

Paul M.J. Van den Hof

10th Harry Nicholson Distinguished Lecture in Control Engineering The University of Sheffield, UK, 21 May 2019

www.sysdynet.eu www.pvandenhof.nl p.m.j.vandenhof@tue.nl

Introduction – dynamic networks

Decentralized process control

Smart power grid

Autonomous driving

Metabolic network

Brain network

Hydrocarbon reservoirs

Introduction

Overall trend:

- (Large-scale) interconnected systems
- With hybrid dynamics (continuous / switching)
- Distributed / multi-agent type monitoring, control and optimization problems
- Data is "everywhere", big data era
- Modelling problems will need to consider this

Introduction

Distributed / multi-agent control:

With both physical and communication links between systems G_i and controllers C_i

How to address data-driven modelling problems in such a setting?

Introduction

The classical (multivariable) identification problems [1]:

Identify a plant model \hat{G} on the basis of measured signals u, y (and possibly r), focusing on *continuous LTI dynamics*.

We have to move from a simple and fixed configuration to deal with *structure* in the problem.

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification known topology
- Network identifiability
- Diffusively coupled physical networks
- Extensions Discussion

Dynamic networks for data-driven modeling

Dynamic networks

State space representations

(Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,...)

Module representation

(VdH, Dankers, Materassi, Gevers, Bazanella,...)

Assumptions:

- Total of L nodes
- Network is well-posed and stable
- Modules are dynamic, may be unstable
- Disturbances are stationary stochastic and can be correlated

$$egin{bmatrix} w_1 \ w_2 \ \vdots \ w_L \end{bmatrix} = egin{bmatrix} 0 & G_{12}^0 & \cdots & G_{1L}^0 \ G_{21}^0 & 0 & \cdots & G_{2L}^0 \ \vdots & \ddots & \ddots & \vdots \ G_{L1}^0 & G_{L2}^0 & \cdots & 0 \end{bmatrix} egin{bmatrix} w_1 \ w_2 \ \vdots \ w_L \end{bmatrix} + R^0 egin{bmatrix} r_1 \ r_2 \ \vdots \ r_K \end{bmatrix} + egin{bmatrix} v_1 \ v_2 \ \vdots \ v_L \end{bmatrix}$$
 $egin{bmatrix} G^0(q) \ \end{array}$
 $egin{bmatrix} w(t) = G^0(q)w(t) + R^0(q)r(t) + v(t) \ \end{array}$

$$w(t) = G^{0}(q)w(t) + R^{0}(q)r(t) + v(t)$$

Many new identification questions can be formulated:

- Identification of a local module (known topology)
- Identification of the full network
- Topology estimation
- Identifiability
- Sensor and excitation allocation
- Fault detection
- User prior knowledge of modules
- Scalable algorithms

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification known topology
- Network identifiability
- Diffusively coupled physical networks
- Extensions Discussion

Single module identification - known topology

For a network with known topology:

- Identify G_{21}^0 on the basis of measured signals
- Which signals to measure? Preference for local measurements

Identifying G_{21}^0 is part of a 4-input, 1-output problem

4 input nodes to be measured:

Can we do with less?

Network immersion [1]

- An immersed network is constructed by removing node signals, but leaving the remaining node signals invariant
- Modules and disturbance signals are adapted
- Abstraction through variable elimination (Kron reduction^[2] in network theory).

^[1] A. Dankers. PhD Thesis, 2014.

^[2] F. Dörfler and F. Bullo, IEEE Trans. Circuits and Systems I (2013)

Immersion

Immersion

Immersion

When does immersion leave G_{21}^0 invariant?

Parallel paths and loops around the output

There should be no **parallel paths** and **loops around the output** that run through removed nodes only

Choose w_6 as an additional input (to be retained)

Choose w_3 as an additional input, to be retained

Conclusion:

With a 3-input, 1 output model we can consistently identify G_{21}^0

The immersion reasoning is *sufficient* but not *necessary* to arrive at a consistent estimate, see e.g. Linder and Enqvist [1], Bazanella et al. [2], Ramaswamy et al. [3]

[2] A. Bazanella, M. Gevers et al., CDC 2017.

