Identification in dynamic networks

Paul M.J. Van den Hof

with Arne Dankers (Calgary) and Harm Weerts (TU/e)

FOCAPO/CPC 2017, January 10, 2017, Tucson, Arizona

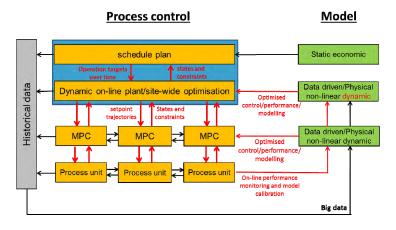
European Research Council

TUe Technische Universiteit Eindhoven University of Technology

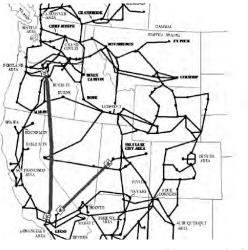
Where innovation starts

Introduction – dynamic networks

Decentralized process control

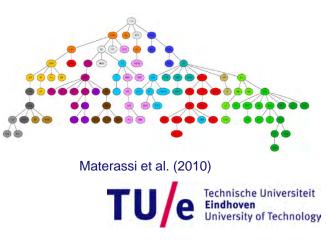


Power grid

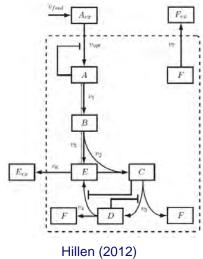


Pierre et al. (2012)

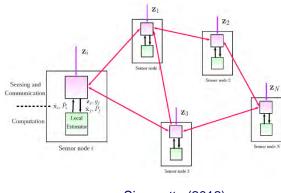
Stock market



Metabolic network



Distributed control (robotic networks)



Simonetto (2012)

Introduction – dynamic networks

Drivers for data-processing / data-analytics

Providing the tools for **online**

• Model estimation / calibration / adaptation

to accurate perform online model-based X:

• Monitoring

.

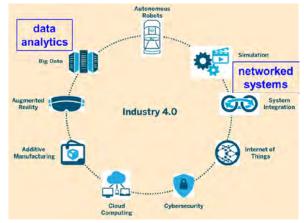
- Diagnosis and fault detection
- Control and optimization
- Predictive maintenance
- Controller reconfiguration

Turn large amounts of (relatively inexpensive) data into process/economic value

Industry 4.0 – process operations aspects

From isolated (statically) optimized units to

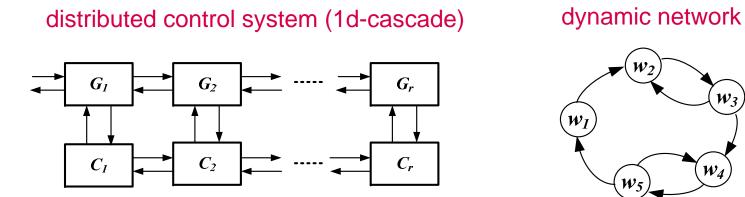
- integrated chains/networks of production units,
- fully automated, high level of sensing/actuation,
- data and product flows across classical (company) borders (suppliers,customers, energy grid)
- modular build-up
- continuously monitored for control, optimization, (predictive) maintenance, analysis,
- adapting to changing circumstances (process and market conditons), and learning
- economically optimized
- supervised by new-generation HMI technology and operators



[Boston Consulting Group report: "Industry 4.0, The Future of Production & Growth in Manufacturing Industries", 2015]

Introduction – dynamic networks

Dynamical systems are considered to have a more complex structure:



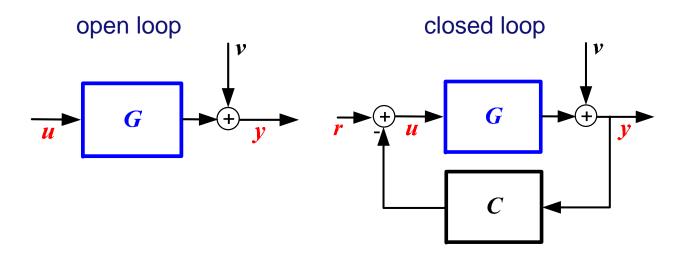
(distributed MPC, multi-agent systems, biological networks, smart grids,.....)

For on-line monitoring / control / diagnosis it is attractive to be able to *identify*

- (changing) dynamics of modules in the network
- (changing) interconnection structure

Introduction - identification

The classical (multivariable) identification problems: [Ljung (1999)]

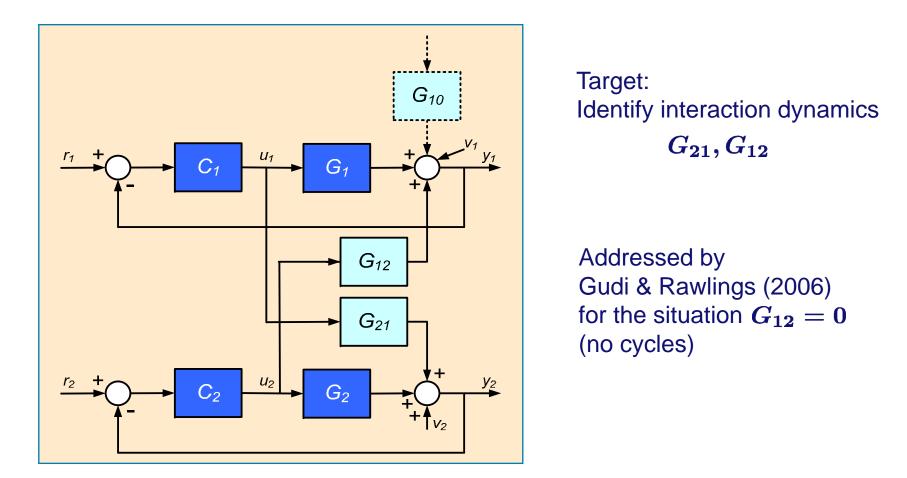


Identify a plant model \hat{G} on the basis of measured signals \boldsymbol{u} , \boldsymbol{y} (and possibly \boldsymbol{r})

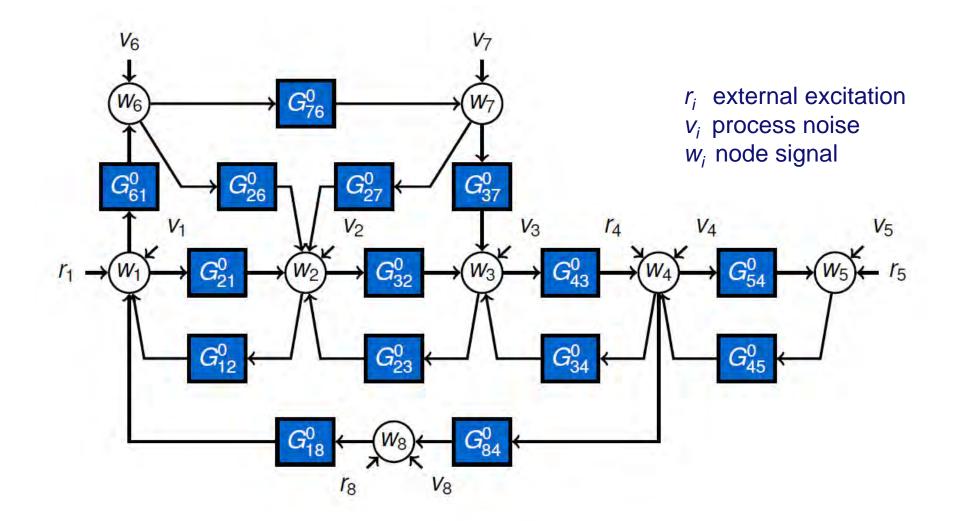
• We have to move from fixed and known configuration to deal with and exploit *structure* in the problem.

