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Overall trend:

• (Large-scale) interconnected systems

• With hybrid dynamics (continuous / switching)

• Distributed / multi-agent type monitoring, control and optimization problems

• Data is “everywhere”, big data era

• Modelling problems will need to consider this



Introduction

Distributed / multi-agent control: 

With both physical and communication links between 

systems and controllers 
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How to address data-driven modelling problems in such a setting? 



Introduction

The classical (multivariable) identification problems
[1] 

:

Identify a plant model      on the basis of measured signals u, y

(and possibly r), focusing on continuous LTI dynamics.
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[1] Ljung (1999), Söderström and Stoica (1989), Pintelon and Schoukens (2012)

We have to move from a simple and fixed configuration
to deal with structure in the problem.
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Dynamic networks for data-driven modeling



Dynamic networks
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State space representations
(Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,…)

Module representation
(VdH, Dankers, Gevers, Bazanella,…)



Dynamic network setup 
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ri external excitation
vi process noise
wi node signal
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ri external excitation
vi process noise
wi node signal



Dynamic network setup 
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Assumptions:
• Total of L nodes
• Network is well-posed and stable
• Modules are dynamic, may be unstable
• Disturbances are stationary stochastic and 

can be correlated

P.M.J. Van den Hof, A.G. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, 2013.



Dynamic network setup 
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• Identification of a local module 
(known topology)

• Identification of the full network
• Topology estimation
• Sensor and excitation selection
• Fault detection
• Experiment design 
• User prior knowledge of modules
• Scalable algorithms

Many new identification questions 
can be formulated:
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Single module identification - known topology



Single module identification
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For a network with known topology:

• Identify        on the basis of measured signals

• Which signals to measure? Preference for local measurements



Single module identification
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Single module identification
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Identifiying        is part of a 4-input, 1-output problem 



Single module identification

4 input nodes to be measured:

Can we do with less?
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[1]  A. Dankers. PhD Thesis, 2014.
[2]  F. Dörfler and F. Bullo, IEEE Trans. Circuits and Systems I (2013)

Network immersion [1]

• An immersed network is constructed by removing node signals, but leaving the remaining node 
signals invariant

• Modules and disturbance signals are adapted

• Abstraction through variable elimination (Kron reduction[2] in network theory).



Immersion
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Immersion
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Immersing

When does immersion leave
invariant?



Immersion
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When does immersion leave
invariant?

A.G. Dankers et al., IEEE Trans. Automatic Control, 61, 937-952, 2016.

Parallel paths and loops around the output
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There should be no parallel paths and
loops around the output that run through
removed nodes only
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parallel paths, and loops around the output
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parallel paths, and loops around the output
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parallel paths, and loops around the output
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parallel paths, and loops around the output
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Choose    as an additional input (to be retained)
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parallel paths, and loops around the output
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parallel paths, and loops around the output
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Single module identification
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Choose   as an additional input, to be retained
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Single module identification

Conclusion:

With a 3-input, 1 output model we can
consistently identify
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[1] J. Linder and M. Enqvist. Int. J. Control, 90(4), 729-745, 2017.
[2] A. Bazanella, M. Gevers et al., CDC 2017.

The immersion reasoning is sufficient but not necessary to arrive at 
a consistent estimate, see e.g. Linder and Enqvist [1], Bazanella et al. [2], Ramaswamy et al. [3] 

[3] K. Ramaswamy et al., CDC 2019 submitted.



Conclusion:

With a 3-input, 1 output model we can
consistently identify

Single module identification

For a consistent and minimum variance estimate
(direct method) there is one additional condition: 

• absence of confounding variables, [1][2] i.e. 
correlated disturbances on inputs and outputs

35

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.
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Confounding variables in the MISO case

• (not measured) now acts as a disturbance
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Confounding variables in the MISO case

• (not measured) now acts as a disturbance

• Confounding variable if there is a path from                          
to an input   
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• Can be solved by measuring         and including it 
as input



Confounding variables in the MISO case

• (not measured) now acts as a disturbance

• Confounding variable if there is a path from                          
to an input   
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• Can be solved by measuring         and including it 
as input
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r4 • Or blocking the paths from   to inputs/outputs 
by measured nodes, to be used as additional 
inputs.