TU/e

^[1] J. Linder and M. Enqvist. *Int. J. Control*, 90(4), 729-745, 2017.

^[3] K. Ramaswamy et al., CDC 2019 submitted.

Conclusion:

With a 3-input, 1 output model we can consistently identify G_{21}^0

For a consistent and minimum variance estimate (direct method) there is one additional condition:

• absence of **confounding variables**, [1][2] i.e. correlated disturbances on inputs and outputs

^[1] J. Pearl, *Stat. Surveys*, *3*, 96-146, 2009

^[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.

Confounding variables in the MISO case

ullet w_{7} (not measured) now acts as a disturbance

Confounding variables in the MISO case

- w_{7} (not measured) now acts as a disturbance
- Confounding variable if there is a path from w_7 to an input
- Can be solved by measuring w_7 and including it as input

Confounding variables in the MISO case

- w_{7} (not measured) now acts as a disturbance
- Confounding variable if there is a path from w_7 to an input
- Can be solved by measuring w_7 and including it as input
- Or blocking the paths from w_7 to inputs/outputs by measured nodes, to be used as additional inputs.

Relation with d-separation in graphs (Materassi & Salapaka)

Confounding variables in the MISO case

Can we always address confounding variables in this way?

No

If v_2 and v_1 are correlated then:

A MIMO approach with predicted outputs $w_{\mathbf{2}}$ and $w_{\mathbf{1}}$ can solve the problem

Summary single module identification

- Methods for consistent and minimum variance module estimation
- Graph tools for checking conditions
- Degrees of freedom in selection of measured signals sensor selection
- A priori known modules can be accounted for

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification known topology
- Network identifiability
- Diffusively coupled physical networks
- Extensions Discussion

blue = unknown red = known

Question: Can different dynamic networks be *distinguished* from each other from measured signals w_i, r_i?

Starting assumption: all signals w_i , r_i that are present are measured.

Network:
$$w=G^0w+R^0r+H^0e$$
 $cov(e)=\Lambda^0, \;\; {\rm rank}\, {\it p}$ ${\rm dim}(\it r)={\it K}$

The network is defined by: (G^0,R^0,H^0,Λ^0) a network model is denoted by: $M=(G,R,H,\Lambda)$ and a **network model set** by:

$$\mathcal{M} = \{M(\theta) = (G(\theta), R(\theta), H(\theta), \Lambda(\theta)), \theta \in \Theta\}$$

represents **prior knowledge** on the network models:

- topology
- disturbance correlation
- known modules
- the signals used for identification

$$w = (I - G^0)^{-1}[R^0r + H^0e]$$

Denote: $w=T_{wr}^0r+ar{v}$

Objects that are uniquely identified from data $r, w: T_{wr}^0, \; \Phi_{ar{v}}^0$

Definition

A network model set \mathcal{M} is network identifiable from (w,r) at $M_0 = M(\theta_0)$ if for all models $M(\theta_1) \in \mathcal{M}$:

$$\left. egin{aligned} T_{wr}(q, heta_1) &= T_{wr}(q, heta_0) \ \Phi_{ar{v}}(\omega, heta_1) &= \Phi_{ar{v}}(\omega, heta_0) \end{aligned}
ight.
ight. iggraphi_{ar{v}} M(heta_1) = M(heta_0)$$

Theorem – identifiability for general model sets

For each node signal w_j , let \mathcal{P}_j be the set of in-neighbours of w_j that map to w_j through a parametrized module.

