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Introduction

Overall trend:

e (Large-scale) interconnected systems

* With hybrid dynamics (continuous / switching)

* Distributed / multi-agent type monitoring, control and optimization problems
* Datais “everywhere”, big data era

* Modelling problems will need to consider this

TU/e



Introduction

Distributed / multi-agent control:

With both physical and communication links between
systems G; and controllers C;

How to address data-driven modelling problems in such a setting?

TU/e



Introduction

The classical (multivariable) identification problems[ '

open loop closed loop y
v
—> G —
rox u y
—> G
u Jy
C |=e—

Identify a plant model G on the basis of measured signals u, y
(and possibly r), focusing on continuous LTI dynamics.

We have to move from a simple and fixed configuration
to deal with structure in the problem.

W Ljung (1999), Séderstrém and Stoica (1989), Pintelon and Schoukens (2012)
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Dynamic networks

as

™

0
G

0
GLEQ

U5

0
G 54

.4

0
Gy

A

Gy |«

State space representations
(Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,...)

Module representation
(VdH, Dankers, Materassi, Gevers, Bazanella,...)
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Dynamic network setup

r; external excitation
V; process noise
w; node signal

TU/e
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Dynamic network setup

r; external excitation
V; process noise

w; node signal
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Dynamic network setup

r; external excitation
V; process noise
w; node signal
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Dynamic network setup

r. external excitation
V; process noise
w; node signal

TU/e
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Dynamic network setup

Assumptions:

e Total of L nodes

* Network is well-posed and stable

* Modules are dynamic, may be unstable

e Disturbances are stationary stochastic and
can be correlated

wl % G(::I_Jz ©0o0 GEL w1 ’I"1 ’U]_
w2 | _ | Gyy 0 . Gy w2 4RO 9 n V9
wr, GULl GOLZ 000 0 wy, TK vV,
~0
G (q)

w(t) = GO(q)w(t) + R(q)r(t) + v(t)

J. Gongalves and S. Warnick, IEEE TAC, 2008. TU
P.M.J. Van den Hof, A.G. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, 2013. e



Dynamic network setup

Many new identification questions
can be formulated:

* |dentification of a local module
(known topology)

* |dentification of the full network

* Topology estimation

* |dentifiability

* Sensor and excitation allocation

* Fault detection

* User prior knowledge of modules

* Scalable algorithms

* Distributed identification

Measured time series signals:
{wi}i=1,...; {rj}j=1,-K

TU/e
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Dynamic network setup - nonuniqueness

Non-uniqueness of network model

w(t) = G(q)w(t) + R(q)r(t) + v(t)

Disturbance representation: v(t) = H(q)e(t) withe(t)a white noise process
w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)

Premultiplication of equation with rational matrix P can lead to an equivalent model:

w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)

Uniqueness is typically guaranteed if noise process has diagonal spectrum ( H diagonal) (1]

[1] G. Bottegal et al., SYSID2018 TU /e
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Dynamic network setup - nonuniqueness

Node signals w1 (t), w2 (t) being invariant

TU/e
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Dynamic network setup - graph

Extended graph:
including the external signals

TU/e



EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Contents

* Introduction and motivation

e How to model a dynamic network?

* Single module identification — known topology
* Network identifiability

* Diffusively coupled physical networks

* Extensions - Discussion



EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Single module identification - known topology



20

Single module identification

For a network with known topology:
* ldentify G9, on the basis of measured signals
* Which signals to measure? Preference for local measurements

TU/e
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Single module identification

Naive approach: identify based on the input w1 and output ws : in general does not work.

TU/e
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Single module identification

|dentifiying GY, is part of a 4-input, 1-output problem

TU/e
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Identification methods

4-input 1-output problem

to be addressed by a closed-loop identification method

* Direct PE method
e(t,0) = H(q,0) '[wa(t) — ) Gax(q,0)w(t)]
Maximum Likelihood properties k€D2
Disturbances v;uncorrelated over channels
Excitation provided through rand vsignals

* Indirect/2-stage/projection/IV method

e(t,0) = H(q,0) '[wz(t) — > Gar(g,0)wi (t)]
keD-

Consistency; no need for noise models; no ML
Excitation provided through rsignals only

P.M.J. Van den Hof, A.G. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, 49, 2994-3006, 2013.

TU/e
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Single module identification

4 input nodes to be measured:
Can we do with less?

Network immersion ]

 Animmersed network is constructed by removing node signals,
but leaving the remaining node signals invariant

* Modules and disturbance signals are adapted
 Abstraction through variable elimination (Kron reduction!?lin network theory).

1l A. Dankers. PhD Thesis, 2014.
121 F, Dérfler and F. Bullo, IEEE Trans. Circuits and Systems | (2013)

TU/e
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Immersion

TU/e



26

Immersion

When does immersion leave
G, invariant?
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Immersion

When does immersion leave
G9, invariant?

