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1Introduction – dynamic networks 

Decentralized process control Smart power grid

www.envidia.com

Autonomous driving Metabolic network

Hillen (2012)

Pierre et al.  (2012)

Hydrocarbon reservoirs

Mansoori (2014)



2Introduction 

Overall trend: 

(a)  The dynamic systems to be handled become 

(large-scale) interconnected systems of systems

(c)  The related monitoring, control and optimization problems

become distributed, multi-agent type

(d)  Data is “everywhere”, big data era

(e)  Modelling problems will need to consider this

(b)  With hybrid dynamics (continuous / switching)
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Distributed / multi-agent control: 

With both physical and communication links between 

systems      and controllers      

How to address data-driven modelling problems in such a setting?      
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The classical (multivariable) identification problems
[1] 

:

open loop closed loop

We have to move from a fixed and known configuration

to deal with and exploit structure in the problem.

[1] Ljung (1999), Söderström and Stoica (1989), Pintelon and Schoukens (2012)

Identify a plant model      on the basis of measured signals u, y  (and possibly r),

focusing on continuous LTI dynamics.
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• Introduction and motivation

• Dynamic networks for data-driven modeling

• Single module identification – known topology 

• Network identifiability

• Extensions

• Discussion

Contents 
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Dynamic networks for data-driven modeling



7Dynamic networks

State space representations

Module representation

(Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,…)

(Van den Hof, Dankers, Gevers, Bazanella,…)

• E.M.M. Kivits and P.M.J. Van den Hof, SYSID2018.
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ri    external excitation

vi process noise

wi node signal

Dynamic network setup 
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Assumptions:

• Total of L nodes

• Network is well-posed and stable

• Modules may be unstable

• Disturbances are stationary stochastic and can 

be correlated

(I ¡ G0)¡ 1

• P.M.J. Van den Hof, A.G. Dankers, P.S.H. Heuberger and X. Bombois. Automatica, 2013.

Dynamic network setup 
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(I ¡ G0)¡ 1

Many new identification questions 

can be formulated:

Dynamic network setup 

• Identification of a local module (known toplogy)

• Identification of the full network

• Topology estimation

• Sensor and excitation selection

• Fault detection

• Experiment design 

• Distributed identification

• ..........
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(I ¡ G0)¡ 1

Early literature

• Topology detection: Materassi, Innocenti, Salapaka, Yuan, Stan, 

Warnick, Goncalves, Sanandaji, Vincent, Wakin, Chiuso, Pillonetto

exploring Granger causality, Bayesian networks, Wiener filters

• Subspace algorithms for spatially distributed systems with 

identical modules (Fraanje, Verhaegen, Werner), or

non-identical ones (Torres, van Wingerden, Verhaegen, Sarwar, Salapaka, Haber)

Here: focus on prediction error methods and concepts for identification

in generally structured (linear) dynamic networks, including non-measured

disturbances.

Dynamic network setup 
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Single module identification - known topology
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For a network with known topology:

• Identify        on the basis of measured signals

• Which signals to measure?
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• Identify the full MIMO system:

Options for identifying a module:

from measured     and     .  

Global approach with “standard” tools

(I ¡ G0)¡ 1
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• Identify a local (set of) module(s)

from a (sub)set of measured       and 

Local approach with “new” tools and structural conditions 

Single module identification
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• Identifiying is part of a 4-input, 1-output problem        

Single module identification
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• Identifiying is part of a 4-input, 1-output problem        

Single module identification
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20Identification methods

• 2-stage/projection/IV (indirect) method

Consistency; no need for noise models; no ML 

Excitation through external excitation signals only 

4-input 1-output problem

to be addressed by a 

closed-loop identification method

P.M.J. Van den Hof, A.G. Dankers, P.S.H. Heuberger and X. Bombois. Automatica, 49, 2994-3006, 2013.
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• Direct PE method 

ML properties

Disturbances     uncorrelated over channels

Excitation through all signals
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4 input nodes to be measured:

Can we do with less?
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• An immersed network is constructed by removing node signals, but leaving the 

remaining node signals invariant

• Modules and disturbance signals are adapted

• Abstraction through variable elimination (Kron reduction[2] in network theory).

