures that 𝜃0 is a minimum of the criterion (11.20), because the
predictor filters (11.19) can be rewritten as

𝑊𝑤 (𝑞, 𝜃) =
(
𝐴0(𝜃) − 𝐺∞(𝑞, 𝜃)

)−1
𝐹−1(𝑞, 𝜃)

(
𝐴(𝑞−1, 𝜃) − 𝐺 (𝑞, 𝜃)

)
,

𝑊𝑟 (𝑞, 𝜃) =
(
𝐴0(𝜃) − 𝐺∞(𝑞, 𝜃)

)−1
𝐹−1(𝑞, 𝜃)𝐵(𝑞−1, 𝜃),

with 𝐴0 := lim𝑧←∞ 𝐴(𝑧) and 𝐺∞ := lim𝑧→∞𝐺 (𝑧). According to Proposi-
tion 11.13, Condition 2. ensures that 𝑇𝑤𝑟 (𝑞, 𝜃) and Φ�̄� (𝜔, 𝜃) can uniquely be
recovered from data (Chapter 8). Finally, according to Proposition 11.18, Con-
dition 3. implies that the parameterised model 𝑀 (𝜃) can uniquely be recovered
from 𝑇𝑤𝑟 (𝑞, 𝜃) and Φ�̄� (𝜔, 𝜃).

11.F Proof of Proposition 11.25

For the mixed dynamic network model (11.29), the input-output relations between
the signals can be described by (11.31a):

𝑤(𝑡) = 𝐽−1(𝑞)
[
𝑅(𝑞) 0

0 𝐵(𝑞−1)

]
𝑟 (𝑡) + 𝐽−1(𝑞)

[
𝐻 (𝑞) 0

0 𝐹 (𝑞)

]
𝑒(𝑡),

with 𝐽 (𝑞) as in (11.30).
The proof of Proposition 11.25 follows the proof of Proposition 8.12, with the

difference that the rational matrix 𝐽 (𝑞) in (8.68) is changed to

𝐽 (𝑞) =
𝐽
−1(𝑞)

[
𝐻 (𝑞) 0

0 𝐹 (𝑞)

]
𝐽−1(𝑞)

[
𝑅(𝑞) 0

0 𝐵(𝑞−1)

]
0 𝐼


According to Proposition 11.22, well-posedness of the network implies that 𝐽 (𝑞)
has full rank. This means that 𝐽 (𝑞) will also have full rank. Hence, again
Φ𝑧 (𝜔) ≻ 0 if and only if Φ𝜅 (𝜔) ≻ 0. As 𝑒(𝑡) and 𝑟 (𝑡) are assumed to be
uncorrelated and 𝐸{𝑒(𝑡)} = 0, Φ𝜅 (𝜔) ≻ 0 if and only if Λ𝑚 ≻ 0 (which follows
from Λ𝑑 ≻ 0 and Λ𝑢 ≻ 0, which is assumed) and Φ𝑟 (𝜔) ≻ 0. The condition
Φ𝑧 (𝜔) ≻ 0 reduces to Φ𝑟 (𝜔) ≻ 0.

11.G Proof of Lemma 11.27

If 𝐴(𝑞−1) and 𝐵(𝑞−1) are left coprime within M, then 𝑑 (𝑞−1) is exactly the
common factor between 𝐴𝑚22(𝑞−1) and 𝐵𝑚22(𝑞−1) withinM. The polynomial
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𝑑 (𝑞−1) is constructed such that all common factors of 𝐷𝑢 (𝑞−1) and𝑊𝑁
𝑢𝑑
(𝑞−1) are

taken out, such that there are no common terms created in 𝐴𝑚21(𝑞−1). Therefore,
if 𝑊𝑁

𝑢𝑑
(𝑞−1) and 𝐵(𝑞−1) are left coprime, then also 𝐴𝑚21(𝑞−1) and 𝐵𝑚22(𝑞−1)

are left coprime within M̆. Similar, 𝐷𝑑 (𝑞−1) is constructed such that 𝐷𝑑 (𝑞−1)
and

[
𝐺𝑁 (𝑞−1) 𝑊𝑁

𝑑𝑢
(𝑞−1) 𝑅𝑁 (𝑞−1)

]
are left coprime withinM. Hence, there

are no common terms created in
[
𝐴𝑚11(𝑞−1) 𝐴𝑚21(𝑞−1)

]
and 𝐵𝑚11(𝑞−1) and

therefore,
[
𝐴𝑚11(𝑞−1) 𝐴𝑚21(𝑞−1)

]
and 𝐵𝑚11(𝑞−1) are left coprime withinM.

Hence, 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1) are left coprime.

11.H Proof of Lemma 11.28

From Lemma 11.27, Condition 1. implies that 𝐴𝑚(𝑞−1) and 𝐵𝑚(𝑞−1) are left
coprime. According to Kailath (1980), the LMFD of any two polynomial and left
coprime matrices is unique up to a premultiplication with a unimodular matrix

𝑈 (𝑞−1) :=
[
𝑈11(𝑞−1) 𝑈12(𝑞−1)
𝑈21(𝑞−1) 𝑈22(𝑞−1)

]
. With proper 𝐺 (𝑞) and strictly proper𝑊𝑑𝑢 (𝑞)

and𝑊𝑢𝑑 (𝑞), it follows from (11.39a) that

lim
𝑧→∞

𝐴𝑚(𝑧) =
[
𝐼 − 𝐺0 0

0 𝐴0

]
.

To preserve this structure, 𝑈12(𝑞−1) = 0 and 𝑈21(𝑞−1) = 0. To satisfy Con-
dition 2., 𝑈22(𝑞−1) is restricted to be diagonal and to preserve symmetry (and
connectivity) of 𝐴(𝑞−1),𝑈22(𝑞−1) is further restricted to have equal elements. To
satisfy Condition 3.,𝑈11(𝑞−1) = 𝐼 (Weerts et al., 2018b, Proposition 2).

11.I Proof of Proposition 11.31

Condition 4. implies that 𝑇𝑤𝑟 (𝑞, 𝜃) is nonzero. According to Lemma 11.28,
Condition 1.-3. imply that 𝐴𝑚(𝑞−1, 𝜂) and 𝐵𝑚(𝑞−1, 𝜂) are unique within M
up to a scalar factor 𝛼 ∈ R+ for 𝐴𝑚22(𝑞−1, 𝜂) and 𝐵𝑚22(𝑞−1, 𝜂). This leads
directly to unique 𝐺 (𝑞, 𝜃), 𝑅(𝑞, 𝜃), and 𝑊𝑑𝑢 (𝑞, 𝜃). According to Lemma 11.30,
Condition 5. implies that 𝐴(𝑞−1, 𝜃), 𝐵(𝑞−1, 𝜃), and𝑊𝑢𝑑 (𝑞, 𝜃) are uniquely found
from 𝛼𝐴𝑚21(𝑞−1, 𝜂), 𝛼𝐵𝑚22(𝑞−1, 𝜂), and 𝛼𝐴𝑚22(𝑞−1, 𝜂). It also implies that
𝛼𝑑 (𝑞−1, 𝜂) is uniquely determined and as 𝑑 (𝑞−1, 𝜂) is monic, 𝛼 is found as well.
As 𝐴(𝑞−1, 𝜃) is uniquely found, Φ�̄� (𝜔, 𝜃) gives unique 𝐹 (𝑞, 𝜃), Λ𝑢 (𝜃) and Λ𝑑 (𝜃);
see Proposition 8.15.