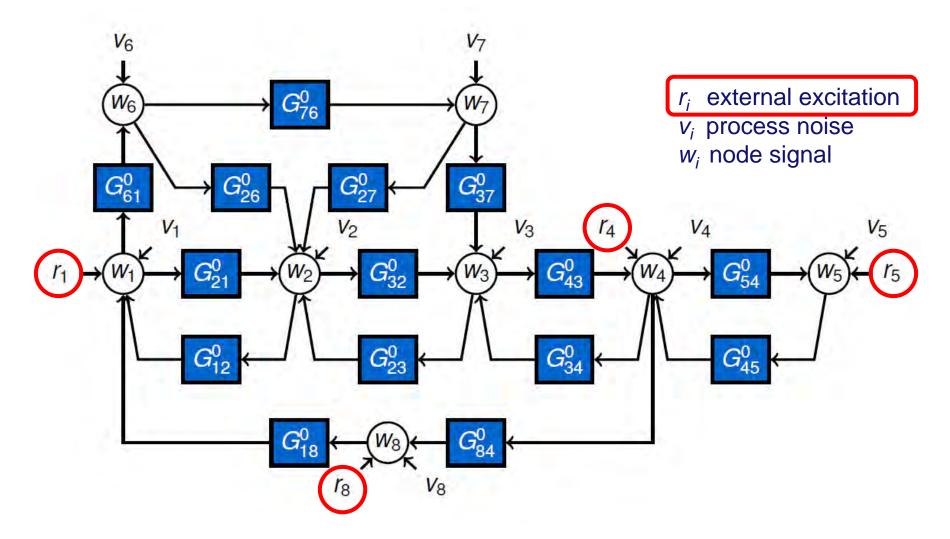
Introduction - identification

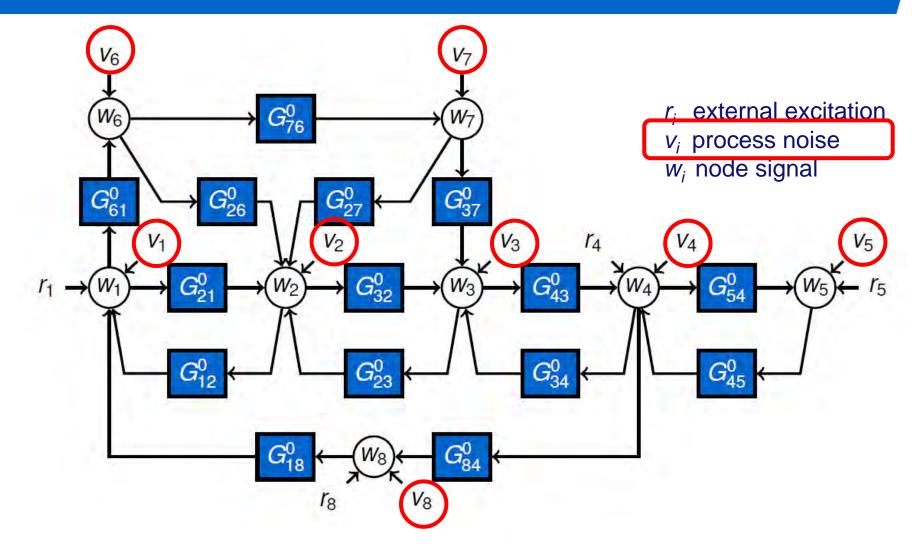
Example decentralized MPC; 2 interconnected MPC loops

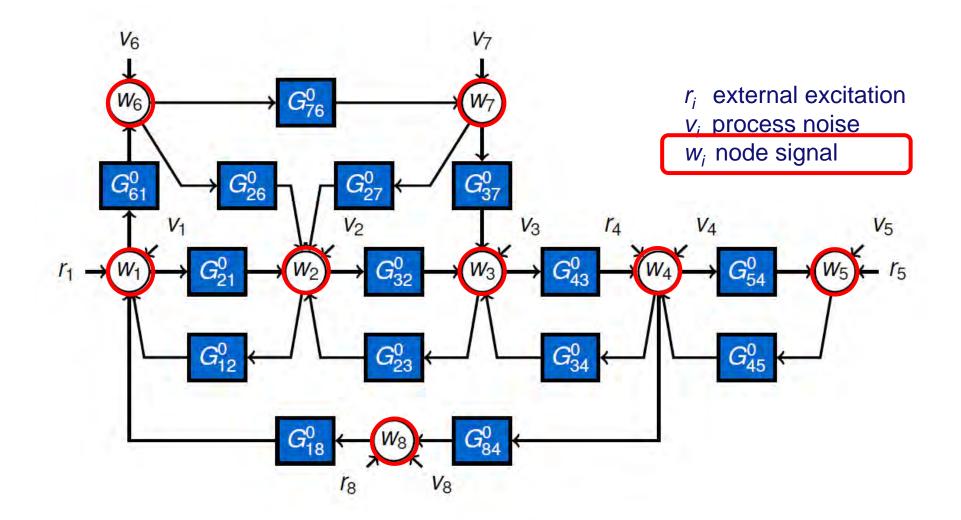


Gudi, R. D. and Rawlings, J. B. (2006). Identification for decentralized model predictive control. **TU/e** Technische Universiteit AIChE Journal, 52(6):2198-2210.

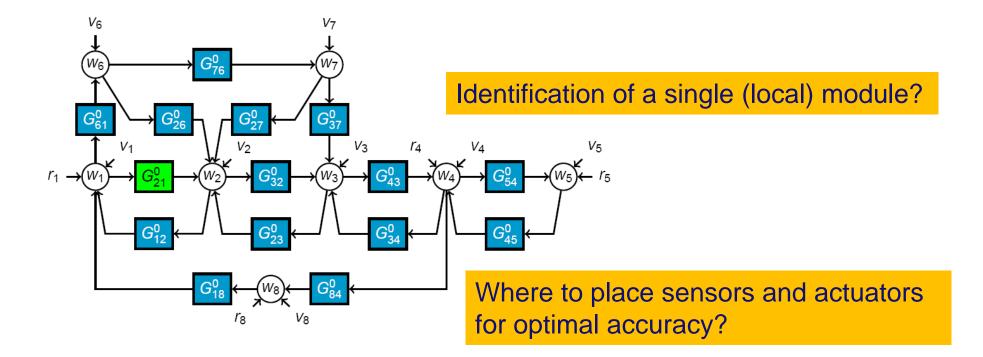








Introduction – relevant identification questions



How to utilize known structure/topology and known modules?

