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Introduction – dynamic networks 

Decentralized process control
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Autonomous driving

www.envidia.com

Smart power grid

Metabolic network Hydrocarbon reservoirs

Pierre et al.  (2012)

Hillen (2012)
Mansoori (2014)

Brain network
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3

ri external excitation
vi process noise
wi node signal



4

ri external excitation
vi process noise
wi node signal

Dynamic network model – module framework



Dynamic network model – module framework

5

ri external excitation
vi process noise
wi node signal



Dynamic network model – module framework

6

ri external excitation
vi process noise
wi node signal



Dynamic network setup 
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Assumptions:
• Total of L nodes
• Network is well-posed and stable
• Modules are dynamic, may be unstable
• Disturbances are stationary stochastic and 

can be correlated

J. Gonçalves and S. Warnick, IEEE TAC, 2008.
P.M.J. Van den Hof, A.G. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, 2013.



Dynamic network model – module framework
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• Identification of a local module 
(known topology)

• Identification of the full network
• Topology estimation
• Identifiability
• Sensor and excitation allocation
• Fault detection 
• User prior knowledge of modules
• Scalable algorithms

Many new identification questions 
can be formulated:
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Network Identifiability



Network identifiability

blue = unknown
red   = known

Question: Can different dynamic networks be distinguished from each other from measured
signals wi , ri ?
Where to add excitation signals r such that we can? 

Starting assumption: all signals wi ,ri that are present can be measured. 

10



Consider a network model set:

Network identifiability
Network:
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Where can typically be identified from data (under some conditions) 

Denote:

Network identifiability of         is defined by a unique mapping:

Is there a single model in the model set that matches a ``measured’’        ? 

Generic identifiability holds if this is true for almost all models in 



xxxxx

There are           vertex disjoint paths from external excitation signals            
to the node signals in 

Network identifiability
Theorem – generic identifiability

12 [3] Weerts et al, SYSID2015; Weerts et al., Automatica, March 2018; Weerts et al CDC 2018.

is generically network identifiable if and only if for all    :   

For each node signal      , let        be the set of in-neighbours of        that map to      
through a parametrized module. 
Then, under fairly general conditions,

·

1 that appear nonparametrized in 

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC-2019
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Example 5-node network
Verifying the rank condition for       :

Evaluate the number of vertex disjoint paths
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Example 5-node network
Verifying the rank condition for      :
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w5 w1G15 w4G21 w3G34

G12 G23

G53

v1 v2 v3r4

w2

r5

2 vertex-disjoint paths → full row rank 2

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017 [3] Weerts et al., CDC 2018



Given a parametrized network model set: where to add external excitation signals so as 
to achieve generic network identifiability? 

Generic identifiability

Result provides an analysis tool, but is less suited for the question:
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Graph-based synthesis solution for full network

Decompose network in disjoint pseudo-trees:
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• Any network can be decomposed into a set of disjoint pseudo-trees 

• Connected directed graphs, where nodes have maximum indegree 1

• Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree 



Graph-based synthesis solution for full network
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A network is generically identifiable if

• It can be decomposed in K disjoint pseudo-trees, and

• There are K independent external signals entering at a root of each pseudo-tree

Result[1]

[1] X. Cheng, S. Shi and PVdH, CDC 2019. 

Two typical pseudo-trees:

Tree with root in green Cycle with outgoing trees;
Any node in cycle is root
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5 1 2 4 3

5 1 2 4 3Two disjoint pseudo-trees

Where to allocate external excitations for network identifiability?
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5 1 2 4 3

5 1 2 4 3
Two independent excitations 
guarantee network identifiability

Algorithm available for merging pseudo-trees.

Where to allocate external excitations for network identifiability?
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Where to allocate external excitations for network identifiability?
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97 8

3

65

4
r1 r2

r3 r4

• Nodes are signals      and external signals           when they are input to parametrized 
links

• Result extends to the presence of known (nonparametrized links): they can be 
excluded from the covering



Summary identifiability

So far:
• All node signals assumed to be measured
• Fully applicable to the situation (i.e. reduced-rank noise)
• Extensions towards identifiability of a single module [1],[2],[3]

21

Identifiability of network model sets is determined by

• Presence and location of external signals, and
• Correlation of disturbances
• Prior knowledge on modules

[1] Hendrickx, Gevers & Bazanella, CDC 2017, IEEE-TAC 2019
[2] Weerts et al., CDC 2018

[3] Shi et al., IFAC 2020 submitted 

• Graphic-based tool for synthesizing allocation of external excitation signals
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Papers available at www.pvandenhof.nl
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The end
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