

Data-driven modeling in linear dynamic networks

Paul M.J. Van den Hof

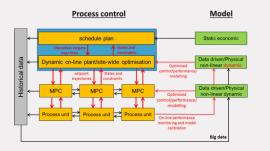
Seminar, 7 December 2018 Control and Dynamical Systems, Caltech

www.sysdynet.eu www.pvandenhof.nl p.m.j.vandenhof@tue.nl

European Research Council

Introduction – dynamic networks

Decentralized process control



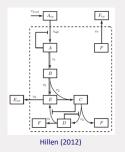
Smart power grid

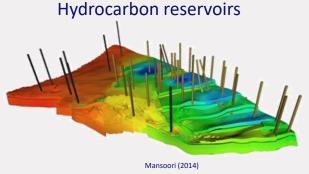
Pierre et al. (2012)

Autonomous driving

www.envidia.com

Metabolic network





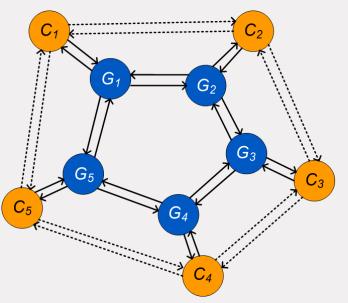
Introduction

Overall trend:

- (Large-scale) interconnected systems
- With hybrid dynamics (continuous / switching)
- Distributed / multi-agent type monitoring, control and optimization problems
- Data is "everywhere", big data era
- Modelling problems will need to consider

Introduction

Distributed / multi-agent control:



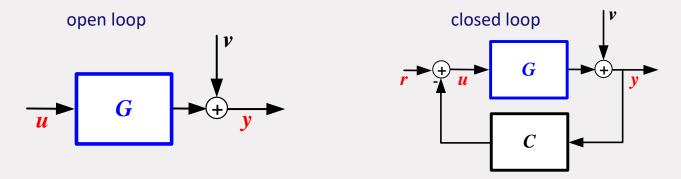
With both physical and communication links between systems G_i and controllers C_i

How to address data-driven modelling problems in such a setting?

Introduction

5

The classical (multivariable) identification problems^[1]:



Identify a plant model \hat{G} on the basis of measured signals u, y (and possibly r), focusing on *continuous LTI dynamics*.

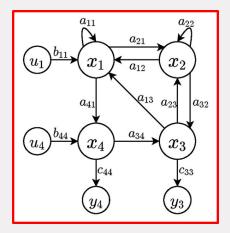
We have to move from a fixed and known configuration to deal with *structure* in the problem.

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification known topology
- Network identifiability
- Extensions Discussion

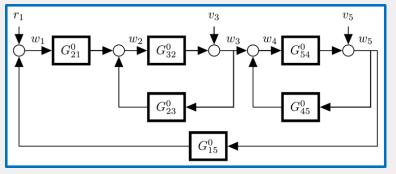
Dynamic networks for data-driven modeling

Dynamic networks

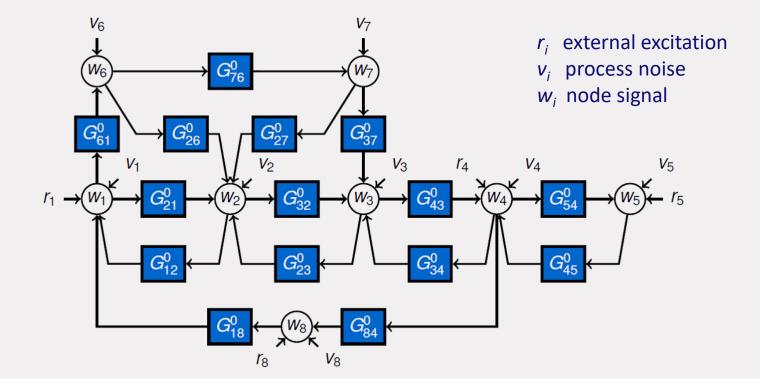


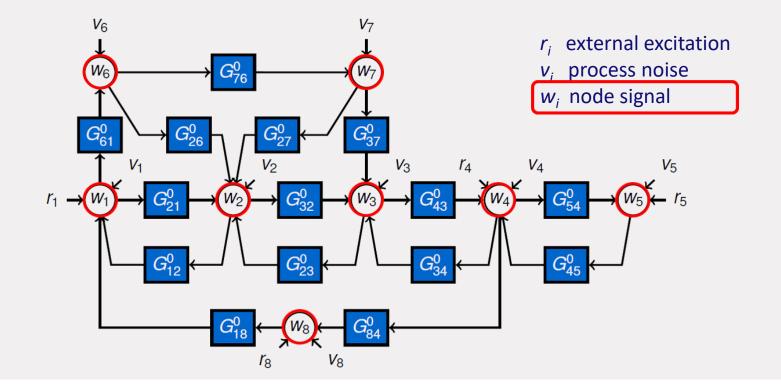
State space representations

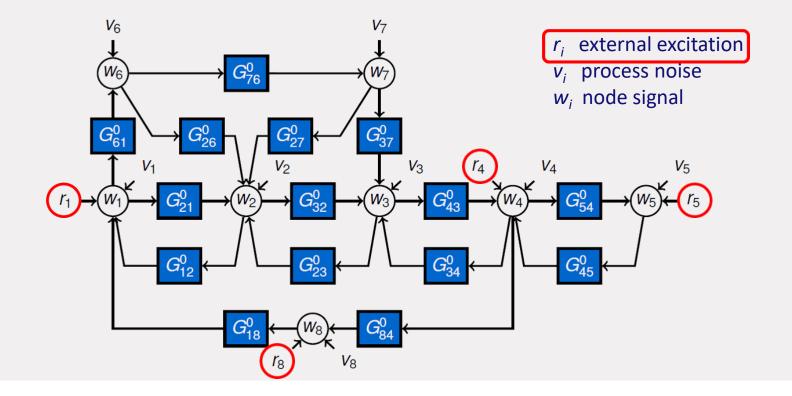
(Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,...)

