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Probabilistic model uncertainty bounding in prediction error
identification based on alternative test statistics �

Paul M.J. Van den Hof 2, Sippe G. Douma 1, Arnold J. den Dekker and Xavier Bombois

Delft Center for Systems and Control, Delft University of Technology,
Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

In prediction error identification probabilistic model uncertainty bounds are generally derived from the statistical properties of the parameter
estimator. The probabilistic bounds are then based on an (asymptotic) normal distribution of the parameter estimator, accompanied by a
covariance matrix, which generally has to be estimated from data too. When the primal interest of the identification is in quantifying the
parameter uncertainty on the basis of one single experiment, alternative methods exist that do not require the specification of the full pdf
of the parameter estimator. By using the freedom to choose alternative test statistics as a basis for the uncertainty bounding, alternative
bounds can be derived that are computationally more attractive and that are less dependent on (asymptotic) assumptions. The alternative
method applies to both linearly (ARX) and nonlinearly parametrized model structures. It is powerful in handling the nonasymptotic finite
data case, showing that for Output Error (OE) models and for Instrumental Variable (IV) estimates there exist exact uncertainty bound
for finite data.

Key words: system identification, model uncertainties, uncertainty bounding, statistical tools, prediction error, hypothesis testing.

1 Introduction

Dynamical models that are identified on the basis of mea-
surement data are usually accompanied by an indication of
their reliability. The variance of estimated parameters or the
variance of estimated frequency responses is generally used
as an indication of this reliability (or precision); it is com-
monly constructed on the basis of prior information on the
data generating system and on the noise disturbances acting
on the measurement data. The presence of the noise distur-
bances together with a finite length of measurement data is
generally the underlying reason for the finite precision of
estimated parameters/models.
Apart from its intrinsic importance in classical statistical pa-
rameter estimation, the need for quantifying model uncer-
tainties has lately become apparent also in many other fields
of model applications. When identified models are used as
a basis for model-based control, monitoring, simulation or

� Earlier versions of the results of this paper were presented at
the 14th IFAC Symp. System Identification, 27-29 March 2006,
Newcastle, Australia, and 17th IFAC World Congress, 6-11 July
2008, Seoul, Korea.
1 Now with Shell International Exploration and Production,
Rijswijk, The Netherlands.
2 Corresponding author Tel. +31 15 2784509; Fax +31 15
2786679; Email: p.m.j.vandenhof@tudelft.nl

any other model-based decision-making, then robustness re-
quirements impose additional constraints on model uncer-
tainties, which can be taken into account to guarantee ro-
bustness properties of the designed algorithms.

There are several identification paradigms in which model
uncertainty sets can be identified on the basis of measure-
ment data. The areas of set membership identification [19]
and H∞ identification [4,20] have been particularly devoted
to this problem, aiming at the construction of hard-bounded
errors on estimated nominal models. While hard-bounded
model uncertainty sets have the advantage that they allow
hard guarantees on robustness properties of designed con-
trollers, they can suffer from substantial conservatism when
noise disturbances that affect the measurement data are of a
random-type. This is extensively discussed in e.g., [21].

In the probabilistic (prediction error) approach to system
identification, model uncertainty quantification is based on
covariance information on estimated parameters, in conjunc-
tion with a presumed (or asymptotically achieved if the num-
ber of data tends to infinity) Gaussian probability density
function, see e.g., [18,24]. This description leads to prob-
abilistic confidence bounds on estimated parameters, from
which also probabilistic confidence bounds on related model
properties can be derived, such as frequency responses and
poles/zeros, with any prechosen level of probability. In this
standard context the uncertainty bounds are valid asymptoti-
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cally (in the number of data) while bias effects are neglected.

In classical prediction error identification, explicit and exact
expressions for the parameter covariance matrix are avail-
able for model structures that are linear-in-the-parameters
in the situation that the model structures are correct, i.e. the
data generating system is part of the model set, S ∈ M. For
linear regression models with deterministic regressors (such
as FIR and generalized FIR [25,14]) this holds for finite data
length, for ARX models this holds asymptotically. For gen-
eral model structures, and under the assumption S ∈ M,
approximate expressions for the asymptotic parameter co-
variance matrix can be obtained by using first order Taylor
expansions. However, in this situation exact system knowl-
edge is also required to compute these approximate expres-
sions for the covariance matrix.
Only in case of linear parametrizations, results are available
for model uncertainty bounding when the model structures
are not correct (S /∈ M), see e.g. [13,17] and [14] Chapter
7.

