Identification of linear dynamic networks with reduced-rank noise

Paul M.J. Van den Hof

European Research Council

co-authors: Arne Dankers and Harm Weerts

CARMA Workshop, University of Newcastle, Australia, 7 December 2017

Where innovation starts

Introduction – dynamic networks

Decentralized process control

Power grid

Pierre et al. (2012)

Metabolic network

Distributed control (robotic networks)

Simonetto (2012)

Stock market

Materassi et al. (2010)

Introduction – identification

The classical (multivariable) identification problems: [Ljung (1999)]

Identify a plant model \hat{G} on the basis of measured signals u, y (and possibly r)

We have to move from a fixed and known configuration to deal with and exploit *structure* in the problem.

Introduction

 r_i external excitation

 v_i process noise

 w_i node signal

$$egin{aligned} v(t) = egin{bmatrix} v_1(t) \ dots \ v_L(t) \end{bmatrix} \end{aligned}$$

What are assumptions on process noises when identifying (parts of) a network?

- Independent white noise processes
- Vector stochastic process with full rank spectrum, $rank \Phi_v(\omega) = L \ a.e.$ leading to a square noise model: v(t) = H(q)e(t)
- If dim(e) < L then we have "singular" or "reduced-rank" noise

Network Setup

Assumptions:

- Total of L nodes
- Network is well-posed and stable
- Modules may be unstable
- Node signals and excitation signals can be measured

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0 & \cdots & G_{1L}^0 \\ G_{21}^0 & 0 & \cdots & G_{2L}^0 \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0 & G_{L2}^0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} + R^0(q) \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_K \end{bmatrix} + H^0(q) \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_p \end{bmatrix}$$

$$\boldsymbol{w} = \boldsymbol{G}^0 \boldsymbol{w} + \boldsymbol{R}^0 \boldsymbol{r} + \boldsymbol{H}^0 \boldsymbol{e}$$

Introduction

r_i external excitationv_i process noisew_i node signal

$$egin{bmatrix} v_1(t) \ dots \ v_L(t) \end{bmatrix} = H^0(q) egin{bmatrix} e_1(t) \ dots \ e_p(t) \end{bmatrix}$$

Main question:

How to identify (parts of) a dynamic network, when the process noise is of reduced rank (p < L)?

Contents

- Modelling a reduced-rank stochastic process
- Multi-output identification in a dynamic network the joint-direct method with weighted LS
- Constrained LS and maximum likelihood estimation
- Variance-free estimation, minimum variance and the CRLB
- Simulation example

Modelling reduced rank noise

Assumption

The node signals w_j are ordered in such a way that the first p noise components $v_j,\ j=1,\cdots p$ constitute a full rank process.

Modelling reduced rank noise

A reduced-rank stochastic process v with dimension L and rank p can equivalently be described in two ways:

- a) $v(t)=\check{H}^0(q)\check{e}(t)$ With $\check{H}^0\in\mathbb{R}^{L imes L}(z),\ \check{e}(t)\in\mathbb{R}^L$ a white noise process, \check{H}^0 stable, stably invertible, and monic, and $cov(\check{e})=\check{\Lambda}^0$ having rank p
- b) $v(t)=H^0(q)e(t)$ With $H^0\in\mathbb{R}^{L imes p}(z),\ e(t)\in\mathbb{R}^p$ a white noise process, $H^0=\begin{bmatrix}H^0_a\\H^0_b\end{bmatrix}$ with H^0_a square, stable, stably invertible, and monic, $cov(e)=\Lambda^0$ having full rank p

Modelling reduced rank noise

Relations between descriptions:

$$v(t) = \check{H}^0(q)\check{e}(t) = egin{bmatrix} H_a^0(q) & 0 \ H_b^0(q) - \Gamma^0 & I \end{bmatrix} egin{bmatrix} e \ \Gamma^0 e \end{bmatrix}$$

with
$$\Gamma^0 = \lim_{z o \infty} H_b^0(z)$$

while
$$\check{\Lambda}^0 = \begin{bmatrix} I \\ \Gamma^0 \end{bmatrix} \Lambda^0 \begin{bmatrix} I \\ \Gamma^0 \end{bmatrix}^T$$
 and $\begin{bmatrix} \Gamma^0 & -I \end{bmatrix} \check{e}(t) = 0$

Both noise models \check{H}^0 and $H^0 = egin{bmatrix} H_a^0 \\ H_b^0 \end{bmatrix}$ will be used.

Joint-direct identification method

We follow a prediction error approach, by predicting **all** node variables:

$$\hat{w}(t|t-1) := \mathbb{E}\left\{w(t) \mid w^{t-1}, \; r^t
ight\}$$

Then:
$$\hat{w}(t|t-1)=W^0_w(q)w(t)+W^0_r(q)r(t)$$
 with: $W^0_w(q)=I-(\check{H}^0(q))^{-1}(I-G^0(q)),$ $W^0_r(q)=(\check{H}^0(q))^{-1}R^0(q).$

being the unique predictor filters.