Can we identify the topology?

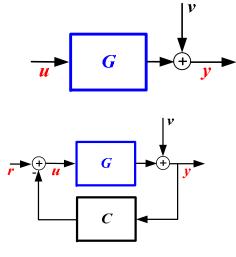
Is the full network identifiable?

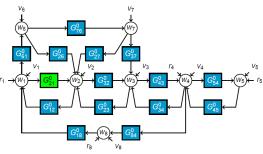
[P.M.J. Van den Hof, A. Dankers, P.S.C. Heuberger and X. Bombois. *Automatica*, October 2013]

Contents

Towards dynamic network identification

- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion





Methods for closed-loop identification

1. Direct method

Relying on full-order noise modelling; Prediction error

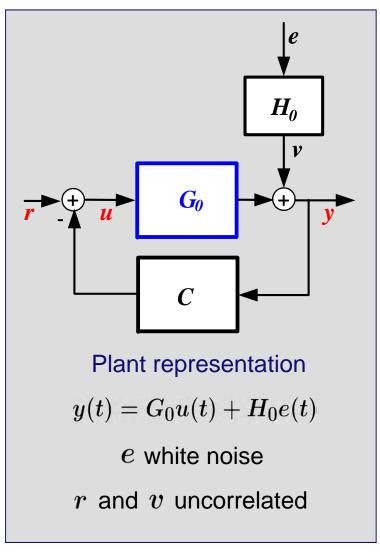
$$arepsilon(t, heta) = H(heta)^{-1}[y(t) - G(heta)u(t)]$$

Using only signals *u* and *y*, discarding *r*

$$\hat{ heta}_N = rg\min_{ heta} rac{1}{N} \sum_{t=1}^N arepsilon(t, heta)^2$$

2. Projection/two-stage/IV method Relying on measured external excitation r $\varepsilon(t, \theta) = H(\rho)^{-1}[y(t) - G(\theta)u^{r}(t)]$

with u^r the signal u projected onto rSimilar least squares criterion.



Methods for closed-loop identification

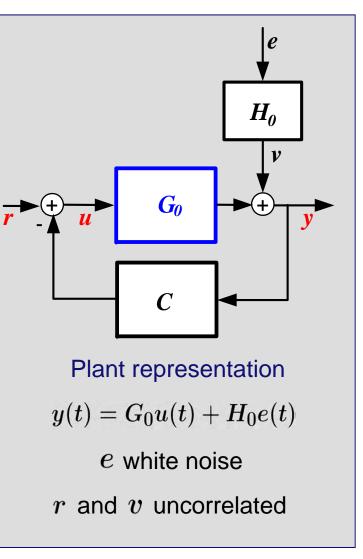
1. Direct method [Ljung, 1987]

Consistent estimate of $\{G_0, H_0\}$ provided that *u* is sufficiently exciting

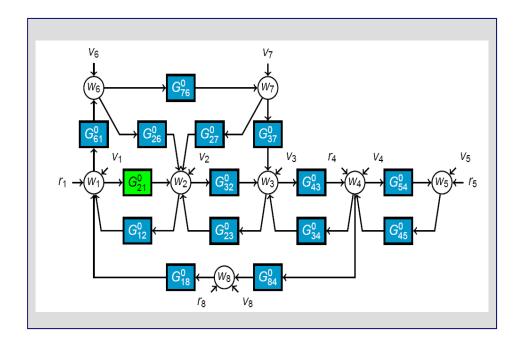
2. Projection/two-stage/IV method

[Van den Hof & Schrama, 1993]

Consistent estimate of G_0 provided that u^r is sufficiently exciting

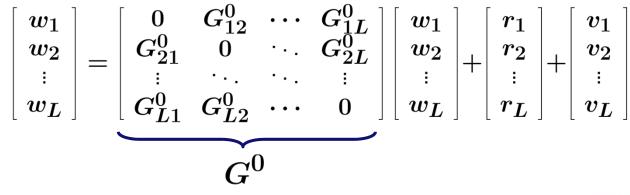


Network Setup



Assumptions:

- Total of *L* nodes
- Network is well-posed $I G^0$ causally invertible
- Stable (all signals bounded)
- All $w_m, m = 1, \cdots L$, measured, as well as all present r_m
- Modules may be unstable



Identifying a module

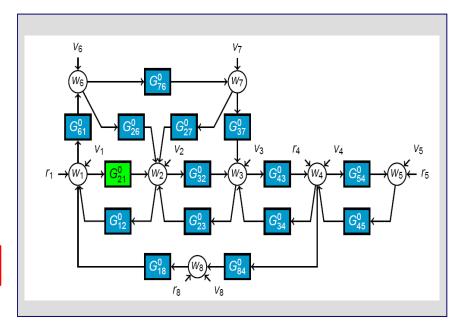
Options for identifying a module:

• Identify the full MIMO system:

 $w = (I - G^0)^{-1}[r + v]$

from measured r and w.

Global approach with "standard" tools



• Identify a local (set of) module(s) from a (sub)set of measured r_k and w_ℓ

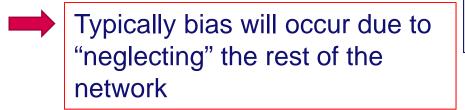
Local approach with "new" tools and structural conditions

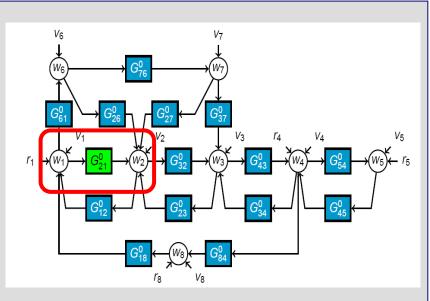
Identifying a module

How to identify a module:

Suppose we are interested in G_{21}^0

Can it be identified from measured input w_1 and output w_2 ?





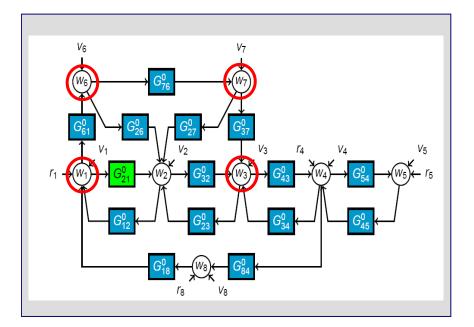
- Non-modelled disturbances on w_2 can create problems
- The observed transfer between w_1 and w_2 is not necessarily G_{21}^0

Identifying a module

How to identify a module:

Two approaches for finding G_{21}^0

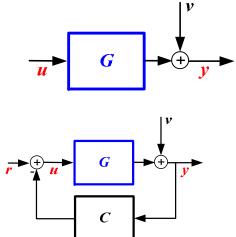
- Full MISO approach: Include all node signals that directly map into w_2 in an input vector, and identify a MISO model
- Predictor input selection: Formulate conditions for checking the sufficiency of set of nodes to include as inputs in a MISO model

