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Introduction – dynamic networks

Drivers for data-processing / data-analytics

Providing the tools for online
• Model estimation / calibration / adaptation

to accurate perform online model-based X:
• Monitoring
• Diagnosis and fault detection
• Control and optimization
• Predictive maintenance
• Controller reconfiguration
• ........... 

Turn large amounts of (relatively inexpensive) data 
into process/economic value 



Industry 4.0 – process operations aspects

• integrated chains/networks of production units, 
• fully automated, high level of sensing/actuation,  
• data and product flows across classical 

(company) borders (suppliers,customers, 
energy grid)

• modular build-up
• continuously monitored for control, 

optimization, (predictive) maintenance, 
analysis, ......

• adapting to changing circumstances (process 
and market conditons), and learning

• economically optimized
• supervised by new-generation HMI technology 

and operators

From isolated (statically) optimized units to

[Boston Consulting Group report: “Industry 
4.0, The Future of Production & Growth in 
Manufacturing Industries“, 2015]



Dynamical systems are considered to have a more complex 
structure:

distributed control system (1d-cascade) dynamic network

(distributed MPC, multi-agent systems, biological networks, smart grids,…..)

For on-line monitoring / control / diagnosis it is attractive to be able to identify
• (changing) dynamics of modules in the network
• (changing) interconnection structure

Introduction – dynamic networks



Introduction - identification

The classical (multivariable) identification problems:

open loop closed loop

Identify a plant model     on the basis of measured signals u,
y (and possibly r)

• We have to move from fixed and known configuration
to deal with and exploit structure in the problem.

[Ljung (1999)]



Introduction - identification

Gudi, R. D. and Rawlings, J. B. (2006). Identification for decentralized model predictive control. 
AIChE Journal, 52(6):2198-2210.

Example decentralized MPC; 2 interconnected MPC loops

Target:
Identify interaction dynamics

Addressed by 
Gudi & Rawlings (2006) 
for the situation
(no cycles) 



Introduction – Dynamic network identification

Some modules may be known (e.g. controllers)
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Introduction – relevant identification questions

Identification of a single (local) module?

Where to place sensors and actuators 
for optimal accuracy?

How to utilize known structure/topology and known modules?

Can we identify the topology?

Is the full network identifiable?

[P.M.J. Van den Hof, A. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, October 2013]
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Towards dynamic network identification



Methods for closed-loop identification

Plant representation

white noise

and uncorrelated
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Relying on full-order noise modelling;
Prediction error

Using only signals u and y, discarding r

1.  Direct method

2.  Projection/two-stage/IV method

Relying on measured external excitation 

with       the signal      projected onto         

Similar least squares criterion.



Methods for closed-loop identification

Plant representation

white noise

and uncorrelated

+ G0 +

v

C

- u yr

H0

e1.  Direct method

Consistent estimate of
provided that u is sufficiently exciting 

2.  Projection/two-stage/IV method

Consistent estimate of
provided that      is sufficiently exciting 

[Van den Hof & Schrama, 1993]

[Ljung, 1987]



Network Setup

Assumptions:
• Total of L nodes
• Network is well-posed

• Stable (all signals bounded)
• All                    

measured, as well as all
present 

• Modules may be unstable

causally invertible



Identifying a module

• Identify the full MIMO system:

Options for identifying a module:

from measured     and     .  

Global approach with “standard” tools

• Identify a local (set of) module(s)
from a (sub)set of measured       and 

Local approach with “new” tools and structural conditions 



Can it be identified from measured 
input        and output       ?  

Identifying a module

Suppose we are interested in 

How to identify a module:

Typically bias will occur due to 
“neglecting” the rest of the 
network

• Non-modelled disturbances on       can create problems
• The observed transfer between       and       is not necessarily



Identifying a module

Two approaches for finding

How to identify a module:

• Full MISO approach:
Include all node signals that directly 
map into       in an input vector, and 
identify a MISO model  

• Predictor input selection:
Formulate conditions for checking 
the sufficiency of  set of nodes to 
include as inputs in a MISO model
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Full MISO models – Direct method

0
jiG

0
jkG

• Module of interest:  

• Separate the modules           into 
known modules:  

and unknown modules:  

• Determine: 

• Prediction error: 

Simultaneous identification of and 

Consistent estimates if                    sufficiently exciting,
and               diagonal 

[P.M.J. Van den Hof et al., Automatica, October 2013]



• Prediction error:

where all inputs                       are considered that are correlated to         

Network Identification – Projection method
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Algorithm:
• Find an with a path to 

such that           is present

known terms

• This extends to multiple signals 

[P.M.J. Van den Hof et al., Automatica, October 2013]

Consistent identification of
provided that                         sufficiently exciting                        

• Construct:



Network Identification – Two-stage method

Example

• External signal 

• Input nodes to         that
are correlated with      :

,      ,     ,

• So 4 input, 1 output problem

• Projected inputs will generally
not be sufficiently exciting 
(we need 4 independent sources)

• Include     ,      and       as external signals

• Input nodes remain the same as for direct method
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Network Identification – Full MISO models 

• Consistent identification of single transfers is possible, dependent on 
network topology and reference excitation

• Choice between estimating accurate noise models (direct method) 
and utilizing reference excitation (projection method)

• Excitation conditions on (projected) input signals can be
limiting

• Network topology conditions on 	can simply be checked by tools 
from graph theory  

Observations:
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Predictor input selection

• So far: predictor input choice not very flexible

• What if some signals are hard (expensive) to measure?