Then, under fairly general conditions,

 ${\mathcal M}$ is network identifiable from (w,r) at $M_0=M(heta_0)$ if and only if for all j:

- Each row of $[G(heta) \; H(heta) \; R(heta)]$ has at most K+p parametrized entries
- The transfer matrix from external inputs (r,e) that are non-parametrized in w_j to \mathcal{P}_j has full row rank.

$$\mathcal{M}$$
 with $H(heta) = egin{bmatrix} H_{11}(heta) & H_{12}(heta) & 0 \ H_{21}(heta) & H_{22}(heta) & 0 \ 0 & 0 & H_{33}(heta) \ 0 & 0 & 0 \ 0 & 0 \end{bmatrix}, \; R = egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$

$$\mathcal{M}$$
 with $H(\theta) = egin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \ H_{21}(\theta) & H_{22}(\theta) & 0 \ 0 & 0 & H_{33}(\theta) \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}, \ R = egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$

There are noise-free nodes, and $v_{\mathbf{1}}$ and $v_{\mathbf{2}}$ are expected to be correlated

$$\mathcal{M}$$
 with $H(\theta)=egin{bmatrix} H_{11}(heta) & H_{12}(heta) & 0 \ H_{21}(heta) & H_{22}(heta) & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ \end{bmatrix}, \ R=egin{bmatrix} 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 1 \ \end{bmatrix}$

If we restrict the structure of $G(\theta)$:

$$G(\theta) = \begin{bmatrix} 0 & G_{12}(\theta) & 0 & 0 & G_{15}(\theta) \\ G_{21}(\theta) & 0 & G_{23}(\theta) & 0 & 0 \\ 0 & 0 & 0 & G_{34}(\theta) & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & G_{53}(\theta) & 0 & 0 \end{bmatrix} \qquad [H\ R] = \underbrace{\begin{bmatrix} H_{11}(\theta)\ H_{12}(\theta) & 0 & 0 & 0 \\ H_{21}(\theta)\ H_{22}(\theta) & 0 & 0 & 0 \\ 0 & 0 & H_{3}(\theta) & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{K+p=5}$$

First condition:

Number of parametrized entries in each row < K+p = 5

Rank condition:

Row 1: Full row rank of transfer:

$$egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_5 \end{bmatrix}$$

Verifying the rank condition for w_1 :

$$j=1$$
 : Evaluate the rank of the transfer matrix $egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_5 \end{bmatrix}$

Verifying the rank condition for w_1 :

$$j=1$$
 : Evaluate the rank of the transfer matrix $egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_5 \end{bmatrix}$

Verifying the rank condition for w_1 :

For the generic case, the rank can be calculated by a graph-based condition^{[1],[2],[3]}:

Generic rank = number of vertex-disjoint paths

2 vertex-disjoint paths → full row rank 2

Graph-based synthesis solution for full network

Decompose network in disjoint pseudo-trees:

- Connected directed graphs, where nodes have maximum indegree 1
- Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree

Any network can be decomposed into a set of disjoint pseudo-trees

Graph-based synthesis solution for full network

Result^[1]

A network is generically identifiable if

- It can be decomposed in K disjoint pseudo-trees, and
- There are K independent external signals entering at a **root** of each pseudo-tree

Two typical (disjunct) pseudo-trees:

Tree with root in green

Cycle with outgoing trees; Any node in cycle is root

Where to allocate external excitations for network identifiability?

Two disjunct pseudo-trees

Where to allocate external excitations for network identifiability?

Two independent excitations guarantee network identifiability

Algorithm available for merging pseudo-trees.

Summary identifiability

Identifiability of network model sets is determined by

- Presence and location of external signals, and
- Correlation of disturbances
- Prior knowledge on modules

So far:

- All node signals assumed to be measured
- Fully applicable to the situation $\,p < L\,$ (i.e. reduced-rank noise)
- Identifiability of the full network model conditions per row/output node
- Extensions towards identifiability of a single module [1],[2]

^[1] Hendrickx, Gevers & Bazanella, CDC 2017, IEEE-TAC 2019

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification known topology
- Network identifiability
- Diffusively coupled physical networks
- Extensions Discussion

Diffusively coupled physical networks

Back to the basics of physical interconnections

In connecting physical systems, there is often no predetermined direction of information [1]

Example: resistor / spring connection in electrical / mechanical system:

