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Introduction – dynamic networks
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Dynamical systems in emerging fields have a more complex 
structure:

distributed control system (1d-cascade) dynamic network

(distributed systems, multi-agent systems, biological networks, smart grids,…..)

What are relevant identification questions that appear?

For on-line monitoring / control / diagnosis it is attractive to be able to identify
• (changing) dynamics of particular modules
• (changing) interconnection structure

Introduction – dynamic networks
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Introduction

Some modules may be known (e.g. controllers)

ri    external excitation
vi process noise
wi node signal
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Introduction – relevant identification questions

How to perform “local” identification (i.e. estimating only a single module)?

Where to put sensors and actuators for optimal accuracy?
How to utilize known structure/topology and known modules?
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Introduction – relevant identification questions

Can we identify the topology?
Can we deal with sensor noise?
Do we need directions of arrows?
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Introduction - identification

The classical identification problems:

open loop closed loop

Identify a plant model     on the basis of measured signals u,
y (and possibly r)

• We have to move from fixed and known configuration
to deal with and exploit structure in the problem.



Network Diagrams

Represented as

Labels of internal variables placed inside summations
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Introduction

Current literature

Contributions to topology detection: Chiuso, Materassi, Innocenti, Salapaka, Yuan, 
Stan, Warnick, Goncalves, Sanandaji, Vincent, Wakin, further 
exploring and utilizing the concept of Granger causality.

Numerical fast algorithms for spatially distributed systems with 
identical modules (Fraanje, Verhaegen, Werner), or
non-identical ones (Torres, van Wingerden, Verhaegen, Sarwar, Salapaka, Haber)

Here: focus on prediction error methods and concepts for identification
in generally structured (linear) dynamic networks 
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Contents

• The basic (prediction error) tools: direct and 2s

• Dynamic network setup

• Single module identification - consistency
• full MISO models
• predictor input (sensor) selection

• Sensor noise – the errors-in-variables problem

• Discussion / Wrap-up

Towards dynamic network identification
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Methods for closed-loop identification

Relying on full-order noise modelling

Plant representation

white noise

and uncorrelated

+ G0 +

v

C

- u yr

H0

e

prediction error           to become a white 
noise signal in the optimum.

Using only signals u and y, discarding r

1.  Direct method
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Methods for closed-loop identification

1.  Direct method

• full order noise model
• delay in every loop
• sufficient excitation, i.e. 

Consistency result [Ljung, 1987]

if 

with spectral density 

Plant representation

white noise

and uncorrelated
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Methods for closed-loop identification

2.  Two-stage/projection/IV method

such that 

• Relying on measured external excitation
• Decoupling estimation of       and

with       the signal      projected onto         

with        and       uncorrelated.

Similar least squares criterion.

Plant representation

white noise

and uncorrelated
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Methods for closed-loop identification

2. Two-stage/projection/IV method

• full order plant model                
• no conditions on loop delays
• sufficient excitation condition: 

Consistency result 

if 

[Van den Hof & Schrama, 1993]

Plant representation

white noise

and uncorrelated
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Question

• Can we utilize these tools for 
identification of transfer 
functions in a (complex) 
dynamic network ?
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Network Setup

Formalizing one link (transfer between wi and wj)

0
jiG

0
jkG

• On each node a disturbance vj and a reference rj might be present
• Reference signals are uncorrelated to noise signals
• : set of nodes that has a direct causal link with node j, of which

are known transfers and        unknown. 
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Network Setup

Assumptions:
• Total of L nodes
• Network is well-posed

• Stable (all signals bounded)
• All                    

measured, as well as all
present 

• Modules may be unstable

causally invertible
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Network Setup

• Identify the full MIMO system:

Options for identifying a module:

from measured     and     .  

Global approach with “standard” tools

• Identify a local (set of) module(s)
from a (sub)set of measured       and 

Local approach with “new” tools and structural conditions 
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Network Setup

Suppose we are interested in 

How to identify a module:

Can it be identified from measured 
input        and output       ?  

