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Introduction – dynamic networks 

Decentralized process control

2

Complex machines

Smart power grid

Hydrocarbon reservoirs

Pierre et al.  (2012)

Mansoori (2014)

Brain network

P. Hagmann et al. (2008)



Introduction

The classical (multivariable) data-driven modeling problems[1] :

Identify a model of      on the basis of measured signals 
(and possibly   ), focusing on continuous LTI dynamics.
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[1] Ljung (1999), Söderström and Stoica (1989), Pintelon and Schoukens (2012)

In interconnected systems (networks) the structure / topology becomes 
important to include
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Network models

D. Materassi and M.V. Salapaka (2012)                      www.momo.cs.okayama-u.ac.jp                       E.A. Carara and F.G. Moraes (2008)                                       P.M.J. Van den Hof et al (2013)
J.C. Willems (2007) X.Cheng (2019)

R.N. Mantegna (1999)                                                     D. Koller and N. Friedman (2009)                             P.E. Paré et al (2013)                                                                           E. Yeung et al (2010)

• scalable, describing the physics
• dynamic elements with cause-effect
• handling feedback loops (cycles)
• combining physical and cyber components
• centered around measured signals
• allow disturbances and probing signals
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Network models
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State space representation

• States as nodes in a (directed) graph
• State transitions (1 step in time) reflected by 
• Transitions are encoded in links
• Ultimate break-down of system structure
• Actuation       and sensing       reflected by 

separate links

For data-driven modeling problems:
• Lump unmeasured states in dynamic modules



b11

b55 c55

c77

a51

a12

a21

a62
a26

a65

a16
a22

a76a43

a23

a74

a37
a77

a35

a64

a34

x1

x2

x5

x6

u1

y5

y7x3 x7

x4

a44

u5

x8
a85 a78

a87

Network models
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State space representation [1]

Module representation [2]

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,…

[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts,… 



Dynamic network models - zooming

8

Decreasing structural
information

Increasing level of 
detail



Dynamic network setup 
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Dynamic network setup 

11



Dynamic network setup 
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Dynamic network setup 
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Dynamic network setup 
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Collecting all equations:

J. Gonçalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.



Dynamic network setup 
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• Identification of a local module 
(known topology)

• Identification of the full network
• Topology estimation
• Identifiability
• Sensor and excitation allocation
• Diagnostics and fault detection 
• User prior knowledge of modules
• Distributed identification
• Scalable algorithms

Measured time series:

Many challenging data-driven modeling  
and diagnostics challenges appear



Application: Printed Circuit Board (PCB) Testing
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Source: Altium

Detection of
• component failures
• parasitic effects



Data-driven modeling in linear dynamic networks18

.

Single module identification



Single module identification
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For a network with 
known topology:

• Identify        on the basis of 
measured signals

• Which signals to measure? 
Preference for local 
measurements

• When is there enough 
excitation / data informativity?



Indirect  methods:
• Rely on mappings      

and on sufficient excitation
signals  

Single module identification
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Different types of methods:

Direct methods:
• Rely on mappings      

and use excitation from both
and     signals  



Single module identification
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Local direct method:
(consistency and minimum variance properties)

Select a subnetwork: 
• Predicted outputs: 
• Predictor inputs:
such that prediction error minimization leads to
an accurate estimate of 

Note: same node signals can appear in input and output



Single module identification
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Conditions for arriving at an accurate (consistent) model:

1. Module invariance:                     when removing discarded nodes (immersion)  

2. Handling of confounding variables 

3. Data-informativity
4. Technical condition on presence of delays
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[1] Dankers et al., TAC 2016
[3] Shi et al., Automatica 2022 

All parallel paths, and loops around the output, 
should be ”blocked” by a measured node that is present in 

Single module identification  - module invariance

A sufficient condition for module invariance:

All other signals can be removed/immersed from the network[2]

Alternative graph-based formulation in terms of disconnecting sets in [3]
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[2] Generalizations available in Linder&Enqvist (2017), Weerts et al, (2020)



Single module identification - confounding variables
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w1 w2

wc

G21

vc

0

0Confounding variable [1][2]: 
Unmeasured signal that has (unmeasured paths) to both the 
input and output of an estimation problem. 

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.

In networks they can appear in two different ways:

w1 w2
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Direct:
• If disturbances on inputs and outputs are correlated.

Indirect:

• If non-measured in-neighbors of an output affect signals in
the inputs. 



Confounding variables
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In identification we know how to handle 
correlated disturbances: we model them! 