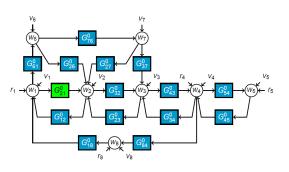


Contents

Towards dynamic network identification

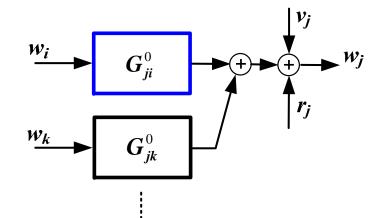
- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion





Full MISO models – Direct method

- Module of interest: G_{ji}^0
- Separate the modules G⁰_{jk} into
 known modules: G⁰_{jk}, k ∈ K_j
 and unknown modules: G⁰_{jk}, k ∈ U_j

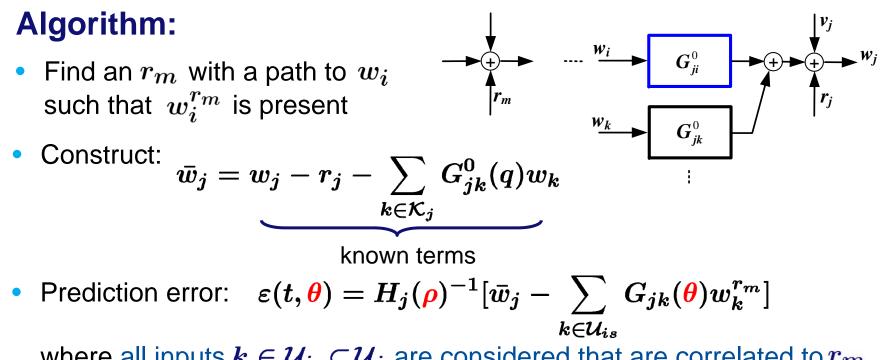


- Determine: $ar{w}_j(t) = w_j(t) r_j(t) \sum_{k \in \mathcal{K}_j} G^0_{jk}(q) w_k(t)$
- Prediction error: $\varepsilon(t, \theta) = H_j(\theta)^{-1} [\bar{w}_j(t) \sum_{k \in \mathcal{U}_j} G_{jk}(\theta) w_k(t)]$

Simultaneous identification of G_{jk}^0 , $k \in U_j$ and H_j^0 Consistent estimates if $\{w_k\}_{k \in U_j}$ sufficiently exciting, and $\Phi_v(\omega)$ diagonal

[P.M.J. Van den Hof et al., Automatica, October 2013]

Network Identification – Projection method



where all inputs $k \in \mathcal{U}_{is} \subset \mathcal{U}_{j}$ are considered that are correlated to r_m

Consistent identification of $G_{ik}^0, k \in \mathcal{U}_{is}$ provided that $\{w_k^{r_m}\}_{k\in\mathcal{U}_{is}}$ sufficiently exciting

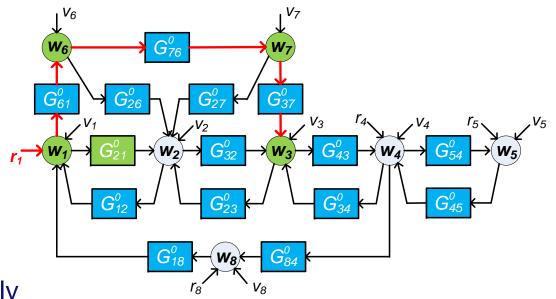
This extends to multiple signals r_m

[P.M.J. Van den Hof et al., Automatica, October 2013]

Network Identification – Two-stage method

Example

- External signal r_1
- Input nodes to w₂ that are correlated with r₁:
 w₁, w₆, w₇, w₃
- So 4 input, 1 output problem
- Projected inputs will generally not be sufficiently exciting (we need 4 independent sources)
- Include r_4, r_5 and r_8 as external signals
- Input nodes remain the same as for direct method



Network Identification – Full MISO models

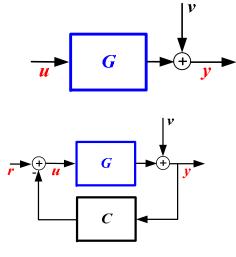
Observations:

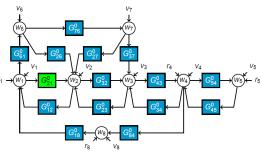
- Consistent identification of single transfers is possible, dependent on network topology and reference excitation
- Choice between estimating accurate noise models (direct method) and utilizing reference excitation (projection method)
- Excitation conditions on (projected) input signals can be limiting
- Network topology conditions on r_m can simply be checked by tools from graph theory

Contents

Towards dynamic network identification

- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion



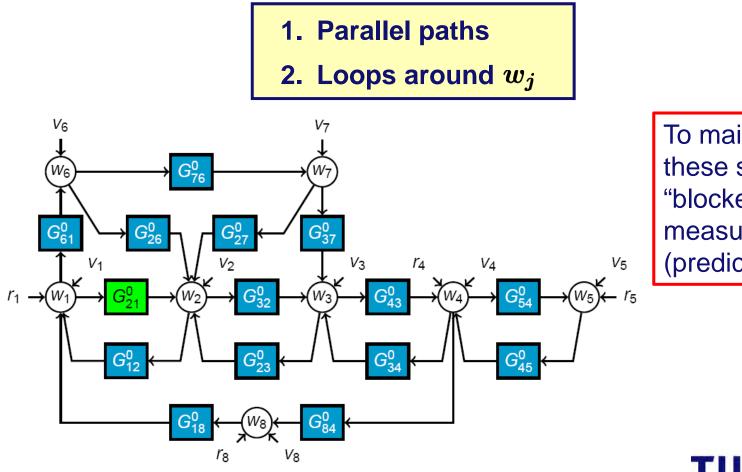


Predictor input selection

- So far: predictor input choice not very flexible
- What if some signals are hard (expensive) to measure?
- What if we would like to have flexibility in placing sensors?
- Can we formulate (more relaxed) conditions on nodes to be measured, for allowing a consistent module estimate?