If we restrict to variance-induced parameter uncertainty (and
neglect bias terms), then for Gaussian distributions parame-
ter confidence bounds that are constructed on the basis of the
(exact) covariance matrix of the parameter estimator, lead
to the smallest possible parameter uncertainty regions for a
given probability level. However, usually the exact covari-
ance matrix is not available, and a replacement has to be
made with an estimated covariance.

In this paper it will be shown that utilizing the statistical
properties of the estimator is not necessarily the only way to
arrive at uncertainty bounds for estimated parameters. Some
alternatives are studied, where the aim is to specify param-
eter uncertainty regions that do not (or at least not as much)
rely on asymptotic assumptions but for which exact proba-
bilistic expressions can be made. It will be shown that the
quantification of parameter uncertainty on the basis of only
one experiment can be done without the full analysis of the
parameter estimator, by using alternative test statistics that
underly the uncertainty bounding procedure. This will be
shown to facilitate uncertainty bounding in several ways, as
well as give rise to results that show potentials for applica-
tion in finite-time analysis. Finite-time analysis of estimated
parameters is an important problem, however with few re-
sults so far. For some results see e.g. [2,27] and the plenary
paper [3].

Throughout this paper it will be assumed that in an open-
loop experimental situation input signals are fully under
control of the experimenter and therefore are considered to
be deterministic. This implies that in those circumstances
any uncertainty in the estimated parameters originates from
random disturbances on the output signals. This situation is
particularly suited for a posteriori quantifying uncertainty in
estimated parameters, rather than a priori quantifying uncer-
tainty bounds for estimators, prior to doing the experiment.
In a closed-loop experimental set-up, the input signals be-

come affected by the output disturbances and therefore be-
come random also.

After presenting the principle concepts of constructing pa-
rameter uncertainty regions on the basis of estimator statis-
tics, alternative approaches are illustrated in a simple exam-
ple, and next generalized to ARX models. Subsequently it is
shown how the approach can be extended to model structures
that are not linear-in-the-parameters (Output Error). Atten-
tion will be restricted to the situation that there are variance
errors only (S ∈ M). Extension of the results to the situa-
tion of including bias errors also (S /∈ M) is available in [7].
Preliminary material underlying the analysis was presented
in the conference contributions [8–10,5,6].

2 Prediction error identification setting

We will consider prediction error (PE) models parametrized
by a parameter vector θ, corresponding to a plant model
G(q, θ) and a noise model H(q, θ), with q the standard shift
operator. In a standard prediction error framework [18,24] a
model is identified from measurement data ZN := {y, u}N
of data length N according to

θ̂N = arg min
θ
VN (θ, ZN ) (1)

with VN (θ, ZN ) = 1
N

∑N
t=1 ε

2(t, θ), where the residuals
ε(t, θ) are constructed as

ε (t, θ) = H−1(q, θ) [y(t) −G (q, θ)u(t)] , (2)

and with y, u respectively the output and input signal of the
plant. The measurement data is assumed to be generated
according to the system S:

y(t) = G0(q)u(t) + v(t) (3)

where G0(q) a linear time-invariant dynamical system, u(t)
is a measured input sequence, and v(t) denotes an additional
unknown contribution to y(t). It is assumed that v(t) =
H0(q)e(t) with H0 a linear time-invariant monic stable and
stably invertible filter, and e a stationary stochastic zero-
mean white noise process with variance σ2

e . Furthermore, we
denote by M the set of models {G(q, θ),H(q, θ)}θ∈Θ with
Θ representing the particular range of parameters determin-
ing the model sets, typically Θ ⊂ R

d. Throughout this paper
it is assumed that S ∈ M, implying that there exists a param-
eter θ0 such that G(q, θ0) = G0(q) and H(q, θ0) = H0(q).
Boldface variables (θ̂N ) are used to indicate random vari-
ables, in order to distinguish them from single realizations
thereof (θ̂N ).

