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Introduction – identification

The classical (multivariable) identification problems:

open loop closed loop

We have to move from a fixed and known configuration
to deal with and exploit structure in the problem.

[Ljung (1999)]

Identify a plant model     on the basis of measured signals u, y 
(and possibly r)
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Dynamic network: what is it?

ri    external excitation
vi process noise
wi node signal
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What are assumptions on process noises when identifying 
(parts of) a network?

ri    external excitation
vi process noise
wi node signal

• Independent white noise processes

• If                      then we have “singular” or “reduced-rank” noise

• Vector stochastic process with full rank spectrum,
leading to a square noise model:
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Network Setup

Assumptions:
• Total of L nodes
• Network is well-posed and

stable
• Modules may be unstable
• Node signals and excitation 

signals can be measured

• P.M.J. Van den Hof, A.G. Dankers, P.S.H. Heuberger and X. Bombois. Automatica, 49, 2994-3006, 2013.
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Main question:
How to identify (parts of) a dynamic network, 
when the process noise is of reduced rank (p < L)?

ri    external excitation
vi process noise
wi node signal
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• Modelling a reduced-rank stochastic process

• Multi-output identification in a dynamic network
the joint-direct method with weighted LS

• Constrained LS and maximum likelihood estimation

• Variance-free estimation, minimum variance and the CRLB

• Simulation example 



The node signals       are ordered in such a way that the first p
noise components                              constitute a full rank process. 

Modelling reduced rank noise
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Assumption



Modelling reduced rank noise
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A reduced-rank stochastic process     with dimension L and rank p
can equivalently be described in two ways:

a) 

With                                                  a white noise process,
stable, stably invertible, and monic, and

having rank p 

with        square, stable, stably invertible, and monic, 

b) 

With                                                  a white noise process,

having full rank p 



Modelling reduced rank noise
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Relations between descriptions:

with

while

Both noise models         and                        will be used. 

and
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We follow a prediction error approach, by predicting all node variables:

Then:

with:

being the unique predictor filters.
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The network is defined by:

a network model is denoted by:

and a network model set by:

Then the parametrized predictor:

leads to the prediction error:

Weighted LS criterion:



Joint-direct identification method
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Weighted LS criterion:

Properties:

• Consistent estimate under regularity conditions,
• Provided model set large enough, appropriate excitation,

global network identifiability,
• But for minimum variance an optimal     has to be chosen

Typical choice, leading to minimum variance estimatorm for 

but in our situation       is singular



Constrained LS and Maximum Likelihood
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The WLS estimator does not take account of the dependencies in
the innovation:

or differently formulated:

This can be imposed, by restricting the parametrized model to satisfy:

We denote: 



Constrained LS and Maximum Likelihood
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Constrained LS criterion:

Properties:

• Consistent estimate under similar conditions as WLS
• The choice

leads to minimum variance, and ML properties in case of
Gaussian noise.

• For indendently parametrized         , the cost function turns
into a determinant function



Constrained LS and Maximum Likelihood
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Implementation:
In practice, constraints could be unfeasible, e.g. in case 

The criterion is equivalent to WLS with

Constraint relaxation:

with tuning parameter   

For              the consistency result remains true.         
For                 constraint satisfaction 



Minimum variance and CRLB
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P. Stoica and B.C. Ng, IEEE Signal Processing Letters, 5 (7), 177-179, 1998.

Asymptotic criterion:

subject to

When linearizing              in the neighbourhood of the optimum:

the constrained parameter space can be characterized  by 

of reduced dimension
with         determined by:

and     full rank, where
right inverse