Predictor input selection

There are two basic mechanisms that "deteriorate" the transfer G_{ji}^0 when nodes are removed:



To maintain G_{ji}^0 these should be "blocked" by measured nodes (predictor inputs)

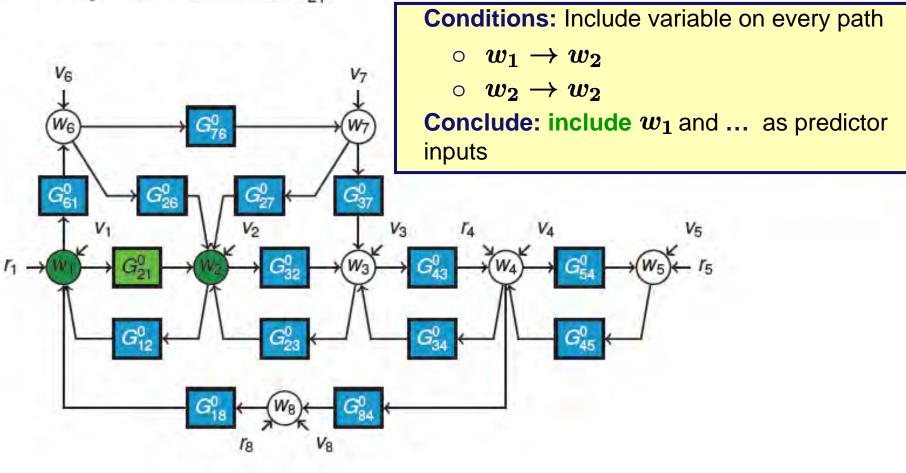
Predictor input selection: condition 1 and 2

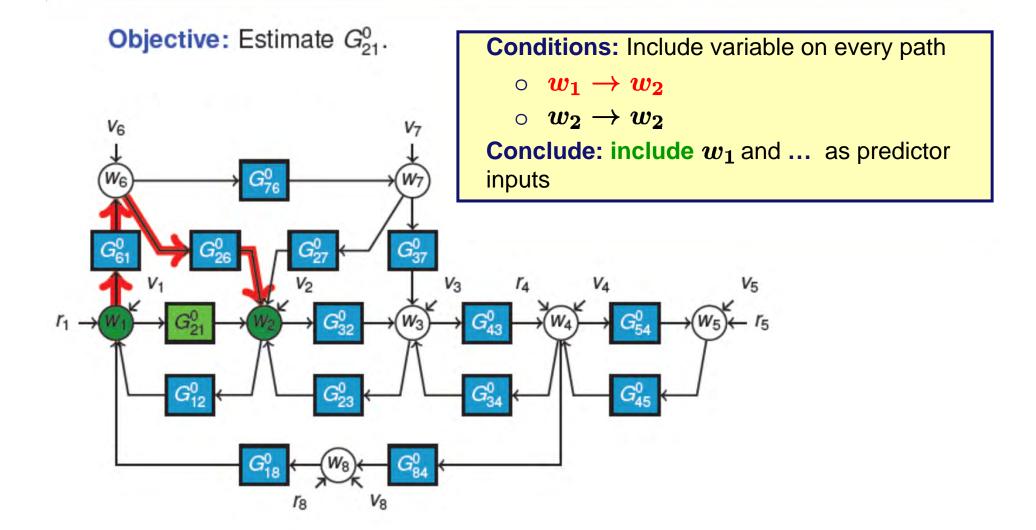
Objective: obtain an estimate of G_{ii}^0

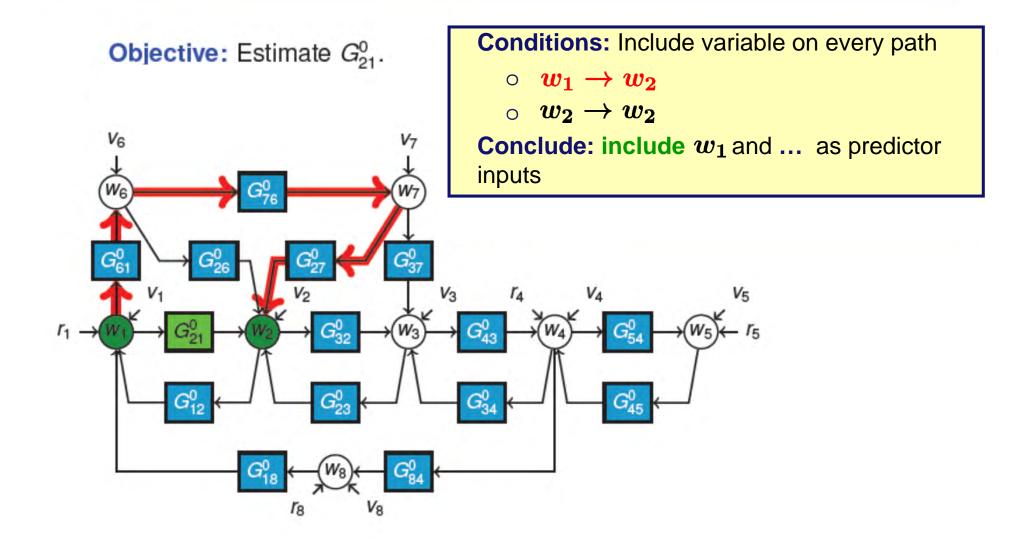
Consistent estimates of G_{ii}^0 are possible if:

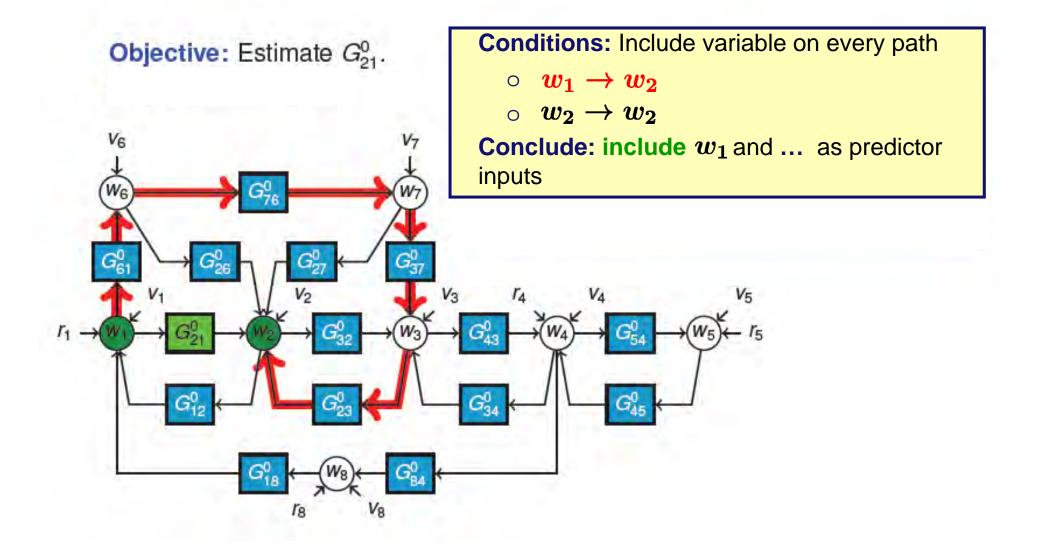
- 1. w_i is included as predictor input
- 2. Each parallel path from $w_i
 ightarrow w_j$ passes through a node chosen as predictor input
- 3. Each loop from $w_j
 ightarrow w_j$ passes through a node chosen as predictor input

