System Identification in Dynamic Networks

Paul Van den Hof

Coworkers:

Arne Dankers, Harm Weerts, Xavier Bombois, Peter Heuberger

14 June 2016, University of Oxford, UK

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Introduction – dynamic networks

Distributed Control

source: Simonetto 2012

Biological Systems

Power Systems

source: Pierre et al. 2012

Financial Systems

source: Materassi et al. 2010

Introduction – dynamic networks

Dynamical systems in emerging fields have a more complex structure:

distributed control system (1d-cascade)

 G_1 G_2 \cdots G_r G_r

dynamic network

(distributed systems, multi-agent systems, biological networks, smart grids,.....)

For on-line monitoring / control / diagnosis it is attractive to be able to *identify*

- (changing) dynamics of particular modules
- (changing) interconnection structure

What are relevant identification questions that appear?

Introduction

Some modules may be known (e.g. controllers)

Introduction – relevant identification questions

How to perform "local" identification (i.e. estimating only a single module)?

Where to put sensors and actuators for optimal accuracy?

How to utilize known structure/topology and known modules?

Introduction - relevant identification questions

Can we identify the topology?

Can we deal with sensor noise?

Do we need directions of arrows?

Introduction - identification

The classical identification problems:

Identify a plant model \hat{G} on the basis of measured signals u, y (and possibly r)

 We have to move from fixed and known configuration to deal with and exploit structure in the problem.

Network Diagrams

Labels of internal variables placed inside summations

Introduction

Current literature

Numerical fast algorithms for **spatially distributed systems** with identical modules (Fraanje, Verhaegen, Werner), or non-identical ones (Torres, van Wingerden, Verhaegen, Sarwar, Salapaka, Haber)

Contributions to **topology detection**: Chiuso, Materassi, Innocenti, Salapaka, Yuan, Stan, Warnick, Goncalves, Sanandaji, Vincent, Wakin, further exploring and utilizing the concept of Granger causality.

Here: focus on **prediction error methods** and concepts for identification in generally structured (linear) dynamic networks

Contents

Towards dynamic network identification

- The basic (prediction error) tools: direct and 2s
- Dynamic network setup
- Single module identification consistency
 - full MISO models
 - predictor input (sensor) selection
- Sensor noise the errors-in-variables problem
- Discussion / Wrap-up

1. Direct method

Relying on full-order noise modelling

$$\varepsilon(t,\theta) = H(\theta)^{-1}[y(t) - G(\theta)u(t)]$$

prediction error $\varepsilon(t,\theta)$ to become a white noise signal e(t) in the optimum.

Using only signals u and y, discarding r

$$\hat{ heta}_N = rg \min_{ heta} rac{1}{N} \sum_{t=1}^N arepsilon(t, heta)^2$$

1. Direct method

Consistency result [Ljung, 1987]

$$\{G(\hat{ heta}_N),H(\hat{ heta}_N)\}
ightarrow \{G_0,H_0\}$$
 w.p. $1,N
ightarrow \infty$

if

- full order noise model $(S \in \mathcal{M})$
- delay in every loop
- sufficient excitation, i.e.

$$\Phi_z(\omega) > 0 \;\; orall \omega \;\; z = \left[egin{array}{c} y \ u \end{array}
ight]$$

with spectral density

$$\Phi_z(\omega) = \mathcal{F}\{ar{E}[z(t)z(t- au)]\}$$

Plant representation

$$y(t) = G_0 u(t) + H_0 e(t)$$

e white noise

r and v uncorrelated

2. Two-stage/projection/IV method

- Relying on measured external excitation
- Decoupling estimation of G_0 and H_0

$$\varepsilon(t,\theta) = H(\rho)^{-1}[y(t) - G(\theta)u^{r}(t)]$$

with u^r the signal u projected onto r such that

 $u = \frac{u^r}{u^r} + u^v$

with u^r and u^v uncorrelated.

Similar least squares criterion.

2. Two-stage/projection/IV method

Consistency result [Van den Hof & Schrama, 1993]

$$G(\hat{ heta}_N) o G_0$$
 w.p.1, $N o \infty$

if

- full order plant model $(G_0 \in \mathcal{G})$
- no conditions on loop delays
- sufficient excitation condition:

$$\Phi_{\boldsymbol{u^r}}(\omega) > 0 \quad \forall \omega$$

Question

 Can we utilize these tools for identification of transfer functions in a (complex) dynamic network?