Under the given conditions and the standard regularity con-
ditions in PE identification, as well as under persistency of
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excitation conditions on the input signal, the parameter es-
timator θ̂N satisfies an asymptotic Gaussian distribution:

√
N(θ̂N − θ0) →

N→∞
N (0, P0) (4)

with P0 the covariance matrix of the asymptotic distribution.
This asymptotic result can be rewritten in a quadratic form,
leading to a χ2 distribution:

N(θ̂N − θ0)TP−1
0 (θ̂N − θ0) →

N→∞
χ2

d (5)

with d the number of degrees of freedom in the χ2 distribu-
tion, being equal to the dimension of the parameter vector.

Remark 1 In the sequel of the paper we will make the as-
sumption that the noise process e has a Gaussian distribu-
tion with zero mean and variance σ2

e . Most of the asymptotic
results however will not be dependent on this assumption.
Whenever this is the case it will be mentioned explicitly.

3 Probabilistic uncertainty bounds and hypothesis test-
ing

3.1 Uncertainty bounds in prediction error identification

The intention of a probabilistic uncertainty bound is to for-
mulate a bounded set of parameter values to which the real
underlying parameter θ0 belongs with a predefined level of
probability. In prediction error identification, it is standard
to derive such an uncertainty bound on the basis of (5), with
a reasoning as follows:
Equation (5) implies that the random variable θ̂N satisfies:

θ̂N ∈ D(α, θ0) w.p. α

with D(α, θ0) :=
{
θ | N(θ − θ0)TP−1

0 (θ − θ0) ≤ χ2
d,α

}
and χ2

d,α corresponds to a probability level α in the χ2
d-

distribution, i.e. it is the α quantile of the χ2 distribution
with d degrees of freedom. However in order to quantify
the uncertainty we are interested in making a probabilistic
expression on θ0 rather than on θ̂N . This is being achieved
by basically reverting the expression, realizing that for every
realization θ̂N of θ̂N it holds that

θ̂N ∈ D(α, θ0) ⇔ θ0 ∈ D(α, θ̂N ).

As a result

θ0 ∈ D(α, θ̂N ) with probability α, (6)

withD(α, θ̂N ) :=
{
θ | N(θ̂N − θ)TP−1

0 (θ̂N − θ) ≤ χ2
d,α

}
.

If a parameter estimate θ̂N is obtained from one single ex-
periment, a 100×α% confidence interval for θ0 is specified

by D(α, θ̂N ), implying that asymptotic in N , in 100 × α%
of the realizations θ̂N of the random variable θ̂N the ex-
pression θ0 ∈ D(α, θ̂N ) will hold true.

3.2 Relation with hypothesis testing

The step made above, moving from a probabilistic expres-
sion on θ̂N to a confidence interval on θ0 can also be phrased
in terms of a hypothesis test. We basically test the null hy-
pothesis H0 : θ = θ0 against the alternative hypothesis
H1 : θ �= θ0, on the basis of the particularly chosen test
statistic

N(θ̂N − θ)TP−1
0 (θ̂N − θ). (7)

Under the null hypothesis (θ = θ0) the test statistic is known
to have an asymptotic χ2

d-distribution, according to (5). This
allows one to compose tests (i.e. to set thresholds) with a
desired significance level, where the significance level is
defined as the probability of rejecting H0 when H0 is true.
When the test statistic has been selected, and a significance
level α has been chosen, a 100× α% confidence region for
θ0 is then constituted by the set of all values θ for which the
null hypothesis θ = θ0 would be accepted [1]. This leads to
the same expression (6) for θ0.

Note though that the choice of test statistic (7) is a freedom
that is available to the user. In the situation above, the test
statistic is chosen directly related to the probability density
function (pdf) of the estimator (4). 3 Alternative choices may
lead to different confidence regions. This freedom will be
explored in the sequel of this paper. Additionally it has to be
noted that in many situations P0 might be unknown, being
dependent on the system S. In those situations P0 needs to
be estimated in order to calculate (approximate) confidence
bounds (6).