Parallel paths and loops around the output

There should be no parallel paths and
loops around the output that run through
removed nodes only

A.G. Dankers et al., IEEE Trans. Automatic Control, 61, 937-952, 2016. TU / e
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Single module identification

parallel paths, and loops around the output

TU/e
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Single module identification

parallel paths, and loops around the output

TU/e
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Single module identification

parallel paths, and loops around the output

TU/e
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Single module identification

parallel paths, and loops around the output

TU/e
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Single module identification

Choose wg as an additional input (to be retained)

TU/e
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Single module identification

parallel paths, and loops around the output
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Single module identification

parallel paths, and loops around the output

TU/e
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Single module identification

parallel paths, and loops around the output

TU/e
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Single module identification

Choose w3 as an additional input, to be retained

TU/e
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Single module identification

Conclusion:

With a 3-input, 1 output model we can
consistently identify G9,

The immersion reasoning is sufficient but not necessary to arrive at
a consistent estimate, see e.g. Linder and Enqvist [1], Bazanella et al. 2], Ramaswamy et al. [3]

], Linder and M. Enqvist. Int. J. Control, 90(4), 729-745, 2017. 131 K. Ramaswamy et al., CDC 2019. TU
21 A. Bazanella, M. Gevers et al., CDC 2017. e
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Single module identification

Conclusion:

With a 3-input, 1 output model we can
consistently identify G9,

For a consistent and minimum variance estimate
(direct method) there is one additional condition:

* absence of confounding variables, 112! j. e,
correlated disturbances on inputs and outputs

). Pearl, Stat. Surveys, 3, 96-146, 2009
[21A.G. Dankers et al., Proc. IFAC World Congress, 2017.

TU/e



Handling confounding variables in local module identificaiton

 Two types of confounding variables:

Direct confounding variable Indirect confounding variable

Adding predicted outputs [1}.[2] Adding predictor inputs(3/l (or outputs)
We can end up with a MIMO local identification problem.

[1] P.M.J. Van den Hof et al., CDC 2019. [3] A.G. Dankers et al., IFAC World Congress, 2017. TU
[2] K.R. Ramaswamy et al., ArXiv 2019, IEEE-TAC, under review. [4] D. Materassi and M.V. Salapaka, ArXiv, 2019. e

39
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Handling confounding variables in local module identificaiton

General setup for consistent and minimum variance estimation:
Target module

Wy — é -—>'wo

Wy —> — Wy

Different choices of node signals to include, to warrant éji = G?i and ML estimation:

* Fullinput case
*  Minimum node signals case

e User selection case

Including r-signals as predictor inputs (indirect method) enlarges the flexibility 3!

[1] P.M.J. Van den Hof et al., CDC 2019. [3] K.R. Ramaswamy et al., CDC 2019.
[2] K.R. Ramaswamy et al., ArXiv 2019, IEEE-TAC, under review.

TU/e
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Summary single module identification

Methods for consistent and minimum variance module estimation

Graph tools for checking conditions

 Degrees of freedom in selection of measured signals — sensor selection

A priori known modules can be accounted for

TU/e
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Network identifiability

blue = unknown
red =known

Question: Can different dynamic networks be distinguished from each other from measured
signalsw,, r, ?

Starting assumption: all signals w,,r, that are present can be measured.

TU/e
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Network identifiability
Network: w = G°w+ R°r + H'e cov(e) = A°, rankp

dim(r) =K

The network is defined by: (G°, R®, HY, A®)
a network model is denoted by: M = (G, R, H, A)

and a network model set by:
M = {M(O) — (G(O)a R(H)’ H(H),A(O)),H S @}

represents prior knowledge on the network models:

e topology

disturbance correlation

known modules

the signals used for identification

TU/e
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Network identifiability
w=Gw+ Rr + He
w= (I — G '[Rr + He]
Denote: w = T, + v
Objects that are uniquely identified from datar,w : T,,,., ®;

Definition
A network model set M is network identifiable from (w,r) at My = M (6o)
if for all models M (0,) € M.

a0 = muleng) | = MO0 = Mo

Generic identifiability holds if this is true for almost all models in M

Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018; TU/e

Hendrickx et al., IEEE-TAC, 2019.
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Network identifiability

Theorem — identifiability for general model sets

For each node signal w;, let P, be the set of in-neighbours of w; that map to w;
through a parametrized module.

Then, under fairly general conditions,

M is network identifiable from (w, r) at My = M (6y) if and only if for all 5 :

e Eachrow of [G(6) H(0) R(0)] has at most K + p parametrized entries, and

* The transfer matrix from external inputs (7, €) that are non-parametrized in w;
to P; has full row rank.

