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Overall trend:

• (Large-scale) interconnected systems

• With hybrid dynamics (continuous / switching)

• Distributed / multi-agent type monitoring, control and optimization problems

• Data is “everywhere”, big data era

• Modelling problems will need to consider



Introduction

Distributed / multi-agent control: 

With both physical and communication links between 

systems and controllers 
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How to address data-driven modelling problems in such a setting? 



Introduction

The classical (multivariable) identification problems
[1] 

:

Identify a plant model      on the basis of measured signals u, y

(and possibly r), focusing on continuous LTI dynamics.
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[1] Ljung (1999), Söderström and Stoica (1989), Pintelon and Schoukens (2012)

We have to move from a fixed and known configuration
to deal with structure in the problem.
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• Introduction and motivation

• How to model a dynamic network?

• Single module identification – known topology 

• Network identifiability

• Extensions - Discussion

Contents
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Dynamic networks for data-driven modeling



Dynamic networks
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State space representations
(Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,…)

Module representation
(VdH, Dankers, Gevers, Bazanella,…)



Dynamic network setup 
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ri external excitation
vi process noise
wi node signal
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ri external excitation
vi process noise
wi node signal



Dynamic network setup 
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Assumptions:
• Total of L nodes
• Network is well-posed and stable
• Modules are dynamic, may be unstable
• Disturbances are stationary stochastic and 

can be correlated

P.M.J. Van den Hof, A.G. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, 2013.



Dynamic network setup 
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• Identification of a local module 
(known topology)

• Identification of the full network
• Topology estimation
• Sensor and excitation selection
• Fault detection
• Experiment design 
• User prior knowledge of modules
• Scalable algorithms

Many new identification questions 
can be formulated:

Here: focus on prediction error methods 
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Single module identification - known topology



Single module identification
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For a network with known topology:

• Identify        on the basis of measured signals

• Which signals to measure? Preference for local measurements



Single module identification
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Single module identification
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Identifiying        is part of a 4-input, 1-output problem 



• Direct PE method 

ML properties
Disturbances vi uncorrelated over channels
Excitation provided through r and v signals  

Identification methods

4-input 1-output problem

to be addressed by a closed-loop identification method

19
P.M.J. Van den Hof, A.G. Dankers, P.S.H. Heuberger and X. Bombois. Automatica, 49, 2994-3006, 2013.

• 2-stage/projection/IV (indirect) method

Consistency; no need for noise models; no ML 
Excitation provided through r                 signals only



Single module identification

4 input nodes to be measured:

Can we do with less?
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[1]  A. Dankers. PhD Thesis, 2014.
[2]  F. Dörfler and F. Bullo, IEEE Trans. Circuits and Systems I (2013)

Network immersion [1]

• An immersed network is constructed by removing node signals, but leaving the remaining node 
signals invariant

• Modules and disturbance signals are adapted

• Abstraction through variable elimination (Kron reduction[2] in network theory).



Immersion
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Immersion
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Immersing

When does immersion leave
invariant?



Immersion
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When does immersion leave
invariant?

A.G. Dankers et al., IEEE Trans. Automatic Control, 61, 937-952, 2016.

Proposition
Consider an immersed network where and    are retained.

Then                     if

a) Every path                      other than the one through         goes through a node that is retained. 
(parallel paths)

b) Every path         goes through a node that is retained. (loops around the output)



Single module identification
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parallel paths, and loops around the output
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parallel paths, and loops around the output

w1 w2

w6 w7

w8

G21 w3G32 w4G43 w5G54

G61 G37G26 G27

G12 G23 G34 G45

G18 G84

G76

v6 v7

v1 v2
v3 v4 v5

v8

r1

r4 r5

r8

0 0

0

0 0

00

0 0

0

00

0

0 0



Single module identification
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parallel paths, and loops around the output
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Choose    as an additional input (to be retained)
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parallel paths, and loops around the output

w1 w2

w6 w7

w8

G21 w3G32 w4G43 w5G54

G61 G37G26 G27

G12 G23 G34 G45

G18 G84

G76

v6 v7

v1 v2
v3 v4 v5

v8

r1

r4 r5

r8

0 0

0

0 0

00

0 0

0

00

0

0 0



Single module identification
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Single module identification
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Choose   as an additional input, to be retained
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Single module identification

Conclusion:

With a 3-input, 1 output model we can
consistently identify

33

[1] J. Linder and M. Enqvist. Int. J. Control, 90(4), 729-745, 2017.
[2] A. Bazanella, M. Gevers et al., CDC 2017.

The immersion reasoning is sufficient but not necessary to arrive at 
a consistent estimate, see e.g. Linder and Enqvist [1] and Gevers et al. [2]



Conclusion:

With a 3-input, 1 output model we can
consistently identify

with an indirect method

Single module identification

For a consistent and minimum variance estimate (direct method) there is one additional 
condition: 

• absence of confounding variables, [1][2] i.e. correlated disturbances on inputs and outputs

34

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.



Confounding variables

35

w1 w2G

 G

v2

r1

0

0

21

12

v1

r2

In case of correlation between v1 and v2:

Special attention is required

Direct identification of can be consistent 
provided that v1 and v2 are uncorrelated

Back to the (classical) closed-loop problem:



Confounding variables in the MISO case

• (not measured) now acts as a disturbance

• For minimum variance: MISO direct method loses 
consistency if there are confounding variables

• This requires: 

uncorrelated with  

and no path from   to an input   

36

w1 w2

w7

G21

G27

v7

v1 v2

r1

0

0

w6 G26

v6

0

w3 G23

v3

0



Confounding variables in the MISO case

Solutions while restricting to MISO models:

(a) Including the node    as additional input, or

(a) Block the paths from   to inputs/outputs by 
measured nodes, to be used as additional inputs.
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Confounding variables in the MISO case

Solutions:

b) Block the paths from   to input  by 
measured node   to be used as additional 
input.
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Relation with d-separation in graphs
(Materassi & Salapaka)

A.G. Dankers et al., IFAC World Congress, 2017.