Solution:

• Direct confounding variables

e.g.,     is correlated with 

Include      as output and use a multivariate 
noise model



Confounding variables
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Non-measurable       is a confounding variable

Two possible solutions:

add predictor output2. Predict too  

1. Include add predictor input 

• Indirect confounding variable:

• There are degrees of freedom in choosing the predictor model



Direct method
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General setup: 

Target module

Different algorithms for arriving at predictor models:   

• Full input case: include all in-neighbors of
• Minimum node signals case : maximize number of outputs
• User selection case : dedicated choice based on measurable nodes  



Different strategies – direct method

• Full input case

• User selection case

• Minimum measurements case
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Network with 𝑣𝑣1 correlated with 𝑣𝑣3 and 𝑣𝑣6.
𝑣𝑣4 correlated with 𝑣𝑣5. 
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Full input case
We include all in-neighbors of the 
predicted outputs as predictor inputs
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Handling indirect confounding variable:

Maximum use of information in signals

Handling direct confounding variable:

Direct identification 
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User selection case

• The user does not have access 
to all node signals
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• Four node signals can be 
measured
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• Parallel path and loop condition is 
satisfied

• Start with:



User selection case
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Handling direct confounding variable:

Indirect confounding variables:

Direct identification 



Minimum measurements case
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Direct identification 
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• Select signals to satisfy the 
parallel path and loop condition

• Handle all confounding variables 
by including signals in output



Different strategies for same network and target module
Same network with different identification setups that lead to consistent estimate of the 
target module with Maximum likelihood properties based on the strategy used.
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Full input case User selection case Minimum measurements 
case



Single module identification

36

Serious degrees of freedom in selecting the 
predictor model to satisfy the first two conditions:

1. Module invariance – PPL test

2. Handling confounding variables

While presuming that data-informativity can always 
be satisfied by adding sufficient # of r-signals.



Single module identification – data-informativity
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Predictor model equation:

Typical data-informativity condition: 

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.

for almost all

inputs of the predictor model 

Rank-based condition can generically be satisfied based on a graph-based condition



Data informativity (path-based condition)
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[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.

persistently exciting holds generically if there are 
vertex disjoint paths between external signals            and                                     

[3] VdH et al., CDC 2020.

Equivalently:  
vertex disjoint paths between                             and  

A signal                               with     persistently exciting, 
is persistently exciting iff has full row rank.  

This condition can be verified in a generic sense,  
by considering the generic rank of     [1],[2] 

linking to the maximum number of vertex disjoint paths between inputs and outputs 



Every node signal in       requires an excitation in
having a 1-transfer to  

Data informativity (path-based condition)
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Specific result for networks with full rank disturbances: 

• For every node in        we need a u-excitation

• More expensive experiments with growing # outputs

• A node         whose excitation appears in        can never be sufficiently excited



Every node signal in       requires an excitation in
having a 1-transfer to  

Data informativity (path-based condition)
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Specific result for networks with full rank disturbances: 

Additional condition for a node       to be effectively ``excitable’’: 

Every loop around a node in        should be blocked by a node in       .  

This additional graph-based condition needs to be integrated in 
the predictor model algorithm

[1] VdH et al., IFAC 2023 submitted.



Single module identification
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Conditions for arriving at an accurate model:

1. Module invariance: 

2. Handling of confounding variables 

3. Data-informativity
4. Technical conditions on presence of delays

Path-based conditions on the 
network graph 



Single module identification
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Typical solution: 

• MISO (sometimes MIMO) estimation problem
• to be solved by your favorite estimation algorithm



Machine learning in local module identification
• MISO identification with all modules parameterized
• Brings in two major problems :

 Large number of parameters to estimate 
 Model order selection step for each module (CV, AIC, BIC)

• For 5 modules, combinations = 244,140,625

• We need only the target module. No NUISANCE!
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Increases variance
Computationally challenging
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Machine learning in local module identification
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[1] Everitt et al., Automatica 2017.    
[2] K.R. Ramaswamy et al., Automatica, 2021.

Maximize marginal likelihood of output data:   𝜂̂𝜂 = argmax
𝜂𝜂

𝑝𝑝 𝑤𝑤𝑗𝑗;𝜂𝜂
𝜂𝜂 ≔ 𝜃𝜃 𝜆𝜆𝑗𝑗 𝜆𝜆𝑘𝑘1 … 𝜆𝜆𝑘𝑘𝑝𝑝 𝛽𝛽𝑗𝑗 𝛽𝛽𝑘𝑘1 … 𝛽𝛽𝑘𝑘𝑝𝑝 𝜎𝜎𝑗𝑗2

⊤

• smaller no. of 
parameters

• simpler model order 
selection step

• scalable to large 
dynamic networks

• simpler optimization 
problems to estimate 
parameters



Numerical simulation
 Identify 𝐺𝐺31 given data
 50 independent MC simulation
 Data = 500



Summary single module identification

• Path-based conditions that the predictor model should satisfy

• Different algorithms for synthesizing predictor model

• Degrees of freedom in sensor / actuator placement

• Methods for consistent and minimum variance module estimation, and
effective (scalable) algorithms

46



Data-driven modeling in linear dynamic networks47

.

