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‘Relevance of model uncertaintyl

e Determines the achievable robust stability /performance —

reduce uncertainty in control-relevant area

e Guidelines for appropriate identification after dedicated
experiment design

— experimental data and priors determine set of unfalsified
models

— identification technique determines nominal estimate

— model uncertainty bound additionally determined by
choice of representation

N J
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/‘ Model uncertainty representation I \

In Control
e unstructured additive, multiplicative (#{..-norm bounded)
e real parametric
e Youla parameter

e gap, v-gap metric
In Identification

e parametric uncertainty (statistical or worst-case)
(e.g. Ljung (1987), Milanese et al. (1996), Bombois et al. (2001))

e additive frequency response bounds (# ..-norm)
(e.g. Goodwin et al. (1992), Hakvoort et al. (1997), Chen and Gu
k (2000)) on open-loop or closed-loop model J
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/MDroblem Formulation I

Question to be considered:

Do robust stability/performance requirements in a particular
control problem motivate the use of a specific uncertainty
structure in identification?

Is there a best uncertainty structure for identification?

In this presentation:
e Some (relevant) thoughts and aspects for SISO LTI systems

e Equivalences / differences between uncertainty sets

e Analytical expressions for performance (analysis / synthesis)

N

J
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/‘Uncertainty Structures I \

e Additive uncertainty set
Ga(Gas Wa) :={Ga(3) | Ga(s) = Gz(s) + Aa(s) ,
Ag(iw)| < [Wa(iw)| Vw € R}
e Dual-Youla uncertainty set

gY(Gwa Ca Q7 ch WY) =

_ Nu(s) + De(s)Ac(s)
{GA(S) | Gals) = D.(s) — Ne(s)Ag(s)

Q. (iw)Ag (iw)Q(iw)| < [Wy (iw)|  Vw € R} .

Both define (for each frequency) circular uncertainty regions in

kthe complex plane. J

Intro - Problem Formulation - Uncertainty Sets - Performance - Conclusions (6 of 23)




/‘Uncertainty Structures I \

The same circular property holds for

® r-gap sets

gu(Gwa Wl/) =
{Ga(s) | kK (Ga(iw), Gy (iw)) < W, (iw)| Vw € R}

with K the chordal distance,
|Gz (tw) — Ga (tw)]
V(1416 @)P?) (1+ 162 iw)P)

N J

Intro - Problem Formulation - Uncertainty Sets - Performance - Conclusions (7 of 23)

K’(GA (zw) Gy (’lw)) =




/‘Equivalence of Uncertainty SetsI \

For the Dual-Youla uncertainty set:

gY(GZIH Ca Qa Qca WY) — ga(Gcentrea Wa,)

with
_ N.Wy|? D,|*
Gcentre =C ! |2 | 2 + GCL' 2 | | 2
|Dg|” — |[N.Wy| | Dz | — [N.Wy|
B | Al
W, = Wy .

|Dw|2 — |]\TCVVY|2

\A:Nach + DcDm; (Naca D:L') — (Nib‘v Dm)Q; (N07 DC) — (NC? DC)QC/
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/‘Equivalence of the Uncertainty SetsI

For the v-gap uncertainty set:

gu(Ga:a Wu) — ga(Gcent'rev Wa,)

with
G = Ce
centre — 1 _ <1 —I_ |Gw|2) |WV|2
. 2 2
.o (L= W) (16aP + 1) W2l

1— (1 + |Gw|2) W, |2

N /
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Equivalence of the Uncertainty SetsI

For robustness analysis, usually additional conditions on unstable

poles and zeros are imposed

e additive: A, € RH
e Youla: Ag € RH
e v-gap: wno(]\_fw*NA -+ ﬁw*DA) =0

N J
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/‘Equivalence of the Uncertainty SetsI

For different pole/zero conditions on the transfer functions, the
uncertainty set becomes a subset of the union of circles in the
frequency domain.
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However, every point in the union of circles in the frequency
Qomain is always attained by at least one member of the subset.J
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/‘Equivalence of the Uncertainty SetsI

Every point on the boundary of the circles is reached by at least
one member of the set.