4 Illustrative Example

In order to illustrate the effect that can be obtained by choos-
ing alternative test statistics, we consider the following -
very simple - example. Consider the data generating system
y = θ0x1 + x2, and one available measurement {y, x1} of
y and x1. It is given that x1,x2 are random numbers that
are Gaussian distributed, with an unknown correlation, and
with x2 ∈ N (0, 2). We consider the following estimator of
θ0:

θ̂ =
y
x1
. (8)

Under the above conditions the estimator (8) satisfies

θ̂ =
y
x1

= θ0 +
x2

x1
. (9)

3 Note that for Gaussian distributions a symmetric (ellipsoidal)
norm-bounded α-probability region corresponds to the smallest
possible region satisfying a probability of α. For other distributions
the smallest region corresponds to the contours of level sets of the
probability density function.
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Since x1 and x2 are correlated, the probability density
function of this estimator will generally not be Gaussian 4 .
Therefore, evaluation of parameter uncertainty regions on
the basis of a test statistic that is directly derived from the
pdf fθ̂ will generally be cumbersome.
However since x1(θ̂−θ0) = x2, it follows that this random
variable has a Gaussian distribution

x1(θ̂ − θ0) ∈ N (0, 2)

and consequently (θ̂ − θ0)
x2

1

2
(θ̂ − θ0) ∈ χ2

1.

We can now construct an uncertainty region for θ0 on the
basis of a hypothesis test as described in the previous section,
and the alternative test statistic

(θ̂ − θ)
x2

1

2
(θ̂ − θ)

which under hypothesis θ = θ0 is known to satisfy a χ2
1-

distribution. We therefore select all values of θ that, together
with the observed values θ̂ and x1 are within the α quantile
of the χ2

1 distribution of x2
2. This set is exactly given by

D(α, θ̂) =
{
θ | x

2
1

2
(θ̂ − θ)2 ≤ χ2

1,α

}
. (10)

As a result it holds that θ0 ∈ D(α, θ̂) w.p. α.
The interpretation of this probabilistic expression is that
when we construct the uncertainty region D(α, θ̂) for n ex-
periments, i.e. n realizations of x1 and x2, the constructed
region (10) will contain the true parameter only a number of
αn times if n→ ∞. Note that D(α, θ̂) is dependent on the
particular experiment that is done, i.e. the uncertainty set is
dependent on x1.
The result of the example is illustrated in Figure 1, where
the (unknown) pdf fθ̂ of θ̂ is sketched together with the
smallest 90% uncertainty regions for θ̂, as well as the 90%
uncertainty region that is symmetric around Eθ̂. The Figure
also shows the parameter interval that relates to all realiza-
tions θ̂ of θ̂ for which correctly holds that θ0 ∈ D(α, θ̂).

In the classical approach the parameter uncertainty region is
determined on the basis of Eθ̂ and cov(θ̂). For a Gaussian
distribution one then arrives at the smallest possible param-
eter uncertainty regions corresponding to a fixed probability
level. However the above quantities need to be known. The
alternative analysis does not require full analysis of the pdf
of the parameter estimator, at the possible cost of delivering
larger parameter uncertainty sets, but with exact probabilis-
tic expressions connected to it. Next it will be shown how
the alternative paradigm can be applied to the quantification
of uncertainty in identified ARX / linear regression models.

4 It is plotted in Figure 1 for x2 ∈ N (0, 2) and x1 = 3 + 0.5
x2

1 2 3 4 5 6

θ

pr
ob

ab
ili

ty
 d

en
si

ty
 f θ

(1)

(2)

(3)

Fig. 1. Probability density function fθ̂ of θ̂ (8) and three uncer-
tainty regions each corresponding to a confidence level α = 0.9.
The smallest (1) and symmetric (2) 90% regions are tied to the
pdf of θ̂. The computed 90% region (3) is determined by all θ

for which θ0 ∈ D(α, θ); it is the collection of all realizations θ̂N

on the basis of which a correct uncertainty bound for θ0 will be
specified; it is based on a symmetric 90% probability region of
random variable x2.