338 Mixed linear dynamic networks

11.J Proof of Theorem 11.33

Condition 1. ensures that 𝜃0 is a minimum of the criterion (11.20), because the
predictor filters (11.53) can be rewritten as

𝑊𝑤 (𝑞, 𝜃) =
[
𝐻 (𝑞, 𝜃)

(
𝐼 − 𝐺∞(𝜃)

)
0

0 𝐹 (𝑞, 𝜃)𝐴0(𝜃)

]−1 [
𝐼 − 𝐺 (𝑞, 𝜃) −𝑊𝑑𝑢 (𝑞, 𝜃)
−𝑊𝑢𝑑 (𝑞, 𝜃) 𝐴(𝑞−1, 𝜃)

]
,

𝑊𝑟 (𝑞, 𝜃) =
[
𝐻 (𝑞, 𝜃)

(
𝐼 − 𝐺∞(𝜃)

)
0

0 𝐹 (𝑞, 𝜃)𝐴0(𝜃)

]−1 [
𝑅(𝑞, 𝜃) 0

0 𝐵(𝑞−1, 𝜃)

]
,

with 𝐴0 := lim𝑧←∞ 𝐴(𝑧) and 𝐺∞ := lim𝑧→∞𝐺 (𝑧). According to Proposi-
tion 11.25, Condition 2. ensures that 𝑇𝑤𝑟 (𝑞, 𝜃) and Φ�̄� (𝜔, 𝜃) can uniquely be
recovered from data (Chapter 8). Finally, according to Proposition 11.31, Con-
dition 3. implies that the parameterised model 𝑀 (𝜃) can uniquely be recovered
from 𝑇𝑤𝑟 (𝑞, 𝜃) and Φ�̄� (𝜔, 𝜃).

11.K Proof of Lemma 11.35

Due to the diagonality of 𝑄(𝑞−1), the LFMD is unique up to a premultiplication
with a diagonal polynomial matrix. To preserve symmetry and connectivity of
𝐴(𝑞−1) and (𝑃(𝑞−1)), this diagonal matrix is further restricted to have equal
elements. The remaining polynomial term is restricted to be constant to preserve
the order of 𝐴(𝑞−1). As 𝑄(𝑞−1) and 𝑃(𝑞−1) are unique up to a scalar factor, so is
𝐴(𝑞−1) = 𝑄(𝑞−1) − 𝑃(𝑞−1).

11.L Proof of Proposition 11.36

According to Lemma 11.34, Condition 1.-6. imply that 𝐺𝑚(𝑞, 𝜂), 𝑅𝑚(𝑞, 𝜂),
𝐻𝑚(𝑞, 𝜂), and Λ𝑚(𝜂) are uniquely found, from which 𝐺 (𝑞, 𝜃) = 𝐺𝑚11(𝑞, 𝜂),
𝑊𝑑𝑢 (𝑞, 𝜃) = −𝐺𝑚12(𝑞, 𝜂), 𝑅(𝑞, 𝜃) = 𝑅𝑚11(𝑞, 𝜂), 𝐻 (𝑞, 𝜃) = 𝐻𝑚11(𝑞, 𝜂), and
Λ𝑑 (𝜃) = Λ𝑚11(𝜂) are uniquely extracted. In addition, we determine 𝐺𝑢 (𝑞, 𝜂) =
𝐺𝑚22(𝑞, 𝜂), �̃�𝑢𝑑 (𝑞, 𝜂) = 𝐺𝑚21(𝑞, 𝜂), 𝑅𝑢 (𝑞, 𝜂) = 𝑅𝑚22(𝑞, 𝜂), and 𝐻𝑢 (𝑞, 𝜂) =
𝐺𝑚11(𝑞, 𝜂).

According to Lemma 11.35, 𝐺𝑢 (𝑞, 𝜂) leads to 𝑄(𝑞−1, 𝜃), 𝑃(𝑞−1, 𝜃) and
𝐴(𝑞−1, 𝜃) that are unique up to a scalar factor 𝛼 ∈ R+. Using (11.42), this
leads to unique 𝐹 (𝑞, 𝜃) and 𝐵(𝑞−1, 𝜃), 𝑊𝑢𝑑 (𝑞, 𝜃), and Λ𝑢 (𝜃) = 𝑄0(𝜃)Λ𝑚22(𝜂)
that are also unique up to this scalar factor 𝛼. Condition 7. fixes the scaling factor.
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11.M Proof of Theorem 11.37

Condition 1. ensures that 𝜃0 is a minimum of the criterion (11.20), because the
predictor filters (11.60) can be rewritten as

𝑊𝑤 (𝑞, 𝜃) =
[
𝐻 (𝑞, 𝜃)

(
𝐼 − 𝐺∞(𝜃)

)
0

0 𝐹 (𝑞, 𝜃)𝐴0(𝜃)

]−1 [
𝐼 − 𝐺 (𝑞, 𝜃) −𝑊𝑑𝑢 (𝑞, 𝜃)
−𝑊𝑢𝑑 (𝑞, 𝜃) 𝐴(𝑞−1, 𝜃)

]
,

𝑊𝑟 (𝑞, 𝜃) =
[
𝐻 (𝑞, 𝜃)

(
𝐼 − 𝐺∞(𝜃)

)
0

0 𝐹 (𝑞, 𝜃)𝐴0(𝜃)

]−1 [
𝑅(𝑞, 𝜃) 0

0 𝐵(𝑞−1, 𝜃)

]
,

with 𝐴0 := lim𝑧←∞ 𝐴(𝑧) and 𝐺∞ := lim𝑧→∞𝐺 (𝑧). According to Proposi-
tion 11.25, Condition 2. ensures that 𝑇𝑤𝑟 (𝑞, 𝜃) and Φ�̄� (𝜔, 𝜃) can uniquely be
recovered from data (Chapter 8). Finally, according to Proposition 11.36, Con-
dition 3. implies that the parameterised model 𝑀 (𝜃) can uniquely be recovered
from 𝑇𝑤𝑟 (𝑞, 𝜃) and Φ�̄� (𝜔, 𝜃).

11.N Proof of Proposition 11.39

This proof consists of proving that each condition in Proposition 11.39 can replace
Condition 4. of Proposition 11.18, that is Condition 4. of Lemma 11.16, which
implies Condition 4. of Lemma 11.15, which is used to proof that �̆�(𝑞−1) and
�̆� (𝑞−1) can uniquely be determined from Ῠ(𝑞−1), with Ῠ(𝑞−1) = �̆�(𝑞−1) +
�̆� (𝑞−1).

First, remember that �̆� (𝑞−1) adopt the zero structure of 𝑁𝐺 (𝑞−1), which is the
same as the zero structure of 𝐺 (𝑞). Hence, the conditions of Proposition 11.39
imply, respectively, that for the polynomial �̆�𝑖 𝑗 (𝑞−1) ≠ 0 either one of the following
conditions is satisfied:

1. �̆� 𝑗𝑖 (𝑞−1) = 0 within M̆.

2. 𝑤𝑖 (𝑡) has no connection to the ground node and within M̆, �̆�𝑖𝑘 (𝑞−1) = 0 for
all 𝑘 ≠ 𝑗 for which �̆�𝑘𝑖 (𝑞−1) ≠ 0.