Network immersion [1]

Single module identification

[2]  F. Dörfler and F. Bullo, IEEE Trans. Circuits and Systems I (2013)

[1]  A. Dankers. PhD Thesis, 2014.
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Immersion

Immersing       

When does immersion leave

invariant?
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When does immersion leave

invariant?

Proposition

Consider an immersed network where       and       are retained.

Then                      if

• A.G. Dankers, P.M.J. Van den Hof, A.G. Dankers, X. Bombois and P.S.C. Heuberger, IEEE Trans. Automatic Control, 61, 937-952, 2016.

a) Every path                   other than the one through goes through 

a node that is retained. (parallel paths)
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b) Every path                   goes through a node that is retained. 

(loops around the output)

Immersion
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parallel paths, and loops around the output
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Single module identification
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parallel paths, and loops around the output
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parallel paths, and loops around the output
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Choose      as an additional input (to be retained)
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parallel paths, and loops around the output
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parallel paths, and loops around the output
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parallel paths, and loops around the output
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Choose      as an additional input, to be retained

w1 w2

w6 w7

w8

G21 w3G32 w4G43 w5G54

G61 G37G26 G27

G12 G23 G34 G45

G18 G84

G76

v6 v7

v1 v2
v3 v4 v5

v8

r1

r4 r5

r8

0 0

0

0 0

00

0 0

0

00

0

0 0

Single module identification



34

w1 w2

w6 w7

w8

G21 w3G32 w4G43 w5G54

G61 G37G26 G27

G12 G23 G34 G45

G18 G84

G76

v6 v7

v1 v2
v3 v4 v5

v8

r1

r4 r5

r8

0 0

0

0 0

00

0 0

0

00

0

0 0

Conclusion:

With a 3-input, 1 output model we can

consistently identify

The immersion reasoning is sufficient but not necessary to arrive at a

consistent estimate, see e.g. Linder and Enqvist[1]

[1] J. Linder and M. Enqvist. Int. J. Control, 90(4), 729-745, 2017.

Single module identification
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For a consistent and minimum variance estimate (direct method) 

there is one additional condition: 

• absence of confounding variables, [1][2]

i.e. correlated disturbances on inputs and outputs

Conclusion:

With a 3-input, 1 output model we can

consistently identify

with an indirect method.

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009;   [2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.

Single module identification



36Confounding variables

Back to the (classical) closed-loop problem:

Direct identification of        can be consistent

provided that v1 and v2 are uncorrelated          

w1 w2G G43

H2H1

G12  G G34

v2

r1

G

0

0

21

12

v1

r2

In case of correlation between v1 and v2:

joint prediction of       and       leads to ML results,           

related to the classical joint-io method [3,4]

Joint estimation of         and        :  Joint–direct method [1,2]

[1] P.M.J. Van den Hof, A.G. Dankers, H.H.M. Weerts, Proc. 56th IEEE CDC, 2017;  [2] H.H.M. Weerts et al., Automatica, 2018b, to appear.

[3] T.S. Ng, G.C. Goodwin, B.D.O. Anderson, Automatica, 1977;        [4] B.D.O. Anderson and M. Gevers, Automatica 1982.  



37Confounding variables

[1]  A.G. Dankers, P.M.J. Van den Hof, D. Materassi and H.H.M. Weerts, Proc. IFAC World Congress, 2017.

• (not measured) now acts as a disturbance

• For minimum variance: MISO direct method

loses consistency if there are confounding variables
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• This requires:  

uncorrelated with  

and no path from        to an input   
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Confounding variables

Solutions while restricting to MISO models:

[1]  A.G. Dankers, P.M.J. Van den Hof, D. Materassi and H.H.M. Weerts, Proc. IFAC World Congress, 2017.