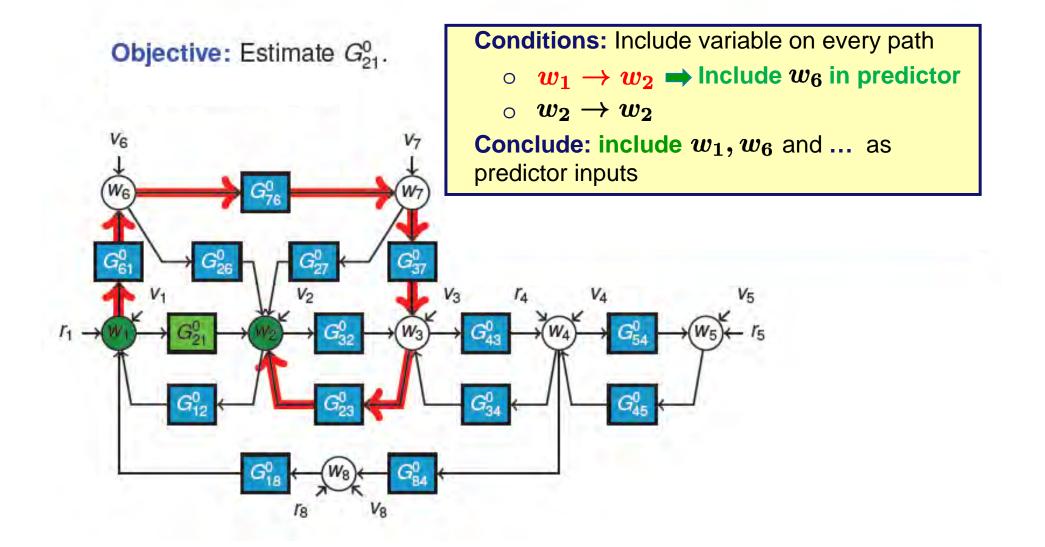
Objective: Estimate G₂₁.