Resistor Spring
$$I = \frac{1}{R}(V_1 - V_2)$$

$$F = K(x_1 - x_2)$$

Difference of node signals drives the interaction: diffusive coupling

Diffusively coupled physical network

Equation for node *j*:

$$M_j \ddot{w}_j(t) + D_{j0} \dot{w}_j(t) + \sum_{k \neq j} D_{jk} (\dot{w}_j(t) - \dot{w}_k(t)) + K_{j0} w_j(t) + \sum_{k \neq j} K_{jk} (w_j(t) - w_k(t)) = u_j(t),$$

Mass-spring-damper system

- Masses M_i
- Springs K_{ik}
- Dampers D_{jk}
- Input u_j

$$\begin{bmatrix} M_1 & & \\ & M_2 & \\ & & M_3 \end{bmatrix} \begin{bmatrix} \ddot{w}_1 \\ \ddot{w}_2 \\ \ddot{w}_3 \end{bmatrix} + \begin{bmatrix} 0 & \\ & D_{20} & \\ & & \dot{w}_3 \end{bmatrix} \begin{bmatrix} \dot{w}_1 \\ \dot{w}_2 \\ \dot{w}_3 \end{bmatrix} + \begin{bmatrix} K_{10} & \\ & 0 & \\ & & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \\ & + \begin{bmatrix} D_{13} & 0 & -D_{13} \\ 0 & D_{23} & -D_{23} \\ -D_{13} & -D_{23} & D_{13} + D_{23} \end{bmatrix} \begin{bmatrix} \dot{w}_1 \\ \dot{w}_2 \\ \dot{w}_3 \end{bmatrix} + \begin{bmatrix} K_{12} + K_{13} & -K_{12} & -K_{13} \\ -K_{12} & K_{12} & 0 \\ -K_{13} & 0 & K_{13} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 0 \\ u_2 \\ 0 \end{bmatrix}$$

$$[\underbrace{A(p)}_{diagonal} + \underbrace{B(p)}_{Laplacian}] \ w(t) = u(t)$$
 $A(p), B(p)$ polynomial $p = rac{d}{dt}$

Mass-spring-damper system

$$[\underbrace{A(p)}_{diagonal}+\underbrace{B(p)}_{Laplacian}]w(t)=u(t)$$
 $A(p),B(p)$ polynomial $[\underbrace{Q(p)}_{diagonal}-\underbrace{P(p)}_{hollow}]w(t)=u(t)$

$$Q_{11} = M_1 p^2 + D_{13} p + (K_{10} + K_{12} + K_{13})$$

$$Q_{22} = M_2 p^2 + (D_{20} + D_{23}) p + K_{12}$$

$$Q_{33} = M_3 p^2 + (D_{13} + D_{23}) p + K_{13}$$

$$P = \begin{bmatrix} 0 & K_{12} & D_{13} p + K_{13} \\ K_{12} & 0 & D_{23} p \\ D_{13} p + K_{13} & D_{23} p & 0 \end{bmatrix} \qquad \downarrow \vdash \lor \lor \lor \vdash$$

 Q_{jj} : elements related to node w_j :

$$P_{ji} = P_{ij}$$
: elements related to interconnection

Module representation

$$[\underbrace{Q(p)}_{diagonal} - \underbrace{P(p)}_{hollow}] w(t) = Fr(t) + C(p)e(t)$$

$$w(t) = Q^{-1}Pw(t) + Q^{-1}Fr(t) + Q^{-1}C(p)e(t)$$

This fully fits in the earlier module representation:

$$w(t) = Gw(t) + Rr(t) + He(t)$$

with the additional condition that:

$$G(p) = Q(p)^{-1}P(p)$$
 $Q(p), P(p)$ polynomial $P(p)$ symmetric, $Q(p)$ diagonal

Module representation

Consequences for node interactions:

- Node interactions come in pairs of modules
- Where numerators are the same

Framework for network identification remains the same

Symmetry can simply be incorporated in identification

Local network identification

Identification of **one** physical interconnection Identification of **two** modules G_{jk} and G_{kj}

$$G_{jk} = Q_{jj}^{-1} P_{jk}$$
 and $G_{kj} = Q_{kk}^{-1} P_{kj}$ with $P_{jk} = P_{jk}$

Immersion conditions

For simultaneously identifying two modules in one interconnection:

The parallel path and loops-around-the-output condition of immersion, now simplifies to:

All neighbouring nodes of w_2 and w_3 need to be retained/measured.