(a) Including the node        as additional 

input, or

(a) Block the paths from        to inputs/

outputs by measured nodes, to be 

used as additional inputs.
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Solutions:

[1]  A.G. Dankers, P.M.J. Van den Hof, D. Materassi and H.H.M. Weerts, Proc. IFAC World Congress, 2017.

(b)  Block the paths from        to 

input       by measuring node

to be used as additional 

inputs.w1 w2
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Confounding variables

Relation with d-separation in graphs

(Materassi & Salapaka)



40Summary single module identification

• Single module identification in a network with known topology

• Methods for consistent and minimum variance module estimation

• Excitation through excitation signals only or through all external signals

• For direct method / ML results: treatment of confounding variables / 

correlated disturbances

• A priori known modules can be accounted for
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Network Identifiability 



42Network identifiability

Question:    Can the dynamics/topology of a network be uniquely determined 

from measured signals wi ,ri ?

Required:    Can different dynamic networks be distinguished from each other

from measured signals wi ,ri ?
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blue = unknown

red   = known

Starting assumption: all signals wi ,ri that are present are measured 



43Network identifiability 

Network:

The network is defined by:

a network model is denoted by:

rank p

and a network model set by:

dim(r) = K

represents prior knowledge on the network models: 

• topology

• disturbance correlation

• known modules 

• the signals used for identification  



44Network identifiability 

How to define identifiability?

Clasically: 

In the network situation:

• Property of a model set

• Unique mapping between parameters and models 

• Property of a model set

• Unique mapping between models and identified objects

Weerts et al, SYSID2015; Weerts, Van den Hof and Dankers, Automatica, 2018a;

Denote:

Objects that are uniquely identified from data        :



45Network identifiability 

Weerts et al, SYSID2015; Weerts, Van den Hof and Dankers, Automatica, 2018;

Denote the parametrized objects:

Definition

A network model set        is network identifiable at

if for all models                         :

is network identifiable if this holds for all models                   

Objects identified from data:



46Network identifiability 

is network identifiable at if there exists a 

nonsingular and rational such that 

Proposition (full excitation case) (based on Goncalves & Warnick, 2008)

has a leading diagonal matrix,

that is full rank for all . 

Let

Goncalves and Warnick, IEEE-TAC, 2008; Weerts et al, SYSID2015; 

Gevers and Bazanella, 2017; Weerts, Van den Hof and Dankers, Automatica, 2018a;

Note:                can be fully unknown (no prior knowledge on topology)

# independent external signals # nodes



47Example 5-node network 

There are noise-free nodes, and      and      are expected to be correlated 

fully parametrized



48Example 5-node network 

There are noise-free nodes, and      and      are expected to be correlated 
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There are noise-free nodes, and      and      are expected to be correlated 
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There are noise-free nodes, and      and      are expected to be correlated 



51Example 5-node network 

There are noise-free nodes, and      and      are expected to be correlated 

We can not arrive at a diagonal structure in 



52Network identifiability 

Observations:

b) The condition is typically fulfilled if each node       is excited by

an independent external signal (either an or a     )

a) A simple test can be performed to check the condition

c) The result is rather conservative:

1. Restricted to having full row rank

2. No account of prior knowledge in 
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• For each row i the transfer matrix                has full row rank, with

: 

Network identifiability 

Theorem 3 – identifiability for general model sets

If:

H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers, Automatica, Vol. 89, pp. 247-258, 2018. 

Then is network identifiable at                          if and only if

• Each row of                                  has at most K+p parametrized entries

a) Each unknown entry in           covers the set of all proper rational 

transfer functions

b) All unknown entries in            are parametrized independently



54Example 5-node network 

Number of parametrized entries in each row < K+p = 5

If we restrict the structure of         : 

First condition: 



55Example 5-node network 

Row 1: Full row rank of transfer:

Rank condition: 



56Example 5-node network 

Verifying the rank condition for               :   

w5 w1G15 w4G21 w3G34

G12 G23

G53

v1 v2 v3r4

w2

r5

Evaluate the rank of the transfer matrix       



57Vertex-disjoint paths 

Theorem (Van der Woude, 1991; Hendrickx et al. 2017; Weerts et al., 2018)

The generic rank of a transfer function matrix between 

inputs r and nodes w 

is equal to the maximum number of vertex-disjoint paths between 

the sets of inputs and outputs.