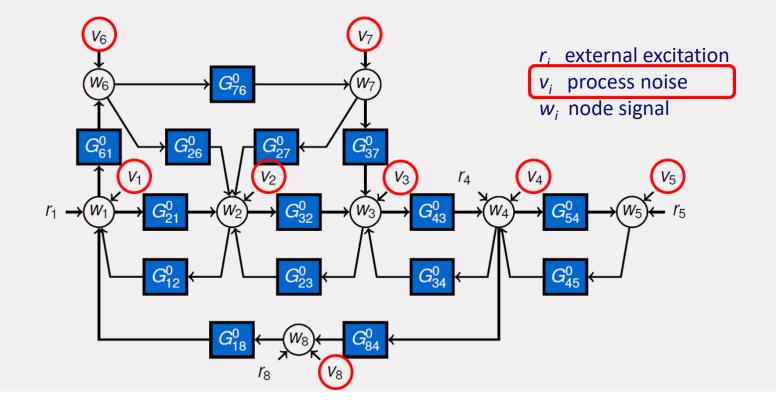


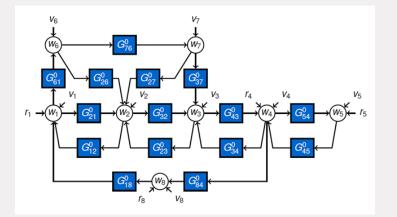
Module representation (VdH, Dankers, Gevers, Bazanella,...)







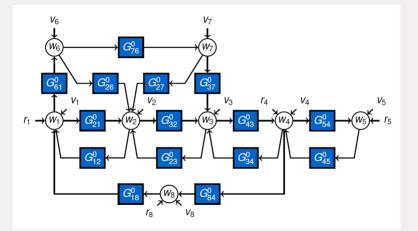




Assumptions:

- Total of *L* nodes
- Network is well-posed and stable
- Modules are dynamic, may be unstable
- Disturbances are stationary stochastic and can be correlated

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0 & \cdots & G_{1L}^0 \\ G_{21}^0 & 0 & \cdots & G_{2L}^0 \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0 & G_{L2}^0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} + R^0 \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_K \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_L \end{bmatrix}$$
$$W(t) = G^0(q)w(t) + R^0(q)r(t) + v(t)$$

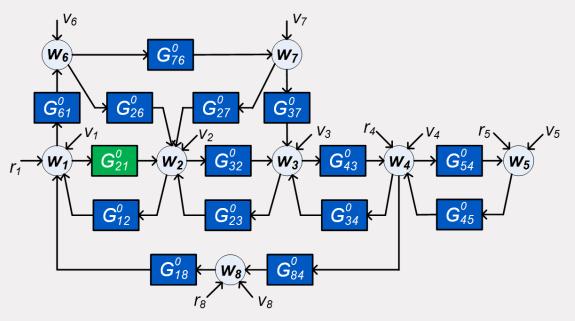


Here: focus on **prediction error methods**

Many new identification questions can be formulated:

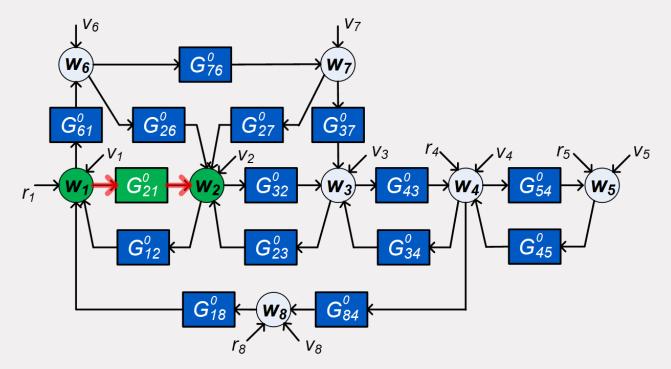
- Identification of a local module (known topology)
- Identification of the full network
- Topology estimation
- Sensor and excitation selection
- Fault detection
- Experiment design
- User prior knowledge of modules
- Scalable algorithms

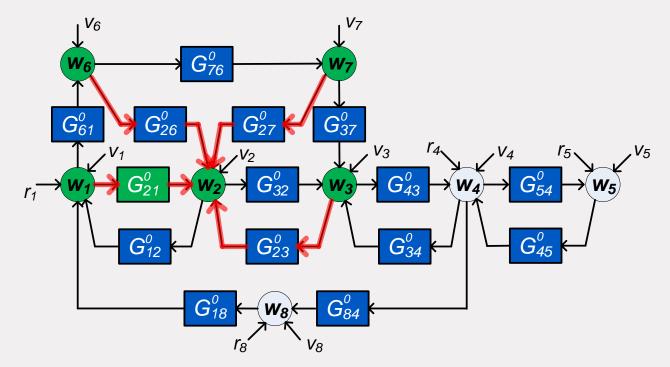
Single module identification - known topology



For a network with known topology:

- Identify G_{21}^0 on the basis of measured signals
- Which signals to measure? Preference for local measurements





Identifying G_{21}^0 is part of a 4-input, 1-output problem

Identification methods

4-input 1-output problem

to be addressed by a closed-loop identification method

Direct PE method

$$\varepsilon(t,\theta) = H(q,\theta)^{-1}[w_2(t) - \sum_{k \in D_2} G_{2k}(q,\theta)w_k(t)]$$

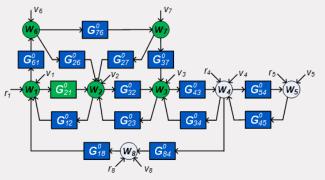
ML properties
Disturbances v_i uncorrelated over channels