Weerts et al, SYSID2015; Weerts et al., Automatica, March 2018

TU/e
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Example 5-node network

There are noise-free nodes, and v; and v, are expected to be correlated

M with H(0) =

(H11(0)
H>1(0)
0
0

0

H,5(0)
H»»(0)
0
0
0

0

0
Hi3(6)

0

0

, R =

o= OO

= o O O

TU/e
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Example 5-node network

There are noise-free nodes, and v7 and v are expected to be correlated

M with H(0) =

rH11(9)
LHZ]-(H)

H12(9
H22(9

)

0
0

0

0
0
0

0

0
Hi3(6)

0

0

, R =

o= OO

= o O O

TU/e
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Example 5-node network

There are noise-free nodes, and v; and v are expected to be correlated

M with H(0) =

-H11(0) H12(9

j 0
LH21(0) H22(9 0
0 0 [ Hss(0)
0 0 0
0 0 0

, R =

o= OO

= o O O

TU/e
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Example 5-node network

There are noise-free nodes, and v1 and v are expected to be correlated

M with H(0) =

H11(0) le(Oj 0
kI‘I21(9) H22(9 0
0 0 [ Hss(0)
0 0 0
0 0 0

, R =

ol O

TU/e
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Example 5-node network

There are noise-free nodes, and v; and v, are expected to be correlated

M with H(0) =

H11(0) le(Oj 0
kI‘I21(9) H22(9 0
0 0 [ Hss(0)
0 0 0
0 0 0

, R =

ol O

TU/e



Example 5-node network

0 0 O]

0 00

GO =| o0 0 0 Gsu(0) 0 [HR=| 0 0 Hs@) 0 0
0 1 0 0 0 0 0 0 10

0 0 Gs3(0) 0 0 0 0 0 0 1]

First condition:
Number of parametrized entries in each row < K+p =5 @

TU/e
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Example 5-node network

0 Gi2(0) 0 0 Gi5(0) Hy:(0) Hi2(6) 0 0 0]

G21(0) 0 G23(0) 0 0 H21(9) sz(e) 0 0 0

G(O) = 0 0 0 G34(9) 0 [H R] — 0 0 H3(0) 0 0

0 1 0 0 0 0 0 0 10

0 0 Gs3(0) O 0 0 0 0 0 1]

K+;=5
Rank condition: U3 wo
Row 1: Full row rank of transfer: |T4| — [w5
s

TU/e
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Example 5-node network

Verifying the rank condition for ws :

G53

Trs

TU/e
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Example 5-node network

Verifying the rank condition for w;:

fs‘ V1

G

For the generic case, the rank can be calculated by a graph-based condition!11[2}[3] ;

V3
W2
Tqg| —™

Trs

Generic rank = number of vertex-disjoint paths

2 vertex-disjoint paths = full row rank 2 @

The rank condition has to be checked for all nodes.

[1] Van der Woude, 1991 TU/
[2] Hendrickx, Gevers & Bazanella, CDC 2017 [3] Weerts et al., CDC 2018 e
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Generic identifiability

Result provides an analysis tool, but is less suited for the synthesis question:

Given a parametrized network model set:

Where to add external excitation signals to have generic network identifiability?

TU/e
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Graph-based synthesis solution for full network

Decompose network in disjoint pseudo-trees:

Pseudo-tree:
 Connected directed graphs, where nodes have maximum indegree 1

Two typical pseudo-trees:

Tree with root in green Cycle with outgoing trees;
Any node in cycle is root

TU/e
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Graph-based synthesis solution for full network

Decompose network in disjoint pseudo-trees:

Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree

R

Any network can be decomposed into a set of disjoint pseudo-trees

TU/e
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Graph-based synthesis solution for full network

Result!!
A network is generically identifiable if

* It can be decomposed in K disjoint pseudo-trees, and

* There are Kindependent external signals entering at a root of each pseudo-tree

[1] X. Cheng, S. Shi and PVdH, CDC 2019. TU/e
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Where to allocate external excitations for network identifiability?

Two disjunct pseudo-trees




Where to allocate external excitations for network identifiability?

Two independent excitations
guarantee network identifiability

Algorithm available for merging pseudo-trees.

62
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Where to allocate external excitations for network identifiability?