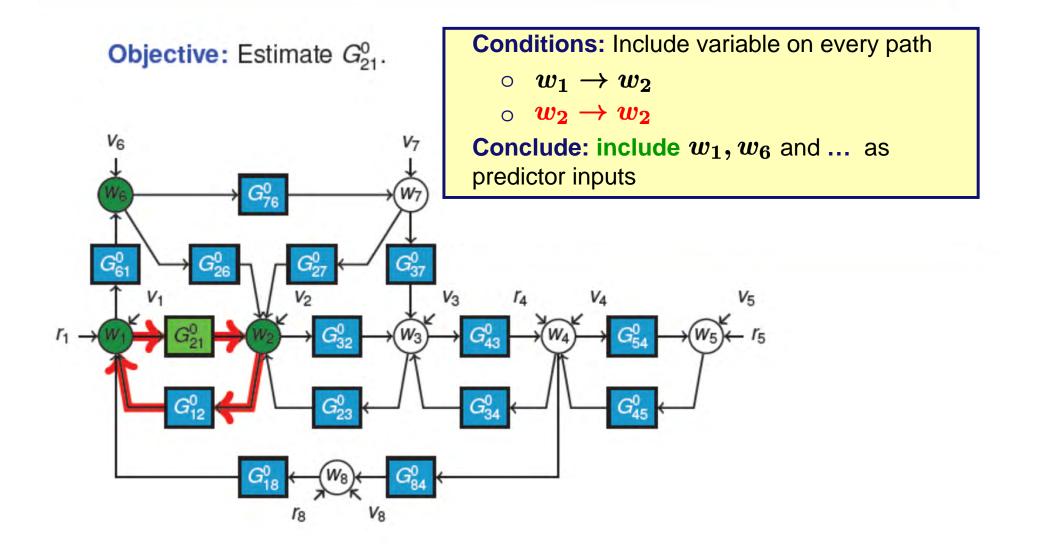


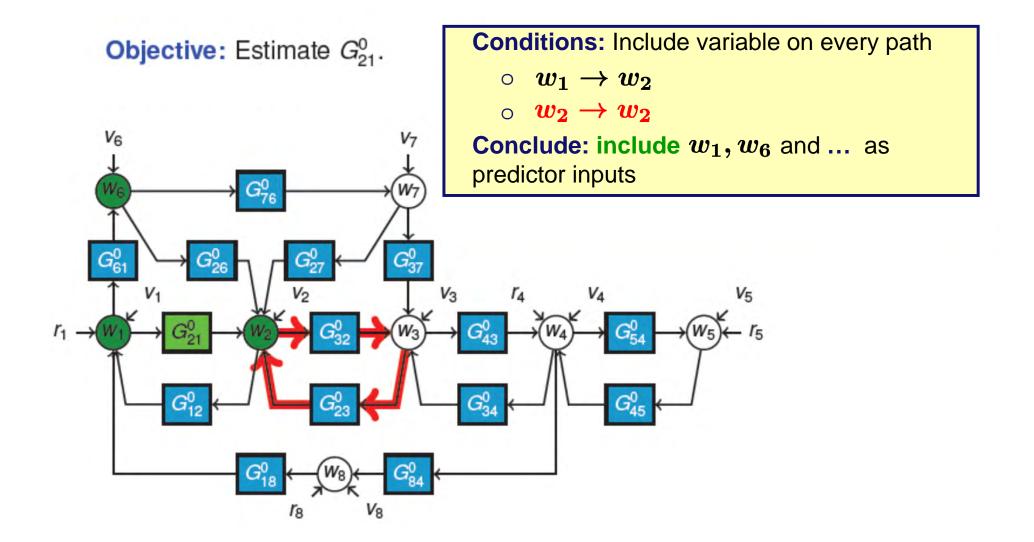


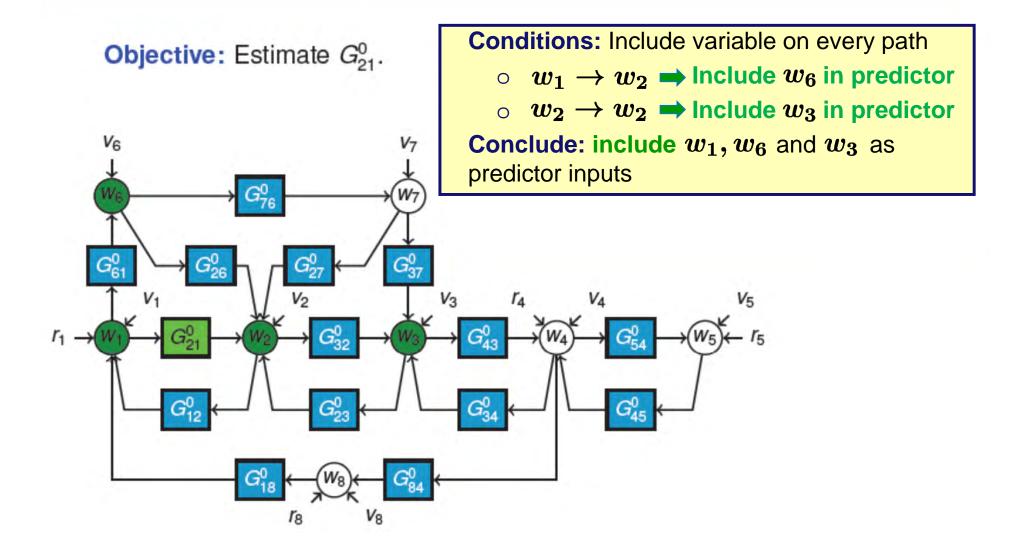












Predictor input selection

Result

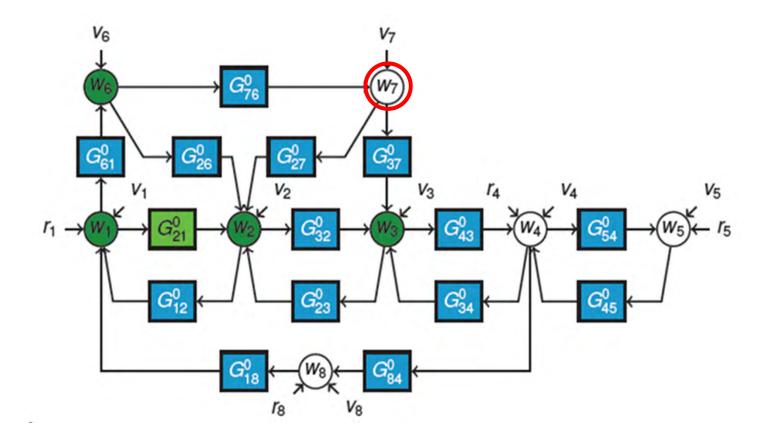
The consistency results of both direct and projection method remain valid if

- the set \mathcal{D}_j of predictor inputs satisfies the formulated conditions
- For the direct method: there are no confounding variables
- For the projection method: no excitation signal used for projection, has a path to w_j that does not pass through a node in \mathcal{D}_j

In the "full" MISO case: consistent estimates of all $G_{jk}^0, k \in \mathcal{U}_j$

In the "selected" predictor input case: consistent estimates of G_{ii}^0

Predictor input selection



For direct method: w_7 is a *confounding variable* and needs to be included For projection method: no problems

Immersed network

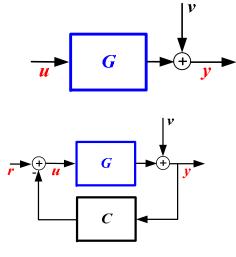
- The two conditions (parallel paths and loops on output) result from an analysis of the so-called **immersed network**
- The immersed network is constructed on the basis of a reduced number of node variables only, and leaves present node signals invariant
- Whether dynamics in the **immersed network** is invariant can be verified with the graph theory/tools of separating sets.

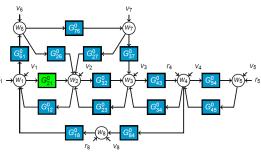
[A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois. Identification of dynamic models in complex networks with predictior error methods - predictor input selection. IEEE Trans. Automatic Control, april 2016.]

Contents

Towards dynamic network identification

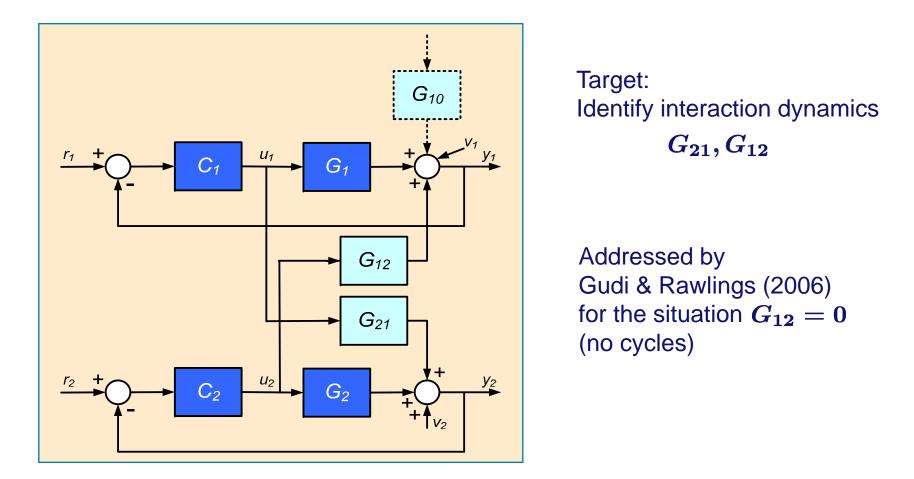
- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion





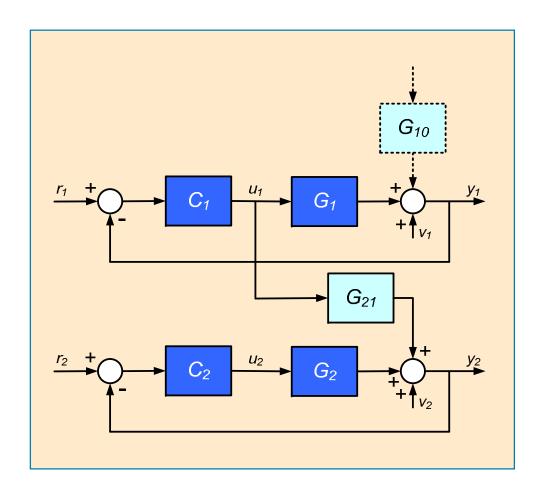
Example Decentralized MPC

Example decentralized MPC; 2 interconnected MPC loops



Gudi, R. D. and Rawlings, J. B. (2006). Identification for decentralized model predictive control. **TU/e** Technische Universiteit AIChE Journal, 52(6):2198-2210.

Case of Gudi & Rawlings (2006):



Target:

Identify interaction dynamics G_{21}

$$u_{2} = R_{2}^{i}r_{2} - R_{2}^{i}G_{21}u_{1} - R_{2}^{i}v_{2}$$

$$y_{2} = S_{2}^{0}G_{2}C_{2}r_{2} + S_{2}^{0}G_{21}u_{1} + S_{2}^{0}v_{2}$$

Options:

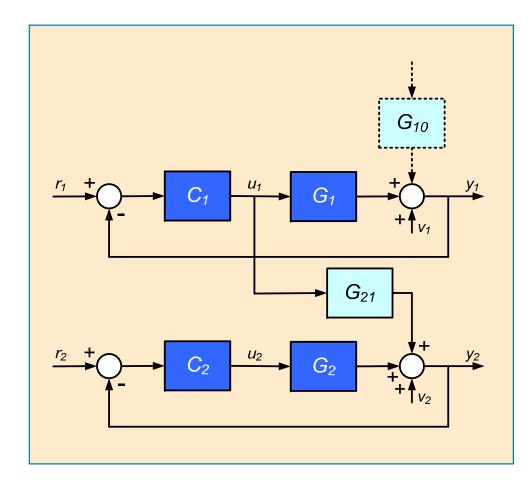
- 1. Identify from $(r_2, u_1) \rightarrow u_2$ and find G_{21} by taking the quotient of the two models
- 2. a) Identify R_2^i from $r_2
 ightarrow u_2$

Simulate: $u_f = (R_2^i)^{-1} u_2$

b) Identify G_{21} from $u_1
ightarrow u_f$

Excitation through dither signals on r_2 and u_1

According to network results (input selection):