Excitation provided through r and v signals

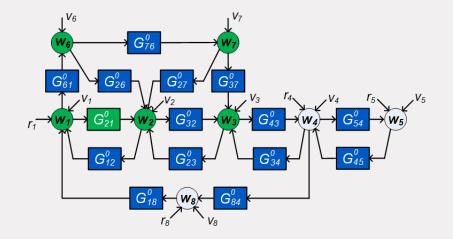
2-stage/projection/IV (indirect) method

$$\varepsilon(t,\theta) = H(q,\theta)^{-1} [w_2(t) - \sum_{k \in \mathcal{D}_2} G_{2k}(q,\theta) w_k^{\mathcal{R}}(t)]$$

Consistency; no need for noise models; **no ML** Excitation provided through r signals only



4 input nodes to be measured: Can we do with less?



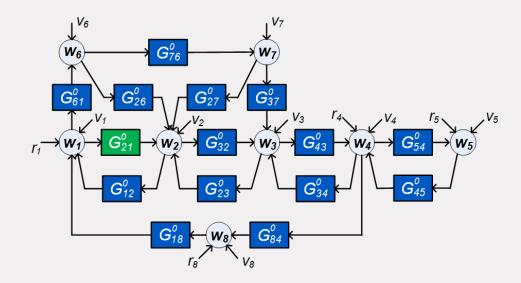
Network immersion ^[1]

- An **immersed network** is constructed by removing node signals, but leaving the remaining node signals **invariant**
- Modules and disturbance signals are adapted
- Abstraction through variable elimination (Kron reduction^[2] in network theory).

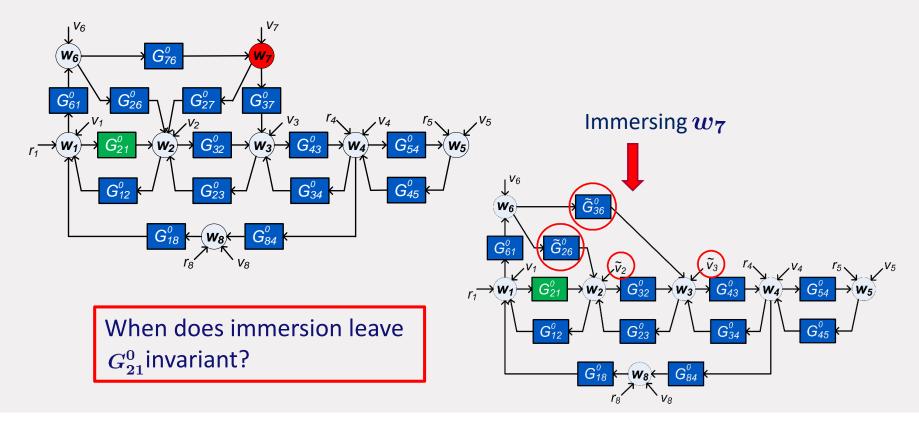
^[1] A. Dankers. PhD Thesis, 2014.

^[2] F. Dörfler and F. Bullo, IEEE Trans. Circuits and Systems I (2013)

Immersion

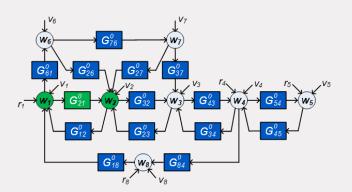


Immersion



Immersion

When does immersion leave G_{21}^0 invariant?



Proposition

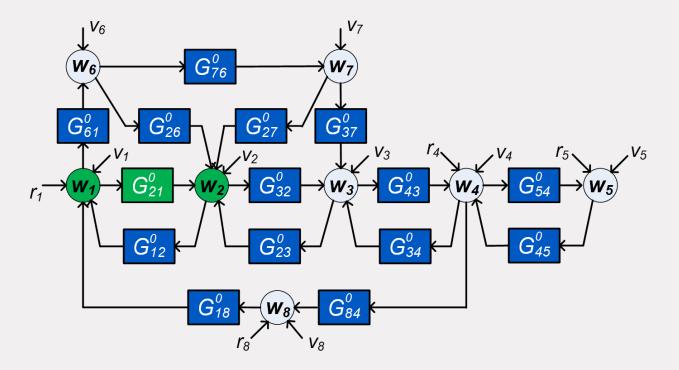
Consider an immersed network where w_1 and w_2 are retained.

Then $\check{G}^0_{21}=G^0_{21}$ if

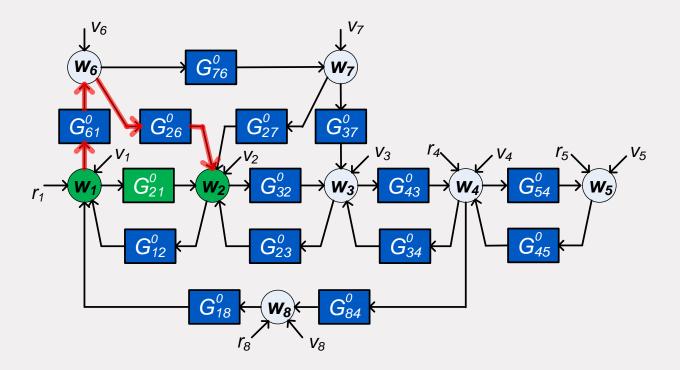
- a) Every path $w_1 \rightarrow w_2$ other than the one through G_{21}^0 goes through a node that is retained. (parallel paths)
- b) Every path $w_2
 ightarrow w_2$ goes through a node that is retained. (loops around the output)

A.G. Dankers et al., IEEE Trans. Automatic Control, 61, 937-952, 2016.