Typically bias will occur due to 
“neglecting” the rest of the network

• Non-modelled disturbances on       can create problems
• The observed transfer between       and       is not necessarily equal to 
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Network Setup

Two approaches for finding

How to identify a module:

• Full MISO approach:
Include all node signals that directly 
map into       in an input vector, and 
identify a MISO model  

• Predictor input selection:
Formulate conditions for checking 
the sufficiency of  set of nodes to 
include as inputs in a MISO model
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Contents

• The basic (prediction error) tools: direct and 2s

• Dynamic network setup

• Single module identification - consistency
• full MISO models
• predictor input (sensor) selection

• Sensor noise – the errors-in-variables problem

• Discussion / Wrap-up

Towards dynamic network identification
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Full MISO models – Direct method

0
jiG

0
jkG

A MISO approach:

known

Simultaneous identification of transfers
and a noise model for vj

Module of interest:  

Separate the remaining modules: 

into known transfers:  

and unknown transfers:  
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Network Identification – Direct method
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Network Identification – Direct method
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Network Identification – Direct method

Result direct method 

The plant models                           are consistently estimated if:

• All parametrized plant and noise models are correctly parametrized,

• Every loop in the network that runs through node j has at least one 
delay (no algebraic loop)

• , for                                               
(excitation condition) 

• Noise source vj is uncorrelated with all other noise terms in the 
network    

[P.M.J. Van den Hof, A. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, October 2013]
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Network Identification – Two-stage method

with        and       uncorrelated.

Recall the two-stage/projection/IV approach:

Project     onto an external signal      
that is uncorrelated to  

Plant representation

white noise

and uncorrelated
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e
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Network Identification – Two-stage method

j

ji

k

j

0
jiG

0
jkG

m

Main approach:
• Look for an external reference signal that has a connection 

with wi
• And that does not act as an unmodelled disturbance on wj
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• Identify         through PE identification with prediction error

where all inputs              are considered that are correlated to         

Network Identification – Two-stage method

vj

+ + wjwi

wk
rj

0
jiG

0
jkG

+

rm

Algorithm:
• Determine whether there 

exists an such that 
is sufficiently exciting 

• Construct:

known terms

• This extends to multiple signals 
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Network Identification – Two-stage method

The plant model is consistently estimated (                   )  if:

Result two-stage method 

The plant model              is consistently estimated if:

• The plant models             are correctly parametrized
• The vector of (projected) input signals is sufficiently exciting
• Excitation signals are uncorrelated to noise disturbances

[P.M.J. Van den Hof, A. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, October 2013]
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Network Identification – Two-stage method

Example

• External signal 

• Input nodes to         that
are correlated with      :

,      ,     ,

• So 4 input, 1 output problem

• Projected inputs will generally
not be sufficiently exciting 
(we need 4 independent sources)

• Include     ,      and       as external signals

• Input nodes remain the same
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Network Identification – Two-stage method

Observations:
• Consistent identification of single transfers is possible, dependent on 

network topology and reference excitation
• Full noise models are not necessary
• No conditions on uncorrelated noise sources, 

nor on absence of algebraic loops
• Excitation conditions on (projected) input signals can be

limiting
• Network topology conditions on ݎ௠	can simply be checked by tools 

from graph theory  
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Contents

• The basic (prediction error) tools: direct and 2s

• Dynamic network setup

• Single module identification - consistency
• full MISO models
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• Sensor noise – the errors-in-variables problem
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Towards dynamic network identification
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Predictor input selection

• So far: predictor input choice not very flexible

• What if some signals are hard (expensive) to measure?

• What if we would like to have flexibility in placing sensors?

• Can we formulate (more relaxed) conditions on nodes to be 
measured, for allowing a consistent module estimate?



Predictor input selection

There are two basic mechanisms that “deteriorate” the transfer        
when observed through the input/output signals       and     

1. Parallel paths
2. Loops around 



First mechanism: parallel paths



Predictor input selection: condition 1

Objective: obtain an estimate of 

Consistent estimates of        are possible if:

1. is included as predictor input

2. Each path from                    passes through a node 

chosen as predictor input



Second mechanism: loops around the output



Second mechanism: loops around the output



Predictor input selection: condition 1 and 2

Objective: obtain an estimate of 

Consistent estimates of        are possible if:

1. is included as predictor input

2. Each path from                    passes through a node 

chosen as predictor input

3. Each loop from                    passes through a node

chosen as predictor input
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Example with predictor input conditions 

Conditions: Include variable on every path 
o
o

Conclude: include and …  as predictor 
inputs
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Example with predictor input conditions

Conditions: Include variable on every path 
o
o

Conclude: include and …  as predictor 
inputs



/ Electrical Engineering - Control Systems Page 41

Example with predictor input conditions

Conditions: Include variable on every path 
o
o

Conclude: include and …  as predictor 
inputs
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Example with predictor input conditions

Conditions: Include variable on every path 
o
o

Conclude: include and …  as predictor 
inputs
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Example with predictor input conditions

Conditions: Include variable on every path 
o Include       in predictor
o

Conclude: include and …  as 
predictor inputs



/ Electrical Engineering - Control Systems Page 44

Example with predictor input conditions

Conditions: Include variable on every path 
o Include       in predictor
o

Conclude: include and …  as 
predictor inputs
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Example with predictor input conditions

