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Introduction – dynamic networks 

Decentralized process control
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Autonomous driving

www.envidia.com

Smart power grid

Hydrocarbon reservoirs

Pierre et al.  (2012)

Mansoori (2014)

Brain network

P. Hagmann et al. (2008)



Introduction

3

Overall trend:

• (Large-scale) interconnected systems
• With hybrid dynamics (continuous / switching)
• Distributed / multi-agent type monitoring, control and optimization problems
• Data is “everywhere”, big data era
• Modelling problems will need to consider this



Introduction

Distributed / multi-agent control: 

With both physical and communication links between 
systems      and controllers 
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How to address data-driven modelling problems in such a setting? 



Introduction

The classical (multivariable) identification problems[1] :

Identify a plant model      on the basis of measured signals u, y
(and possibly r), focusing on continuous LTI dynamics.
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[1] Ljung (1999), Söderström and Stoica (1989), Pintelon and Schoukens (2012)

We have to move from a simple and fixed configuration
to deal with structure in the problem.
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Dynamic networks for data-driven modeling



Dynamic networks
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State space representations
(Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,…)

Module representation
(VdH, Dankers, Materassi, Gevers, Bazanella,…)



Dynamic network setup 
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ri external excitation
vi process noise
wi node signal
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vi process noise
wi node signal



Dynamic network setup 
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ri external excitation
vi process noise
wi node signal



Dynamic network setup 
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Assumptions:
• Total of L nodes
• Network is well-posed and stable
• Modules are dynamic, may be unstable
• Disturbances are stationary stochastic and 

can be correlated

J. Gonçalves and S. Warnick, IEEE TAC, 2008.
P.M.J. Van den Hof, A.G. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, 2013.



Dynamic network setup 
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• Identification of a local module 
(known topology)

• Identification of the full network
• Topology estimation
• Identifiability
• Sensor and excitation allocation
• Fault detection 
• User prior knowledge of modules
• Scalable algorithms
• Distributed identification

Many new identification questions 
can be formulated:



Dynamic network setup - nonuniqueness 
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Non-uniqueness of network model

Disturbance representation: with         a white noise process

Premultiplication of equation with rational matrix can lead to an equivalent model: 

Uniqueness is typically guaranteed if noise process has diagonal spectrum (     diagonal) [1]

[1] G. Bottegal et al., SYSID2018



Dynamic network setup - nonuniqueness

16

w1 w2G

H1

 G

v2

21

12

v1

e1 e2

H11

H21

H12

H22

w1 w2G

 G

v2

21

12

v1

e1 e2

H1 H 2
~

~

~

~

~ ~

~ ~

Node signals                          being invariant



Dynamic network setup - graph
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5 1 2 4 3

Nodes are vertices; modules/links are edges

Extended graph: 
including the external signals
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Single module identification - known topology



Single module identification
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For a network with known topology:
• Identify        on the basis of measured signals
• Which signals to measure? Preference for local measurements



Single module identification
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Naïve approach: identify based on the input       and output        : in general does not work.  



Single module identification
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Identifiying        is part of a 4-input, 1-output problem 



• Direct PE method 

Maximum Likelihood properties
Disturbances vi uncorrelated over channels
Excitation provided through r and v signals  

Identification methods
4-input 1-output problem
to be addressed by a closed-loop identification method

23
P.M.J. Van den Hof, A.G. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, 49, 2994-3006, 2013.

• Indirect/2-stage/projection/IV method

Consistency; no need for noise models; no ML 
Excitation provided through r signals only
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Single module identification

4 input nodes to be measured:
Can we do with less?

24

[1]  A. Dankers. PhD Thesis, 2014.

• An immersed network is constructed by removing node signals, 
but leaving the remaining node signals invariant

• Modules and disturbance signals are adapted
• Abstraction through variable elimination (Kron reduction[2] in network theory).

Network immersion [1]

[2]  F. Dörfler and F. Bullo, IEEE Trans. Circuits and Systems I (2013)



Immersion
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Immersing

When does immersion leave
invariant?



Immersion
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When does immersion leave
invariant?

A.G. Dankers et al., IEEE Trans. Automatic Control, 61, 937-952, 2016.