3. 𝑤 𝑗 (𝑡) has no connection to the ground node and within M̆, �̆�𝑘 𝑗 (𝑞−1) = 0
for all 𝑘 ≠ 𝑖 for which �̆� 𝑗𝑘 (𝑞−1) ≠ 0.

Second, observe that �̆�(𝑞−1) consists of a Laplacian polynomial matrix plus
a diagonal polynomial matrix, where the latter contains the dynamics of the con-
nections to the ground. This means that if node 𝑤𝑖 (𝑡) does not have a connection
to the ground, then �̆�𝑖𝑖 (𝑞−1) = ∑𝐿

𝑗=1,𝑘≠𝑖 �̆�𝑖 𝑗 (𝑞−1) = ∑𝐿
𝑗=1,𝑘≠𝑖 �̆� 𝑗𝑖 (𝑞−1).
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Condition 1. of Proposition 11.39 is equivalent to Condition 1. above and
Condition 4. of Proposition 11.18. It holds that for 𝑖, 𝑗 = 1, 2, . . . , 𝐿:

1. �̆�𝑖 𝑗 (𝑞−1) = �̆�𝑖 𝑗 (𝑞−1), if �̆�𝑖 𝑗 = 0.

2. �̆�𝑖 𝑗 (𝑞−1) = �̆� 𝑗𝑖 (𝑞−1), if �̆�𝑖 𝑗 ≠ 0.

Condition 2. of Proposition 11.39 is equivalent to Condition 2. above, for
which it holds that �̆�𝑖𝑖 (𝑞−1) = ∑𝐿

𝑘=1,𝑘≠𝑖 �̆�𝑖𝑘 (𝑞−1). As �̆�𝑖 𝑗 (𝑞−1) = �̆�𝑖 𝑗 (𝑞−1) +
�̆�𝑖 𝑗 (𝑞−1), 𝑖, 𝑗 = 1, 2, . . . , 𝐿, it holds that for the polynomial �̆�𝑖 𝑗 (𝑞−1) ≠ 0:

1. �̆�𝑖𝑖 (𝑞−1) = �̆�𝑖𝑖 (𝑞−1), because 𝑤𝑖 (𝑡) has not connection to the ground node.

2. �̆�𝑖𝑘 (𝑞−1) = �̆�𝑖𝑘 (𝑞−1), if �̆�𝑖𝑘 = 0, 𝑘 = 1, 2, . . . , 𝐿.

3. �̆�𝑖𝑘 (𝑞−1) = �̆�𝑘𝑖 (𝑞−1), if �̆�𝑖𝑘 ≠ 0 and �̆�𝑘𝑖 = 0, 𝑘 = 1, 2, . . . , 𝐿.

4. �̆�𝑖 𝑗 (𝑞−1) = �̆�𝑖𝑖 (𝑞−1) −∑𝐿
𝑘=1,𝑘≠𝑖, 𝑗 �̆�𝑖𝑘 (𝑞−1).

from which we find all �̆�𝑖 𝑗 (𝑞−1), 𝑗 = 1, 2, . . . , 𝐿. We can repeat this for all 𝑖 to
find �̆�(𝑞−1). Then �̆� (𝑞−1) = �̆�(𝑞−1) − Ῠ(𝑞−1) and thus, �̆�(𝑞−1) and �̆� (𝑞−1) can
uniquely be determined from Ῠ(𝑞−1).

Similar, Condition 3. of Proposition 11.39 is equivalent to Condition 3. above,
for which it holds that �̆� 𝑗 𝑗 (𝑞−1) = ∑𝐿

𝑘=1,𝑘≠ 𝑗 �̆�𝑘 𝑗 (𝑞−1). As �̆�𝑖 𝑗 (𝑞−1) = �̆�𝑖 𝑗 (𝑞−1) +
�̆�𝑖 𝑗 (𝑞−1), 𝑖, 𝑗 = 1, 2, . . . , 𝐿, it holds that for the polynomial �̆�𝑖 𝑗 (𝑞−1) ≠ 0:

1. �̆� 𝑗 𝑗 (𝑞−1) = �̆� 𝑗 𝑗 (𝑞−1), because 𝑤 𝑗 (𝑡) has not connection to the ground node.

2. �̆�𝑘 𝑗 (𝑞−1) = �̆�𝑘 𝑗 (𝑞−1), if �̆�𝑘 𝑗 = 0, 𝑘 = 1, 2, . . . , 𝐿.

3. �̆�𝑘 𝑗 (𝑞−1) = �̆� 𝑗𝑘 (𝑞−1), if �̆�𝑘 𝑗 ≠ 0 and �̆� 𝑗𝑘 = 0, 𝑘 = 1, 2, . . . , 𝐿.

4. �̆�𝑘 𝑗 (𝑞−1) = �̆� 𝑗 𝑗 (𝑞−1) −∑𝐿
𝑘=1,𝑘≠𝑖, 𝑗 �̆�𝑘 𝑗 (𝑞−1).

from which we find all �̆�𝑖 𝑗 (𝑞−1), 𝑖 = 1, 2, . . . , 𝐿. We can repeat this for all 𝑗 to
find �̆�(𝑞−1). Then �̆� (𝑞−1) = �̆�(𝑞−1) − Ῠ(𝑞−1) and thus, �̆�(𝑞−1) and �̆� (𝑞−1) can
uniquely be determined from Ῠ(𝑞−1).



12 | Conclusions and future
research

Physical linear networks consist of interconnected systems that exist in the
natural and physical world. Conclusions on the developed model structures
and identification tools for parameter estimation in physical linear networks are
discussed. In addition, directions for future research are suggested.

12.1 Conclusions

12.1.1 Research objective

Science helps us to understand the extremely complicated world. It enables us to
predict future outcomes and even to influence them. We can contribute to this
knowledge by studying the properties of systems. The enormous technological
developments in the last decades led to larger and more complex systems. With
this, it has become more valuable to analyse interconnections between systems
as well. Physical linear networks consist of interconnected systems that exist in
the natural and physical world. These networks occur every where around us and
therefore, they are examined in many research areas. To study these networks, their
behaviour has to be described. This is accomplished by creating a mathematical
model by exploiting the laws of nature and by utilising experimental data. This
resulted in the research objective of this thesis:

Develop model structures and identification tools for parameter estimation in
physical linear networks.

The process of achieving this research objective comprises several topics.
These topics led to the subquestions of this research. Each chapter contributed
to one or more of these subquestions. These answers to the research questions
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are discussed next, after which we reflect on how the research objective has been
achieved.

12.1.2 Model structure

The model structure for identification of physical linear networks is extensively
studied in Chapter 2-5. The selection of candidate models is one of the first steps
in identification. The model structure for identification of physical linear networks
has to be such that it captures the specific characteristics of physical components
and that it incorporates the network topology.

In Chapter 2, twelve mathematical models from the literature are analysed.
Based on the above-mentioned criteria and the generality of the network model,
the polynomial model, module representation, and interaction-oriented model are
selected as the most attractive ones for the modelling and identification of physical
linear networks. From the examination of the mathematical models, it follows that
dynamic networks can be represented on different structural levels, where each
level includes different amounts of detailed information. The relations between
these structures learn us how to include more detailed information in the network
model and how to view a network model on a less detailed level by excluding
detailed information.

In Chapter 3, the relations between network structures that represent dynamics
in the vertices and network structures that represent dynamics in the edges show
that these representations are closely related. Therefore, research domains using
either one of the representations can also exploit theory that has been developed
for the other representation. As a result, a wide range of theory is applicable to
each research domain.

