Data-driven modeling in linear dynamic networks

Paul M.J. Van den Hof

7th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys18), 28 August 2018, Groningen, The Netherlands

www.sysdynet.eu

European Research Council

Technische Universiteit **Eindhoven** University of Technology

Introduction – dynamic networks

Decentralized process control

Factories

Autonomous driving

www.envidia.com

Metabolic network

Hillen (2012)

Hydrocarbon reservoirs

Mansoori (2014)

Introduction

Overall trend:

- (a) The dynamic systems to be handled become (large-scale) interconnected systems of systems
- (b) With hybrid dynamics (continuous / switching)
- (c) The related monitoring, control and optimization problems become distributed, multi-agent type
- (d) Data is "everywhere", big data era
- (e) Modelling problems will need to consider this

Introduction

Distributed / multi-agent control:

With both physical and communication links between systems G_i and controllers C_i

How to address data-driven modelling problems in such a setting?

Introduction

The classical (multivariable) identification problems^[1]:

Identify a plant model \hat{G} on the basis of measured signals u, y (and possibly r), focusing on *continuous LTI dynamics*.

We have to move from a fixed and known configuration to deal with and exploit *structure* in the problem.

[1] Ljung (1999), Söderström and Stoica (1989), Pintelon and Schoukens (2012)

- Introduction and motivation
- Dynamic networks for data-driven modeling
- Single module identification known topology
- Network identifiability
- Extensions
- Discussion

Dynamic networks for data-driven modeling

Dynamic networks

State space representations

(Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,...)

Module representation

(Van den Hof, Dankers, Gevers, Bazanella,...)

Assumptions:

- Total of *L* nodes
- Network is well-posed and stable
- Modules may be unstable
- Disturbances are stationary stochastic and can be correlated

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0 & \cdots & G_{1L}^0 \\ G_{21}^0 & 0 & \cdots & G_{2L}^0 \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0 & G_{L2}^0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} + R^0 \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_K \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_L \end{bmatrix}$$
$$w_L \end{bmatrix}$$
$$w = G^0 w + R^0 r + v \implies w = (I - G^0)^{-1} (R^0 r + v)$$

Many new identification questions can be formulated:

- Identification of a local module (known toplogy)
- Identification of the full network
- Topology estimation
- Sensor and excitation selection
- Fault detection

.

- Experiment design
- Distributed identification

Early literature

- **Topology detection**: Materassi, Innocenti, Salapaka, Yuan, Stan, Warnick, Goncalves, Sanandaji, Vincent, Wakin, Chiuso, Pillonetto exploring Granger causality, Bayesian networks, Wiener filters
- Subspace algorithms for spatially distributed systems with identical modules (Fraanje, Verhaegen, Werner), or non-identical ones (Torres, van Wingerden, Verhaegen, Sarwar, Salapaka, Haber)

Here: focus on **prediction error methods** and concepts for identification in generally structured (linear) dynamic networks, including **non-measured disturbances**.

Single module identification - known topology

16

TU/e

For a network with known topology:

- Identify G_{21}^0 on the basis of measured signals
- Which signals to measure?

Options for identifying a module:

• Identify the full MIMO system:

 $w = (I - G^0)^{-1} [R^0 r + v]$

from measured r and w .

Global approach with "standard" tools

• Identify a local (set of) module(s) from a (sub)set of measured r_k and w_ℓ

Local approach with "new" tools and structural conditions

• Identifying G_{21}^0 is part of a 4-input, 1-output problem

• Identifying G_{21}^0 is part of a 4-input, 1-output problem

Identification methods

4-input 1-output problem to be addressed by a closed-loop identification method

Direct PE method

$$arepsilon(t, heta) = H(q, heta)^{-1}[w_2(t) - \sum_{k\in\mathcal{D}_2}G_{2k}(q, heta)w_k(t)]$$

ML properties Disturbances v_i uncorrelated over channels Excitation through all signals

2-stage/projection/IV (indirect) method

$$\varepsilon(t,\theta) = H(q,\theta)^{-1} [w_2(t) - \sum_{k \in \mathcal{D}_2} G_{2k}(q,\theta) w_k^{\mathcal{R}}(t)]$$

Consistency; no need for noise models; **no ML** Excitation through external excitation signals only

Network immersion^[1]

- An immersed network is constructed by removing node signals, but leaving the remaining node signals invariant
- Modules and disturbance signals are adapted
- Abstraction through variable elimination (Kron reduction^[2] in network theory).