Formalizing one link (transfer between w_i and w_j)

- On each node a disturbance v_i and a reference r_i might be present
- Reference signals are uncorrelated to noise signals
- \mathcal{N}_j : set of nodes that has a direct causal link with node j, of which \mathcal{K}_j are known transfers and \mathcal{U}_j unknown.

Assumptions:

- Total of L nodes
- Network is well-posed $I-G^0$ causally invertible
- Stable (all signals bounded)
- All $w_m, m=1,\cdots L,$ measured, as well as all present r_m
- Modules may be unstable

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0 & \cdots & G_{1L}^0 \\ G_{21}^0 & 0 & \cdots & G_{2L}^0 \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0 & G_{L2}^0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} + \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_L \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_L \end{bmatrix}$$

Options for identifying a module:

Identify the full MIMO system:

$$w = (I - G^0)^{-1}[r + v]$$

from measured r and w.

Global approach with "standard" tools

• Identify a local (set of) module(s) from a (sub)set of measured r_k and w_ℓ

Local approach with "new" tools and structural conditions

How to identify a module:

Suppose we are interested in G_{21}^0

Can it be identified from measured input w_1 and output w_2 ?

Typically bias will occur due to "neglecting" the rest of the network

- Non-modelled disturbances on w_2 can create problems
- The observed transfer between w_1 and w_2 is not necessarily equal to G_{21}^0

How to identify a module:

Two approaches for finding G_{21}^0

- Full MISO approach:
 Include all node signals that directly map into w₂ in an input vector, and identify a MISO model
- Predictor input selection:
 Formulate conditions for checking the sufficiency of set of nodes to include as inputs in a MISO model

Contents

Towards dynamic network identification

- The basic (prediction error) tools: direct and 2s
- Dynamic network setup
- Single module identification consistency
 - full MISO models
 - predictor input (sensor) selection
- Sensor noise the errors-in-variables problem
- Discussion / Wrap-up

Full MISO models - Direct method

Module of interest: G_{ji}^0

Separate the remaining modules: G_{jk}^0

into **known** transfers: $G^0_{jk},\ k\in\mathcal{K}_j$

and $\mathbf{unknown}$ transfers: $G^0_{jk}, \ k \in \mathcal{U}^i_j$

A MISO approach:

$$arepsilon(t,m{ heta}) = H_j(m{ heta})^{-1} [\underbrace{w_j - r_j - \sum\limits_{k \in \mathcal{K}_j} G^0_{jk} w_k - G_{ji}(m{ heta}) w_i - \sum\limits_{k \in \mathcal{U}^i_j} G_{jk}(m{ heta}) w_k}_{j ext{ known}}]$$

 $\underline{G}_{jk}^0,\;k\in\mathcal{U}_j$

Network Identification – Direct method

Network Identification – Direct method

Network Identification – Direct method

Result direct method

The plant models $G_{jk}(\theta)$, $k \in \mathcal{U}_j$ are consistently estimated if:

- All parametrized plant and noise models are correctly parametrized, $G_{jk}(\theta), \ k \in \mathcal{U}_j; \ H_j(\theta) \ (\mathcal{S} \in \mathcal{M})$
- Every loop in the network that runs through node j has at least one delay (no algebraic loop)
- $\Phi_z(\omega)>0 \quad \forall \omega$, for $z:=vec\{w_j,\{w_k\}_{k\in\mathcal{U}_j}\}$ (excitation condition)
- Noise source v_j is uncorrelated with all other noise terms in the network

Recall the two-stage/projection/IV approach:

Project $oldsymbol{u}$ onto an external signal $oldsymbol{r}$ that is uncorrelated to $oldsymbol{v}$

$$arepsilon(t, heta) = H(
ho)^{-1}[y(t) - G(heta)u^r(t)]$$
 $u = u^r + u^v$

with u^r and u^v uncorrelated.

