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Introduction – dynamic networks

Dynamical systems are considered to have a more complex 
structure:

distributed control system (1d-cascade) dynamic network

(distributed MPC, multi-agent systems, biological networks, smart grids,…..)

For on-line monitoring / control / diagnosis it is attractive to be able to
identify

• (changing) dynamics of modules in the network
• (changing) interconnection structure
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Introduction – identification

The classical (multivariable) identification problems:

open loop closed loop

We have to move from a fixed and known configuration
to deal with and exploit structure in the problem.

[Ljung (1999)]

Identify a plant model     on the basis of measured signals u, y 
(and possibly r)
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Dynamic network: what is it?

ri    external excitation
vi process noise
wi node signal
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Network Setup

Assumptions:
• Total of L nodes
• Network is well-posed and

stable
• Modules may be unstable
• Node signals and excitation 

signals can be measured

• P.M.J. Van den Hof, A.G. Dankers, P.S.H. Heuberger and X. Bombois. Automatica, 49, 2994-3006, 2013.
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• Identify        on the basis of measured signals
• Which signals to measure?
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• Identify the full MIMO system:

Options for identifying a module:

from measured     and     .  

Global approach with “standard” tools
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• Identify a local (set of) module(s)
from a (sub)set of measured       and 

Local approach with “new” tools and structural conditions 
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• Identifiying is part of a 4-input, 1 output problem        
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• 2-stage/projection/IV method (including measurements of       )
Consistency; no need for noise models; no ML 
Enough excitation signals that affect inputs but not output 
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The single module identification problem

So far:

Techniques typically based on 
(adapted) versions of
closed-loop identification methods

• Direct method (based on measured node signals only)
ML properties
Disturbances uncorrelated over channels

P.M.J. Van den Hof, A.G. Dankers, P.S.H. Heuberger and X. Bombois. Automatica, 49, 2994-3006, 2013.
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The single module identification problem

4 input nodes to be measured:

Can we do with less?
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• An immersed network is constructed by removing node signals, 
but leaving the remaining node signals invariant

• Modules and disturbance signals are adapted

Network immersion
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The single module identification problem
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Immersing       

When does immersion leave
invariant?
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The single module identification problem

When does immersion leave
invariant?

Proposition
Consider an immersed network where       and       are retained.
Then                      if

a) Every path                   other than the one through 
goes through a measured node. (parallel paths)

b) Every path                   goes through a measured node
(loops around the output)    

• A.G. Dankers, P.M.J. Van den Hof, A.G. Dankers, X. Bombois and P.S.C. Heuberger, 
IEEE Trans. Automatic Control, 61, 937-952, 2016.
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The single module identification problem

parallel paths, and loops around the output
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The single module identification problem
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The single module identification problem

Choose      as an additional input
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For a minimum variance estimate (direct method) we have to address 
the presence of: confounding variables, [1]

i.e. correlated disturbances on inputs and outputs

Conclusion:
With a 3-input, 1 output model we can
consistently identify

The immersion reasoning is sufficient but not necessary to arrive at a
consistent estimate [2]

[2]   J. Linder and M. Enqvist. Int. J. Control, 90(4), 729-745, 2017.
[1]  A.G. Dankers, P.M.J. Van den Hof, D. Materassi and H.H.M. Weerts, Proc. IFAC World Congress, 2017.



27

Contents

• Introduction and dynamic networks

• The local / single module identification problem:
which signals to measure?

• Sensor noise – the errors-in-variables problem

• Network identifiability

• Reduced-rank noise

• Conclusions
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Identification of a single module under the influence of sensor noise:

• Typical tough problem in open-loop identification
• In dynamic networks this may become more simple due to 

the presence of multiple (correlated) node signals

Assumption: and      mutually uncorrelated



Sensor noise – the errors-in-variables problem
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Three solution strategies:
1. Use external signals in combination with 2s/projection/IV method

2. Use network instruments in the Instrumental Variable (IV) method 
(not only external signals)

3. Generalize the use of IV to combine it with noise models,
to handle both sensor and process noise.



Sensor noise – the errors-in-variables problem
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1. Use external signals in combination with 2s/projection/IV method

• If measured predictor input signals (            ) are projected onto
and then applied in a 2s-PE criterion, the sensor noise on the 
inputs is effectively removed

• Consistent estimate if sufficient external excitation available



with number of parameters              .
When choosing r as instrumental signal:

Sensor noise – the errors-in-variables problem
31

2. Use network instruments in the Instrumental Variables (IV) method

Choose an ARX predictor for G: 

The classical (basic) IV reasoning:



Sensor noise – the errors-in-variables problem
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holds if the following conditions are satisfied:
• The data is informative
• Process noise     is uncorrelated to
• Plant model is correctly parametrized 

The equivalence relation 

• T. Söderström and P. Stoica (1983)

2. Use network instruments in the Instrumental Variables (IV) method



Sensor noise – the errors-in-variables problem
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All node signals that not act as predictor input can be chosen as IV: 

Maintain a (MISO) ARX model structure 

Estimator: 

2. Use network instruments in the Instrumental Variables (IV) method



Sensor noise – the errors-in-variables problem
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The equivalence relation

holds for a finite value of      if the following conditions are satisfied:

• Select module        as module of interest. 

