

Introduction – dynamic networks

Decentralized process control

Autonomous driving

Smart power grid

Metabolic network

Hydrocarbon reservoirs

Introduction

Overall trend:

- (Large-scale) interconnected systems
- With hybrid dynamics (continuous / switching)
- Distributed / multi-agent type monitoring, control and optimization problems
- Data is "everywhere", big data era
- Modelling problems will need to consider

Introduction

Distributed / multi-agent control:

With both physical and communication links between systems G_i and controllers C_i

How to address data-driven modelling problems in such a setting?

Introduction

The classical (multivariable) identification problems [1]:

Identify a plant model \hat{G} on the basis of measured signals u, y (and possibly r), focusing on *continuous LTI dynamics*.

We have to move from a fixed and known configuration to deal with *structure* in the problem.

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification known topology
- Network identifiability
- Extensions Discussion

Dynamic networks for data-driven modeling

Dynamic networks

State space representations

(Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,...)

Module representation

(VdH, Dankers, Gevers, Bazanella,...)

Assumptions:

- Total of L nodes
- Network is well-posed and stable
- Modules are dynamic, may be unstable
- Disturbances are stationary stochastic and can be correlated

$$egin{bmatrix} w_1 \ w_2 \ dots \ w_L \end{bmatrix} = egin{bmatrix} 0 & G_{12}^0 & \cdots & G_{1L}^0 \ G_{21}^0 & 0 & \cdots & G_{2L}^0 \ dots & \ddots & \ddots & dots \ G_{2L}^0 & G_{L2}^0 & \cdots & 0 \end{bmatrix} egin{bmatrix} w_1 \ w_2 \ dots \ w_L \end{bmatrix} + R^0 egin{bmatrix} r_1 \ r_2 \ dots \ r_K \end{bmatrix} + egin{bmatrix} v_1 \ v_2 \ dots \ v_L \end{bmatrix} \ egin{bmatrix} w_1 \ v_2 \ dots \ v_L \end{bmatrix} + egin{bmatrix} v_2 \ dots \ v_L \end{bmatrix} + egin{bmatrix} v_1 \ v_2 \ dots \ v_L \end{bmatrix}$$

Here: focus on **prediction error methods**

Many new identification questions can be formulated:

- Identification of a local module (known topology)
- Identification of the full network
- Topology estimation
- Sensor and excitation selection
- Fault detection
- Experiment design
- User prior knowledge of modules
- Scalable algorithms

Single module identification - known topology

For a network with known topology:

- Identify G_{21}^0 on the basis of measured signals
- Which signals to measure? Preference for local measurements

Identifying G_{21}^0 is part of a 4-input, 1-output problem

Identification methods

4-input 1-output problem

to be addressed by a closed-loop identification method

Direct PE method

$$arepsilon(t, heta)=H(q, heta)^{-1}[w_2(t)-\sum_{k\in\mathcal{D}_2}G_{2k}(q, heta)w_k(t)]$$
rties

ML properties

Disturbances v_i uncorrelated over channels Excitation provided through r and v signals

2-stage/projection/IV (indirect) method

$$\varepsilon(t,\theta) = H(q,\theta)^{-1}[w_2(t) - \sum_{k \in \mathcal{D}_2} G_{2k}(q,\theta) w_k^{\mathcal{R}}(t)]$$

Consistency; no need for noise models; **no ML** Excitation provided through r signals only

4 input nodes to be measured:

Can we do with less?

Network immersion [1]

- An immersed network is constructed by removing node signals, but leaving the remaining node signals invariant
- Modules and disturbance signals are adapted
- Abstraction through variable elimination (Kron reduction^[2] in network theory).

^[2] F. Dörfler and F. Bullo, IEEE Trans. Circuits and Systems I (2013)

Immersion

Immersion

Immersion

When does immersion leave G_{21}^0 invariant?

Proposition

Consider an immersed network where w_1 and w_2 are retained.

Then $\check{G}_{21}^0=G_{21}^0$ if

- a) Every path $w_1 o w_2$ other than the one through G^0_{21} goes through a node that is retained. (parallel paths)
- b) Every path $w_2 o w_2$ goes through a node that is retained. (loops around the output)

Choose w_6 as an additional input (to be retained)

Choose $oldsymbol{w_3}$ as an additional input, to be retained

Conclusion:

With a 3-input, 1 output model we can consistently identify G_{21}^0

The immersion reasoning is *sufficient* but not *necessary* to arrive at a consistent estimate, see e.g. Linder and Enqvist [1] and Gevers et al. [2]

^[1] J. Linder and M. Enqvist. *Int. J. Control*, 90(4), 729-745, 2017.