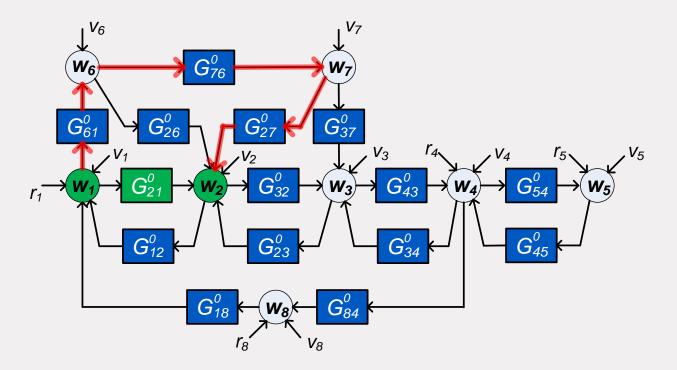
parallel paths, and loops around the output



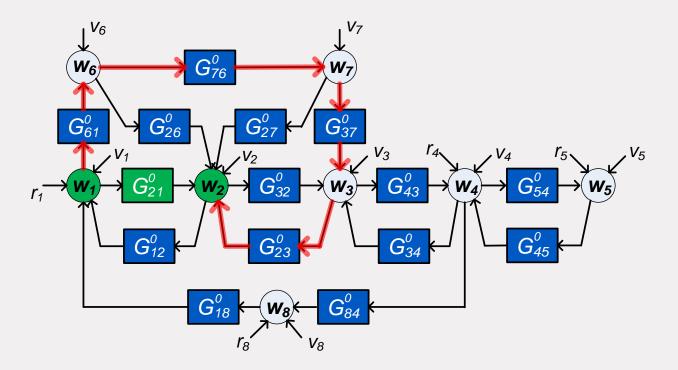
parallel paths, and loops around the output



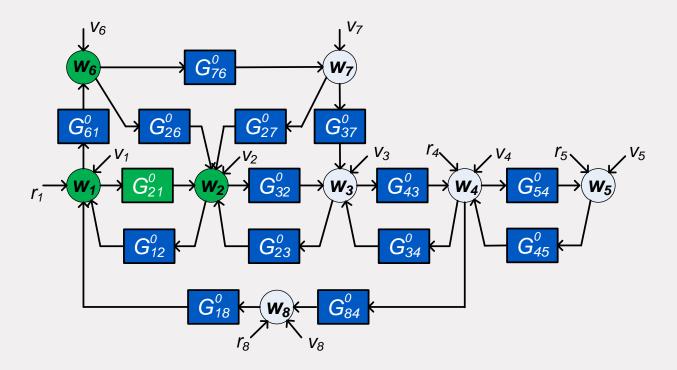
parallel paths, and loops around the output



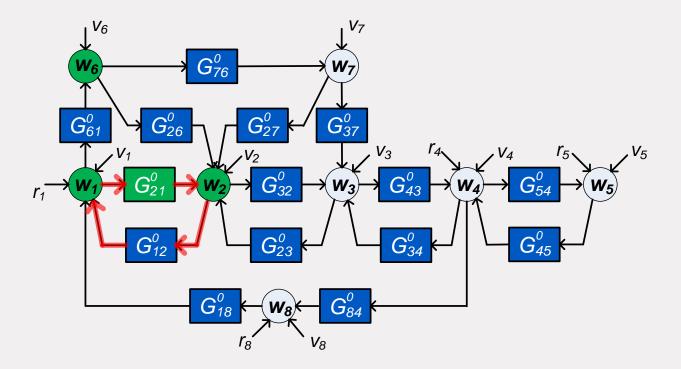
parallel paths, and loops around the output



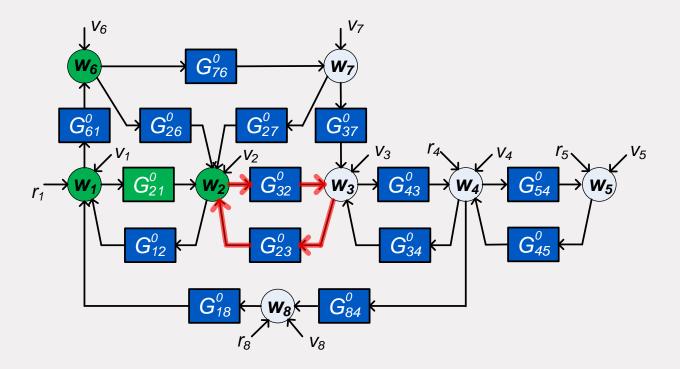
Choose w_6 as an additional input (to be retained)



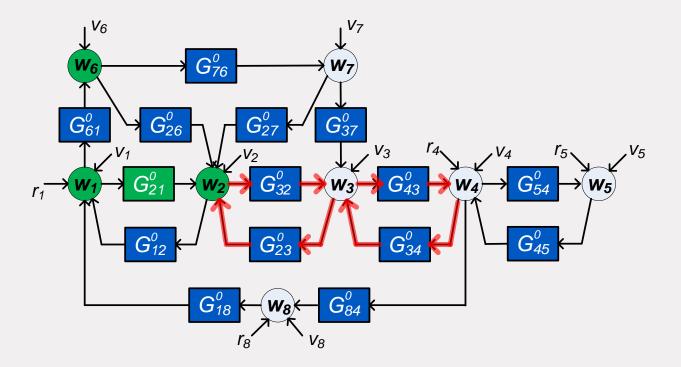
parallel paths, and loops around the output