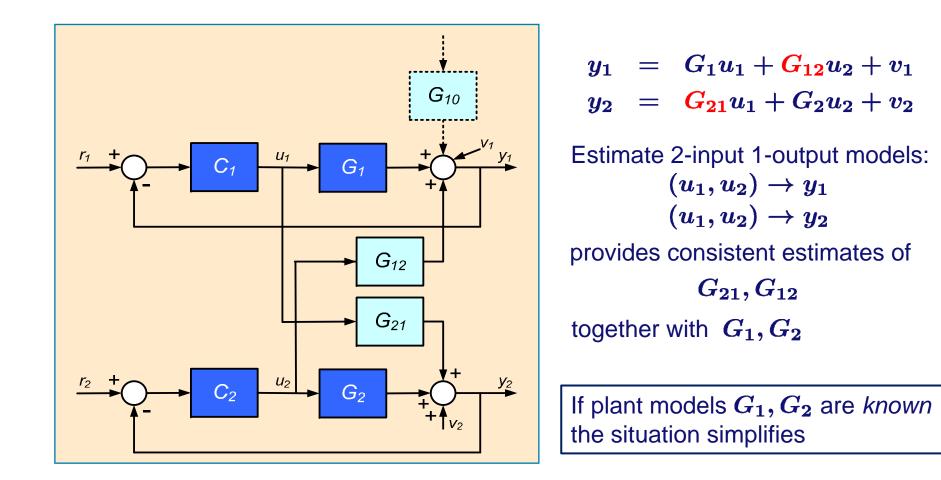
$$y_2 = G_{21}u_1 + G_2u_2 + v_2$$

Estimate 2-input 1-output model: $(u_1, u_2)
ightarrow y_2$

provides consistent estimate of G_{21} through both direct and projection method

- Excitation properties of signals remain important:
- Direct method utilizes excitation through noise signals v_1, v_2

The more general situation (cyclic connection):



Direct method and projection-IV method can handle nonlinear C_i

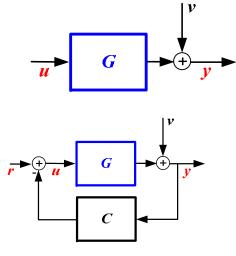
Observation

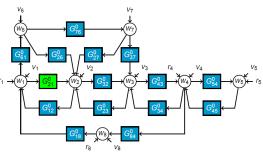
Network identification results provide a formal way to handle these structured identification problems.

Contents

Towards dynamic network identification

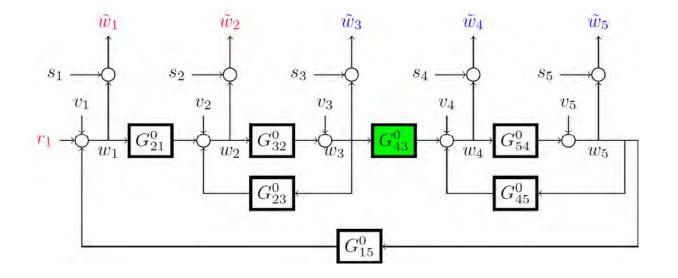
- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion





Sensor noise – the errors-in-variables problem

What if node variables are measured with (sensor) noise?



- Classical (tough) problem in open-loop identification
- *More simple* in dynamic networks due to the presence of multiple (correlated) node signals

Network identifiability

Question

Can network models of a full network be distinguished from each other?

Consider:
$$T(q) = (I - G(q))^{-1} \begin{bmatrix} H(q) & R(q) \end{bmatrix}$$

mapping: $\begin{pmatrix} e \\ r \end{pmatrix} \rightarrow w$

For identifiability of a model set, different network models should lead to different ${m T}$'s

This puts conditions on:

- The presence of excitation signals and process noise
- The number of modules that can be parametrized

[H.H.M. Weerts et al, IFAC SYSID 2015, and IFAC ALCOSP 2016]

Discussion / Wrap-up

- So far: focus on (local) consistency results in networks with known structure and linear dynamics
- Many additional questions/topics remain:
 Variance of estimates, influenced by
 - Additional (output) measurements
 - Excitation properties

[See e.g. work of H. Hjalmarsson, B. Wahlberg, N. Everitt, B. Günes, M. Gevers, A. Bazanella]

- Optimal sensor and actuator locations experiment design
- Algorithms for application to large-scale systems

Discussion / Wrap-up

- Identification of the structure/topology addressed in the literature, in particular forms:
 - Tree-like structures (no loops)
 - Nonparametric methods (Wiener filter)
 - Mostly networks without external excitation and uncorrelated (white) process noises on every node

see e.g. Materassi, Innocenti (TAC-2010), Chiuso and Pillonetto (Automatica, 2012)

- Sparse identification methods can be used in an identification setting to identify the topology (non-zero transfers)
- New identifiability concepts apply to the unique determination of a network topology see e.g. Goncalves & Warnick (TAC-2008), Weerts et al. (SYSID-2015).
- Connection with decentralized/distributed control

Acknowledgement

Co-workers:

Arne Dankers. Harm Weerts Xavier Bombois Peter Heuberger Jobert Ludlage Mohsin Siraj Mehdi Mansoori

European Research Council

Bibliography

- P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013). Identification of dynamic models in complex networks with prediction error methods - basic methods for consistent module estimates. *Automatica,* Vol. 49, no. 10, pp. 2994-3006.
- A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015). Errors-in-variables identification in dynamic networks consistency results for an instrumental variable approach. *Automatica*, Vol. 62, pp. 39-50.
- B. Günes, A. Dankers and P.M.J. Van den Hof (2014). Variance reduction for identification in dynamic networks. Proc. 19th IFAC World Congress, 24-29 August 2014, Cape Town, South Africa, pp. 2842-2847.
- A.G. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2012). Dynamic network structure identification with prediction error methods - basic examples. Proc. 16th IFAC Symposium on System Identification (SYSID 2012), 11-13 July 2012, Brussels, Belgium, pp. 876-881.
- A.G. Dankers, P.M.J. Van den Hof and X. Bombois (2014). An instrumental variable method for continuous-time identification in dynamic networks. Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, CA, 15-17 December 2014, pp. 3334-3339.
- H.H.M. Weerts, A.G. Dankers and P.M.J. Van den Hof (2015). Identifiability in dynamic network identification. Proc.17th IFAC Symp. System Identification, 19-21 October 2015, Beijing, P.R. China.
- A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with predictior error methods predictor input selection. *IEEE Trans. Automatic Control*, *61 (4)*, pp. 937-952, April 2016.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2016). Identifiability of dynamic networks with part of the nodes noise-free. Proc. 12th IFAC Intern. Workshop ALCOSP 2016, June 29 July 1, 2016, Eindhoven, The Netherlands.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2016). Identifiability of dynamic networks with noisy and noise-free nodes. <u>ArXiv:1609.00864</u> [CS.sy]
- P.M.J. Van den Hof, H.H.M. Weerts and A.G. Dankers (2016). Prediction error identification with rank-reduced output noise. Submitted to 2017 American Control Conference, 24-26 May 2017, Seattle, WA, USA.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2016). Identification of dynamic networks with rank-reduced process noise. Submitted to 2017 IFAC World Congress, 9-14 July 2017, Toulouse, France.

Papers available at www.pvandenhof.nl/publications.htm

