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Introduction — dynamic networks

: Power grid
Decentralized process control | 9

Process control Model

Historical data

; . . Pierre et al. (2012)
Metabolic network Distributed control

(robotic networks) Stock market

Z2

-

@\ ® e

Fm— "@Ou I@@qc.o. o@
. oooodo. Q‘.-....@@O »
|2 . 0 o © ©® ®® COD O oo-
. L 000® 000000" GGOGIO® 06 ®

\‘l 5/ ®® @ Io
% o Materassi et al. (2010)

! T U Technische Universiteit
. i Eindhoven
Hillen (2012) Simonetto (2012) e University of Technology



Introduction — identification

The classical (multivariable) identification problems: [Ljung (1999)]
open loop closed loop
- G y l"—>- r G ?
C |e—

Identify a plant model G on the basis of measured signals u, y
(and possibly r)

We have to move from a fixed and known configuration
to deal with and exploit structure in the problem.
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Dynamic network: what is it?

r, external excitation
V; process noise
w; node signal
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Introduction

. external excitation
V; process noise
w; node signal )

I.

1 (t)
o(t) = | :
VL (t)

What are assumptions on process noises when identifying
(parts of) a network?

» Independent white noise processes

» Vector stochastic process with full rank spectrum, rank ®,(w) = L a.e.
leading to a square noise model: v(f) = H{(q)e(t)

« If dim(e) < L then we have “singular” or “reduced-rank” noise
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Network Setup

Assumptions:
* Total of L nodes

* Network is well-posed and
stable

* Modules may be unstable

* Node signals and excitation
signals can be measured
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Introduction

r, external excitation
V; process noise

w; node signal

on(t)

€1 (t)
= H’(q)

(). ep(t)

Main question:
How to identify (parts of) a dynamic network,
when the process noise is of reduced rank (p <L)?
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Contents

 Modelling a reduced-rank stochastic process

* Multi-output identification in a dynamic network
the joint-direct method with weighted LS

e Constrained LS and maximum likelihood estimation

e Variance-free estimation, minimum variance and the CRLB

e Simulation example
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Modelling reduced rank noise

Assumption

The node signals w; are ordered in such a way that the first p
noise components vj, 7 = 1,---p constitute a full rank process.
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Modelling reduced rank noise

A reduced-rank stochastic process v with dimension L and rank p
can equivalently be described in two ways:

a) v(t) = H(q)e(t)
with H? € REXE(2), é(t) € RY a white noise process,

H?Y stable, stably invertible, and monic, and
cov(é) = AY having rank p

b) w(t) = H"(q)e(t)

with HY € REXP(2), e(t) € RP a white noise process,
0
HY = [g%] with HO square, stable, stably invertible, and monic,

cov(e) = A0 having full rank p

Technische Uni
e Ein dho ven
University of Technology



Modelling reduced rank noise

Relations between descriptions:
0
70 - L Ha(q) 0 (&
U(t) =H (q)e(t) — [HE(Q) . I‘\O I Foe

with TO = lim H}(2)

Z—r 00

o 17 .o7I11F 0 )
while A% = | So| A” | 1o and [TY —I|é(t)=0

0

Both noise models H° and HY = [Ha

HO] will be used.
b
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Joint-direct identification method

We follow a prediction error approach, by predicting all node variables:

W (tft — 1) i=E{w(t) [ w' ™!, vt}

Then: (|t — 1) = Wy (q)w(t) + W, (a)r(t)

I— (H’q) '(I-G"%q)),
(H(q))"'R’(q).

with: W,g, (q)
W, (q)

being the unique predictor filters.
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Joint-direct identification method

The network is defined by: (G°, R°, H°, A")
a network model is denoted by: M= (G,R,H,A)

and a network model set by:
M = {M(8) = (G(6), R(9), H(6), A(0)),0 € O}
Then the parametrized predictor:

w(t|t — 1) = Wiy(q,0)w(t) + Wr(q, 0)r(t)
leads to the prediction error: e(t,0) = w(t) — w(t|t — 1;0)

Weighted LS criterion:

oW LS — — T, 0 t,0 >0
arg min — ;:16( ) Q &(t, ) Q

Technische Uni
e Ein dho ven
University of Technology



Joint-direct identification method

Weighted LS criterion:

oW LS — —N " eT(t,0 t, 0 >0
arggél(gl Zs (t,0) Q (t, 0) Q

Properties:

« Consistent estimate under regularity conditions,

 Provided model set large enough, appropriate excitation,
global network identifiability,

e But for minimum variance an optimal  has to be chosen

Typical choice, leading to minimum variance estimatorm for Q € RLXL
= [eov(&)]* = (A)

but in our situation A° is singular
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Constrained LS and Maximum Likelihood

The WLS estimator does not take account of the dependencies in
the innovation:
T —1]ét) =0

or differently formulated:

|G =

This can be imposed, by restricting the parametrized model to satisfy:

['(B)eq(t,0) —ep(t,0) =0

-~

We denote: = Z(t,0)
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Constrained LS and Maximum Likelihood

Constrained LS criterion:

05H° = — N elt,0 t,0 0
N arg grélél Z e, (t,0) Qq €a(t,0) Q. >
| N
subject to N Z ZT(t,0)Z(t,0) =0
Properties: t=1

e Consistent estimate under similar conditions as WLS
e The choice _
Qa. — (AO) 1

leads to minimum variance, and ML properties in case of
Gaussian noise.

« Forindendently parametrized A(#), the cost function turns
Into a determinant function
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Constrained LS and Maximum Likelihood

Implementation:
In practice, constraints could be unfeasible, e.g. in case & ¢ M

Constraint relaxation:

é"'e'_argmm—z:( T(t,0)Qaca(t,0)+AZT (¢, 0) Z(t, e)) AER
t_

with tuning parameter A € R

For A > 0 the consistency result remains true.
For A — oo constraint satisfaction

The criterion is equivalent to WLS with

Q. + ATT(OT(08) —AT'T(8
Q(6) = _M‘((o)) (9) M( )]
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Minimum variance and CRLB

Asymptotic criterion:
0* = arg gél(ral E el'(t,0) Qq e(t,0) subject to
EZ(t,0)Z*(t,0) =0
When linearizing Z(t, 8) in the neighbourhood of the optimum:
Z(t,0)~ Z(t,0") + A(t)(6 — 6%)
the constrained parameter space can be characterized by
0=Sp+C p € R™ of reduced dimension
with S, C determined by:

IIs = 0 and S full rank, where EAT($)A(t) = IITII
C = -II'Me* 11t right inverse
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