5 Uncertainty bounding in ARX models

5.1 Identification setting and standard approach

The ARX model set is determined by

G(q, θ) =
q−nkB(q−1, θ)
A(q−1, θ)

, H(q, θ) =
1

A(q−1, θ)

with nk the delay and

A(q−1, θ) = 1 + a1q
−1 + · · · + ana

q−na

B(q−1, θ) = b0 + b1q
−1 + · · · + bnb−1q

−nb+1

with θT = [a1 · · · ana
b0 · · · bnb−1], having a dimension d =

na+nb. In prediction error identification, the one step ahead
predictor is considered, written as ŷ(t|t − 1; θ) = ϕT (t)θ
with ϕT (t)=[−y(t−1) · · ·−y(t−na) u(t) · · ·u(t−nb+1)],
having dimension d, and y, u the scalar-valued output and
input signal. The parameter estimate is obtained by minimiz-
ing the quadratic prediction error criterion (1) with ε(t, θ) =
y(t) − ŷ(t|t− 1; θ). By denoting

Φ =

⎛
⎜⎜⎝
ϕT (1)

...

ϕT (N)

⎞
⎟⎟⎠ and y = [y(1) · · · y(N)]T (11)

it follows that θ̂N = (ΦT Φ)−1ΦT y. If the data generating
system belongs to the model class (S ∈ M) then there exists
a θ0 such that y = Φθ0 + e with e an N -vector of samples
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from a white noise process, and so

θ̂N = θ0 + (ΦT Φ)−1ΦT e. (12)

In accordance with the theory as presented in Section 3.1, the
parameter estimator has an asymptotic Gaussian distribution

√
N(θ̂N − θ0) →

N→∞
N (0, P0) (13)

where for the ARX situation the covariance matrix of the
asymptotic distribution is given by [18]:

P0 = ( lim
N→∞

E[
1
N

ΦT Φ])−1 · σ2
e . (14)

When building a parameter uncertainty bound for θ0 on the
basis of a single experiment, by applying the approach as
outlined in Section 3, this can be done on the basis of the
test statistic

N(θ̂N − θ)TP−1
0 (θ̂N − θ) (15)

which under hypothesis θ = θ0 is known to have an asymp-
totic χ2

d distribution. This leads to the following result:

Result 1 On the basis of the test statistic (15), it follows
that asymptotically in N , θ0 ∈ D(α, θ̂N ) w.p. α, with

D(α, θ̂N ) := {θ |N(θ̂N−θ)TP−1
0 (θ̂N−θ) ≤ χ2

d,α}. (16)

This result is built on the asymptotic normality of the term
(ΦT Φ)−1ΦT e.

5.2 Alternative 1 to ARX uncertainty bounding

As an alternative to analyzing the full pdf of θ̂N , the ex-
pression (12) for the parameter estimator can be rewritten
in the form

1√
N

ΦT Φ(θ̂N − θ0) =
1√
N

ΦT e, (17)

where the factor 1/
√
N is chosen because of the fact that

due to the Central Limit Theorem ([18])

1√
N

ΦT e →
N→∞

N (0, Q0) with Q0 = lim
N→∞

E
1
N

ΦT Φ·σ2
e .

(18)
This result leads to the suggestion of an alternative test statis-
tic, given by

1
N

(θ̂N − θ)T ΦT ΦQ−1
0 ΦT Φ(θ̂N − θ) (19)

which under hypothesis θ = θ0 is known to have an asymp-
totic χ2

d distribution. As a result we can phrase an alternative
set for quantifying the parameter uncertainty bound.

Result 2 On the basis of the test statistic (19), it follows
that asymptotically in N , θ0 ∈ D(α, θ̂N ) w.p. α, with

D(α, θ̂N ) := (20)

{θ | 1
N

(θ̂N − θ)T ΦT ΦQ−1
0 ΦT Φ(θ̂N − θ) ≤ χ2

d,α}.

This result is built on the asymptotic normality of the term
1√
N

ΦT e.

5.3 Alternative 2 to ARX uncertainty bounding

The approach leading to alternative 1 in the previous subsec-
tion can be taken one step further. To this end we introduce
the singular value decomposition (svd) of ΦT , as

ΦT = UΣVT

with U and V unitary matrices, i.e. UT U = VT V = I ,
and rewrite the expression (17) for the parameter estimation
error into the form:

VT Φ(θ̂N − θ0) = VT e. (21)

With the Central Limit Theorem it can be shown that

VT e →
N→∞

N (0, σ2
eI). (22)

A proof of (22) is added in the Appendix. This result gives
rise to considering the quadratic form of the left hand side
of (21):

(θ̂N − θ0)T ΦT Φ(θ̂N − θ0)
as a basis for the test statistic. Indeed the resulting test statis-
tic

N

σ2
e

(θ̂N − θ)T 1
N

ΦT Φ(θ̂N − θ) (23)

consequently has an asymptotic χ2
d distribution under hy-

pothesis θ = θ0. This leads to the result formulated next.