^[2] A. Bazanella, M. Gevers et al., CDC 2017.

Conclusion:

With a 3-input, 1 output model we can consistently identify G_{21}^0

with an indirect method

For a consistent and minimum variance estimate (direct method) there is one additional condition:

• absence of **confounding variables**, [1][2] i.e. correlated disturbances on inputs and outputs

^[1] J. Pearl, *Stat. Surveys*, *3*, 96-146, 2009

^[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.

Confounding variables

Back to the (classical) closed-loop problem:

Direct identification of G_{21}^0 can be consistent provided that v_1 and v_2 are uncorrelated

 $r_1 \rightarrow W_1 \rightarrow G_{21}^0 \rightarrow W$ $G_{12}^0 \rightarrow W$

In case of correlation between v_1 and v_2 :

Special attention is required

Confounding variables in the MISO case

• w_7 (not measured) now acts as a disturbance

 For minimum variance: MISO direct method loses consistency if there are confounding variables

This requires:

$$egin{bmatrix} v_2 \ v_7 \end{bmatrix}$$
 uncorrelated with $egin{bmatrix} v_1 \ v_3 \ v_6 \end{bmatrix}$

and no path from w_7 to an input

Confounding variables in the MISO case

Solutions while restricting to MISO models:

- (a) Including the node $oldsymbol{w_7}$ as additional input, or
- (a) Block the paths from w_7 to inputs/outputs by measured nodes, to be used as additional inputs.

Confounding variables in the MISO case

Solutions:

b) Block the paths from w_7 to input w_1 by measured node w_4 to be used as additional input.

Relation with d-separation in graphs (Materassi & Salapaka)

Confounding variables in the MISO case

Can we always address confounding variables in this way?

No

If v_2 and v_1 are correlated then:

A MIMO approach with predicted outputs w_2 and w_1 can solve the problem

Confounding variables

Back to the (classical) closed-loop problem:

In case of correlation between v_1 and v_2 : MIMO approach joint prediction of w_1 and w_2 leads to ML results,

$$\begin{bmatrix} \varepsilon_1(t,\theta) \\ \varepsilon_2(t,\theta) \end{bmatrix} = H(q,\theta)^{-1} \begin{bmatrix} w_1(t) - G_{12}(q,\theta)w_2(t) \\ w_2(t) - G_{21}(q,\theta)w_1(t) \end{bmatrix}$$

Joint estimation of G_{21}^0 and G_{12}^0 : Joint–direct method $^{[1,2]}$ related to the classical joint-io method $^{[3,4]}$

^[1] P.M.J. Van den Hof et al. *Proc. 56th IEEE CDC*, 2017

^[3] T.S. Ng, G.C. Goodwin, B.D.O. Anderson, Automatica, 1977

Summary single module identification

- Methods for consistent and minimum variance module estimation.
- For direct method / ML results: treatment of confounding variables / correlated disturbances
- Degrees of freedom in selection of measured signals sensor selection
- A priori known modules can be accounted for

blue = unknown red = known

Question: Can the dynamics/topology of a network be uniquely determined from measured signals w_i , r_i ?

Required: Can different dynamic networks be distinguished from each other from measured signals w_i , r_i ?

Starting assumption: all signals w_i , r_i that are present are measured.

Network:
$$w=G^0w+R^0r+H^0e$$
 $cov(e)=\Lambda^0,$ rank p $w=(I-G^0)^{-1}[R^0r+H^0e]$ $\dim(r)=K$

The network is defined by: (G^0,R^0,H^0,Λ^0) a network model is denoted by: $M=(G,R,H,\Lambda)$ and a **network model set** by:

$$\mathcal{M} = \{M(\theta) = (G(\theta), R(\theta), H(\theta), \Lambda(\theta)), \theta \in \Theta\}$$

represents **prior knowledge** on the network models:

- topology
- disturbance correlation
- known modules
- the signals used for identification

$$w=(I-G^0)^{-1}[R^0r+H^0e]$$

Denote: $w=T^0_{wr}r+ar{v}$ $ar{v}=T^0_{we}e$ $\Phi^0_{ar{v}}=T^0_{we}(e^{i\omega})\Lambda^0T^0_{we}(e^{i\omega})^*$

Objects that are uniquely identified from data $r, w : T_{wr}^0, \Phi_{\overline{v}}^0$

How to define identifiability?