Joint-direct identification method

The **network** is defined by: $(G^0, R^0, H^0, \Lambda^0)$

a network model is denoted by: $M = (G, R, H, \Lambda)$

and a **network model set** by:

$$\mathcal{M} = \{M(\theta) = (G(\theta), R(\theta), H(\theta), \Lambda(\theta)), \theta \in \Theta\}$$

Then the parametrized predictor:

$$\hat{w}(t|t-1) = W_w(q,\theta)w(t) + W_r(q,\theta)r(t)$$

leads to the prediction error: $arepsilon(t, heta) = w(t) - \hat{w}(t|t-1; heta)$

Weighted LS criterion:

$$\hat{ heta}_N^{WLS} = \arg\min_{ heta \in \Theta} rac{1}{N} \sum_{t=1}^N arepsilon^T(t, heta) \ Q \ arepsilon(t, heta)$$

Joint-direct identification method

Weighted LS criterion:

$$\hat{\theta}_{N}^{WLS} = \arg\min_{\theta \in \Theta} \frac{1}{N} \sum_{t=1}^{N} \varepsilon^{T}(t, \theta) \ Q \ \varepsilon(t, \theta)$$
 $Q > 0$

Properties:

- Consistent estimate under regularity conditions,
- Provided model set large enough, appropriate excitation, global network identifiability,
- But for minimum variance an optimal $m{Q}$ has to be chosen

Typical choice, leading to minimum variance estimatorm for $Q \in \mathbb{R}^{L \times L}$

$$Q=[cov(\check{e})]^{-1}=(\check{\Lambda}^0)^{-1}$$

but in our situation $\check{\Lambda}^0$ is singular

Constrained LS and Maximum Likelihood

The WLS estimator does not take account of the dependencies in the innovation:

$$\left[\Gamma^0 \right] \, \check{e}(t) = 0$$

or differently formulated:

$$egin{bmatrix} \left[\Gamma^0 & -I
ight] egin{bmatrix} arepsilon_a(t, heta_0) \ arepsilon_b(t, heta_0) \end{bmatrix} = 0 \end{split}$$

This can be imposed, by restricting the parametrized model to satisfy:

$$\underbrace{\Gamma(\theta)\varepsilon_a(t,\theta)-\varepsilon_b(t,\theta)}_{:=Z(t,\theta)}=0$$

We denote:

Constrained LS and Maximum Likelihood

Constrained LS criterion:

$$\hat{\theta}_N^{CLS} = \arg\min_{\theta \in \Theta} \frac{1}{N} \sum_{t=1}^N \varepsilon_a^T(t, \theta) \ Q_a \ \varepsilon_a(t, \theta) \qquad \mathbf{Q_a} > \mathbf{0}$$

subject to
$$\frac{1}{N}\sum_{t=1}^{N}Z^{T}(t,\theta)Z(t,\theta)=0$$

Properties:

- Consistent estimate under similar conditions as WLS
- The choice $Q_a = (\Lambda^0)^{-1}$

leads to minimum variance, and ML properties in case of Gaussian noise.

• For indendently parametrized $\Lambda(\theta)$, the cost function turns into a determinant function

Constrained LS and Maximum Likelihood

Implementation:

In practice, constraints could be unfeasible, e.g. in case $\mathcal{S} \notin \mathcal{M}$

Constraint relaxation:

$$\hat{ heta}_N^{rel} = rg \min_{ heta} rac{1}{N} \sum_{t=1}^N \!\! \left(\! arepsilon_a^T(t, heta) Q_a arepsilon_a(t, heta) \! + \! \lambda Z^T(t, heta) Z(t, heta)\!
ight)\!, \;\; \lambda \in \mathbb{R}$$

with tuning parameter $\lambda \in \mathbb{R}$

For $\lambda > 0$ the consistency result remains true.

For $\lambda \to \infty$ constraint satisfaction

The criterion is equivalent to WLS with

$$Q(heta) = egin{bmatrix} Q_a + \lambda \Gamma^T(heta)\Gamma(heta) & -\lambda \Gamma^T(heta) \ -\lambda \Gamma(heta) & \lambda I \end{bmatrix}$$

Asymptotic criterion:

$$egin{aligned} heta^\star &= rg \min_{ heta \in \Theta} \ ar{\mathbb{E}} \ arepsilon^T(t, heta) \ Q_a \ arepsilon(t, heta) \end{aligned} \quad ext{subject to} \ ar{\mathbb{E}} oldsymbol{Z}(t, heta) oldsymbol{Z}^T(t, heta) = oldsymbol{0} \end{aligned}$$

When linearizing $Z(t, \theta)$ in the neighbourhood of the optimum:

$$Z(t,\theta) \approx Z(t,\theta^*) + A(t)(\theta - \theta^*)$$

the constrained parameter space can be characterized by

$$\theta = S \rho + C$$
 $\rho \in \mathbb{R}^{n_{\rho}}$ of reduced dimension

with *S*, *C* determined by:

$$\left\{egin{array}{ll} \Pi S &=& \mathbf{0} & ext{and } S ext{ full rank, where } & ar{\mathbb{E}} A^T(t) A(t) = \Pi^T \Pi \ C &=& -\Pi^\dagger \Pi heta^* & \Pi^\dagger ext{ right inverse} \end{array}
ight.$$