Parallel paths and loops around the output
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There should be no parallel paths and
loops around the output that run through
removed nodes only



Single module identification
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parallel paths, and loops around the output



Single module identification
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parallel paths, and loops around the output
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Single module identification
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parallel paths, and loops around the output
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Single module identification
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parallel paths, and loops around the output
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Single module identification
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Choose    as an additional input (to be retained)
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Single module identification
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parallel paths, and loops around the output
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Single module identification
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parallel paths, and loops around the output
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Single module identification
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parallel paths, and loops around the output
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Single module identification
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Choose   as an additional input, to be retained
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Single module identification

Conclusion:
With a 3-input, 1 output model we can
consistently identify

37

[1] J. Linder and M. Enqvist. Int. J. Control, 90(4), 729-745, 2017.
[2] A. Bazanella, M. Gevers et al., CDC 2017.

The immersion reasoning is sufficient but not necessary to arrive at 
a consistent estimate, see e.g. Linder and Enqvist [1], Bazanella et al. [2], Ramaswamy et al. [3] 

[3] K. Ramaswamy et al., CDC 2019.



Conclusion:
With a 3-input, 1 output model we can
consistently identify

Single module identification

For a consistent and minimum variance estimate
(direct method) there is one additional condition: 
• absence of confounding variables, [1][2] i.e. 

correlated disturbances on inputs and outputs

38

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.
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Handling confounding variables in local module identificaiton
• Two types of confounding variables:

39

Indirect confounding variableDirect confounding variable
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Adding predicted outputs [1],[2] Adding predictor inputs[3],[4] (or outputs)

We can end up with a MIMO local identification problem.

[1] P.M.J. Van den Hof et al. , CDC 2019.
[2] K.R. Ramaswamy et al., ArXiv 2019, IEEE-TAC, under review.

[3] A.G. Dankers et al., IFAC World Congress, 2017.
[4] D. Materassi and M.V. Salapaka, ArXiv, 2019.



Handling confounding variables in local module identificaiton

40

[1] P.M.J. Van den Hof et al. , CDC 2019.
[2] K.R. Ramaswamy et al., ArXiv 2019, IEEE-TAC, under review.

General setup for consistent and minimum variance estimation:

Target module

Different choices of node signals to include, to warrant                          and ML estimation:   
• Full input case
• Minimum node signals case
• User selection case

Including r-signals as predictor inputs (indirect method) enlarges the flexibility [3]

[3] K.R. Ramaswamy et al., CDC 2019.



Summary single module identification

• Methods for consistent and minimum variance module estimation

• Graph tools for checking conditions

• Degrees of freedom in selection of measured signals – sensor selection

• A priori known modules can be accounted for

41
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Network Identifiability



Network identifiability

blue = unknown
red   = known

Question: Can different dynamic networks be distinguished from each other from measured
signals wi , ri ?

Starting assumption: all signals wi ,ri that are present can be measured. 

44



Network identifiability
Network:

45

rank p

dim(r) = K

The network is defined by:
a network model is denoted by:

and a network model set by:

represents prior knowledge on the network models: 
• topology
• disturbance correlation
• known modules
• the signals used for identification



Network identifiability

Objects that are uniquely identified from data     :

46

Denote:

Definition
A network model set        is network identifiable from at
if for all models :

Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018; 

Generic identifiability holds if this is true for almost all models in 

Hendrickx et al., IEEE-TAC, 2019. 



xxxxx

• The transfer matrix from external inputs            that are non-parametrized in  
to        has full row rank. 

Network identifiability
Theorem – identifiability for general model sets

47
Weerts et al, SYSID2015; Weerts et al., Automatica, March 2018

is network identifiable from at                           if and only if for all    :   

For each node signal      , let        be the set of in-neighbours of        that map to      
through a parametrized module. 

Then, under fairly general conditions,

· Each row of                                    has at most               parametrized entries, and  



Example 5-node network

There are noise-free nodes, and  and are expected to be correlated

48



Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

If we restrict the structure of          :

First condition: 
Number of parametrized entries in each row < K+p = 5

53



Example 5-node network

Rank condition: 
Row 1: Full row rank of transfer:

54



Example 5-node network
Verifying the rank condition for       :

Evaluate the rank of the transfer matrix

55



Example 5-node network
Verifying the rank condition for      :
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w5 w1G15 w4G21 w3G34

G12 G23

G53

v1 v2 v3r4

w2

r5

2 vertex-disjoint paths → full row rank 2

For the generic case, the rank can be calculated by a graph-based condition[1],[2],[3] :

Generic rank = number of vertex-disjoint paths

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017 [3] Weerts et al., CDC 2018

The rank condition has to be checked for all nodes. 