In addition, the mappings between the interaction-oriented model used in
the network control field and the module representation used in the network
identification domain imply that these models are strongly connected and therefore,
the theory for one model can be mapped into the other model. This means that
the control field and the identification domain are closely related and can use each
other’s results by applying these mappings.

In Chapter 4, the module dynamic network is introduced by extending the mod-
ule representation by allowing for self-loops and multiple-input multiple-output
(MIMO) modules. This new network model incorporates state-space forms as a
special case and it allows for zooming in into and zooming out of the network. As
a result, a state-space form can always be converted into a module representation
without losing any information (and vice versa), provided that MIMO modules
are allowed in the module dynamic networks.
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In Chapter 5, the diffusively coupled linear network model is developed to
describe various physical linear networks. This multivariable polynomial model
is capable of incorporating the symmetric (undirected) nature of the physical
components and the linear diffusive couplings, by particular structural properties.
As a result, this new network model is used in the remaining research to describe
physical linear networks for identification purposes.

12.1.3 Network identifiability

Network identifiability concerns the problem of distinguishing network models in
a network model set. The aim is to find a network model in the model set that
uniquely describes the data. If multiple solutions are available, it is not possible
to make the connection between the estimated parameters and the coefficients of
the physical components that are present in the physical network. The approach
to deriving conditions for network identifiability is based on uniqueness of the
matrix-fraction descriptions (MFDs), which describes a transfer function matrix
in terms of a numerator and denominator polynomial matrix. To be precise, the
transfer function matrix that describes the behaviour from excitation signals to
measured signals is considered. For the diffusively coupled linear networks that
we use, the denominator polynomial matrix has the particular structural properties
that it is symmetric and nonmonic.

In Chapter 8 and 9, four sufficient conditions are presented for the identifiab-
ility of the network model for full network identification in the situation that all
manifest signals are measured. These conditions include: left coprimeness of the
numerator and denominator polynomial matrix; the presence of at least one excit-
ation signal; a structural diagonality constraint on the numerator and denominator
polynomial matrix; and a single parameter constraint. These conditions are a gen-
eralisation of the conditions that hold for MFDs with a monic and nonsymmetric
polynomial denominator matrix, where monicity replaces the last two conditions
and the symmetry property.

The condition on coprimeness and excitation are rather weak conditions that
are easy to satisfy. The parameter constraint can, for example, be on the input
dynamics, which are often known. Therefore, this condition is not restrictive
either. This leaves the diagonality constraint as the most restrictive condition for
network identifiability. This condition is still only sufficient, which means that
even network models that do not satisfy this condition can be network identifiable.

In Chapter 10, the identifiability conditions are extended to the dual case in
which all manifest signals are excited instead of measured. In addition, conditions
for network identifiability in the case of partial instrumentation of the manifest
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signals are derived from combining the full measurement and full excitation cases.
The experimental conditions that have to be satisfied in the partial instrumentation
case are that all manifest signals have to be either measured or excited and that
at least one manifest signal has to be both measured and excited. This results in
flexible instrumentation options for arriving at network identifiability.

In comparison with the module representation, the conditions that are sufficient
for network identifiability for the diffusively coupled network model are very
simple. This is because they do not include algebraic conditions verifying the
rank of particular transfer functions from external signals to internal node signals
or related graph-based checks on vertex-disjoint paths. This is entirely due to the
structural properties of the diffusive couplings between the node signals, which is
reflected by the symmetry in the polynomial matrix 𝐴(𝑞−1).

12.1.4 Full network identification

Full network identification includes the identification of all dynamics in the net-
work and identification of the network topology. Two different approaches are
taken to achieve this objective.

In Chapter 7, a physical linear network, which is characterised by undirected
interconnections, is represented as a directed dynamic network by the module rep-
resentation, for which many methods for full network identification are available
in the literature. The resulting module representation has particular structural
properties reflected in shared parameters among modules. In addition, all mod-
ules have direct feedthrough terms leading to algebraic loops. Therefore, the
Joint-direct method is applied for consistent identification. In the identifiability
analysis of this method it is not possible to incorporate dependent parameterisa-
tions among modules, which leads to very strong conditions: every manifest node
signal is required to be measured ànd excited.

In Chapter 8, the newly developed polynomial model is used for describing
physical linear networks, which is much better capable of incorporating the sym-
metric characteristics of the diffusive couplings. A prediction error identification
method is used in which the one-step-ahead predictor uses both internal node sig-
nals and external excitation signals as prediction input signals, which is the same
as in the Joint-direct method. This approach leads to consistent identification of
all dynamics in the network.

Decisions on the topology can be made based on the identified dynamics: if
some dynamics are (almost) zero, we may assume that they are actually not there.
In addition, it is also possible to include knowledge on the presence or absence
of interconnections in the identification procedure. Known dynamics, which do



12.1 Conclusions 345

not have to be identified anymore, can also be incorporated in the identification
procedure.

The resulting optimisation problem is nonconvex. A multistep algorithm,
consisting of multiple convex steps, is developed for solving the optimisation
problem. This algorithm leads to the global optimum and therefore, consistent
parameter estimates are obtained. In this way, the algorithm is also suitable for
larger networks, which typically contain more parameters. This algorithm also
allows for incorporating prior knowledge of the dynamics or topology of the
network.

In Chapter 10, the experimental set-up for full network identifications is
reconsidered and relaxed. In previous results, presented in Chapter 8, it is assumed
that all manifest node signals are measured, leading to the requirement of a single
excitation signal. In the most general situation, it is sufficient to either measure
or excite each manifest node signal and to both measure and excite (at least) one
manifest node signal. This enables a very flexible sensor and actuator allocation
scheme, where sensors and actuators can be interchanged.

12.1.5 Subnetwork identification

In subnetwork identification, the objective is to identify only the dynamics (and
possibly the topology) of a small part of the network. This problem is particu-
larly relevant for large networks, where it might not be interesting to identify all
dynamics, or where it is impossible to satisfy the instrumentation conditions. The
subnetwork identification problem is different from local identification in directed
dynamic networks. In directed dynamic networks, the target is typically a single
transfer function from one node to another, described by a single module. In
contrast, in physical linear networks, the target is the coupling between two (or
more) nodes, described by a subnetwork. In this way, the symmetry property of
the physical components is maximally exploited, as explained in Chapter 7 and 9.

Immersion is used to eliminate latent node signals from the network. In
literature, the so-called parallel-path and loop condition has been derived to keep
the target dynamics invariant in the module representation. In the most simple case,
this leads to the condition that all output nodes of the target dynamics and all nodes
with a direct path to the output nodes of the target dynamics (i.e. all in-neighbours
of the output nodes) have to be measured. The parallel-path and loop condition for
physical linear networks reduces to the very simple condition that only the nodes
of the subnetwork and their neighbour nodes have to be measured to keep the
subnetwork dynamics invariant. This is similar to the aforementioned condition
for module representations, because in a physical network, each neighbour node
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is by definition an in-neighbour. As a result, subnetwork identification really
becomes a local identification problem in the sense that a subnetwork can be
identified on the basis of the node signals of the subnetwork and their neighbour
node signals, and that all other node signals can be discarded.