Clasically:

- Property of a model set
- Unique mapping between parameters and models

In the **network** situation:

- Property of a model set
- Unique mapping between models and identified objects

Definition

A network model set \mathcal{M} is network identifiable from (w,r) at $M_0=M(\theta_0)$ if for all models $M(\theta_1)\in\mathcal{M}$:

$$\left. \begin{array}{l} T_{wr}(q,\theta_1) = T_{wr}(q,\theta_0) \\ \Phi_{\bar{v}}(\omega,\theta_1) = \Phi_{\bar{v}}(\omega,\theta_0) \end{array} \right\} \Longrightarrow M(\theta_1) = M(\theta_0)$$

 ${\mathcal M}$ is network identifiable if this holds for all models $M_0\in {\mathcal M}$

Theorem – identifiability for general model sets

If:

- a) Each unknown entry in $M(\theta)$ covers the set of all proper rational transfer functions
- b) All unknown entries in $M(\theta)$ are parametrized independently

Then ${\mathcal M}$ is network identifiable from (w,r) at $M_0=M(heta_0)$ if and only if

- Each row of $[G(\theta) \; H(\theta) \; R(\theta)]$ has at most K+p parametrized entries
- For each row i the transfer matrix $\check{T}_i(q,\theta_0)$ has full row rank, with $\check{T}_i(q,\theta_0)$: $\begin{bmatrix} v_3 \ v_4 \ r_1 \ r_2 \end{bmatrix}$

$$[G_{i*}(heta) \; H_{i*}(heta) \; R_{i*}(heta)] = [0 \; * \; 0 \; * \; * \; | \; * \; * \; 0 \; 0 \; | \; 1 \; 0] \ [w_2 \; w_4 \; w_5]$$

There are noise-free nodes, and v_1 and v_2 are expected to be correlated

$$\mathcal{M}$$
 with $H(heta) = egin{bmatrix} H_{11}(heta) & H_{12}(heta) & 0 \ H_{21}(heta) & H_{22}(heta) & 0 \ 0 & 0 & H_{33}(heta) \ 0 & 0 & 0 \ 0 & 0 \end{bmatrix}, \; R = egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$

There are noise-free nodes, and v_1 and v_2 are expected to be correlated

$$\mathcal{M}$$
 with $H(heta) = egin{bmatrix} H_{11}(heta) & H_{12}(heta) & 0 \ H_{21}(heta) & H_{22}(heta) & 0 \ 0 & 0 & H_{33}(heta) \ 0 & 0 & 0 \ 0 & 0 \end{bmatrix}, \ R = egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$

There are noise-free nodes, and $v_{\mathbf{1}}$ and $v_{\mathbf{2}}$ are expected to be correlated

There are noise-free nodes, and $v_{\mathbf{1}}$ and $v_{\mathbf{2}}$ are expected to be correlated

$$\mathcal{M}$$
 with $H(heta) = egin{bmatrix} H_{11}(heta) & H_{12}(heta) & 0 \ H_{21}(heta) & H_{22}(heta) & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}, \ R = egin{bmatrix} 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 1 \end{bmatrix}$

There are noise-free nodes, and v_1 and v_2 are expected to be correlated

$$\mathcal{M}$$
 with $H(\theta)=egin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \ H_{21}(\theta) & H_{22}(\theta) & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ \end{bmatrix}, \ R=egin{bmatrix} 0 & 0 \ 0 & 0 \ 0 & 0 \ \end{bmatrix}$

If we restrict the structure of $G(\theta)$:

$$G(\theta) = \begin{bmatrix} 0 & G_{12}(\theta) & 0 & 0 & G_{15}(\theta) \\ G_{21}(\theta) & 0 & G_{23}(\theta) & 0 & 0 \\ 0 & 0 & 0 & G_{34}(\theta) & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & G_{53}(\theta) & 0 & 0 \end{bmatrix} \qquad [H\ R] = \underbrace{\begin{bmatrix} H_{11}(\theta)\ H_{12}(\theta) & 0 & 0 & 0 \\ H_{21}(\theta)\ H_{22}(\theta) & 0 & 0 & 0 \\ 0 & 0 & H_{3}(\theta) & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{K+p=5}$$

First condition:

Number of parametrized entries in each row < K+p = 5

Rank condition:

Row 1: Full row rank of transfer:

$$egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_5 \end{bmatrix}$$

Verifying the rank condition for $\,\check{T}_1(q, heta_0)\,$

$$i=1:$$
 Evaluate the rank of the transfer matrix $egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_5 \end{bmatrix}$

Theorem (Van der Woude, 1991; Hendrickx et al. 2017; Weerts et al., 2018)

The **generic rank** of a transfer function matrix between inputs r and nodes w is equal to the maximum number of **vertex-disjoint paths** between the sets of inputs and outputs.