Immersion

Immersion

Immersion

• A.G. Dankers, P.M.J. Van den Hof, A.G. Dankers, X. Bombois and P.S.C. Heuberger, IEEE Trans. Automatic Control, 61, 937-952, 2016.

parallel paths, and loops around the output

parallel paths, and loops around the output

parallel paths, and loops around the output

parallel paths, and loops around the output

parallel paths, and loops around the output

V_6 V_7 G_{76}^{0} W_7 W_6 G_{61}^{0} G_{26}^{0} G_{37}^{0} G_{27}^{0} V_3 V_5 14 V_4 r_5 V_1 V_2 G_{32}^{0} G_{43}^{0} G_{54}^{0} G_2^0 **W**5 W⊿ W₂ r_1 G_{34}^{0} G_{45}^{0} G_{23}^{0} G_{12}^{0} G_{84}^{0} G_{18}^{0} ₩8× r_8 V_8

parallel paths, and loops around the output

Conclusion: With a 3-input, 1 output model we can consistently identify G_{21}^0

The immersion reasoning is *sufficient* but not *necessary* to arrive at a consistent estimate, see e.g. Linder and Enqvist^[1]

Conclusion:

With a 3-input, 1 output model we can consistently identify G_{21}^0 with an indirect method.

For a consistent and minimum variance estimate (direct method) there is one additional condition:

- absence of **confounding variables**, ^{[1][2]}
- i.e. correlated disturbances on inputs and outputs
Back to the (classical) closed-loop problem:

Direct identification of G_{21}^0 can be consistent provided that v_1 and v_2 are uncorrelated

In case of correlation between v_1 and v_2 : joint prediction of w_1 and w_2 leads to ML results,

$$\begin{bmatrix} \varepsilon_1(t,\theta) \\ \varepsilon_2(t,\theta) \end{bmatrix} = H(q,\theta)^{-1} \begin{bmatrix} w_1(t) - G_{12}(q,\theta)w_2(t) \\ w_2(t) - G_{21}(q,\theta)w_1(t) \end{bmatrix}$$

Joint estimation of G_{21}^0 and G_{12}^0 : Joint–direct method ^[1,2]

related to the classical joint-io method [3,4]

[1] P.M.J. Van den Hof, A.G. Dankers, H.H.M. Weerts, *Proc. 56th IEEE CDC*, 2017; [2] H.H.M. Weerts et al., *Automatica*, 2018b, to appear.
[3] T.S. Ng, G.C. Goodwin, B.D.O. Anderson, Automatica, 1977; [4] B.D.O. Anderson and M. Gevers, Automatica 1982.

• w_7 (not measured) now acts as a disturbance

• For minimum variance: MISO direct method loses consistency if there are confounding variables

• This requires:

and no path from w_7 to an input

[1] A.G. Dankers, P.M.J. Van den Hof, D. Materassi and H.H.M. Weerts, *Proc. IFAC World Congress*, 2017.

Solutions while restricting to MISO models:

- (a) Including the node w_7 as additional input, or
- (a) Block the paths from w_7 to inputs/ outputs by measured nodes, to be used as additional inputs.

Solutions:

(b) Block the paths from w_7 to input w_1 by measuring node w_4 to be used as additional inputs.

Relation with d-separation in graphs (Materassi & Salapaka)

Summary single module identification

- Single module identification in a network with known topology
- Methods for **consistent** and **minimum variance** module estimation
- Excitation through excitation signals only or through all external signals
- For direct method / ML results: treatment of confounding variables / correlated disturbances
- A priori known modules can be accounted for

Question: Can the dynamics/topology of a network be *uniquely determined* from measured signals w_i, r_i ?

Required: Can different dynamic networks be *distinguished* from each other from measured signals w_i, r_i ?

Starting assumption: all signals w_i , r_i that are present are measured

Network:
$$w = G^0 w + R^0 r + H^0 e$$
 $cov(e) = \Lambda^0$, rank p
 $w = (I - G^0)^{-1} [R^0 r + H^0 e]$ $dim(r) = K$

The network is defined by: $(G^0, R^0, H^0, \Lambda^0)$

a network model is denoted by: $M = (G, R, H, \Lambda)$

and a network model set by:

 $\mathcal{M} = \{M(heta) = (G(heta), R(heta), H(heta), \Lambda(heta)), heta \in \Theta\}$

represents prior knowledge on the network models:

- topology
- disturbance correlation
- known modules
- the signals used for identification

 $w = (I - G^0)^{-1} [R^0 r + H^0 e]$ Denote: $w = T^0_{wr} r + \bar{v}$ $ar{v} = T^0_{we} e$ $\Phi^0_{ar{v}} = T^0_{we} (e^{i\omega}) \Lambda^0 T^0_{we} (e^{i\omega})^*$

Objects that are uniquely identified from data $r, w: T^0_{wr}, \Phi^0_{\bar{v}}$

How to define identifiability?