12.1.6 Directed interconnections

Directed dynamics can be present in physical linear networks as, for example, con-
trollers or nonsymmetric components, such as diodes and one-way check valves.
These directed dynamics can be included in diffusively coupled linear network
models, leading to mixed dynamic networks that contain both undirected and
directed interconnections. Several different mixed dynamic networks can be dis-
tinguished, which are composed of two basic mixed dynamic network structures.
This means that understanding the two basic mixed dynamic networks also leads
to insight into more complex mixed dynamic networks.

In Chapter 11, the two basic mixed dynamic networks are modelled. In
addition, conditions for consistent identification of the full network are derived
and algorithms for performing the identification are proposed. Both the undirected
as well as the directed dynamics can be identified, along with parts of the topology
(depending on the structure of the mixed dynamic network). Mixed dynamic
networks can be modelled in the polynomial framework, which is more dedicated
to undirected networks, or in the module representation, which is more dedicated
to directed networks. In either case, the conditions for consistency are closely
related to the ones for full network identification in that same framework for
undirected networks or directed networks, respectively.

In Chapter 7, it is already shown that describing undirected interconnections in
the module representation naturally leads to shared dynamics among the modules.
It is not yet possible to incorporate dependent parameterisations in the consistency
analysis of the module representation. This leads to conservative conditions
for consistent identification of mixed dynamic networks. On the other hand,
the polynomial framework is capable of describing both directed and undirected
interconnections. In the analysis of consistent identification, the characteristic
properties of undirected and directed interconnections can be accounted for. This
makes the polynomial framework more attractive than the module representation
for describing mixed dynamic networks.
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12.1.7 Research results

The model structure that is most attractive for parameter estimation in physical
linear networks is the polynomial diffusively coupled linear network model that
we developed in Chapter 5. This model structure is capable of incorporating the
characteristic symmetry property of the diffusive couplings that naturally emerges
from the symmetric nature of physical components. It also represents the topology
of the network in its polynomial matrices. This model structure can be used to
describe various physical processes and other dynamic networks with undirected
couplings.

The identification tools that we developed and used include multi-path and
single-path immersion, data informativity conditions, network identifiability con-
ditions, MFDs, experimental instrumentation conditions, one-step-ahead predict-
ors, prediction-error identification methods, and (multi-step) least-squares al-
gorithms. These tools support the identification of physical linear networks,
which include the following objectives:

1. Identification of all dynamics of a physical linear network and, optionally,
the network topology.

2. Identification of the dynamics of a subnetwork of a physical linear network
and, optionally, the subnetwork topology.

3. Identification of all (undirected and directed) dynamics of a mixed dynamic
network and, possibly, (some parts of) the network topology.

A priori knowledge on dynamics and topology can be incorporated in the corres-
ponding identification procedures.

Research result. A symmetric, nonmonic polynomial model
structure and a number of identification tools have been
developed for physical linear networks and are used for
identification of physical linear networks.

So, are we done? In some sense yes and, as there is always room for im-
provement, some directions for future research are suggested in the following
section.
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12.2 Future research

12.2.1 Modelling

The model structure that we developed for the identification of physical linear
networks is close to the physics, because it is able to incorporate the characteristic
properties that emerge from natural and physical laws. Nevertheless, there remain
some aspects of physical networks that cannot be accounted for with this model
structure.

The developed model structure is able to describe a physical linear network
with a single network model that remains the same for different experiments with
the same type of input and output signals. However, for experiments with different
physical quantities of input and output signals, the network model changes. This
means that the developed model structure is co-determined by the chosen quantity
for the external input signals and the internal node signals (which are candidate
output signals). One direction for future research is to develop a model structure
that is fully independent of the experimental setup, such that there is no separation
of input and output signals and that multiple quantities can be chosen as node
signals.

The kernel representation in the behavioural approach (see Definition 1.18
and 2.38) is capable of doing this and it is even closer to the physics than the de-
veloped polynomial model structure. This representation is also able to describe
the physical linear network for different experiments and data sets. In this model-
ling framework, one can also investigate how to combine data sets from different
experiments. This can, for example, be used to obtain network identifiability with
data sets from different experiments when it is not possible to obtain network iden-
tifiability with a data set from a single experiment. In the behavioural approach,
there is also theory available to separate the signals into input and output signals,
which can, for example, be used for describing experiments with specific types
of input and output signals (Willems, 1986a; Polderman and Willems, 1998), see
also Section 2.4.10. The resulting representation is very similar to the model
structure that is developed in this thesis.

Nonlinear components cannot be included in the model structure yet, only
nonsymmetric linear behaviour can be accounted for by mixed dynamic networks.
In addition, there are interconnection structures that are based on nonlinear phys-
ical laws, such as the ideal gas law. A direction for future research is to find a
modelling framework that is able to incorporate these nonlinear dynamics and
interconnections. In order to do so, one has to go back to the basics of modelling
and, again, the behavioural approach is able to do so (Willems, 2007). A general
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mathematical representation is expected to be more extensive than a linear one.

12.2.2 Identification

Ongoing developments

The identification theory that we developed for physical linear networks provides
solutions to many identification problems. These results can be improved further
and also extended to networks with less ideal circumstances. As the network iden-
tification theory for the module representation is still ahead of the identification
theory for physical networks, it is advised to keep an eye on the developments in
that research area and to convert those results to physical linear networks.

Full network identification

For full network identification, the multistep algorithm can be improved by using
the high-order model of the first step to estimate the innovation instead of the
parameters. This method is also able to take rank-reduced noise into account
(Fonken et al., 2022). Many algorithms have been developed for the simplified
ARX-like situation. The main difference between these algorithms lies in the
parameterisation and consequently, in the formulation of the optimisation problem
for minimising the cost function. The next step is to implement and compare
these algorithms to see which one is the most attractive in terms of accuracy
and computation time. The corresponding strategy can be adopted by the more
advanced ARMAX-like situation.

Known dynamics can be incorporated in the identification procedure. However,
physical linear networks exist in continuous-time, but are identified in discrete-
time. This means that known component values have to be translated to the
discrete-time parameters. In addition, the discrete-time model is an approximation
of the continuous-time model and therefore, some information is lost during the
discretisation, which leads to errors in the identification. The discretisation method
can be improved, by using a higher-order approximation instead of the first-order
backward shift that is currently used.

Continuous-time identification is an even more attractive approach, because
then discretisation is not needed at all. For continuous-time identification, the
frequency domain is preferred over the time domain, because no derivatives of
signals have to be determined. With the local polynomial method (LPM), a non-
parametric estimation of the frequency response function is obtained, which is in a
second step used to find a parametric estimation of the network model (Schoukens
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et al., 2009; Pintelon et al., 2010a,b; Gevers et al., 2011). Preliminary results on
the implementation and simulation of continuous-time frequency-domain iden-
tification of diffusively coupled linear networks are under development (Liang,
2023). Here, LPM is used followed by a parametric identification step tailored
to the diffusively coupled network structure to estimate the parameters of the full
network or a subnetwork.

In continuous-time modelling and identification of physical networks, addi-
tional aspects are relevant. One of them is the intersample behaviour, which
is typically band-limited for physical systems. Further, discretisation with the
backward-shift method automatically results in an invertible 𝐴0 for the discrete-
time representation of a connected network. However, for the continuous-time
representation, the 𝐴0 of a connected network is not necessarily invertible, while
the currently available identification analysis is strongly based on this property.
Additional research is required to translate the identification analysis of discrete-
time diffusively coupled linear network models to continuous-time.