Confounding variables in the MISO case

Can we always address confounding variables 
in this way?

No

If       and       are correlated then:

A MIMO approach with predicted outputs        and
can solve the problem

39
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P.M.J. Van den Hof et al., ACC 2019, submitted. 



Confounding variables

Back to the (classical) closed-loop problem:
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[1] P.M.J. Van den Hof et al. Proc. 56th IEEE CDC, 2017 [2] H.H.M. Weerts et al., Automatica, Dec. 2018.
[3] T.S. Ng, G.C. Goodwin, B.D.O. Anderson, Automatica, 1977     [4] B.D.O. Anderson and M. Gevers, Automatica 1982.
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In case of correlation between v1 and v2:  MIMO approach
joint prediction of     and leads to ML results,           

Joint estimation of         and         :  Joint–direct method [1,2] related to the classical 
joint-io method [3,4]



Summary single module identification

• Methods for consistent and minimum variance module estimation

• For direct method / ML results: treatment of confounding variables / 
correlated disturbances

• Degrees of freedom in selection of measured signals – sensor selection

• A priori known modules can be accounted for

41
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Network Identifiability



Network identifiability

blue = unknown
red   = known

Question: Can the dynamics/topology of a network be uniquely determined from measured
signals wi , ri ?

Required: Can different dynamic networks be distinguished from each other from measured
signals wi , ri ?

Starting assumption: all signals wi ,ri that are present are measured. 

43



Network identifiability

Network:

44

rank p

dim(r) = K

The network is defined by:

a network model is denoted by:

and a network model set by:

represents prior knowledge on the network models: 

• topology
• disturbance correlation
• known modules
• the signals used for identification



Network identifiability

Objects that are uniquely identified from data    :

45

How to define identifiability?

Clasically: 
• Property of a model set
• Unique mapping between parameters and models

In the network situation:
• Property of a model set
• Unique mapping between models and identified objects

Denote:



Network identifiability
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Definition
A network model set        is network identifiable from at
if for all models :

Weerts et al., SYSID2015; Weerts, Van den Hof and Dankers, Automatica, March 2018

is network identifiable if this holds for all models



• For each row i the transfer matrix                has full row rank, 
with                :

Network identifiability

Theorem – identifiability for general model sets

If:

a) Each unknown entry in            covers the set of all proper rational transfer functions
b) All unknown entries in            are parametrized independently

47
Weerts et al, SYSID2015; Weerts et al., Automatica, March 2018

Then        is network identifiable from at                           if and only if 

• Each row of                                    has at most K+p parametrized entries



Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated

50



Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

There are noise-free nodes, and  and are expected to be correlated
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Example 5-node network

If we restrict the structure of :

First condition: 
Number of parametrized entries in each row < K+p = 5

53



Example 5-node network

Rank condition: 
Row 1: Full row rank of transfer:
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Example 5-node network

Verifying the rank condition for

Evaluate the rank of the transfer matrix

55



Vertex-disjoint paths

A (path-based) check on the topology of the network can decide whether the conditions for 
identifiabiltiy are satisfied generically.

56

Theorem (Van der Woude, 1991; Hendrickx et al. 2017; Weerts et al., 2018)

The generic rank of a transfer function matrix between 
inputs r and nodes w 

is equal to the maximum number of vertex-disjoint paths between the sets 
of inputs and outputs.



Vertex-disjoint paths
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Vertex-disjoint paths
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Vertex-disjoint paths
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Vertex-disjoint paths

Generic rank = 3

60



Example 5-node network

Verifying the rank condition for

Evaluate the rank of the transfer matrix         to 
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Example 5-node network

Verifying the rank condition for

Evaluate the rank of the transfer matrix         to 

For each row

62
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Summary identifiability

So far:

• All node signals assumed to be measured

• Fully applicable to the situation (i.e. reduced-rank noise)

• Identifiability of the full network model – conditions per row/output node

• Extensions towards identifiability of a single module [1],[2]

63

Identifiability of network model sets is determined by

• Presence and location of external signals, and
• Correlation of disturbances
• Prior knowledge on modules

[1] Hendrickx, Gevers & Bazanella, CDC 2017, IEEE-TAC 2019
[2] Weerts et al., CDC 2018
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Extensions - Discussion



Extensions - Discussion
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[1] Weerts et al., Automatica, December 2018.

• Identification algorithms to deal with reduced rank noise [1]

• number of disturbance terms is larger than number of white sources
• Optimal identification criterion becomes a constrained quadratic problem

with ML properties for Gaussian noise
• Reworked Cramer Rao lower bound
• Some parameters can be estimated variance free

• Including sensor noise [2]

• Errors-in-variabels problems can be more easily handled in a network setting

[2] Dankers et al., Automatica, 2015.
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• Machine learning tools for estimating large scale models [1,2]

• Choosing correctly parametrized model sets for all modules is impractical
• Use of Gaussian process priors for kernel-based estimation of models

[1] Everitt et al., Automatica, 2018.
[2] Ramaswamy et al., CDC 2018.

• From centralized to distributed estimation (MISO models) [3]

• Communication constraints between different agents
• Recursive (distributed) estimator converges to global optimizer (more slowly) 

[3] Steentjes et al., IFAC-NECSYS, 2018.



Discussion

• Dynamic network identification: 
intriguing research topic with many open questions

• The (centralized) LTI framework is only just the beginning

• Further move towards data-aspects related to distributed control

• As well as to physical networks 
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The end