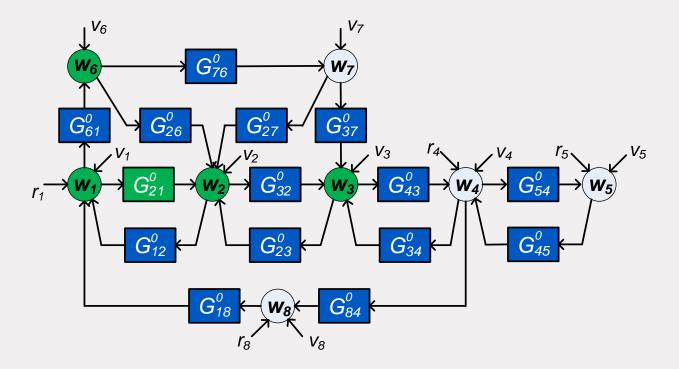
parallel paths, and loops around the output



parallel paths, and loops around the output

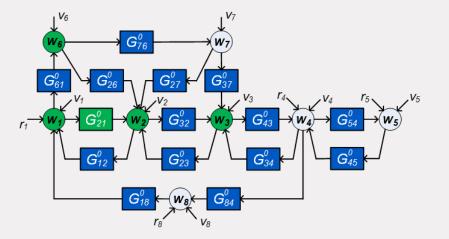


Choose $oldsymbol{w_3}$ as an additional input, to be retained



Conclusion:

With a 3-input, 1 output model we can consistently identify G^0_{21}

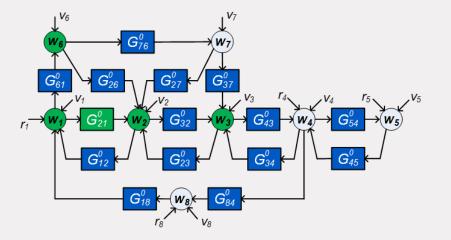


The immersion reasoning is *sufficient* but not *necessary* to arrive at a consistent estimate, see e.g. Linder and Enqvist^[1] and Gevers et al.^[2]

^[1] J. Linder and M. Enqvist. *Int. J. Control*, 90(4), 729-745, 2017.
 ^[2] A. Bazanella, M. Gevers et al., CDC 2017.

Conclusion:

With a 3-input, 1 output model we can consistently identify G_{21}^0 with an indirect method



For a consistent and minimum variance estimate (direct method) there is one additional condition:

• absence of **confounding variables**, ^{[1][2]} i.e. correlated disturbances on inputs and outputs

[1] J. Pearl, *Stat. Surveys, 3,* 96-146, 2009
 [2] A.G. Dankers et al., *Proc. IFAC World Congress,* 2017.

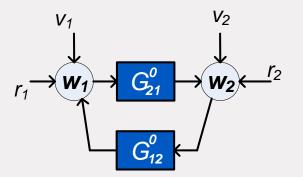
Confounding variables

Back to the (classical) closed-loop problem:

Direct identification of G_{21}^0 can be consistent provided that v_1 and v_2 are uncorrelated

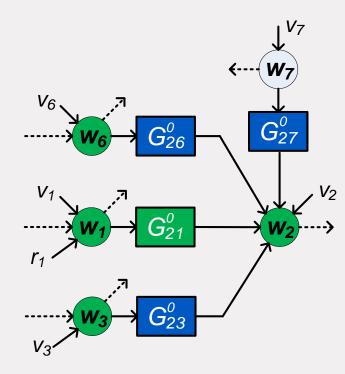
In case of correlation between $v_{\scriptscriptstyle 1}$ and $v_{\scriptscriptstyle 2}$:

Special attention is required



Confounding variables in the MISO case

•



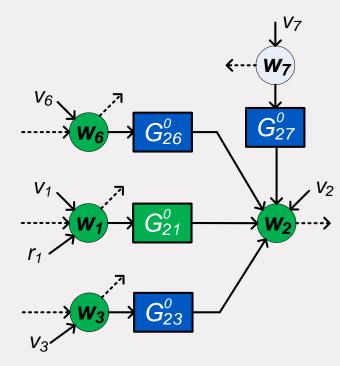
• w_7 (not measured) now acts as a disturbance

• For minimum variance: MISO direct method loses consistency if there are confounding variables

This requires: $\begin{bmatrix} v_2 \\ v_7 \end{bmatrix}$ uncorrelated with $\begin{bmatrix} v_1 \\ v_3 \\ v_6 \end{bmatrix}$

and no path from w_7 to an input

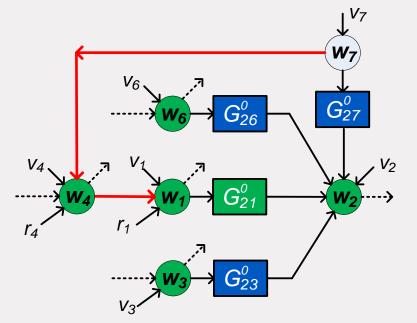
Confounding variables in the MISO case



Solutions while restricting to MISO models:

- (a) Including the node w_7 as additional input, or
- (a) Block the paths from w_7 to inputs/outputs by measured nodes, to be used as additional inputs.

Confounding variables in the MISO case

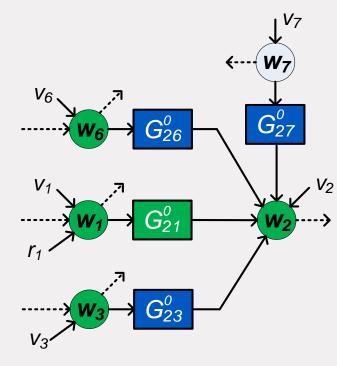


Solutions:

b) Block the paths from w_7 to input w_1 by measured node w_4 to be used as additional input.

Relation with d-separation in graphs (Materassi & Salapaka)

Confounding variables in the MISO case



Can we always address confounding variables in this way?