A (path-based) check on the topology of the network can decide whether the conditions for identifiability are satisfied generically.

Generic rank = 3

Verifying the rank condition for $\check{T}_1(q, heta_0)$

$$i=1$$
 : Evaluate the rank of the transfer matrix $egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}$ to $egin{bmatrix} w_2 \ w_5 \end{bmatrix}$

2 vertex-disjoint paths → full row rank 2

Verifying the rank condition for $\check{T}_1(q, heta_0)$

$$i=1$$
 : Evaluate the rank of the transfer matrix $egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}$ to $egin{bmatrix} w_2 \ w_5 \end{bmatrix}$

For each row i : # unknown modules $G_{ik}(q, \theta) \leq \#$ external signals uncorrelated with v_i

Summary identifiability

Identifiability of network model sets is determined by

- Presence and location of external signals, and
- Correlation of disturbances
- Prior knowledge on modules

So far:

- All node signals assumed to be measured
- Fully applicable to the situation $\,p < L\,$ (i.e. reduced-rank noise)
- Identifiability of the full network model conditions per row/output node
- Extensions towards identifiability of a single module [1],[2]

^[1] Hendrickx, Gevers & Bazanella, CDC 2017, IEEE-TAC 2019

Extensions - Discussion

Extensions - Discussion

- Identification algorithms to deal with reduced rank noise [1]
 - number of disturbance terms is larger than number of white sources
 - Optimal identification criterion becomes a constrained quadratic problem with ML properties for Gaussian noise
 - Reworked Cramer Rao lower bound
 - Some parameters can be estimated variance free
- Including sensor noise [2]
 - Errors-in-variabels problems can be more easily handled in a network setting

^[2] Dankers et al., Automatica, 2015.

Extensions - Discussion

- Machine learning tools for estimating large scale models [1,2]
 - Choosing correctly parametrized model sets for all modules is impractical
 - Use of Gaussian process priors for kernel-based estimation of models

- From centralized to distributed estimation (MISO models) [3]
 - Communication constraints between different agents
 - Recursive (distributed) estimator converges to global optimizer (more slowly)

[3] Steenties et al., IFAC-NECSYS, 2018.

^[1] Everitt et al., Automatica, 2018.

^[2] Ramaswamy et al., CDC 2018.

Discussion

- Dynamic network identification: intriguing research topic with many open questions
- The (centralized) LTI framework is only just the beginning
- Further move towards data-aspects related to distributed control
- As well as to physical networks

Acknowledgements

Lizan Kivits, Shengling Shi, Karthik Ramaswamy, Tom Steentjes, Mircea Lazar, Jobert Ludlage, Giulio Bottegal, Maarten Schoukens

Co-authors, contributors and discussion partners:

Arne Dankers

Harm Weerts

Xavier Bombois
Peter Heuberger
Donatelllo Materassi
Manfred Deistler
Michel Gevers
Jonas Linder
Sean Warnick
Alessandro Chiuso
Hakan Hjalmarsson
Miguel Galrinho

Further reading

- P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013). Identification of dynamic models in complex networks with prediction error methods basic methods for consistent module estimates. *Automatica*, Vol. 49, no. 10, pp. 2994-3006.
- A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015). Errors-in-variables identification in dynamic networks consistency results for an instrumental variable approach. *Automatica*, Vol. 62, pp. 39-50, December 2015.
- A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with predictior error methods predictor input selection. *IEEE Trans. Autom. Contr.*, *61* (4), pp. 937-952, 2016.
- P.M.J. Van den Hof, A.G. Dankers and H.H.M. Weerts (2018). System identification in dynamic networks. *Computers & Chemical Engineering*, 109, pp. 23-29, 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability of linear dynamic networks. *Automatica*, 89, pp. 247-258, March 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction error identification of linear dynamic networks with rank-reduced noise. *Automatica*, *98*, pp. 256-268, December 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Single module identifiability in linear dynamic networks. Proc. 57th IEEE CDC 2018, ArXiv 1803.02586.
- K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof. Local module identification in dynamic networks using regularized kernel-based methods. Proc. 57th IEEE CDC 2018.
- P.M.J. Van den Hof, K.R. Ramaswamy, A.G. Dankers and G. Bottegal. Local module identification in dynamic networks with correlated noise: the full input case. Submitted to 2019 ACC. ArXiv 1809.07502.

The end