• Select output       and predictor inputs                     such 
that 

• All remaining measured signals can act as instruments

• There is no path from       to any of the instruments
• is uncorrelated to all       with paths to an instrument
• Plant model correctly parametrized, and data is informative

• A.G. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger, Automatica, 62, 39-50, 2015.

2. Use network instruments in the Instrumental Variables (IV) method
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෥ଵݓ can be used as 
instrumental variable

Objective: identify ܩଷଶ଴ .
Choose ݓ෥ଶand ݓ෥ଷ as predictor inputs

෥ଵݓ can not be used as 
instrumental variable

Restrictive condition:
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2. Use network instruments in the Instrumental Variables (IV) method

• IV estimator can be calculated by simple linear regression 

• Remove the constraint on the selection of instruments
• Include modelling of process noise (reduce variance)
• At the cost of non-convex optimization

Further generalization to combine IV and PE/Box Jenkins to
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3.   Generalize IV to combine with direct PE method

The restrictive condition on choice of instruments is there to 
avoid correlation between output disturbance and inputs/instruments

But: the direct method of PE identification (in closed-loop) is able to
handle this,
at the ”cost” of including an accurate noise model 

So: we switch from ARX to a Box-Jenkins model structure:



Sensor noise – the errors-in-variables problem
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3.   Generalize IV to combine with direct PE method

The equivalence relation

holds for a finite value of      if the following conditions are satisfied:

• There is no path from       to any of the instruments
• is uncorrelated to all       with paths to an instrument or to
• Plant and noise model correctly parametrized, 

and data is informative

No more condition on the allowable set of instruments
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3.   Generalize IV to combine with direct PE method

෥ଵݓ can be used as 
instrumental variable

Objective: identify ܩଷଶ଴ .
Choose ݓ෥ଶand ݓ෥ଷ as predictor inputs

෥ଵݓ can be used as 
instrumental variable
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3.   Generalize IV to combine with direct PE method

Algorithm:

Because of BJ model structure:

cannot be solved analytically.

Equivalent formulation:

Quadratic cost function of elements of the cross-correlation.
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3.   Generalize IV to combine with direct PE method

This is the formulation of an PE/BJ identification problem,
with vector output:
and vector inputs:

residual “output” “inputs”
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3.   Generalize IV to combine with direct PE method

residual “output” “inputs”

Two phenomena to be distinguished in this procedure:

a) Taking cross-correlation functions deals with the sensor noise

b)    Noise modelling and quadratic cost function minimization,
deals with (correlated) process noise



Sensor noise – the errors-in-variables problem
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Blue: Direct Closed Loop 
Method 
(bias due to sensor noise)

Red: Generalized IV Method 
with BJ model structure 
(no bias)

five realizations

is chosen as instrument while 
there is a path from       to      .



Conclusions - EIV
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• Consistent module estimation is feasible for sensor-noise disturbed
measurements (EIV-problem)

• Handling of sensor noise is facilitated by more optional instrument
signals in dynamic network (compared to open-loop / closed-loop 
systems)

• Conditioned on the type of instrument signals that are available: 

Further reading: A.G. Dankers, P.M.J. Van den Hof et al.; Automatica, 62 (2015), 39-50. 

• An IV approach is attractive for dealing with sensor noise

• The problem can be solved by a linear regression algorithm, or
• A non-convex optimization of a quadratic cost-function based on

cross-correlation data
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Network identifiability
46

Question: Can the dynamics/topology of a network be uniquely determined 
from measured signals wi , ri ?

Question: Can different dynamic networks be distinguished from each other
from measured signals wi , ri ?



Introduction: identifiability
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There are two different bijective mappings involved:

Classically: trivial identifiability

Network situation: Nontrivial

Reason:
• Freedom in network structure
• Freedom in presence of excitation and 

disturbances

Objects uniquely identified from data



Network identifiability
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Conditions for network identifiability of a model set are based on:

• Presence and location of exernal excitation signals
• Presence and location of process noise
• Parametrization of network dynamics (prior knowledge)

in both module dynamics and noise dynamics

Further reading: H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers, ArXiv 2016; Automatica, 2018. 
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Reduced-rank noise
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Main question:
How to identify (parts of) a dynamic network, 
when the process noise is of reduced rank (p < L)?

ri    external excitation
vi process noise
wi node signal

Typical: multi-output situation
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Weighted LS criterion:

Properties:

• Consistent estimate under regularity conditions,
• But for minimum variance an optimal     has to be chosen

Typical choice, leading to minimum variance estimator:

but in our situation       is singular

Reduced-rank noise



52

The WLS estimator does not take account of the dependencies in
the innovation:

or differently formulated:

This can be imposed, by restricting the parametrized model to satisfy:

We denote: 

Reduced-rank noise



Constrained LS and Maximum Likelihood
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Constrained LS criterion:

Properties:
• Consistent estimate under similar conditions as WLS
• The choice

leads to minimum variance, and ML properties in case of
Gaussian noise.

Solution: Parametrize dependencies in innovation process, and
include them as constraints:

Further reading: H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers, IFAC World Congress, 2017
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• Dynamic network identification: 
intriguing research topic with many open questions

• Including topology identification

• The linear, time-invariant framework is only just the beginning
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