Result 3 On the basis of the test statistic (23), it follows
that asymptotically in N , θ0 ∈ D(α, θ̂N ) w.p. α, with

D(α, θ̂N ) := (24)

{θ | N
σ2

e

(θ̂N − θ)T 1
N

ΦT Φ(θ̂N − θ) ≤ χ2
d,α}.

This result is built on the asymptotic normality of the term
VT e.

5.4 Intermediate discussion

The three formulations of uncertainty sets vary in terms of
their construction, and they vary in terms of the underlying
random variable that is supposed to reach an asymptotic
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normal distribution. When taking a look at the construction
of the three uncertainty sets, it appears that in the several
sets unknown quantities occur: P0, Q0 and σ2

e . If we focus
for the moment on the effect of P0 and Q0, and assume
that σ2

e is known, it appears that either P0 (Result 1) or Q0

(Result 2) need to be known. When considering the sample
estimates P̂ = ( 1

N ΦT Φ)−1σ2
e and Q̂ = 1

N ΦT Φσ2
e and use

them as a replacement of P0 and Q0 in the expressions
for the uncertainty sets, it appears that all three uncertainty
sets become the same, and given by (24). Note however,
that this approximation of P0, Q0 by a sample estimate is
a compromise in the scope of Results 1 and 2, but is not
required for Result 3. In this respect the analysis leading to
Result 3, appears to be the most powerful analysis of the
three.

It has been assumed so far that σ2
e is known. The present

analysis can easily be extended to the situation where this
term also has to be estimated from data. This is further
addressed in [6].

It has to be noted that in the analysis of the statistical prop-
erties of the test statistics, the matrices P0 and Q0 are con-
sidered to be matrices that are fixed and not parameter-
dependent. Note that when writing P0 = P0(θ0) and Q0 =
Q0(θ0) this could give rise to alternative test statistics where
P0 and Q0 in uncertainty bounds (16),(20) would need to
be replaced by P (θ) and Q(θ), thus eliminating the simple
ellipsoidal structure of the uncertainty bounds and requir-
ing computationally more expensive algorithms to compute
them. This issue will also be further addressed in a subse-
quent section.

6 Reflection on finite-time perspectives

The three Results presented in the previous section rely on
three different random variables to approach a Gaussian dis-
tribution:

For Result 1: (ΦT Φ)−1ΦT e

For Result 2: 1√
N

ΦT e

For Result 3: VT e

As a result, the question whether the results for the uncer-
tainty bounds will also be feasible for finite values of N
will highly depend on the question how fast (with increasing
N ) the several variables approach the (asymptotic) Gaussian
distribution. In order to illustrate this we consider a simula-
tion example, particularly focussing on the behaviour of the
random variables related to Results 1 and 3.

Example 1 A first-order data generating system is modelled
with an ARX model of the form

ε(t, θ) = (1 + θaq
−1)y(t) + θbu(t),

such that S ∈ M. Experimental data is simulated driving
the data-generating system with an input u(t) and noise

disturbance e(t) that are independent Gaussian distributed
white noise sequences with variance σ2

u = σ2
e = 1. The sys-

tem coefficients are θb = 0.5, θa = 0.9. The parameters θb

and θa are estimated with a least-squares identification cri-
terion. It is verified here whether the random variables, that
underly the several test statistics, indeed satisfy a Gaussian
distribution for finite values of N .