* Nodes are signals w and external signals (7, e) when they are input to parametrized

links
* Result extends to the presence of known (nonparametrized links): they can be

excluded from the covering

TU/e
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Summary identifiability

Identifiability of network model sets is determined by

* Presence and location of external signals, and
e Correlation of disturbances
* Prior knowledge on modules

* Graphic-based tool for synthesizing allocation of external excitation signals

So far:
e All node signals assumed to be measured
* Fully applicable to the situation p < L (i.e. reduced-rank noise)

* Extensions towards identifiability of a single module [11121.[3]

[1] Hendrickx, Gevers & Bazanella, CDC 2017, IEEE-TAC 2019 [3] Shi et al., IFAC 2020 submitted
[2] Weerts et al., CDC 2018

TU/e
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Back to the basics of physical interconnections

In connecting physical systems, there is often no predetermined

direction of information [1!
wy s W,

Example: resistor / spring connection in electrical / mechanical system:

*\\\®

Resistor Spring
1
I=E(V1—V2) F = K(x; — x3)

Difference of node signals drives the interaction: diffusive coupling

[1]J.C. Willems (1997,2010)

TU/e
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Diffusively coupled physical network

Equation for node j:

M;;;(t)+Djot; (t)+ Y Dijn (v (t) — e (t)+Kjow; () + Y K (w;(t) — we(t)) = u;(t),
k#j k#j

TU/e
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Mass-spring-damper system

* Masses M;
* Springs Ky

* Dampers Djy

* Inputy;
M, Wy 2} Kio 61
MZ Wz + ] WZ ar 0 ]|:W2]

M3 W3 Wg 0l11Lws

Wy Ki» + K13 —Kip _K13
+ wa+| —Kiz K12 W2 = u2

W3 —Ki3

[ A(p) + B(p) ]w(t) =u(t) A(p), B(p) polynomial p=—

diagonal Laplacian

TU/e
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Mass-spring-damper system

[ A(p) + B(p) ]w(t)=u(t) A(p),B(p) polynomial
—— ——

diagonal Laplacian
[ Q(p) — P(p)] w(t) = u(t)

N—~— N

diagonal hollow

Q., = M, p* + p+ (Ko + Kip + Ki3) Q;; : elements related to node wj :

Q22 = M, p* + ( + )p + Kqp Pj; = P;; :
Q33 = M3 p? + (D45 + )p + Kq3 elements related to interconnection

0 K1, p+ K3 .
P = Ki> 0 p
p + K13 P 0 M, —I
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Module representation

[ Q(p) — P(p)] w(t) = Fr(t) + C(p)e(t)
— =

diagonal hollow

w(t) = Q7 Pw(t) + Q"' Fr(t) + Q7 C(p)e(t)
This fully fits in the earlier module representation:

w(t) = Gw(t) + Rr(t) + He(t)

with the additional condition that:

G(p) = Q(p)~"P(p) Q(p), P(p) polynomial
P(p) symmetric, Q(p) diagonal

TU/e
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Module representation

Consequences for node interactions:

P12

@Q_zz

* Node interactions come in pairs of modules
* Where numerators are the same

Framework for network identification remains the same

* Symmetry can simply be incorporated in identification

TU/e



Local network identification

Identification of one physical interconnection

Identification of two modules Gj, and Gy

P12
Qzz F2 B
Ol R -:
_ i A : _ Tus
Gji = Qjj Pjx and Gy; = Qg Pxj with Pjp = Pj

73

TU/e
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Immersion conditions

For simultaneously identifying two modules in one interconnection:

The parallel path and loops-around-the-output condition of immersion, now
simplifies to:

All neighbouring nodes of w2 and ws need to be retained/measured.

E.E.M. Kivits et al., CDC 2019.

TU/e
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Summary diffusively coupled physical networks

* Physical networks fit within the module framework (special case)

- no restriction to second order equations

* |dentification algorithms and identifiability analysis can be utilized
e Local identification is well-addressed (and stays really local)

* Framework is fit for representing cyber-physical systems

TU/e
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Extensions - Discussion

* Identification algorithms to deal with reduced rank noise [*]
* number of disturbance terms is larger than number of white sources
* Optimal identification criterion becomes a constrained quadratic problem
with ML properties for Gaussian noise

* Reworked Cramer Rao lower bound
* Some parameters can be estimated variance free

* Including sensor noise [?

* Errors-in-variabels problems can be more easily handled in a network setting

[1] Weerts et al., Automatica, December 2018. TU/
[2] Dankers et al., Automatica, 2015. e



Extensions - Discussion

* Machine learning tools for estimating large scale models [1.2]

* Choosing correctly parametrized model sets for all modules is impractical
* Use of Gaussian process priors for kernel-based estimation of models

* From centralized to distributed estimation (MISO models) [3]

 Communication constraints between different agents
* Recursive (distributed) estimator converges to global optimizer (more slowly)

e Generalization of immersion: abstraction 4

* Parallel paths and loop condition can be generalized towards indirect measurement
of node signals

[1] Everitt et al., Automatica, 2018. [3] Steentjes et al., IFAC-NECSYS, 2018. TU
[2] Ramaswamy et al., CDC 2018. [4] Weerts et al., 2019, provisionally accepted by Automatica. e
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Discussion

* Dynamic network identification:
intriguing research topic with many open questions

* The (centralized) LTI framework is only just the beginning
e Further move towards data-aspects related to distributed control
e and large-scale aspects

* and bring it to real-life applications

TU/e
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