Relation with d-separation in graphs
(Materassi & Salapaka)

A.G. Dankers et al., IFAC World Congress, 2017.



Confounding variables in the MISO case

Can we always address confounding variables 
in this way?

No

If       and       are correlated then:

A MIMO approach with predicted outputs        and
can solve the problem
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P.M.J. Van den Hof et al., ArXiv 2018. 



Summary single module identification

• Methods for consistent and minimum variance module estimation

• For direct method / ML results: treatment of confounding variables / 
correlated disturbances

• Graph tools for checking conditions

• Degrees of freedom in selection of measured signals – sensor selection

• A priori known modules can be accounted for

40
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Network Identifiability



Network identifiability

blue = unknown
red   = known

Question: Can different dynamic networks be distinguished from each other from measured
signalswi , ri ?

Starting assumption: all signalswi ,ri that are present are measured. 
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Network identifiability

Network:

44

rank p

dim(r) = K

The network is defined by:

a network model is denoted by:

and a network model set by:

represents prior knowledge on the network models: 

• topology
• disturbance correlation
• known modules
• the signals used for identification



Network identifiability

Objects that are uniquely identified from data     :

45

Denote:

Definition
A network model set        is network identifiable from at
if for all models :

Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018



xxxxx

• The transfer matrix from external inputs            that are non-parametrized in  
to        has full row rank. 

Network identifiability

Theorem – identifiability for general model sets

46
Weerts et al, SYSID2015; Weerts et al., Automatica, March 2018

is network identifiable from at                           if and only if for all    :   

For each node signal      , let        be the set of in-neighbours of        that map to      
through a parametrized module. 

Then, under fairly general conditions,

· Each row of                                    has at most               parametrized entries  



Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

If we restrict the structure of :

First condition: 
Number of parametrized entries in each row < K+p = 5

52



Example 5-node network

Rank condition: 
Row 1: Full row rank of transfer:
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Example 5-node network

Verifying the rank condition for       :

Evaluate the rank of the transfer matrix
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Example 5-node network

Verifying the rank condition for       :

Evaluate the rank of the transfer matrix
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Example 5-node network

Verifying the rank condition for      :
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2 vertex-disjoint paths → full row rank 2

For the generic case, the rank can be calculated by a graph-based condition[1],[2],[3] :

Generic rank = number of vertex-disjoint paths

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017 [3] Weerts et al., CDC 2018



Summary identifiability

So far:

• All node signals assumed to be measured

• Fully applicable to the situation (i.e. reduced-rank noise)

• Identifiability of the full network model – conditions per row/output node

• Extensions towards identifiability of a single module [1],[2]

57

Identifiability of network model sets is determined by

• Presence and location of external signals, and
• Correlation of disturbances
• Prior knowledge on modules

[1] Hendrickx, Gevers & Bazanella, CDC 2017, IEEE-TAC 2019
[2] Weerts et al., CDC 2018
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Diffusively coupled physical networks



Back to the basics of physical interconnections
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Resistor

𝐼 =
1

𝑅
𝑉1 − 𝑉2

Spring
1

𝑅
𝐹 = 𝐾 𝑥1 − 𝑥2

1

𝑅

In connecting physical systems, there is often no predetermined 
direction of information [1]

w1 w2G21

Example: resistor / spring connection in electrical / mechanical system:

Difference of node signals drives the interaction:   diffusive coupling

[1] J.C. Willems (1997,2010)



Diffusively coupled physical network
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Equation for node j:   