Another extension to full network identification is to include the preservation of
network properties, such as dissipativity, stability, and semipositive-definiteness
of the polynomial matrices. For this, the first step is to prove that higher-order
diffusively coupled linear networks are dissipative and stable. This has been
proven for second-order models, but not yet for higher-order models, although it is
believed to be true. Second, a way must be found to incorporate these properties
in the identification procedure, such that the identified network model will always
satisfy these properties.

Network identifiability

Including specific structural condition in the identifiability analysis has been stud-
ied by van Waarde et al. (2018) for first-order state-space models with known input
and output matrices, which are a special case of the diffusively coupled linear net-
work model developed in this thesis. The identifiability conditions are derived
based on the Markov parameters and lead to partial instrumentation conditions,
for full network and subnetwork identifiability. The instrumentation conditions
are translated into graphical conditions based on an algorithm of Hogben (2010).
It would be interesting to extend these results to higher-order diffusively coupled
linear networks and compare them with the identifiability results derived in this
thesis. The Markov parameters for the (discrete-time and the continuous-time) dif-
fusively coupled network model have already been derived using theory of Holzel
and Bernstein (2012). The next step is to proof that the network dynamics can
uniquely be obtained from the Markov parameters. Further research is necessary
to complete this proof.
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Local network identification

For subnetwork identification, the full immersed network is considered to be
identifiable. The main reason for this is that the direct feedthrough terms in
the whole immersed network are needed to identify the subnetwork dynamics.
However, only the target subnetwork is required to be consistently identified and
therefore, only the subnetwork needs to be identifiable. Revising the identifiability
conditions in this context, might lead to more relaxed identifiability conditions for
subnetwork identification. As only the dynamics of the subnetwork is of interest,
the other dynamics in the immersed network is latent and may be approximated
as long as the subnetwork dynamics remains identifiable. To this end, the latent
dynamics can be approximated with lower-order models or by nonparametric
models. The latter can, for example, be achieved with kernel-based methods
(Ramaswamy et al., 2021).

An alternative local identification problem concerns the identification of a
single interaction between two nodes, described by the polynomial 𝑎𝑖 𝑗 (𝑞−1) =
𝑎 𝑗𝑖 (𝑞−1), 𝑖 ≠ 𝑗 . This is different from the subnetwork identification problem,
where the coupling between node signals is described by a subnetwork. For
identifying a single interaction, three approaches can be distinguished. First,
the subnetwork of 𝑤𝑖 (𝑡) and 𝑤 𝑗 (𝑡) is identified, which includes the dynamics
𝑎𝑖 𝑗 (𝑞−1) and 𝑎 𝑗𝑖 (𝑞−1). Second, the subnetwork of only 𝑤𝑖 (𝑡) is identified, where
the polynomial 𝑎𝑖 𝑗 (𝑞−1) is also identified, because it describes neighbouring
dynamics. For the same reason, the identification of the subnetwork of only 𝑤 𝑗 (𝑡)
leads to the polynomial 𝑎 𝑗𝑖 (𝑞−1). In the latter two cases, an extra node can be
immersed, leading to less dynamics that has to be identified. On the other hand,
using less information also increases the variance of the estimates.

Variance

Analysing the variance of the estimates (or the deviation from the mean value)
is especially interesting for local identification problems. All three proposed
approaches will lead to consistent estimates, and therefore, a trade-off between
computational costs, variance, and experimental costs has to be made. Related
to this is the fact that it is currently unclear how helpful it is for identification to
include known dynamics or use more excitation signals than necessary. While
consistency can already be obtained without this extra information, the variance
is expected to improve. However, an extensive analysis of the variance is still
missing for the full network identification problem.
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12.2.3 Extension

For mixed dynamic networks containing both undirected and directed dynamics,
the modelling and identification results presented in this thesis are preliminary and
can be further developed. The currently available results can be extended to more
advanced combinations of mixed dynamic networks. The critical part in obtaining
conditions for consistent identification lies in the identifiability analysis. Com-
paring the identifiability conditions in the polynomial framework and the module
representation is necessary to improve the insight in the differences between these
conditions and modelling frameworks. To apply the results to real-life set-ups, the
proposed algorithms have to be implemented and simulation examples have to be
created to illustrate the results.

12.2.4 Application

Applying the comprehensive modelling and identification theory that is developed
in this thesis, to practice is hardly done yet. Some simulation examples are created
to illustrate the results, but applying the developed algorithms to real-life set-ups
is only under development. In practice, testing and fault detection and diagnostics
seem to be the most relevant applications for identification in dynamic networks.

In-circuit testing of printed circuit board assemblys (PCBAs) is one application
that has already been examined. A PCBA is a physical linear network that can
be modelled in the diffusively coupled network model that has been developed in
this thesis. It has been motivated that considering the PCBA as a physical linear
network and incorporating the network structure into the identification procure,
drastically reduces the experiment cost and improves the identification and test
results (Meijer, 2021).

Fault detection and diagnostics in wafer scanners is another application that
has been considered. A digital twin can be built in the modelling framework
developed in this thesis. Subsequently, this digital twin can be used to generate
faulty data to learn about faults that can occur in the wafer scanners. This data is
used to develop fault detection and diagnostics algorithms (Nikitas, 2023). In these
wafer scanners, physical components with undirected behaviour (such as bodies
and screws) are combined with digital components with directed behaviour (such
as controllers). Therefore, modelling and identification theory for mixed dynamic
networks is important for achieving fault detection. In addition, model validation
has a valuable role in this whole, because it supports in deciding whether a fault
occurs in the network (Shi, 2023).

Pipelines and electric power networks are other evident application domains.
These physical linear networks are naturally described by diffusively coupled linear
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networks and therefore, they are very suitable for applying the theory developed
in this thesis.

A Matlab app and toolbox are under development for dynamic network iden-
tification to make all the developed theory accessible to (industrial) users (SYS-
DYNET, 2023). This app and toolbox features a user-friendly graphical interface
for manipulating and analysing dynamic networks. It is currently being extended
to include identification algorithms as well. It includes theory from data-driven
modelling in the module representation and will be extended with the results of
this thesis regarding modelling and identification of physical linear networks and
mixed dynamic networks.

12.2.5 Reverse questions

As theoretical researchers, we, typically search for conditions to proof an objective
can be obtained. In other words, we search for the circumstances that are necessary
or sufficient for achieving a theoretically formulated goal. For example, we look
for sufficient conditions for full network identifiability or for the locations for
sensors and actuators to be able to identify a particular part of the network.

From the industry’s point of view, a relevant question might be the exact
reverse: considering given circumstances, what can be achieved? If the experi-
mental set-up is limited to these sensor and actuator locations, which part of the
network can still be identified? These reverse questions are less natural for us as
theoretical researchers to ask, but might be equivalently important for industry. In
answering these questions, the solutions to the original problems will of course
help.
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Publiekssamenvatting

Modellering en identificatie van fysische lineaire netwerken

Netwerken zijn essentiële onderdelen van onze natuurlijke en fysieke wereld.
Ze zijn overal om ons heen en zijn diep doorgedrongen in onze hedendaagse
samenleving. Fysische netwerken bestaan uit onderling verbonden systemen uit
de natuurlijke en fysieke wereld. Enkele voorbeelden van deze netwerken zijn:
interacties in ecologische systemen; industriële procesinstallaties die chemicaliën
produceren; pijpleidingen om vloeistoffen of gas over lange afstanden te trans-
porteren; printplaten en chips; en robots die met elkaar communiceren.