Clasically: • Property of a model set

• Unique mapping between **parameters** and models

In the **network** situation:

- Property of a model set
- Unique mapping between **models** and **identified objects**

 $w=T^0_{wr}r+ar{v}$

Objects identified from data: $T^0_{wr}, \ \Phi^0_{ar v}$

Denote the parametrized objects:

$$egin{array}{rll} T_{wr}(q, heta)&=&(I-G(q, heta))^{-1}R(q, heta)\ \Phi_{ar v}(\omega, heta)&=&(I-G(heta))^{-1}H(heta)\Lambda(heta)H(heta)^*(I-G(heta))^{-*} \end{array}$$

Definition

A network model set \mathcal{M} is network identifiable at $M_0 = M(\theta_0)$ if for all models $M(\theta_1) \in \mathcal{M}$:

$$\left. \begin{array}{c} T_{wr}(q,\theta_1) = T_{wr}(q,\theta_0) \\ \Phi_{\bar{v}}(\omega,\theta_1) = \Phi_{\bar{v}}(\omega,\theta_0) \end{array} \right\} \Longrightarrow M(\theta_1) = M(\theta_0)$$

 \mathcal{M} is network identifiable if this holds for all models $M_0 \in \mathcal{M}$

Let $K + p \geq L$

independent external signals \geq # nodes

Proposition (full excitation case) (based on Goncalves & Warnick, 2008)

 \mathcal{M} is network identifiable at $M_0 = M(\theta_0)$ if there exists a nonsingular and rational Q(q) such that

 $egin{bmatrix} R(q, heta) & H(q, heta) \end{bmatrix} oldsymbol{Q}(q)$

has a **leading diagonal matrix**, that is full rank for all $\{\theta \in \Theta \mid T(q, \theta) = T(q, \theta_0)\}$.

Note: $G(q, \theta)$ can be fully unknown (no prior knowledge on topology)

There are noise-free nodes, and v_1 and v_2 are expected to be correlated

$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $G(\theta)$ fully parametrized

TU/e

47

There are noise-free nodes, and v_1 and v_2 are expected to be correlated

$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

There are noise-free nodes, and v_1 and v_2 are expected to be correlated

$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

There are noise-free nodes, and v_1 and v_2 are expected to be correlated

$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

There are noise-free nodes, and v_1 and v_2 are expected to be correlated

$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can not arrive at a diagonal structure in $egin{bmatrix} H(heta) & R(heta) \end{bmatrix}$

Observations:

- a) A simple test can be performed to check the condition
- b) The condition is typically fulfilled if each node w_j is excited by an independent external signal (either an r_j or a v_j)

c) The result is rather **conservative**:

- 1. Restricted to $\begin{bmatrix} R(q, \theta) & H(q, \theta) \end{bmatrix}$ having full row rank
- 2. No account of prior knowledge in $G(q, \theta)$

Theorem 3 – identifiability for general model sets

- If:
- a) Each unknown entry in $M(\theta)$ covers the set of all proper rational transfer functions
- b) All unknown entries in $M(\theta)$ are parametrized independently

Then \mathcal{M} is network identifiable at $M_0 = M(\theta_0)$ if and only if

- Each row of $[G(\theta) \ H(\theta) \ R(\theta)]$ has at most K+p parametrized entries
- For each row *i* the transfer matrix $\check{T}_i(q, \theta_0)$ has full row rank, with $\check{T}_i(q, \theta_0)$: $[v_3 \ v_4 \ r_1 \ r_2]$

If we restrict the structure of $G(\theta)$:

$$G(\theta) = \begin{bmatrix} 0 & G_{12}(\theta) & 0 & 0 & G_{15}(\theta) \\ G_{21}(\theta) & 0 & G_{23}(\theta) & 0 & 0 \\ 0 & 0 & 0 & G_{34}(\theta) & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & G_{53}(\theta) & 0 & 0 \end{bmatrix} \qquad [H \ R] = \underbrace{\begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 & 0 & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 & 0 & 0 \\ 0 & 0 & H_{3}(\theta) & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{K+n=5}$$

First condition:

Number of parametrized entries in each row < K+p = 5

TU/e

Verifying the rank condition for $\check{T}_1(q, \theta_0)$:

i = 1: Evaluate the rank of the transfer matrix

$$egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix} o egin{bmatrix} w_2 \ w_5 \end{bmatrix}$$

Theorem (Van der Woude, 1991; Hendrickx et al. 2017; Weerts et al., 2018)

The **generic rank** of a transfer function matrix between inputs r and nodes w is equal to the maximum number of **vertex-disjoint paths** between the sets of inputs and outputs.

A (path-based) check on the topology of the network can decide whether the conditions for identifiability are satisfied generically.