Mass-spring-damper system

• Masses 𝑀𝑗

• Springs 𝐾𝑗𝑘

• Dampers 𝐷𝑗𝑘

• Input 𝑢𝑗

𝑀1

𝑀2

𝑀3

 𝑤1
 𝑤2
 𝑤3

+
0

𝐷20
0

 𝑤1
 𝑤2
 𝑤3

+
𝐾10

0
0

𝑤1
𝑤2
𝑤3

+
𝐷13 0 −𝐷13
0 𝐷23 −𝐷23

−𝐷13 −𝐷23 𝐷13 + 𝐷23

 𝑤1
 𝑤2
 𝑤3

+

𝐾12 + 𝐾13 −𝐾12 −𝐾13
−𝐾12 𝐾12 0
−𝐾13 0 𝐾13

𝑤1
𝑤2
𝑤3

=
0
𝑢2
0

62

polynomial  



Mass-spring-damper system
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polynomial  

𝑄11 = 𝑀1 𝑝
2 + 𝐷13 𝑝 + 𝐾10 + 𝐾12 + 𝐾13

𝑄22 = 𝑀2 𝑝
2 + 𝐷20 + 𝐷23 𝑝 + 𝐾12

𝑄33 = 𝑀3 𝑝
2 + 𝐷13 + 𝐷23 𝑝 + 𝐾13

𝑃 =

0 𝐾12 𝐷13 𝑝 + 𝐾13
𝐾12 0 𝐷23 𝑝

𝐷13 𝑝 + 𝐾13 𝐷23 𝑝 0

elements related to node    

elements related to interconnection    



Module representation
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This fully fits in the earlier module representation: 

with the additional condition that: 

polynomial  

symmetric, diagonal



Module representation
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Consequences for node interactions:

• Node interactions come in pairs of modules
• Where numerators are the same

Framework for network identification remains the same

• Symmetry can simply be incorporated in identification



Identification of one physical interconnection

Identification of two modules 𝐺𝑗𝑘 and 𝐺𝑘𝑗

𝐺𝑗𝑘 = 𝑄𝑗𝑗
−1𝑃𝑗𝑘 and 𝐺𝑘𝑗 = 𝑄𝑘𝑘

−1𝑃𝑘𝑗 with 𝑃𝑗𝑘 = 𝑃𝑗𝑘

Local network identification

66



Immersion conditions
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For simultaneously identifying two modules in one interconnection: 

The parallel path and loops-around-the-output condition of immersion, now
simplifies to:

All neighbouring nodes of       and       need to be retained/measured.

E.E.M. Kivits et al., CDC 2019 submitted.



Summary diffusively coupled physical networks

• Physical networks fit within the module framework (special case)

- no restriction to second order equations

• Identification algorithms and identifiability analysis can be utilized

• Local identification is well-addressed (and stays really local)

• Framework is fit for representing cyber-physical systems

68
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Extensions - Discussion



Extensions - Discussion
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[1] Weerts et al., Automatica, December 2018.

• Identification algorithms to deal with reduced rank noise [1]

• number of disturbance terms is larger than number of white sources
• Optimal identification criterion becomes a constrained quadratic problem

with ML properties for Gaussian noise
• Reworked Cramer Rao lower bound
• Some parameters can be estimated variance free

• Including sensor noise [2]

• Errors-in-variabels problems can be more easily handled in a network setting

[2] Dankers et al., Automatica, 2015.



Extensions - Discussion
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• Machine learning tools for estimating large scale models [1,2]

• Choosing correctly parametrized model sets for all modules is impractical
• Use of Gaussian process priors for kernel-based estimation of models

[1] Everitt et al., Automatica, 2018.
[2] Ramaswamy et al., CDC 2018.

• From centralized to distributed estimation (MISO models) [3]

• Communication constraints between different agents
• Recursive (distributed) estimator converges to global optimizer (more slowly) 

[3] Steentjes et al., IFAC-NECSYS, 2018.



Discussion

• Dynamic network identification: 
intriguing research topic with many open questions

• The (centralized) LTI framework is only just the beginning

• Further move towards data-aspects related to distributed control

• and large-scale aspects 
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The end