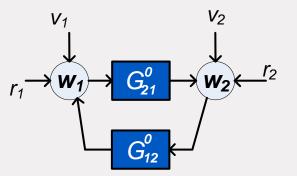
No

If v_2 and v_1 are correlated then:

A MIMO approach with predicted outputs w_2 and w_1 can solve the problem

Confounding variables

Back to the (classical) closed-loop problem:



In case of correlation between $v_{_1}$ and $v_{_2}$: MIMO approach joint prediction of w_1 and w_2 leads to ML results,

$$\begin{bmatrix} \varepsilon_1(t,\theta) \\ \varepsilon_2(t,\theta) \end{bmatrix} = H(q,\theta)^{-1} \begin{bmatrix} w_1(t) - G_{12}(q,\theta)w_2(t) \\ w_2(t) - G_{21}(q,\theta)w_1(t) \end{bmatrix}$$

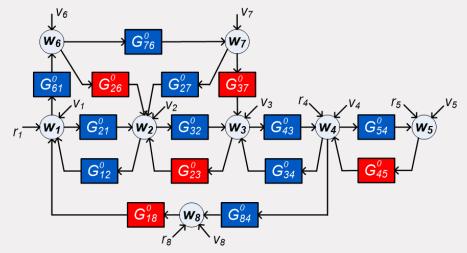
Joint estimation of G_{21}^0 and G_{12}^0 : Joint–direct method ^[1,2] related to the classical joint-io method ^[3,4]

^[1] P.M.J. Van den Hof et al. *Proc. 56th IEEE CDC*, 2017
 ^[3] T.S. Ng, G.C. Goodwin, B.D.O. Anderson, Automatica, 1977

^[2] H.H.M. Weerts et al., *Automatica*, Dec. 2018.
 ^[4] B.D.O. Anderson and M. Gevers, Automatica 1982.

Summary single module identification

- Methods for **consistent** and **minimum variance** module estimation
- For direct method / ML results: treatment of confounding variables / correlated disturbances
- Degrees of freedom in selection of measured signals sensor selection
- A priori known modules can be accounted for



blue = unknown red = known

Question: Can the dynamics/topology of a network be *uniquely determined* from measured signals w_i , r_i ?

Required: Can different dynamic networks be *distinguished* from each other from measured signals w_i , r_i ?

Starting assumption: all signals w_i , r_i that are present are measured.

Network:

$$w = G^0 w + R^0 r + H^0 e$$
 $cov(e) = \Lambda^0$, rank p
 $w = (I - G^0)^{-1} [R^0 r + H^0 e]$ $dim(r) = K$

The network is defined by: $(G^0, R^0, H^0, \Lambda^0)$ a network model is denoted by: $M = (G, R, H, \Lambda)$ and a **network model set** by:

 $\mathcal{M} = \{M(heta) = (G(heta), R(heta), H(heta), \Lambda(heta)), heta \in \Theta\}$

represents prior knowledge on the network models:

- topology
- disturbance correlation
- known modules
- the signals used for identification

 $w = (I - G^0)^{-1} [R^0 r + H^0 e]$ Denote: $w = T^0_{wr} r + \bar{v}$ $ar{v} = T^0_{we} e$ $\Phi^0_{ar{v}} = T^0_{we} (e^{i\omega}) \Lambda^0 T^0_{we} (e^{i\omega})^*$

Objects that are uniquely identified from data r,w : $T^0_{wr}, \ \Phi^0_{ar v}$

How to define identifiability?

Clasically:

- Property of a model set
- Unique mapping between parameters and models

In the **network** situation:

- Property of a model set
- Unique mapping between models and identified objects

Definition

A network model set \mathcal{M} is network identifiable from (w, r) at $M_0 = M(\theta_0)$ if for all models $M(\theta_1) \in \mathcal{M}$: $\begin{array}{c}T_{wr}(q, \theta_1) = T_{wr}(q, \theta_0)\\\Phi_{\bar{v}}(\omega, \theta_1) = \Phi_{\bar{v}}(\omega, \theta_0)\end{array}\right\} \Longrightarrow M(\theta_1) = M(\theta_0)$

${\mathcal M}$ is network identifiable if this holds for all models $M_0 \in {\mathcal M}$

Weerts et al., SYSID2015; Weerts, Van den Hof and Dankers, Automatica, March 2018

Theorem – identifiability for general model sets

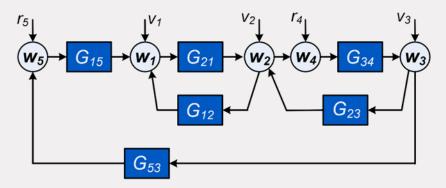
If:

- a) Each unknown entry in $M(\theta)$ covers the set of all proper rational transfer functions
- b) All unknown entries in $M(\theta)$ are parametrized independently

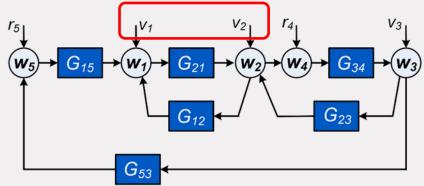
Then $\mathcal M$ is network identifiable from (w,r) at $M_0=M(heta_0)$ if and only if

- Each row of $[G(\theta) \ H(\theta) \ R(\theta)]$ has at most K+p parametrized entries
- For each row *i* the transfer matrix $\check{T}_i(q, \theta_0)$ has full row rank, with $\check{T}_i(q, \theta_0)$: $[v_3 \ v_4 \ r_1 \ r_2]$

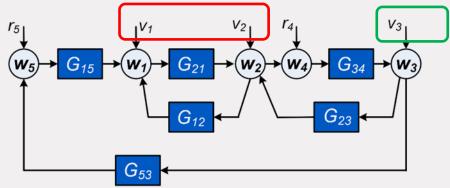
$$[G_{i*}(heta) \; H_{i*}(heta) \; R_{i*}(heta)] = [0 \; * \; 0 \; * \; * \; | \; * \; * \; 0 \; 0 \; | \; 1 \; 0] \ dots \; u_2 \; \; \; w_4 \; w_5]$$