Generic identifiability

Result provides an analysis tool, but is less suited for the synthesis question:

57

Given a parametrized network model set:

Where to add external excitation signals to have generic network identifiability?



Graph-based synthesis solution for full network

Decompose network in disjoint pseudo-trees:

58

• Connected directed graphs, where nodes have maximum indegree 1
Pseudo-tree:

Tree with root in green Cycle with outgoing trees;
Any node in cycle is root

Two typical pseudo-trees:



Graph-based synthesis solution for full network

Decompose network in disjoint pseudo-trees:

59

• Any network can be decomposed into a set of disjoint pseudo-trees 

• Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree 



Graph-based synthesis solution for full network
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A network is generically identifiable if

• It can be decomposed in K disjoint pseudo-trees, and

• There are K independent external signals entering at a root of each pseudo-tree

Result[1]

[1] X. Cheng, S. Shi and PVdH, CDC 2019. 
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5 1 2 4 3

5 1 2 4 3Two disjunct pseudo-trees

Where to allocate external excitations for network identifiability?
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5 1 2 4 3

5 1 2 4 3
Two independent excitations 
guarantee network identifiability

Algorithm available for merging pseudo-trees.

Where to allocate external excitations for network identifiability?
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Where to allocate external excitations for network identifiability?

21

97 8

3

65

4
r1 r2

r3 r4

• Nodes are signals      and external signals           when they are input to parametrized 
links

• Result extends to the presence of known (nonparametrized links): they can be 
excluded from the covering



Summary identifiability

So far:
• All node signals assumed to be measured
• Fully applicable to the situation (i.e. reduced-rank noise)
• Extensions towards identifiability of a single module [1],[2],[3]

64

Identifiability of network model sets is determined by

• Presence and location of external signals, and
• Correlation of disturbances
• Prior knowledge on modules

[1] Hendrickx, Gevers & Bazanella, CDC 2017, IEEE-TAC 2019
[2] Weerts et al., CDC 2018

[3] Shi et al., IFAC 2020 submitted 

• Graphic-based tool for synthesizing allocation of external excitation signals
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Diffusively coupled physical networks



Back to the basics of physical interconnections

67

Resistor

𝐼𝐼 =
1
𝑅𝑅 𝑉𝑉1 − 𝑉𝑉2

Spring
1
𝑅𝑅 𝐹𝐹 = 𝐾𝐾 𝑥𝑥1 − 𝑥𝑥2

1
𝑅𝑅

In connecting physical systems, there is often no predetermined 
direction of information [1]

w1 w2G21

Example: resistor / spring connection in electrical / mechanical system:

Difference of node signals drives the interaction:   diffusive coupling

[1] J.C. Willems (1997,2010)



Diffusively coupled physical network
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Equation for node j:   



Mass-spring-damper system
• Masses 𝑀𝑀𝑗𝑗
• Springs 𝐾𝐾𝑗𝑗𝑗𝑗
• Dampers 𝐷𝐷𝑗𝑗𝑗𝑗
• Input 𝑢𝑢𝑗𝑗