Summary diffusively coupled physical networks

- Physical networks fit within the module framework (special case)
 - no restriction to second order equations
- Identification algorithms and identifiability analysis can be utilized
- Local identification is well-addressed (and stays really local)
- Framework is fit for representing cyber-physical systems

Extensions - Discussion

Extensions - Discussion

- Identification algorithms to deal with reduced rank noise [1]
 - number of disturbance terms is larger than number of white sources
 - Optimal identification criterion becomes a constrained quadratic problem with ML properties for Gaussian noise
 - Reworked Cramer Rao lower bound
 - Some parameters can be estimated variance free
- Including sensor noise [2]
 - Errors-in-variabels problems can be more easily handled in a network setting

^[2] Dankers et al., Automatica, 2015.

Extensions - Discussion

- Machine learning tools for estimating large scale models [1,2]
 - Choosing correctly parametrized model sets for all modules is impractical
 - Use of Gaussian process priors for kernel-based estimation of models
- From centralized to distributed estimation (MISO models) [3]
 - Communication constraints between different agents
 - Recursive (distributed) estimator converges to global optimizer (more slowly)

[3] Steentjes et al., IFAC-NECSYS, 2018.

^[1] Everitt et al., Automatica, 2018.

^[2] Ramaswamy et al., CDC 2018.

Discussion

- **Dynamic network identification:** intriguing research topic with many open questions
- The (centralized) LTI framework is only just the beginning
- Further move towards data-aspects related to distributed control
- and large-scale aspects
- and bring it to real-life applications

Acknowledgements

Lizan Kivits, Shengling Shi, Karthik Ramaswamy, Tom Steentjes, Mircea Lazar, Jobert Ludlage, Giulio Bottegal, Maarten Schoukens, Xiaodong Cheng Co-authors, contributors and discussion partners:

Arne Dankers

Harm Weerts

Xavier Bombois
Peter Heuberger
Donatelllo Materassi
Manfred Deistler
Michel Gevers
Jonas Linder
Sean Warnick
Alessandro Chiuso
Hakan Hjalmarsson
Miguel Galrinho

Further reading

- P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013). Identification of dynamic models in complex networks with prediction error methods basic methods for consistent module estimates. *Automatica*, Vol. 49, no. 10, pp. 2994-3006.
- A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015). Errors-in-variables identification in dynamic networks consistency results for an instrumental variable approach. *Automatica*, Vol. 62, pp. 39-50, December 2015.
- A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with predictior error methods predictor input selection. *IEEE Trans. Autom. Contr.*, *61* (4), pp. 937-952, 2016.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability of linear dynamic networks. *Automatica*, 89, pp. 247-258, March 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction error identification of linear dynamic networks with rank-reduced noise. *Automatica*, *98*, pp. 256-268, December 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Single module identifiability in linear dynamic networks. Proc. 57th IEEE CDC 2018, ArXiv 1803.02586.
- K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof (2018). Local module identification in dynamic networks using regularized kernel-based methods. Proc. 57th IEEE CDC 2018.
- H.H.M. Weerts, J. Linder, M. Enqvist and P.M.J. Van den Hof (2019). Abstractions of linear dynamic networks for input selection in local module identification. Submitted for publication. ArXiv 1901.00348.
- P.M.J. Van den Hof, K.R. Ramaswamy, A.G. Dankers and G. Bottegal. Local module identification in dynamic networks with correlated noise: the full input case. Submitted to 2019 CDC. ArXiv 1809.07502.

The end