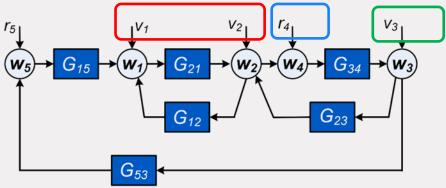
$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$



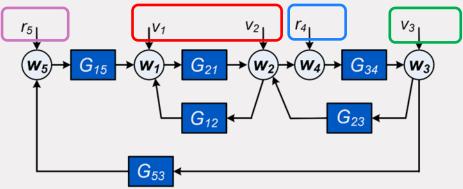
$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$



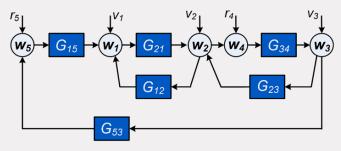
$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \end{bmatrix}, R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$



$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$



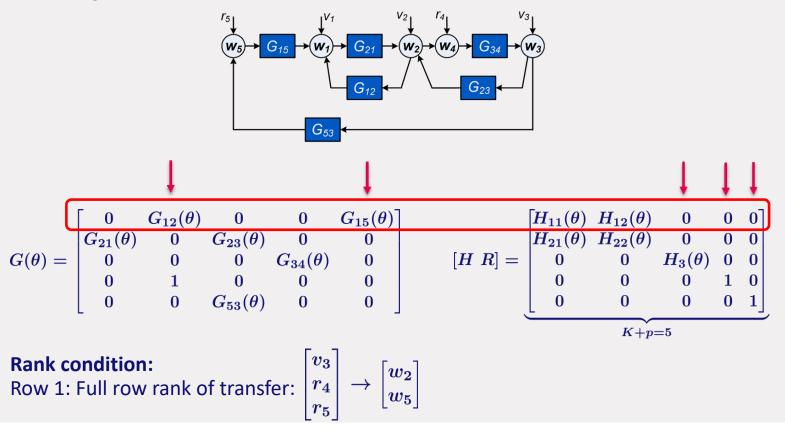
$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$



If we restrict the structure of $G(\theta)$:

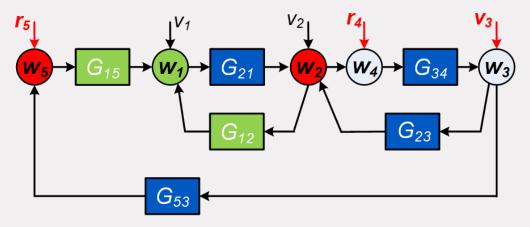
$$G(\theta) = \begin{bmatrix} 0 & G_{12}(\theta) & 0 & 0 & G_{15}(\theta) \\ G_{21}(\theta) & 0 & G_{23}(\theta) & 0 & 0 \\ 0 & 0 & 0 & G_{34}(\theta) & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & G_{53}(\theta) & 0 & 0 \end{bmatrix} \qquad [H \ R] = \underbrace{ \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 & 0 & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 & 0 & 0 \\ 0 & 0 & H_{3}(\theta) & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{K+p=5}$$

First condition: Number of parametrized entries in each row < K+p = 5



TU/e

Verifying the rank condition for $\,\check{T}_1(q, heta_0)\,$



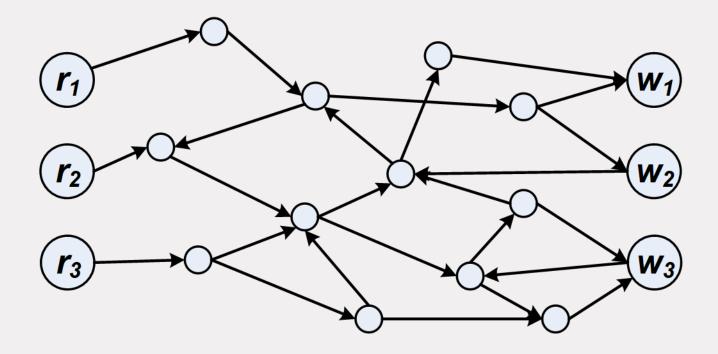
i=1: Evaluate the rank of the transfer matrix

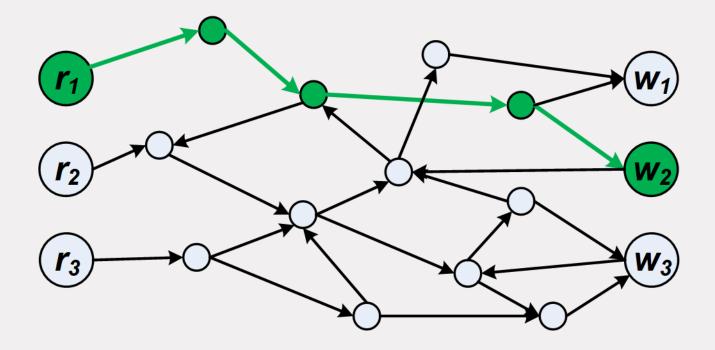
$$egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_5 \end{bmatrix}$$

Theorem (Van der Woude, 1991; Hendrickx et al. 2017; Weerts et al., 2018)

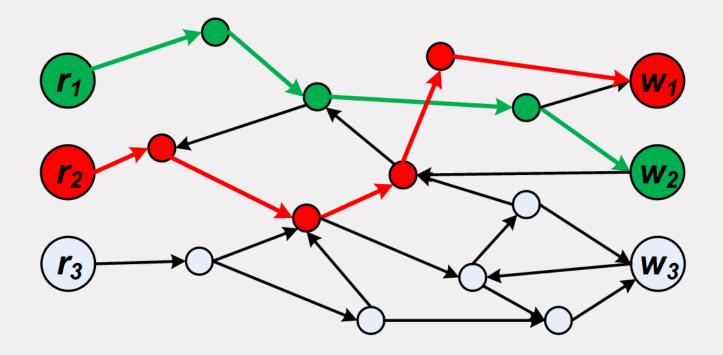
The **generic rank** of a transfer function matrix between inputs r and nodes w is equal to the maximum number of **vertex-disjoint paths** between the sets of inputs and outputs.