Main approach:

- Look for an external reference signal that has a connection with w_i
- And that does not act as an unmodelled disturbance on w_j

Algorithm:

Determine whether there exists an r_m such that $w_i^{r_m}$ is sufficiently exciting

Construct:

$$ilde{w}_j = \underbrace{w_j - r_j - \sum\limits_{k \in \mathcal{K}_j} G^0_{jk} w_k}_{ ext{known terms}}$$

• Identify G_{ji}^0 through PE identification with prediction error

$$arepsilon(t, oldsymbol{ heta}) = H_j(oldsymbol{
ho})^{-1} [ilde{w}_j - \sum\limits_{k \in U_{is}} G_{jk}(oldsymbol{ heta}) w_k^{r_m}]$$

where all inputs $k \in \mathcal{U}_{is}$ are considered that are correlated to $r_{m{m}}$

ullet This extends to multiple signals r_m

Result two-stage method

The plant model $G_{ji}(\theta)$ is consistently estimated if:

- The plant models $G_{jk}(heta)$ are correctly parametrized $k \in \mathcal{U}_{is}$
- The vector of (projected) input signals is sufficiently exciting
- Excitation signals are uncorrelated to noise disturbances

[P.M.J. Van den Hof, A. Dankers, P.S.C. Heuberger and X. Bombois. *Automatica*, October 2013]

Example

- External signal r_1
- Input nodes to $w_{\mathbf{2}}$ that are correlated with $r_{\mathbf{1}}$: $w_{\mathbf{1}}, w_{\mathbf{6}}, w_{\mathbf{7}}, w_{\mathbf{3}}$
- So 4 input, 1 output problem
- Projected inputs will generally not be sufficiently exciting (we need 4 independent sources)
- Include $oldsymbol{r_4}$, $oldsymbol{r_5}$ and $oldsymbol{r_8}$ as external signals
- Input nodes remain the same

Observations:

- Consistent identification of single transfers is possible, dependent on network topology and reference excitation
- Full noise models are not necessary
- No conditions on uncorrelated noise sources, nor on absence of algebraic loops
- Excitation conditions on (projected) input signals can be limiting
- Network topology conditions on r_m can simply be checked by tools from graph theory

Contents

Towards dynamic network identification

- The basic (prediction error) tools: direct and 2s
- Dynamic network setup
- Single module identification consistency
 - full MISO models
 - predictor input (sensor) selection
- Sensor noise the errors-in-variables problem
- Discussion / Wrap-up

Predictor input selection

- So far: predictor input choice not very flexible
- What if some signals are hard (expensive) to measure?
- What if we would like to have flexibility in placing sensors?
- Can we formulate (more relaxed) conditions on nodes to be measured, for allowing a consistent module estimate?

Predictor input selection

There are two basic mechanisms that "deteriorate" the transfer G_{ji}^0 when observed through the input/output signals w_i and w_j

- 1. Parallel paths
- 2. Loops around w_j

First mechanism: parallel paths

Objective: consistently estimate G_{21}^0 .

SISO approach. Try to estimate the dynamics between w_1 and w_2 :

$$W_2 = G_{21}^0 W_1^{(r_1)} + G_{21}^0 W_1^{(v)} + G_{23}^0 W_3 + V_2$$

unmodeled term

Problem! "unmodeled term" (noise term) is correlated to input term, $w_1^{(r_1)}$.

Predictor input selection: condition 1

Objective: obtain an estimate of G_{ji}^0

Consistent estimates of G_{ji}^0 are possible if:

- 1. w_i is included as predictor input
- 2. Each path from $w_i o w_j$ passes through a node chosen as predictor input

Second mechanism: loops around the output

Objective: consistently estimate G_{21}^0 .

SISO approach. Try to estimate the dynamics between w_1 and w_2 :

$$W_2 = G_{21}^0 W_1^{(r_1)} + \underbrace{G_{21}^0 W_1^{(v)} + G_{23}^0 W_3 + V_2}_{1}$$

unmodeled term

Problem! "unmodeled term" (noise term) is correlated to input term, $w_1^{(r_1)}$.

Second mechanism: loops around the output

Objective: consistently estimate G_{21}^0 .

SISO approach. Try to estimate the dynamics between w_1 and w_2 :

$$w_2 = G_{21}^0 w_1^{(r_1)} + \underbrace{G_{21}^0 w_1^{(v)} + G_{23}^0 w_3 + v_2}_{1}$$

unmodeled term

Problem! "unmodeled term" (noise term) is correlated to input term, $w_1^{(r_1)}$.