Consequence:
No difference between uncertainty structures with respect to

e robust stability condition C(iw) # —Gx ' (iw) Vw

e worst-case performance (||T||co < 7)

Remark:

From an identification point of view realistic conditions on
unstable poles and zeros are those for:

Qdditive for open-loop and Youla for closed-loop.

~

/
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~

/Observations from an identification perspective

e For identification of model uncertainty sets from data, the
choice of structure “does not matter”

e Differences occur in complexities of G.cnire and the
weighting functions

e For a fixed/estimated nominal model G, bounding the
uncertainty in different structures leads to different results,
affecting achievable robust performance

N J
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/‘Observations from an identification perspectivel \

Embedding G,(G,) with a v-gap set G, (G)

Imaginary
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real

k*: G,; solid: G,(Gy); dotted: G, (G); *: additive center of g,,J
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/‘Performance analysis and synthesisl \

Performance functions:

e weighted H,.-norm-bounded (bounds on amplitude or
maximum singular value)

e linear fractional transformations

oc(VIT(Ga,C)W) <1

() (5 )avea (e (T 0 )
N J
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/‘LFT: circles are mapped into circlesI \

A set based on a linear fractional transformation
F,(P,A) = Py + P»1A(1 + P;1A) ' P2, with (WA <1

can equivalently be described in an additive structure:

Fu (Pa A) — Fcentre + Aa ’ ‘Wa_lAa‘ S ]-7

with )
— P51 P12 P |W|
Feentre = Po2 1 2
1 — |P11W|
and PP
Wa _ | 21 12| |W|

k <1 _ |P11W|2) J
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/‘E xampIeI

and an additive uncertainty set G, (G, W,):

1— ‘(1 +CcG,) tew,

N

G, + Ag)C
Ta = (G + Aa) , (WtAL] <1
1+ (G +A,)C
1+ CG,) ™"
1— ‘(1 L CG,)  ew,
(1+cG.)°C
|Ar| < |Wr| = 5 |Wal-

~

Set of complementary sensitivity functions T'A for a controller C

J
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/mon-circular bounds I

imaginary
|
=

1+CGAa

kException for Youla: -—G2€&

imaginary
|
H

_GC
1+CG,

General shapes are not maintained under LFT.

CG/(1L+CG)

For example, non-parametric uncertainty regions, e.g. confidence
regions (ellipsoidal,boxed) in Nyquist curve, following a pdf:

real

+DD—|—NN

Ag

~
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of probability density functions

Consequences (Heath 2000)
e probability density function changes

\o unbiased estimate does not imply unbiased transform /
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‘Robust Performance AnalysisI . _
- analytical expressions

All plants Ga which achieve 6 (VT (GaA,C)W) < 1 are
characterized by

Ga=Gcentre + Aq ‘Wa_lAa‘ S 1

1/C
— -0

_ —11Wy P+ Ve ?|C* V4 |?
Gcentre =C |V1|4—|WY|2

|[V2|?C |2 +|Va |?|
VA |t =Wy |?

Vi |24 | Ve |2 |C|?

W worst-case
Y . performance

W, =|C™

(W22 +|wW1 2 |C|?)

N J

Intro - Problem Formulation - Uncertainty Sets - Performance - Conclusions (20 of 23)




1/C

worst-case
performance

\_ /

Intro - Problem Formulation - Uncertainty Sets - Performance - Conclusions (21 of 23)




/‘Robust Performance SynthesisI

are characterized by a circular region.

~

Similarly, all controllers C' which achieve & (VT (Ga,C)W) < 1

Synthesis: union of circles.

Special case:
Loop-shaped performance

Vinnicombe (1993) 18
MaXGp €G, (G, Wo) T (T(Ga, C)) =

sin <afrc sin (& (T'(Gz,C))™' — arcsin (Wv)) -

6' (T(WGA, W_1C)) ! g 6 2] ‘

\ ]
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/‘Conclusions I

e Circular uncertainty regions in the frequency domain
equivalently described in additive, dual Youla and v-gap
uncertainty structure.

e If SYSID is split in (a) estimating nominal model and (b)
bounding the uncertainty: easily non-optimal.

e Transforms from open-loop to closed-loop model uncertainty
sets (and vice versa): OK, but only for circular areas.

e Loop-shaped performance measure allows for easy worst-case
optimization.

e ... Work in progress.

N J
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