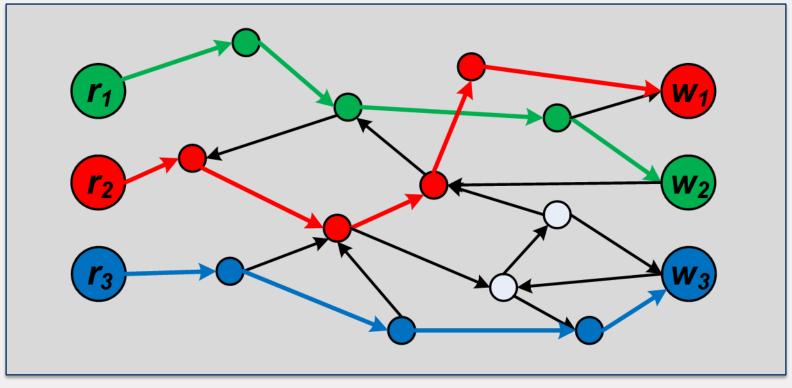
A (path-based) check on the topology of the network can decide whether the conditions for identifiability are satisfied generically.





TU/e





Generic rank = 3

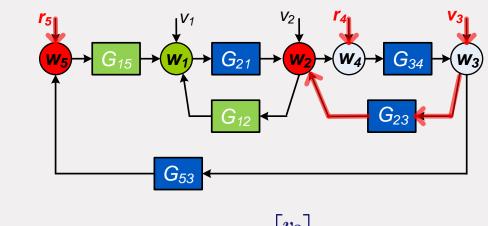
Verifying the rank condition for $\check{T}_1(q, heta_0)$



i=1: Evaluate the rank of the transfer matrix $egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}$ to $egin{bmatrix} w_2 \ w_5 \end{bmatrix}$

2 vertex-disjoint paths \rightarrow full row rank 2

Verifying the rank condition for $\check{T}_1(q, heta_0)$



i=1:Evaluate the rank of the transfer matrix $egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}$ to $egin{bmatrix} w_2 \ w_5 \end{bmatrix}$

For each row i: # unknown modules $G_{ik}(q, \theta) \leq$ # external signals uncorrelated with v_i

Summary identifiability

Identifiability of network model sets is determined by

- Presence and location of external signals, and
- Correlation of disturbances
- Prior knowledge on modules

So far:

- All node signals assumed to be measured
- Fully applicable to the situation p < L (i.e. reduced-rank noise)
- Identifiability of the full network model conditions per row/output node
- Extensions towards identifiability of a single module ^{[1],[2]}

Extensions - Discussion

Extensions - Discussion

- Identification algorithms to deal with reduced rank noise ^[1]
 - number of disturbance terms is larger than number of white sources
 - Optimal identification criterion becomes a constrained quadratic problem with ML properties for Gaussian noise
 - Reworked Cramer Rao lower bound
 - Some parameters can be estimated variance free
- Including sensor noise ^[2]
 - Errors-in-variabels problems can be more easily handled in a network setting

Extensions - Discussion

- Machine learning tools for estimating large scale models ^[1,2]
 - Choosing correctly parametrized model sets for all modules is impractical
 - Use of Gaussian process priors for kernel-based estimation of models

- From centralized to distributed estimation (MISO models) ^[3]
 - Communication constraints between different agents
 - Recursive (distributed) estimator converges to global optimizer (more slowly)

Discussion

- **Dynamic network identification:** intriguing research topic with many open questions
- The (centralized) LTI framework is only just the beginning
- Further move towards data-aspects related to distributed control
- As well as to physical networks

Acknowledgements

Lizan Kivits, Shengling Shi, Karthik Ramaswamy, Tom Steentjes, Mircea Lazar, Jobert Ludlage, Giulio Bottegal, Maarten Schoukens

Co-authors, contributors and discussion partners:

Arne Dankers

Harm Weerts

Xavier Bombois Peter Heuberger Donatelllo Materassi Manfred Deistler Michel Gevers Jonas Linder Sean Warnick Alessandro Chiuso Hakan Hjalmarsson Miguel Galrinho

68

Further reading

- P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013). Identification of dynamic models in complex networks with prediction error methods basic methods for consistent module estimates. *Automatica*, Vol. 49, no. 10, pp. 2994-3006.
- A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015). Errors-in-variables identification in dynamic networks consistency results for an instrumental variable approach. *Automatica*, Vol. 62, pp. 39-50, December 2015.
- A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with predictior error methods predictor input selection. *IEEE Trans. Autom. Contr.*, *61 (4)*, pp. 937-952, 2016.
- P.M.J. Van den Hof, A.G. Dankers and H.H.M. Weerts (2018). System identification in dynamic networks. *Computers & Chemical Engineering*, 109, pp. 23-29, 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability of linear dynamic networks. *Automatica*, 89, pp. 247-258, March 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction error identification of linear dynamic networks with rank-reduced noise. *Automatica, 98,* pp. 256-268, December 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Single module identifiability in linear dynamic networks. Proc. 57th IEEE CDC 2018, ArXiv 1803.02586.
- K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof. Local module identification in dynamic networks using regularized kernel-based methods. Proc. 57th IEEE CDC 2018.
- P.M.J. Van den Hof, K.R. Ramaswamy, A.G. Dankers and G. Bottegal. Local module identification in dynamic networks with correlated noise: the full input case. Submitted to 2019 ACC. ArXiv 1809.07502.

Papers available at www.pvandenhof.nl

The end