A (path-based) check on the topology of the network can decide 

whether the conditions for identifiabiltiy are satisfied generically.



58Vertex-disjoint paths
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61Vertex-disjoint paths
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Generic rank = 3



62Example 5-node network 

Verifying the rank condition for               :   

Evaluate the rank of the transfer matrix from        to      

w5 w1G15 w4G21 w3G34

G12 G23

G53

v1 v2 v3r4

w2

r5

2 vertex-disjoint paths  full row rank 2



63Example 5-node network 

Verifying the rank condition for               :   

Evaluate the rank of the transfer matrix from        to      

w5 w1G15 w4G21 w3G34

G12 G23

G53

v1 v2 v3r4

w2

r5

# unknown modules                # external signals uncorrelated with 

For each row    



64Summary identifiability 

Identifiability of network model sets is determined by

• Presence and location of external signals, and

• Correlation of disturbances

• Prior knowledge on modules

• Fully applicable to the situation             (i.e. reduced-rank noise)

So far:

• All node signals assumed to be measured

• Identifiability of the full network model – conditions per row/output node 
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Extensions:

2. When topology is known and every node is excited, 

which nodes need to be measured for unique identification 

of a particular module on the basis of        ?

(Hendrickx, Gevers & Bazanella, CDC 2017, ArXiv 2018)

3. When all nodes are measured, 

what are conditions for identifiability of a particular module 

in a network model set?
(Weerts, Van den Hof, Dankers, CDC 2018)

Summary identifiability 

1. Relation back to state space structures,
(Hayden, Yuan, Goncalves, TAC 2017)  
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Extensions



67Reduced rank noise

Question:

How to identify (parts of) a dynamic network, 

when the process noise is of reduced rank (p < L)?

Typically considered in dynamic factor models[1]

[1]  M. Deistler, W. Scherrer and B.D.O. Anderson, 2015  
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Weighted LS criterion:

Properties:

• Consistent estimate under regularity conditions,

• But for minimum variance an optimal     has to be chosen

Typical choice, leading to minimum variance estimator:

but in our situation       is singular

Typical: multi-output situation

Reduced rank noise
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Solution: Parametrize dependencies in innovation process, and

include them as constraints:

Identification criterion becomes a 

constrained quadratic problem

with ML properties for Gaussian noise.

H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers, IFAC World Congress, 2017; Automatica, 2018b to appear.

Some parameters can be estimated variance-free.

Reformulation of Cramer-Rao bound

Reduced rank noise



70Sensor noise

Identification of a single module under the influence of sensor noise:

• Typical tough problem in open-loop identification (errors-in-variables)

• In dynamic networks this may become more simple due to 

the presence of multiple (correlated) node signals



71Sensor noise

Solution strategies:

1. Apply a correlation (IV) approach to mitigate the effect of sensor noise

 choosing instrument signals (based on topology)

2. Combine:

1. a correlation (IV) technique to mitigate sensor noise, and

2. BJ noise models for addressing process noise.

A.G. Dankers, P.M.J. Van den Hof et al.; Automatica, 62 (2015), 39-50. 



72Discussion

• Dynamic network identification: 

intriguing research topic with many open questions

• The (centralized) LTI framework is only just the beginning

• Further move towards data-aspects related to distributed identification and control  

• Move towards including nonlinear dynamics (M. Schoukens, SYSID2018) 

• From classical PE methods to regularized (kernel-based) approaches
(Everitt, Bottegal, Hjalmarsson, 2018; Ramaswamy et al, CDC 2018)

• Algorithmic aspects for large-scale data handling 
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