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Introduction — dynamic networks

: Power grid
Decentralized process control J

; . . Pierre et al. (2012)
Metabolic network Distributed control

(robotic networks) Stock market

Materassi et al. (2010)

Hillen (2012) Simonetto (2012)



Introduction — dynamic networks

Drivers for data-processing / data-analytics

Providing the tools for online
» Model estimation / calibration / adaptation

to accurate perform online model-based X:
* Monitoring
* Diagnosis and fault detection
« Control and optimization
* Predictive maintenance
» Controller reconfiguration

Turn large amounts of (relatively inexpensive) data
Into process/economic value



Industry 4.0 — process operations aspects

From isolated (statically) optimized units to

* Integrated chains/networks of production units,
 fully automated, high level of sensing/actuation,

« data and product flows across classical
(company) borders (suppliers,customers,

energy grid)
. [Boston Consulting Group report: “Industry
. mOdUIar bUlId'up 4.0, The Future of Production & Growth in

) . Manufacturing Industries®, 2015]
» continuously monitored for control,
optimization, (predictive) maintenance,
analysis, ......

« adapting to changing circumstances (process
and market conditons), and learning

« economically optimized

« supervised by new-generation HMI technology
and operators




Introduction — dynamic networks

Dynamical systems are considered to have a more complex

structure:
distributed control system (1d-cascade) dynamic network
: G — G fe— T : G,
i i i @
y/ y/
C] < > CZ _b‘ """ _>‘ Cr @ @

(distributed MPC, multi-agent systems, biological networks, smart grids,.....)

For on-line monitoring / control / diagnosis it is attractive to be able to identify
* (changing) dynamics of modules in the network
» (changing) interconnection structure




Introduction - identification

The classical (multivariable) identification problems: [Ljung (1999)]
open loop closed loop
p G y I"—>- pr G ?
C |e—

Identify a plant model G on the basis of measured signals u,
y (and possibly r)

 We have to move from fixed and known configuration
to deal with and exploit structure in the problem.



Introduction - identification

Example decentralized MPC; 2 interconnected MPC loops

LG, | Target:
70 |dentify interaction dynamics
— w X, G21, Gz
ﬁ)_ ;
— = Gy, J Addressed by
Gudi & Rawlings (2006)

for the situation G132 = 0
(no cycles)

Gudi, R. D. and Rawlings, J. B. (2006). Identification for decentralized model predictive control.
AIChE Journal, 52(6):2198-2210.



Introduction — Dynamic network identification

I, external excitation
V, process noise
w; node signal

Some modules may be known (e.g. controllers)



Introduction — Dynamic network identification

[ri external excitation ]
V; process noise
w; node signal

O O

O

Some modules may be known (e.g. controllers)



Introduction — Dynamic network identification

O O

V, process noise |

w; node signal

o O O O O

O

Some modules may be known (e.g. controllers)



Introduction — Dynamic network identification

O O r. external excitation
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Introduction — relevant identification questions

Gl \gr@igm G2 § Where to place sensors and actuators
for optimal accuracy?

How to utilize known structure/topology and known modules?
Can we identify the topology?

Is the full network identifiable?

[P.M.J. Van den Hof, A. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, October 2013]
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Methods for closed-loop identification

1. Direct method

Relying on full-order noise modelling;
Prediction error

e(t,0) = H(0) " [y(t) — G(O)u(?)]

Using only signals u and Yy, discarding r

N
A 1
— . 2
On = arg min — E e(t,0)

t=1
2. Projection/two-stage/lV method

Relying on measured external excitation 7°

with w” the signal w projected onto T

Similar least squares criterion.

H0
R4

u Go e
C -

Plant representation

€ white noise

r and v uncorrelated




Methods for closed-loop identification

1. Direct method [Ljung, 1987] ie

Consistent estimate of {Go, Ho} Hy

provided that u is sufficiently exciting lv
T U S Ed

C <

2. Projection/two-stage/lV method _
[Van den Hof & Schrama, 1993] Plant representation

Consistent estimate of Gg

provided that " is sufficiently exciting e white noise

r and v uncorrelated




Network Setup

Assumptions:
» Total of L nodes

Network is well-posed
I — GO causally invertible

« Stable (all signhals bounded)

o All wp,m=1,---1L,
measured, as well as all
present rm

 Modules may be unstable

- - _ 0 - — - - - — -
wq % G(l]z .o G(l)L w1y 1 v1
‘wr | |GY, GYy -+ 0 ||wp| |rp| |vL|

N -~ g




ldentifying a module

Options for identifying a module:

* ldentify the full MIMO system:
w= (I —G°) [r+v]

from measured r and w.