In de afgelopen decennia hebben enorme technologische ontwikkelingen
geleid tot grotere en complexere systemen, waardoor het waardevoller is geworden
om netwerken te bestuderen en hun gedrag te begrijpen. Dit wordt gedaan
door een wiskundige beschrijving te maken door gebruik te maken van de
natuurwetten (modellering) en experimentele gegevens (identificatie). Ons doel
is: Het ontwikkelen van hulpmiddelen voor het modelleren en identificeren van
fysische lineaire netwerken.

In dit proefschrift richten we ons op fysische lineaire netwerken, die worden
gekenmerkt door symmetrische diffuse koppelingen. Een diffuse koppeling is een
relatie tussen signalen die gebaseerd is op het delen van informatie in plaats van op
een vooraf gedefinieerde richting van de informatiestroom. Dit type koppeling is
vanzelfsprekender voor fysische netwerken, terwijl ingangs-uitgangsrelaties van-
zelfsprekender zijn voor digitale systemen, zoals regelaars. Fysische netwerken
worden vaak verbonden met digitale regelaars, wat leidt tot gemengde netwerken.

Het uiteindelijke doel is om natuurwetten te combineren met gemeten signalen
om zo de interne verbindingsstructuur van het netwerk, al het gedrag of een
selectie van gedrag in het netwerk te bepalen. Hiervoor hebben we een geschikte
vorm (model) voor het beschrijven van het netwerk nodig. Bestaande modellen
voor het beschrijven van systemen zijn niet voldoende geschikt voor fysische
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netwerken. Daarom ontwikkelen we een nieuw model dat zowel de karakteristieke
eigenschappen van fysische systemen als de verbindingsstructuur van het netwerk
kan integreren.

Dan ontwikkelen we identificatiehulpmiddelen en -algoritmes voor het bepalen
van het gedrag (en interne verbindingsstructuur) in fysische lineaire netwerken,
waarin we de structurele eigenschappen van fysische netwerken opnemen. De
voorwaarden voor het uitvoeren van een consistente identificatie zijn zeer een-
voudig vergeleken met de voorwaarden die gelden voor netwerken met een
ingangs-uitgangsvorm. Deze eenvoud is volledig te danken aan de structurele
eigenschappen die maximaal kunnen worden benut. Daarnaast ontwikkelen we
een algoritme voor het oplossen van het resulterende concave optimalisatieprob-
leem. Dit algoritme bestaat uit meerdere convexe stappen die leiden tot consistente
resultaten, ook voor grote netwerken.

De vereiste experimentele opstelling voor het bepalen van het gedrag van een
deelnetwerk is opnieuw zeer eenvoudig: Een enkel excitatiesignaal is voldoende
en alleen de knooppuntsignalen van het deelnetwerk en de direct naastgelegen
knooppuntsignalen dienen gemeten te worden. Alle andere knooppuntsignalen
kunnen genegeerd worden, waardoor identificatie van een deelnetwerk zeer lokaal
in het netwerk kan worden opgelost.

De analyse van de uniciteit van de netwerkbeschrijving resulteert in flexibele
instrumentatievoorwaarden voor de experimentele opstelling. Voor het identi-
ficeren van het volledige netwerkgedrag is het voldoende om ieder knooppunt-
signaal te meten of te exciteren en een knooppuntsignaal zowel te meten als te
exciteren.

Tenslotte concentreren we ons op fysische lineaire netwerken die gerichte
componenten, zoals digitale regelaars, bevatten. Het gerichte gedrag vernietigt de
symmetrie-eigenschap van het netwerkmodel, wat wordt verwerkt in de identific-
atieprocedure door de voorwaarden en de procedure aan te passen.

We kunnen concluderen dat we een nieuw model hebben ontwikkeld voor het
identificeren van fysische lineaire netwerken, met als voordeel dat de karakter-
istieke eigenschappen van fysische systemen en de verbindingsstructuur van het
netwerk wordt geïntegreerd. Met de ontwikkelde modelvorm en identificatiehulp-
middelen kunnen ingenieurs onder eenvoudige voorwaarden en met goedkope
experimenten het gedrag en de interne verbindingsstructuur van een fysisch lin-
eair netwerk of deelnetwerk bepalen.
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1. Het elimineren van signalen uit een dynamisch netwerk model via immersie kan leiden
tot het kopiëren van dynamiek op meerdere locaties en veranderingen in de topologie
van het netwerk. Door modules met meerdere ingangen en uitgangen toe te staan,
wordt het kopiëren van dynamiek vermeden en blijft de topologie van het netwerk
behouden (Hoofdstuk 4).

2. Fysische componenten vertonen vaak bidirectioneel gedrag dat in beide richtingen
hetzelfde is. Onderlinge verbindingen van fysische componenten kunnen met veel
verschillende modellen beschreven worden. In polynoomrepresentaties, wordt het
symmetrische kenmerk van fysische componenten eenvoudigweg weergegeven met
een symmetrische polynoommatrix, terwijl in de modulerepresentatie deze symmetrie-
eigenschap verborgen is in complexere afhankelijkheden tussen overdrachtsfuncties.
Dit geeft de voorkeur aan polynoomrepresentaties voor het beschrijven van fysische
netwerken (Hoofdstuk 5).

3. Om de dynamiek van een deelnetwerk van en diffuusgekoppeld netwerk invariant te
houden, is het nodig om alle naburige knooppuntsignalen van het deelnetwerk te meten
of te exciteren. Deze eis vloeit voort uit de directe doorkoppeltermen die aanwezig
zijn in iedere koppeling in het netwerk. Het is een zeer eenvoudige en gemakkelijke
instrumentatieconditie die tegelijkertijd de keuzevrijheid in het plaatsen van actuatoren
en sensoren beperkt (Hoofdstukken 7, 9 en 10).

4. Voor de identificeerbaarheid van dynamische netwerken met directe doorkoppelter-
men in alle verbindingen, die worden beschreven in de modulerepresentatie, is het
voldoende om alle knooppuntsignalen te meten en te exciteren. Voor de identi-
ficeerbaarheid van diffuusgekoppelde netwerken met directe doorkoppeltermen in alle
verbindingen, die in het polynoommodel worden beschreven, is het voldoende om alle
knooppuntsignalen te exciteren óf te meten en om slechts een knooppuntsignaal te
meten en te exciteren. De identificeerbaarheidsvoorwaarden in het laatste geval zijn
veel minder streng en vereisen minder instrumenten (Hoofdstukken 8 en 10).

5. Een promotietraject wordt vaak geadverteerd als een onderzoekstraject waarbij per-
soonlijke ontwikkeling centraal staat. Uiteindelijk worden alleen de technische
aspecten beoordeeld, terwijl persoonlijke groei noodzakelijk is voor professionele
ontwikkeling. Bovendien kan de persoonlijke groei die een promovendus doormaakt
veel meer bijdragen bij aan de maatschappij dan het verrichte onderzoek.

6. Presentaties worden in het algemeen gedefinieerd als een lezing of voordracht, waarbij
iemand een groep mensen toespreekt en daarbij gebruik maakt van slides. Het doel
van presenteren is het overbrengen van informatie en daarmee is presenteren feitelijk
een vorm van lesgeven. Presenteren en onderwijzen hebben het gezamenlijke doel
van informatieoverdrachten daarom vereisen presentaties een hoge mate van interactie
met het publiek.