Generic network identifiability



Full network identification
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Under which conditions can we estimate the topology and/or 
dynamics of the full network?



Network identifiability

blue = unknown
red   = known

Question:   Can different dynamic networks be distinguished from each other from
measured signals w , r ?

49



Network identifiability

The identifiability problem: 

50

The network model:

can be transformed with any rational : 

to an equivalent model: 

Nonuniqueness,  unless there are structural constraints on  

[1] Weerts, Linder et al., Automatica, 2019.
[2] Bottegal et al., SYSID 2017



Network identifiability
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Consider a network model set:

representing structural constraints on the considered models: 
• modules that are fixed and/or zero (topology)
• locations of excitation signals
• disturbance correlation

Generic identifiability of       :
- There do not exist distinct equivalent models (generating the same data)
- for almost all models in the set. 

[1] Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018; 
[2] Bazanella, CDC2017; Hendrickx et al., IEEE-TAC, 2019. 



Conditions for identifiability              rank conditions on transfer function  

Example 5-node network
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w5 w1G15 w4G21 w3G34

G12 G23

G53

v1 v2 v3r4

w2

r5

2 vertex-disjoint paths → full row rank 2

For the generic case, the rank can be calculated by a graph-based condition[1],[2] :

Generic rank = number of vertex-disjoint paths

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019

The rank condition has to be checked for all nodes.

Full row rank of



Synthesis solution for network identifiability
Allocating external signals for generic identifiability:  
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Tree with root in green Cycle with outgoing trees;
Any node in cycle is root

Pseudo-trees:

[1] X. Cheng, S. Shi and PVdH, TAC, February 2022. 

1. Cover the graph of the network model set by a set of disjoint pseudo-trees

Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree 

2. Assign an independent external signal (    or    ) at a root of each pseudo-tree. 

This guarantees generic identifiability of the model set.  
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5 1 2 4 3

5 1 2 4 3Two disjoint pseudo-trees

Where to allocate external excitations for network identifiability?

w5 w1G15 w4G21 w3G34

G12 G23

G53

w2

All indicated modules are parametrized
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5 1 2 4 3

5 1 2 4 3
Two independent excitations 
guarantee 
generic network identifiability

Where to allocate external excitations for network identifiability?

[1] X. Cheng, S. Shi and PVdH, CDC 2019. 

w5 w1G15 w4G21 w3G34

G12 G23

G53

w2
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Where to allocate external excitations for network identifiability?

21

97 8

3

65

4
r1 r2

r3 r4

• Nodes are signals      and external signals           that are input to parametrized link

[1] X. Cheng, S. Shi and PVdH, TAC, February 2022. 

Pseudo-tree
merging

algorithm [1]

• Known (nonparametrized) links do not need to be covered



Summary identifiability of full network 

Extensions:
• Situations where not all node signals are measured [1]

57

Identifiability of network model sets is determined by

• Presence and location of external signals, and
• Correlation of disturbances
• Topology of parametrized modules

• Graphic-based tool for synthesizing allocation of external signals

[1] Bazanella, CDC 2019. 



Related topics… 
• Excitation allocation for full 

network identifiability[1]

58

r1 r2

r3 r4

• Diffusively coupled networks [2]

• Subnetwork identifiability[3]
• Distributed controller identification[4]

[3] Shi et al., IEEE-TAC, January 2023. 
[2] Kivits et al., IEEE- TAC, June 2023.
[4] Steentjes, PhD thesis, June 2022.  

[1] Cheng et al., IEEE-TAC, February 2022. 



Algorithms implemented in SYSDYNET Toolbox
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Beta-version as of mid February 2023 to be downloaded from www.sysdynet.net

Structural analysis and operations 
on dynamic networks

• Edit and manipulate
• Assign properties to nodes

and modules
• Immersion of nodes, PPL test
• Generic identifiability analysis 

and synthesis
• Predictor model selection for

single module ID

to be complemented with

• estimation algorithms for
single module and 
full network ID;

• topology estimation

http://www.sysdynet.net/


ERC SYSDYNET Team: data-driven modeling in dynamic networks
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The end
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