• What if we would like to have flexibility in placing sensors?

• Can we formulate (more relaxed) conditions on nodes to be 
measured, for allowing a consistent module estimate?



Predictor input selection

There are two basic mechanisms that “deteriorate” the transfer        
when nodes are removed:

1. Parallel paths
2. Loops around 

To maintain 
these should be 
“blocked” by 
measured nodes 
(predictor inputs)



Predictor input selection: condition 1 and 2

Objective: obtain an estimate of 

Consistent estimates of        are possible if:

1. is included as predictor input

2. Each parallel path from                    passes through 

a node chosen as predictor input

3. Each loop from                    passes through a node

chosen as predictor input



Example with predictor input conditions 

Conditions: Include variable on every path 
o

o

Conclude: include and …  as predictor 
inputs
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Example with predictor input conditions

Conditions: Include variable on every path 
o Include       in predictor
o Include       in predictor

Conclude: include and  as 
predictor inputs



Predictor input selection

− the set       of predictor inputs satisfies the formulated conditions

− For the direct method: there are no confounding variables

− For the projection method: no excitation signal used for projection, 

has a path to       that does not pass through a node in  

In the “full” MISO case: consistent estimates of all 

In the “selected” predictor input case: consistent estimates of  

[A. Dankers et al., Identification of dynamic models in complex networks with predictior error methods –
predictor input selection. IEEE Trans. Automatic Control, 61(4), 937-952, april 2016.]

Result

The consistency results of both direct and projection method 

remain valid if 



Predictor input selection

For direct method:       is a confounding variable and needs to be included

For projection method: no problems



Immersed network

• The two conditions (parallel paths and loops on output) result from 
an analysis of the so-called immersed network

• The immersed network is constructed on the basis of a reduced 
number of node variables only, and leaves present node signals 
invariant

• Whether dynamics in the immersed network is invariant can be 
verified with the graph theory/tools of separating sets.

[A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois. Identification of dynamic models in complex networks with 
predictior error methods - predictor input selection. IEEE Trans. Automatic Control, april 2016.]
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Example Decentralized MPC

Gudi, R. D. and Rawlings, J. B. (2006). Identification for decentralized model predictive control. 
AIChE Journal, 52(6):2198-2210.

Example decentralized MPC; 2 interconnected MPC loops

Target:
Identify interaction dynamics

Addressed by 
Gudi & Rawlings (2006) 
for the situation
(no cycles) 



Example decentralized control

Case of Gudi & Rawlings (2006): Target:
Identify interaction dynamics

Options:
1. Identify from

and find         by taking the 
quotient of the two models

Simulate:

b) Identify         from

Excitation through dither signals on
and 

2.  a) Identify       from 



provides consistent estimate of
through both direct and 

projection method

Example decentralized control

According to network results (input selection):  

Estimate 2-input 1-output model:

• Excitation properties of signals
remain important:

• Direct method utilizes excitation
through noise signals 



Example decentralized control

The more general situation (cyclic connection):  

Estimate 2-input 1-output models:

provides consistent estimates of

together with 

If plant models              are known
the situation simplifies

Direct method and projection-IV method can handle nonlinear 



Example decentralized control

Observation

Network identification results provide a formal way to   
handle these structured identification problems. 
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Sensor noise – the errors-in-variables problem

What if node variables are measured with (sensor) noise?

• Classical (tough) problem in open-loop identification
• More simple in dynamic networks due to 

the presence of multiple (correlated) node signals

[A. Dankers et al., Automatica, December 2015]



Network identifiability

[H.H.M. Weerts et al, IFAC SYSID 2015, and IFAC ALCOSP 2016]

Question
Can network models of a full network be distinguished 
from each other? 

Consider: 

mapping:  

For identifiability of a model set, different network models should lead to
different     ‘s   

This puts conditions on:
• The presence of excitation signals and process noise
• The number of modules that can be parametrized   



Discussion / Wrap-up

• So far: focus on (local) consistency results in networks with known 
structure and linear dynamics

• Many additional questions/topics remain:
Variance of estimates, influenced by
− Additional (output) measurements
− Excitation properties 

[See e.g. work of H. Hjalmarsson, B. Wahlberg, N. Everitt, B. Günes, M. Gevers, 
A. Bazanella]

• Algorithms for application to large-scale systems

• Optimal sensor and actuator locations – experiment design



Discussion / Wrap-up

• Identification of the structure/topology 
addressed in the literature, in particular forms:
• Tree-like structures (no loops)
• Nonparametric methods (Wiener filter)
• Mostly networks without external excitation and uncorrelated 

(white) process noises on every node
see e.g. Materassi, Innocenti (TAC-2010), Chiuso and Pillonetto (Automatica, 2012)

• Sparse identification methods can be used in an identification setting 
to identify the topology (non-zero transfers)

• New identifiability concepts apply to the unique determination of a 
network topology
see e.g. Goncalves & Warnick (TAC-2008), Weerts et al. (SYSID-2015). 

• Connection with decentralized/distributed control
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