Global approach with “standard” tools

« ldentify alocal (set of) module(s)
from a (sub)set of measured rr and we

Local approach with “new” tools and structural conditions




ldentifying a module

How to identify a module:

. . 0
Suppose we are interested in G5,

Can it be identified from measured
input wi and output wz?

=) | Typically bias will occur due to
“neglecting” the rest of the
network

 Non-modelled disturbances on w, can create problems
« The observed transfer between w1 and w2 is not necessarily G3,



ldentifying a module

How to identify a module:

Two approaches for finding G5,

* Full MISO approach:
Include all node signals that directly
map into ws in an input vector, and
identify a MISO model

* Predictor input selection:
Formulate conditions for checking
the sufficiency of set of nodes to
include as inputs in a MISO model
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Full MISO models — Direct method

 Module of interest: G, w;

« Separate the modules G3, into

known modules: G2, k € K; %l G

and unknown modules: G, k € U;

+ Determine: w;(t) = w;(t) — rj(t) — Y _ ng(q);uk(t)
kEK;
- Prediction error: e(t,0) = H;(0) ' [@;(t) — >  Gjk(0)wk(t)]
kcU;

ﬂ‘ Simultaneous identification of and H;.’

mmm) Consistent estimates if {wx }rewy; sufficiently exciting,
and ®,(w) diagonal

[P.M.J. Van den Hof et al., Automatica, October 2013]



Network Identification — Projection method

Algorithm: v
ce-- Wi 0 W
 Find an r,», with a path to w; > —™ G —>"
such that w,;™ is present m g
Wk 0
* »l G

 Construct: _
W; = Wj — T — Z ng(q)'wk
keK;

N —
—

known terms
- Prediction error:  e(t,0) = H;(p) ™ '[w; — Z Gk (0)w,™]
keuis
where all inputs k € U;s CU; are considered that are correlated to

mm) Consistent identification of GJ, k € U,
provided that {w;.™ }rew,, sufficiently exciting

* This extends to multiple signals

[P.M.J. Van den Hof et al., Automatica, October 2013]



Network Identification — Two-stage method

Example

« External signal 7

e Input nodes to wo that
are correlated with 71 : .
w1, We W7, W3

e S04 input, 1 output problem

* Projected inputs will generally
not be sufficiently exciting
(we need 4 independent sources)

e Include 74, r5 and g as external signhals

* Input nodes remain the same as for direct method



Network ldentification — Full MISO models

Observations:

« Consistent identification of single transfers is possible, dependent on
network topology and reference excitation

* Choice between estimating accurate noise models (direct method)
and utilizing reference excitation (projection method)

« Excitation conditions on (projected) input signals can be
limiting

* Network topology conditions on r,, can simply be checked by tools
from graph theory
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Predictor input selection

« So far: predictor input choice not very flexible

« What if some signals are hard (expensive) to measure?

* What if we would like to have flexibility in placing sensors?

« Can we formulate (more relaxed) conditions on nodes to be
measured, for allowing a consistent module estimate?




Predictor input selection

There are two basic mechanisms that “deteriorate” the transfer

when nodes are removed:

1. Parallel paths

2. Loops around w;

To maintain
these should be
“blocked” by
measured nodes
(predictor inputs)




Predictor input selection: condition 1 and 2

Objective: obtain an estimate of G;
Consistent estimates of G7; are possible if:
1. w; is included as predictor input

2. Each parallel path from w; — w; passes through
a node chosen as predictor input
3. Each loop from w; — w; passes through a node

chosen as predictor input




Example with predictor input conditions

Conditions: Include variable on every path
0 w1 — w2
0 w9 — Wy

Conclude: include wy and ... as predictor
inputs
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Example with predictor input conditions

Conditions: Include variable on every path
0 w1 — Wwa
0 W9 — W2

Conclude: include w1, wg and ... as
predictor inputs




Example with predictor input conditions

Conditions: Include variable on every path
0 wj; — wo = Include wg in predictor
0 w2 — w2 = Include wsg in predictor

Conclude: include wy, wg and wg as
predictor inputs




Predictor input selection

Result

The consistency results of both direct and projection method

remain valid if

— the set of predictor inputs satisfies the formulated conditions
— For the direct method: there are no confounding variables

— For the projection method: no excitation signal used for projection,

has a path to w; that does not pass through a node in

In the “full” MISO case: consistent estimates of all G;.’k, k e U;

In the “selected” predictor input case: consistent estimates of G’gi

[A. Dankers et al., Identification of dynamic models in complex networks with predictior error methods —
predictor input selection. IEEE Trans. Automatic Control, 61(4), 937-952, april 2016.]