𝑀𝑀1
𝑀𝑀2

𝑀𝑀3

�̈�𝑤1
�̈�𝑤2
�̈�𝑤3

+
0

𝐷𝐷20
0

�̇�𝑤1
�̇�𝑤2
�̇�𝑤3

+
𝐾𝐾10

0
0

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

+
𝐷𝐷13 0 −𝐷𝐷13

0 𝐷𝐷23 −𝐷𝐷23
−𝐷𝐷13 −𝐷𝐷23 𝐷𝐷13 + 𝐷𝐷23

�̇�𝑤1
�̇�𝑤2
�̇�𝑤3

+
𝐾𝐾12 + 𝐾𝐾13 −𝐾𝐾12 −𝐾𝐾13
−𝐾𝐾12 𝐾𝐾12 0
−𝐾𝐾13 0 𝐾𝐾13

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

=
0
𝑢𝑢2
0

69

polynomial  



Mass-spring-damper system

70

polynomial  

𝑄𝑄11 = 𝑀𝑀1 𝑝𝑝2 + 𝐷𝐷13 𝑝𝑝 + 𝐾𝐾10 + 𝐾𝐾12 + 𝐾𝐾13
𝑄𝑄22 = 𝑀𝑀2 𝑝𝑝2 + 𝐷𝐷20 + 𝐷𝐷23 𝑝𝑝 + 𝐾𝐾12
𝑄𝑄33 = 𝑀𝑀3 𝑝𝑝2 + 𝐷𝐷13 + 𝐷𝐷23 𝑝𝑝 + 𝐾𝐾13

𝑃𝑃 =
0 𝐾𝐾12 𝐷𝐷13 𝑝𝑝 + 𝐾𝐾13
𝐾𝐾12 0 𝐷𝐷23 𝑝𝑝

𝐷𝐷13 𝑝𝑝 + 𝐾𝐾13 𝐷𝐷23 𝑝𝑝 0

elements related to node    

elements related to interconnection    



Module representation
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This fully fits in the earlier module representation: 

with the additional condition that: 

polynomial  
symmetric, diagonal



Module representation
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Consequences for node interactions:

• Node interactions come in pairs of modules
• Where numerators are the same

Framework for network identification remains the same

• Symmetry can simply be incorporated in identification



Identification of one physical interconnection
Identification of two modules 𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝑗𝑗𝑗𝑗

𝐺𝐺𝑗𝑗𝑗𝑗 = 𝑄𝑄𝑗𝑗𝑗𝑗−1𝑃𝑃𝑗𝑗𝑗𝑗 and 𝐺𝐺𝑗𝑗𝑗𝑗 = 𝑄𝑄𝑗𝑗𝑗𝑗−1𝑃𝑃𝑗𝑗𝑗𝑗 with 𝑃𝑃𝑗𝑗𝑗𝑗 = 𝑃𝑃𝑗𝑗𝑗𝑗

Local network identification

73



Immersion conditions

74

For simultaneously identifying two modules in one interconnection: 

The parallel path and loops-around-the-output condition of immersion, now
simplifies to:

All neighbouring nodes of       and       need to be retained/measured.

E.E.M. Kivits et al., CDC 2019.



Summary diffusively coupled physical networks

• Physical networks fit within the module framework (special case)

- no restriction to second order equations

• Identification algorithms and identifiability analysis can be utilized

• Local identification is well-addressed (and stays really local)

• Framework is fit for representing cyber-physical systems

75
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Extensions - Discussion



Extensions - Discussion

77

[1] Weerts et al., Automatica, December 2018.

• Identification algorithms to deal with reduced rank noise [1]

• number of disturbance terms is larger than number of white sources
• Optimal identification criterion becomes a constrained quadratic problem

with ML properties for Gaussian noise
• Reworked Cramer Rao lower bound
• Some parameters can be estimated variance free

• Including sensor noise [2]

• Errors-in-variabels problems can be more easily handled in a network setting

[2] Dankers et al., Automatica, 2015.



Extensions - Discussion
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• Machine learning tools for estimating large scale models [1,2]

• Choosing correctly parametrized model sets for all modules is impractical
• Use of Gaussian process priors for kernel-based estimation of models

[1] Everitt et al., Automatica, 2018.
[2] Ramaswamy et al., CDC 2018.

• From centralized to distributed estimation (MISO models) [3]

• Communication constraints between different agents
• Recursive (distributed) estimator converges to global optimizer (more slowly) 

[3] Steentjes et al., IFAC-NECSYS, 2018.

• Generalization of immersion: abstraction [4]

• Parallel paths and loop condition can be generalized towards indirect measurement
of node signals 

[4] Weerts et al., 2019, provisionally accepted by Automatica. 
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Discussion

• Dynamic network identification: 
intriguing research topic with many open questions

• The (centralized) LTI framework is only just the beginning

• Further move towards data-aspects related to distributed control

• and large-scale aspects

• and bring it to real-life applications 

79
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