7. In de huidige financieringsstructuur van onderzoeksprojecten is een promotieon-
derzoek in principe een individueel traject. Multidisciplinaire projecten worden
steeds populairder, mede door de mogelijkheid om samen te werken tussen discip-
lines. Samenwerken en ideeën bespreken met experts uit dezelfde discipline kan
leiden tot meer inzicht, snellere identificatie van problemen en eerdere ontdekking van
oplossingen. Grotere gefinancierde projecten bestaande uit meerdere onderzoekslijnen
in hetzelfde vakgebied bieden onderzoekers deze mogelijkheid.

8. De huidige arbeidsmarkt vraagt een grote mate van flexibiliteit en aanpassingsver-
mogen van medewerkers, bijvoorbeeld voor veranderende werkomgevingen, flex-
werkplekken en kantoortuinen. Voor een groeiend aantal werknemers met autisme
of adhd kan dit leiden tot een slechte concentratie en veel stress, wat resulteert in
onderpresteren en ziekte. Dit kan verhinderd worden door een passende werkplek te
creëren met bijvoorbeeld een vaste werkplek, duidelijke afspraken, weinig prikkels en
de mogelijkheid tot ontspannen.

9. Leren vindt vaak plaats door grenzen te verleggen en buiten de comfortzone te stappen.
Mensen voor wie dit laatste lastig is, worden daardoor geremd in hun mogelijkheden.
Dit kan doorbroken worden door een veilige werkomgeving te realiseren. Dit vereist
dat behoeftes gecommuniceerd worden met leidinggevenden en door hen geaccepteerd
en begrepen worden. Open communicatie en een aangename werkomgeving zijn
noodzakelijk voor aanpassingen en ondersteuning, die zorgen voor gelijke kansen en
eerlijke ontwikkelingsmogelijkheden.

10. Ontwikkeling omvat het aanleren van nieuwe vaardigheden. Maar om nieuwe vaar-
digheden te kunnen blijven aanleren, is het net zo belangrijk om deze vaardigheden
te leren automatiseren en toepassen in verschillende situaties. Alleen door een goede
balans tussen deze beide manieren van leren, kun je eindeloos groeien.

11. Het doel van studenten is vaak het behalen van het examen, terwijl het leerproces
voorafgaande aan het examen het belangrijkste is. Op dezelfde manier kan het doel van
een promovendus het behalen van de doctorstitel zijn, terwijl het meest waardevolle
deel bestaat uit de doorgemaakte persoonlijke en professionele ontwikkeling en de
geleverde onderzoeksbijdragen. Het slagen voor een examen of het behalen van
een titel is slechts een beloning en waardering voor het leertraject. De makkelijke
weg leidt tot resultaat, terwijl de moeilijke weg uitdagingen, leermogelijkheden en
ontwikkelingskansen biedt.

12. In de huidige maatschappij wordt niet iedereen gelijkwaardig behandeld, wat kan
leiden tot een onaangename omgeving en ongelijke kansen. Het creëren van een
prettige omgeving voor een grote verscheidenheid aan mensen (in leeftijd, gender,
huidskleur, religie, enzovoort) vereist een veilige sfeer. Een inclusievere maatschap-
pij kan gerealiseerd worden door een gelijkwaardigere behandeling van iedereen,
diversiteit meer te bespreken en het vergroten van onderlinge acceptatie en respect.

13. Het combineren van simpele dingen is niet per definitie makkelijk.
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1. Eliminating signals from a dynamic network model via immersion can lead to copying
dynamics at several locations and changes in the topology of the network. Allowing
modules with multiple inputs and outputs avoids copying dynamics and preserves the
topology of the network (Chapter 4).

2. Physical components often exhibit bidirectional behaviour that is the same in both dir-
ections. Interconnections of physical components can be described with many models.
In polynomial models, the symmetric characteristic of physical components is simply
represented by a symmetric polynomial matrix, while in the module representation,
this symmetry property is hidden in more complex dependencies between transfer
functions. This favours polynomial models for describing physical networks (Chapter
5).

3. To keep the dynamics of a subnetwork of a diffusively coupled network invariant, it
is necessary to measure or excite all neighbour node signals of the subnetwork. This
requirement follows from the bidirectional property of the couplings in the network.
It is a very simple and easy instrumentation condition, which, at the same time, limits
the freedom of choice in actuators and sensors placement (Chapters 7, 9, and 10).

4. For identifiability of dynamic networks with direct feedthrough terms in all intercon-
nections, that are described in the module representation, it is sufficient to measure and
excite all node signals. In contrast, for identifiability of diffusively coupled networks
with direct feedthrough terms in all couplings, that are described in the polynomial
model, it is sufficient to excite ór measure all node signals and to measure and excite
only one node signal. The identifiability conditions in the latter case are far less strict
and require fewer instruments (Chapters 8 and 10).

5. A PhD trajectory is often advertised as a research trajectory in which personal devel-
opment plays a central role. In the end, only the technical aspects are assessed, while
personal growth is necessary for professional development. Moreover, the personal
development of a PhD student may contribute much more to society than the conducted
research.

6. Presentations are generally defined as a reading or speech, in which someone speaks
up to a group of people while using slides. The purpose of presenting is to convey
information and with that, presenting is actually a form of teaching. Presenting and
teaching have the common goal of transferring information and therefore, presentations
require a high level of interaction with the audience.

7. In the current funding structure of research projects, a PhD research is in principle an
individual trajectory. Multidisciplinary projects become more popular, partly because
of the possibility to collaborate across disciplines. Collaborating and discussing ideas
with experts from the same discipline can lead to better insight, faster identification
of problems and earlier discovery of solutions. Larger funded projects consisting
of multiple research tracks in the same area of expertise give this opportunity to
researchers.



8. The current labour market demands a high degree of flexibility and adaptability from
employees, for example, for changing working environments, flexible workplaces and
open-plan offices. For a growing number of employees with autism or adhd, this
can lead to poor concentration and a lot of stress, resulting in underperformance and
illness. This can be prevented by creating an appropriate workplace with, for example,
a fixed workplace, clear agreements, few stimuli and the opportunity to relax.

9. Learning often takes place by pushing boundaries and stepping outside the comfort
zone. For people for whom the latter is difficult, are therefore limited in their possib-
ilities. This can be broken by creating a safe working environment. This requires that
needs are communicated with managers and accepted and understood by them. Open
communication and a pleasant working environment are necessary for adjustments
and support, which ensure equal opportunities and fair development opportunities.

10. Development includes learning new skills. But to continue learning new skills, it
is equally important to learn to automate these skills and to apply them in different
situations. Only with a good balance between these two ways of learning, you can
grow endlessly.

11. The goal of students is often to pass the exam, while the learning process leading
up to the exam is the most important part. Similarly, the goal of a PhD student may
be to obtain the doctorate degree, while the most valuable part consists of the under-
gone personal and professional development and the provided research contributions.
Passing an exam or obtaining a title is merely a reward and appreciation for the learn-
ing process. The easy path leads to results, while the difficult path offers challenges,
learning opportunities, and development possibilities.

12. In today’s society, not everyone is treated fairly and equally, which can lead to an
unpleasant environment and unequal opportunities. Creating a pleasant environment
for a wide variety of people (in age, gender, skin colour, religion and so on) requires a
safe atmosphere. A more inclusive society can be achieved by treating everyone more
equally, discussing diversity more, and increasing mutual acceptance and respect.

13. Combining simple things is not necessarily easy.
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