Solution: Include $w_3^{(r_1)}$ in the predictor:

$$W_2 = G_{21}^0 W_1^{(r_1)} + G_{23}^0 W_3^{(r_1)} + \underbrace{G_{21}^0 W_1^{(v)} + G_{23}^0 W_3^{(v)} + V_2}$$

unmodeled term

Predictor input selection: condition 1 and 2

Objective: obtain an estimate of G_{ji}^0

Consistent estimates of G_{ji}^0 are possible if:

- 1. w_i is included as predictor input
- 2. Each path from $w_i o w_j$ passes through a node chosen as predictor input
- 3. Each loop from $w_j o w_j$ passes through a node chosen as predictor input

Objective: Estimate G_{21}^0 . Conditions: Include variable on every path \circ $w_1 \rightarrow w_2$ V_6 $ow_2 \rightarrow w_2$ **Conclude:** include w_1 and ... as predictor inputs

Objective: Estimate G_{21}^0 . Conditions: Include variable on every path \circ $w_1 \rightarrow w_2$ o $w_2
ightarrow w_2$ **Conclude:** include w_1 and ... as predictor inputs ľg

Objective: Estimate G_{21}^0 .

Conditions: Include variable on every path

$$\circ$$
 $w_1 \rightarrow w_2$

$$w_2 \rightarrow w_2$$

Conclude: include w_1 and ... as predictor

Objective: Estimate G_{21}^0 .

Conditions: Include variable on every path $w_1 \to w_2$ $w_2 \to w_2$ Conclude: include w_1 and ... as predictor inputs

 r_4

 V_5

Objective: Estimate G_{21}^0 .

Conditions: Include variable on every path

 $w_1 \rightarrow w_2 \Rightarrow \text{Include } w_6 \text{ in predictor}$

o $w_2
ightarrow w_2$

Conclude: include w_1, w_6 and ... as

Objective: Estimate G_{21}^0 .

Conditions: Include variable on every path

 $w_1 \rightarrow w_2 \Rightarrow \mathsf{Include} \ w_6 \mathsf{in} \mathsf{predictor}$

o $w_2 \rightarrow w_2$

Conclude: include w_1, w_6 and ... as

Objective: Estimate G_{21}^0 .

Conditions: Include variable on every path

 $w_1 \rightarrow w_2 \Rightarrow \mathsf{Include} \ w_6 \mathsf{in} \mathsf{predictor}$

 $w_2 \rightarrow w_2 \Rightarrow \mathsf{Include} \ w_3 \mathsf{in} \mathsf{predictor}$

Conclude: include w_1, w_6 and w_3 as

Predictor input selection

Result:

The consistency results of both direct and 2s/projection method remain principally valid when the predictor inputs satisfy the formulated conditions on parallel paths and loops around w_j

In the "full" MISO case: consistent estimates of all $G^0_{jk},\ k\in\mathcal{U}_j$ In the "selected" predictor input case: consistent estimates of G^0_{ji}

Background immersed network

- The two conditions (parallel paths and loops on output) result from an analysis of the so-called immersed network
- The immersed network is constructed on the basis of a reduced number of node variables only, and leaves present node signals invariant
- In the immersed network the module dynamics can change
- Whether dynamics in the immersed network is invariant can be verified with the graph theory/tools of separating sets.

[A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois. Identification of dynamic models in complex networks with predictior error methods - predictor input selection. IEEE Trans. Automatic Control, april 2016.]

Simple Example – Loops On Output

Removing path through w_3 called *lifting a path*.

Network without w_3 is called *immersed network*

Choosing w_1 as the predictor input results in an estimate of

$$\frac{G_{21}^0}{1 - G_{23}^0 G_{32}^0}$$

Given measurements of w_1 , w_2 , w_4 , and w_5

Immerse this network to contain these nodes only.