Conditions: Include variable on every path 
o Include       in predictor
o Include       in predictor

Conclude: include and  as 
predictor inputs



Predictor input selection

Result:

The consistency results of both direct and 2s/projection

method remain principally valid when the predictor 

inputs satisfy the formulated conditions on parallel 

paths and loops around

In the “full” MISO case: consistent estimates of all 

In the “selected” predictor input case: consistent estimates of  



Background immersed network

• The two conditions (parallel paths and loops on output) result from 
an analysis of the so-called immersed network

• The immersed network is constructed on the basis of a reduced 
number of node variables only, and leaves present node signals 
invariant

• In the immersed network the module dynamics can change

• Whether dynamics in the immersed network is invariant can be 
verified with the graph theory/tools of separating sets.

[A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois. Identification of dynamic models in complex networks with 
predictior error methods - predictor input selection. IEEE Trans. Automatic Control, april 2016.]



Simple Example – Loops On Output

Choosing ݓଵ as the 
predictor input results in 
an estimate of 

0
21
0 0
23 321
G
G G

Removing path through 
ଷݓ called lifting a path.

Network without ݓଷ is 
called immersed
network



Example – Immersed Network

Given measurements of 
ସ, andݓ ,ଶݓ ,ଵݓ ହݓ

Immerse this network to 
contain these nodes only. 



Example – Immersed Network



Example – Immersed Network



Example – Immersed Network



Conclude: only ܩଵସ଴ from the original network is identifiable given this data 
set

Example – Immersed Network
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Sensor noise – the errors-in-variables problem

What if node variables are measured with (sensor) noise?

• Classical (tough) problem in open-loop identification
• In dynamic networks this may become more simple due to 

the presence of multiple (correlated) node signals
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Sensor noise – the errors-in-variables problem

1. Use external signals in combination with 2s/projection/IV method
2. Apply an Instrumental Variable (IV) method with generalized 

options for selecting IV signals

Two solution strategies:
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Sensor noise – the errors-in-variables problem

1. Use external signals in combination with 2s/projection/IV method

• If measured predictor input signals (          ) are projected onto
and then applied in a 2s-PE criterion, the sensor noise on the 
inputs is effectively removed

• when assuming that r-signals and s-signals are uncorrelated.
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Sensor noise – the errors-in-variables problem

Result:

The consistency result of the 2s/projection method 

remains valid when sensor noise is present on measured 

variables, provided that

− Sufficient external excitation is present

− Sensor noise is uncorrelated to excitation signals

Extension of IV-approach to use node signals as IV signals, and 
including noise models, see:
[A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger, Automatica, December 2015]
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Discussion / Wrap-up

• So far: focus on (local) consistency results in networks with known 
structure

• Many additional questions/topics remain:
Variance of estimates, influenced by
− Additional (output) measurements
− Excitation properties 

[See e.g. work of H. Hjalmarsson, B. Wahlberg, N. Everitt, B. Günes, M. Gevers, 
A. Bazanella]
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Discussion / Wrap-up

• Identification of the structure/topology 
addressed in the literature, in particular forms:
• Tree-like structures (no loops)
• Nonparametric methods (Wiener filter)
• Mostly networks without external excitation and uncorrelated 

process noises on every node
see e.g. Materassi, Innocenti (TAC-2010), Chiuso and Pillonetto (Automatica, 2012)

• New identifiability concepts apply to the unique determination of a 
network topology
see e.g. Goncalves & Warnick (TAC-2008), Weerts et al. (SYSID-2015). 

• Sparse identification methods can be used in an PE identification 
setting to identify the topology (non-zero transfers)
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Toplogy detection with sparse PE methods

[H. Weerts, 2014]
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Network identifiability

When given measured node signals, can we consistently identify 
the network and its topology?

Question:

This will generally require conditions on
a) Informativity of the data (sufficient excitation), and
b) Ability to distinguish between different network models in the model set 

Classical notion of identifiability is adressing a unique relationship between
parameters and predictor filters that map measured signals to predicted values.

Instead in dynamic networks we need to incorporate the structural issues in the
representation of the network.
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Network identifiability

When given measured node signals, can we consistently identify 
the network and its topology?

Question:

This will generally require conditions on
a) Informativity of the data (sufficient excitation), and
b) Ability to distinguish between different network models in the model set 

Classical notion of identifiability is adressing a unique relationship between
parameters and predictor filters that map measured signals to predicted values.

Instead in dynamic networks we need to incorporate the structural issues in the
representation of the network.
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Network identifiability
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Discussion / Wrap-up

Many interesting –new- questions pop up!
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