Predictor input selection

O

For direct method: w~ is a confounding variable and needs to be included

For projection method: no problems



Immersed network

 The two conditions (parallel paths and loops on output) result from
an analysis of the so-called immersed network

« The immersed network is constructed on the basis of a reduced
number of node variables only, and leaves present node signals
Invariant

 Whether dynamics in the immersed network is invariant can be
verified with the graph theory/tools of separating sets.

[A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois. Identification of dynamic models in complex networks with
predictior error methods - predictor input selection. IEEE Trans. Automatic Control, april 2016.]
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Example Decentralized MPC

Example decentralized MPC; 2 interconnected MPC loops

LG, | Target:
70 |dentify interaction dynamics
— w X, Ga1, Gz
ﬁ)_ ;
— = Gy, J Addressed by
Gudi & Rawlings (2006)

for the situation G132 = 0
(no cycles)

Gudi, R. D. and Rawlings, J. B. (2006). Identification for decentralized model predictive control.
AIChE Journal, 52(6):2198-2210.



Example decentralized control

Target:

Case of Gudi & Rawlings (2006): Identify interaction dynamics Gz

Options:

' 1. ldentify from (r2,u1) — uq
and find G54 by taking the
qguotient of the two models

L] Gy 2. a) ldentify  from r2 — w2

; . — 2y —1
e H o v Simulate: Ur = (R;) U
? ++ b) Identify G21 from w1 — Uur

Excitation through dither signals on
ro and uy




Example decentralized control

According to network results (input selection):

Y2 = G21u1 + Gauz + va

Estimate 2-input 1-output model:
(ula u2) — Y2

provides consistent estimate of
G2:1 through both direct and
projection method

Excitation properties of signals
remain important:

Direct method utilizes excitation
through noise signals vy, v2



Example decentralized control

The more general situation (cyclic connection):

Giui + Giauz + v1
Gaiu1 + Gauz + v2

...... i "
Gio | Y2

o+ Wﬂ + X"y Estimate 2-input 1-output models:
? + (u1,u2) = Y1

(u1,u2) = Y2
provides consistent estimates of
G217 G12

together with G1, G2

If plant models G1, G2 are known
the situation simplifies

Direct method and projection-IV method can handle nonlinear




Example decentralized control

Observation

Network identification results provide a formal way to
handle these structured identification problems.
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Sensor noise —the errors-in-variables problem

What if node variables are measured with (sensor) noise?

» Classical (tough) problem in open-loop identification
e More simple in dynamic networks due to
the presence of multiple (correlated) node signals

[A. Dankers et al., Automatica, December 2015]



Network identifiability

Question

Can network models of a full network be distinguished
from each other?

Consider:  T(q) = (I — G(q)) ' [H(q) R(q)]
mapping: ( i ) — w

For identifiability of a model set, different network models should lead to
different ‘s

This puts conditions on:
 The presence of excitation signals and process noise
 The number of modules that can be parametrized

[H.H.M. Weerts et al, IFAC SYSID 2015, and IFAC ALCOSP 2016]



Discussion / Wrap-up

« So far: focus on (local) consistency results in networks with known
structure and linear dynamics

« Many additional questions/topics remain:
Variance of estimates, influenced by
— Additional (output) measurements
— Excitation properties

[See e.qg. work of H. Hjalmarsson, B. Wahlberg, N. Everitt, B. Glnes, M. Gevers,
A. Bazanella]

* Optimal sensor and actuator locations — experiment design

* Algorithms for application to large-scale systems



Discussion / Wrap-up

 |dentification of the structure/topology
addressed in the literature, in particular forms:

» Tree-like structures (no loops)
* Nonparametric methods (Wiener filter)

» Mostly networks without external excitation and uncorrelated
(white) process noises on every node

see e.g. Materassi, Innocenti (TAC-2010), Chiuso and Pillonetto (Automatica, 2012)

« Sparse identification methods can be used in an identification setting
to identify the topology (non-zero transfers)

* New identifiability concepts apply to the unique determination of a

network topology
see e.g. Goncalves & Warnick (TAC-2008), Weerts et al. (SYSID-2015).

* Connection with decentralized/distributed control
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