$$\begin{bmatrix} W_1 \\ W_2 \\ W_3 \\ W_4 \\ W_5 \\ W_6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & G_{14}^0 & 0 & 0 \\ \frac{G_{21}^0}{1 - G_{23}^0 G_{32}^0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{46}^0 \\ 0 & 0 & G_{52}^0 & G_{54}^0 & 0 & G_{56}^0 \\ 0 & 0 & G_{63}^0 G_{32}^0 & 0 & G_{65}^0 & 0 \end{bmatrix} \begin{bmatrix} W_1 \\ W_2 \\ W_4 \\ W_5 \\ W_6 \end{bmatrix} + \begin{bmatrix} V_1 \\ \frac{1}{1 - G_{23}^0 G_{32}^0} V_2 + \frac{G_{23}^0}{1 - G_{23}^0 G_{32}^0} V_3 \\ V_4 \\ V_5 \\ V_6 \end{bmatrix}$$

$$\begin{bmatrix} w_1 \\ w_2 \\ w_4 \\ w_5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & G_{14}^0 & 0 \\ \frac{G_{21}^0}{1 - G_{23}^0 G_{32}^0} & 0 & 0 & 0 \\ 0 & G_{32}^0 G_{46}^0 G_{63}^0 & 0 & G_{46}^0 G_{65}^0 \\ 0 & \frac{G_{52}^0 + G_{56}^0 G_{63}^0 G_{32}^0}{1 - G_{56}^0 G_{65}^0} & \frac{G_{54}^0}{1 - G_{56}^0 G_{65}^0} & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_4 \\ w_5 \end{bmatrix} + \begin{bmatrix} v_1 \\ w_2 \\ w_4 \\ w_5 \end{bmatrix} + \begin{bmatrix} v_1 \\ \frac{v_2 + G_{23}^0 v_3}{1 - G_{23}^0 G_{32}^0} \\ v_4 + G_{46}^0 G_{63}^0 v_3 + G_{46}^0 v_6 \\ \frac{v_5 + G_{56}^0 G_{63}^0 v_3 + G_{56}^0 v_6}{1 - G_{56}^0 G_{65}^0} \end{bmatrix}$$

$$\begin{bmatrix} w_1 \\ w_2 \\ w_4 \\ w_5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & G_{14}^0 & 0 \\ \frac{G_{21}^0}{1 - G_{23}^0 G_{32}^0} & 0 & 0 & 0 \\ 0 & G_{32}^0 G_{46}^0 G_{63}^0 & 0 & G_{46}^0 G_{65}^0 \\ 0 & \frac{G_{52}^0 + G_{56}^0 G_{63}^0 G_{32}^0}{1 - G_{56}^0 G_{65}^0} & \frac{G_{54}^0}{1 - G_{56}^0 G_{65}^0} & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_4 \\ w_5 \end{bmatrix} + \begin{bmatrix} \tilde{v}_1 \\ \tilde{v}_2 \\ \tilde{v}_4 \\ \tilde{v}_5 \end{bmatrix}$$

Conclude: only G_{14}^0 from the original network is identifiable given this data set

Contents

Towards dynamic network identification

- The basic (prediction error) tools: direct and 2s
- Dynamic network setup
- Single module identification consistency
 - full MISO models
 - predictor input (sensor) selection
- Sensor noise the errors-in-variables problem
- Discussion / Wrap-up

What if node variables are measured with (sensor) noise?

- Classical (tough) problem in open-loop identification
- In dynamic networks this may become more simple due to the presence of multiple (correlated) node signals

Two solution strategies:

- 1. Use external signals in combination with 2s/projection/IV method
- 2. Apply an *Instrumental Variable (IV)* method with generalized options for selecting IV signals

1. Use external signals in combination with 2s/projection/IV method

- If measured predictor input signals $(\tilde{w}_3, \tilde{w}_5)$ are projected onto r_1 and then applied in a 2s-PE criterion, the sensor noise on the inputs is effectively removed
- when assuming that r-signals and s-signals are uncorrelated.

Result:

The consistency result of the 2s/projection method remains valid when sensor noise is present on measured variables, provided that

- Sufficient external excitation is present
- Sensor noise is uncorrelated to excitation signals

Extension of IV-approach to use node signals as IV signals, and including noise models, see:

[A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger, Automatica, December 2015]

Discussion / Wrap-up

- So far: focus on (local) consistency results in networks with known structure
- Many additional questions/topics remain:
 - Variance of estimates, influenced by
 - Additional (output) measurements
 - Excitation properties

[See e.g. work of H. Hjalmarsson, B. Wahlberg, N. Everitt, B. Günes, M. Gevers, A. Bazanella]