TU/e

Generic rank = 3

Verifying the rank condition for $\check{T}_1(q, \theta_0)$:

TU/e

unknown modules $G_{ik}(q, \theta) \leq$ # external signals uncorrelated with v_i

TU/e

Summary identifiability

Identifiability of network model sets is determined by

- Presence and location of external signals, and
- Correlation of disturbances
- Prior knowledge on modules

So far:

- All node signals assumed to be measured
- Fully applicable to the situation p < L (i.e. reduced-rank noise)
- Identifiability of the full network model conditions per row/output node

Extensions:

- 1. Relation back to state space structures, (Hayden, Yuan, Goncalves, TAC 2017)
- 2. When topology is known and every node is excited, which nodes need to be measured for unique identification of a **particular module** on the basis of T_{wr}^0 ? (Hendrickx, Gevers & Bazanella, CDC 2017, ArXiv 2018)
- When all nodes are measured, what are conditions for identifiability of a particular module in a network model set? (Weerts, Van den Hof, Dankers, CDC 2018)

Extensions

Reduced rank noise

$$\begin{bmatrix} v_1(t) \\ \vdots \\ v_L(t) \end{bmatrix} = H^0(q) \begin{bmatrix} e_1(t) \\ \vdots \\ e_p(t) \end{bmatrix}$$

Question: How to identify (parts of) a dynamic network, when the process noise is of reduced rank (*p* < *L*)?

Typically considered in dynamic factor models^[1]

67

[1] M. Deistler, W. Scherrer and B.D.O. Anderson, 2015

Reduced rank noise

Typical: multi-output situation

Weighted LS criterion:

$$\hat{ heta}_N^{WLS} = rg\min_{ heta \in \Theta} rac{1}{N} \sum_{t=1}^N arepsilon^T(t, heta) \; Q \; arepsilon(t, heta) \qquad Q > 0$$

Properties:

- Consistent estimate under regularity conditions,
- But for minimum variance an optimal Q has to be chosen

Typical choice, leading to minimum variance estimator:

$$Q = [cov(\check{e})]^{-1} = (\check{\Lambda}^0)^{-1}$$

but in our situation $\check{\Lambda}^0$ is singular

Reduced rank noise

Solution: Parametrize dependencies in innovation process, and include them as constraints:

Identification criterion becomes a constrained quadratic problem with ML properties for Gaussian noise.

Reformulation of Cramer-Rao bound

Some parameters can be estimated variance-free.

Sensor noise

Identification of a single module under the influence of sensor noise:

- Typical tough problem in open-loop identification (errors-in-variables)
- In dynamic networks this may become *more simple* due to the presence of multiple (correlated) node signals

Sensor noise

Solution strategies:

- Apply a correlation (IV) approach to mitigate the effect of sensor noise
 → choosing instrument signals (based on topology)
- 2. Combine:
 - 1. a correlation (IV) technique to mitigate sensor noise, and
 - 2. BJ noise models for addressing process noise.
Discussion

- **Dynamic network identification:** intriguing research topic with many open questions
- The (centralized) LTI framework is only just the beginning
- From classical PE methods to regularized (kernel-based) approaches (Everitt, Bottegal, Hjalmarsson, 2018; Ramaswamy et al, CDC 2018)
- Further move towards data-aspects related to distributed identification and control
- Algorithmic aspects for large-scale data handling
- Move towards including nonlinear dynamics (M. Schoukens, SYSID2018)

Acknowledgements

European Research Council

Lizan Kivits, Shengling Shi, Karthik Ramaswamy, Tom Steentjes, Mircea Lazar, Jobert Ludlage, Giulio Bottegal, Maarten Schoukens

Co-authors, contributors and discussion partners:

Arne Dankers Harm Weerts

The End

Further reading

- P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013). Identification of dynamic models in complex networks with prediction error methods - basic methods for consistent module estimates. *Automatica*, Vol. 49, no. 10, pp. 2994-3006.
- A. Dankers (2014). System identification in dynamic networks. Dr. Dissertation, TU Delft.
- A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015). Errors-in-variables identification in dynamic networks consistency results for an instrumental variable approach. *Automatica*, Vol. 62, pp. 39-50, December 2015.
- A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with predictior error methods predictor input selection. *IEEE Trans. Automatic Control, 61 (4)*, pp. 937-952, April 2016.
- P.M.J. Van den Hof, A.G. Dankers and H.H.M. Weerts (2018). System identification in dynamic networks. *Computers & Chemical Engineering*, *109*, pp. 23-29, 2018. ArXiv: 1710.08865.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018a). Identifiability of linear dynamic networks. *Automatica*, *89*, pp. 247-258, 2018. ArXiv: 1711.06369, 2017.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018b). Prediction error identification of linear dynamic networks with rank-reduced noise. To appear in *Automatica*. ArXiv: 1711.06369.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Single module identifiability in linear dynamic networks. Proc. 57th IEEE CDC 2018, ArXiv 1803.02586.
- K.R. Ramaswamy, G.Bottegal and P.M.J. Van den Hof (2018). Local module identification in dynamic networks using regularized kernel-based methods. Proc. 57th IEEE CDC, 2018.