Discussion / Wrap-up

- Identification of the structure/topology addressed in the literature, in particular forms:
 - Tree-like structures (no loops)
 - Nonparametric methods (Wiener filter)
 - Mostly networks without external excitation and uncorrelated process noises on every node

see e.g. Materassi, Innocenti (TAC-2010), Chiuso and Pillonetto (Automatica, 2012)

- New identifiability concepts apply to the unique determination of a network topology see e.g. Goncalves & Warnick (TAC-2008), Weerts et al. (SYSID-2015).
- Sparse identification methods can be used in an PE identification setting to identify the topology (non-zero transfers)

Toplogy detection with sparse PE methods

$$\hat{\theta}_{N} = \underset{\theta}{\arg\min} \frac{1}{N} \sum_{t=1}^{N} \varepsilon^{2}(t, \theta)$$
subject to $\|\theta\|_{1} \leq \lambda$

- Detected: $||G_{ij}||_{\mathcal{H}_{\infty}} \geq 10^{-5}$
- 100 simulations

	Direct identification
G ₁₂	100
G ₁₃	0
G_{21}	99
G_{23}	100
G ₃₁	0
G ₃₂	100

[H. Weerts, 2014]

Network identifiability

Question:

When given measured node signals, can we consistently identify the network and its topology?

This will generally require conditions on

- a) Informativity of the data (sufficient excitation), and
- b) Ability to distinguish between different network models in the model set

Classical notion of identifiability is adressing a unique relationship between parameters θ and predictor filters that map measured signals to predicted values.

$$\left.egin{aligned} G(heta_1) &= G(heta_2) \ H(heta_1) &= H(heta_2) \end{aligned}
ight.
ight. egin{aligned} \Longrightarrow heta_1 &= heta_2 \end{aligned}$$

Instead in dynamic networks we need to incorporate the structural issues in the representation of the network.

Network identifiability

Question:

When given measured node signals, can we consistently identify the network and its topology?

This will generally require conditions on

- a) Informativity of the data (sufficient excitation), and
- b) Ability to distinguish between different network models in the model set

Classical notion of identifiability is adressing a unique relationship between parameters θ and predictor filters that map measured signals to predicted values.

$$\left.egin{aligned} G(heta_1) &= G(heta_2) \ H(heta_1) &= H(heta_2) \end{aligned}
ight.
ight. egin{aligned} \Longrightarrow heta_1 &= heta_2 \end{aligned}$$

Instead in dynamic networks we need to incorporate the structural issues in the representation of the network.

Network identifiability

Discussion / Wrap-up

Many interesting –new- questions pop up!

Bibliography

- A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with predictior error methods - predictor input selection. *IEEE Trans. Automatic Control*, 61 (4), pp. 937-952, April 2016.
- P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013). Identification of dynamic models in complex networks with prediction error methods basic methods for consistent module estimates. *Automatica*, Vol. 49, no. 10, pp. 2994-3006.
- A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2014). Errors-in-variables identification in dynamic networks - consistency results for an instrumental variable approach. *Automatica*, Vol. 62, pp. 39-50, December 2015.
- B. Günes, A. Dankers and P.M.J. Van den Hof (2014). Variance reduction for identification in dynamic networks. Proc. 19th IFAC World Congress, 24-29 August 2014, Cape Town, South Africa, pp. 2842-2847.
- A.G. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2012). Dynamic network structure identification with prediction error methods basic examples. Proc. 16th IFAC Symposium on System Identification (SYSID 2012), 11-13 July 2012, Brussels, Belgium, pp. 876-881.
- A.G. Dankers, P.M.J. Van den Hof and X. Bombois (2014). An instrumental variable method for continuous-time identification in dynamic networks. Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, CA, 15-17 December 2014, pp. 3334-3339.
- H.H.M. Weerts, A.G. Dankers and P.M.J. Van den Hof (2015). Identifiability in dynamic network identification. Proc.17th IFAC Symp. System Identification, 19-21 October 2015, Beijing, P.R. China.
- P.M.J. Van den Hof and R.J.P. Schrama (1993). An indirect method for transfer function estimation from closed loop data. *Automatica*, Vol. 29, no. 6, pp. 1523-1527.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2016). Identifiability of dynamic networks with part of the nodes noise-free. Proc. 12th IFAC Intern. Workshop ALCOSP 2016, June 29 - July 1, 2016, Eindhoven, The Netherlands.

Papers available at www.pvandenhof.nl/publications.htm