The top row of Figure 2 depicts the histogram of the ele-
ment of (ΦT Φ)−1ΦT e (Result 1) corresponding with θ̂b, as
a function of data length N and for 5000 Monte Carlo simu-
lations. The bottom row depicts the distribution of the corre-
sponding element of VT e (Result 3). The red solid curves in-
dicate closest Gaussian distributions to the results. Clearly,
the bottom row is indistinguishable from a Gaussian distri-
bution, while the top approaches a Gaussian slowly. Similar
results are presented in Figure 3 for the element of the pa-
rameter vector, corresponding with θ̂a. Clearly, the bottom
row is indistinguishable from a Gaussian distribution, while
the top approaches a Gaussian distribution very slowly. The

-500 0 500

N = 2

(Φ
Φ

T
)-1

Φ
T
e

-2 0 2

V
T
e

-2 0 2

N = 5

-2 0 2

-1 0 1

N = 25

-2 0 2

-0.5 0 0.5

N = 50

-2 0 2

Fig. 2. Distribution of parameters in ARX structure. Top: second
element of (ΦT Φ)−1ΦT e corresponding to θ̂b for data length
N = 2, 5, 25, 50. Bottom: the distribution of the second element
of VT e corresponding to θ̂b. Red solid curves are best fitting
Gaussian distributions.

corresponding evaluation of the χ2
d tests is reflected in Fig-

ure 4. It shows that the theoretical asymptotic PE method
(Result 1) differs considerably from the theoretical χ2

d dis-
tribution for small values of N , while the result with the
data-based covariance matrix (Result 3) shows a close fit to
the χ2

d distribution even for very small values of N . The ex-
perimental coverage rates of the several tests are collected
in Table 1. Note that in these tests exact knowledge is used
of P0 (Result 1), and Q0 (Result 2), while the test for Result
3 can be performed on the basis of measurement data only.

For a further justification and understanding of the finite-
sample behaviour of the uncertainty bounds of Result 3 we
consider the following Lemma. Its proof is added in the
Appendix.

Lemma 1 ([9]) Consider random vectors z, e ∈ R
N×1 and
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a random matrix 5 V ∈ R
N×N related through z = VT e.

If the following properties are satisfied:

(1) e has independent identical Gaussian distributed en-
tries, N (0, σ2), and

5 A random vector/matrix is a vector/matrix with random vari-
ables as elements. It does not imply that the several elements are
uncorrelated.

N = 2 N = 5 N = 25 N = 50

Result 1 0.1810 0.5530 0.8320 0.8760

Result 2 0.9690 0.9610 0.9550 0.9550

Result 3 0.9610 0.9500 0.9590 0.9550

Table 1
Experimental coverage rates of the χ2

d tests related to Results (1)-
(3) for different values of N ; α = 0.95.

(2) e and V are independent, and
(3) V is unitary, i.e. VT V = I

then the vector elements of z are independent identically
distributed with Gaussian distribution N (0, σ2). �

Note that the result of this Lemma is quite remarkable, in par-
ticular because it does not rely on an asymptotic assumption
on N . Irrespective of the pdf of the elements of matrix V,
the resulting random variable z has a Gaussian distribution.
This implies that, would the conditions as formulated in the
Lemma hold true, then the uncertainty bound as formulated
in Result 3 is exact also for finite values of N . However the
condition of statistical independence of V and e is formally
not met in the situation of ARX models. This is due to the
fact that for ARX models Φ and e will have correlation.

However, the results of Example 1 suggest that the existing
correlation between V and e hardly affects the normality of
the test statistic, and therefore the validity of the uncertainty
bound for finite N also.

The conclusions to be drawn from sections 5 and 6 are:

• The choice of different test statistics leads to different
parameter uncertainty bounds;

• The theoretical (asymptotic) test from PE theory that is
used for ARX models requires knowledge of the (un-
known) exact covariance matrix P0;

• Whereas replacing P0 by a sample estimate is considered
to be a compromise in asymptotic PE theory, there exists a
test statistic (Result 3) that formally generates the related
uncertainty bound;

• This latter data-based uncertainty bound shows improved
performance for finite data.

7 A likelihood perspective

In order to put the results presented so far in a perspective,
we consider the problem also in a likelihood framework. It
will allow us to further specify the relations with existing
statistical hypothesis tests, as well as point to further alter-
natives.
In the considered situation of data generating system as de-
scribed in Section 2, the joint probability distribution of
the observations yN = {y(t)}t=1,··· ,N (conditioned on the

7



given deterministic input sequence uN ) is given by:

fy(yN ; θ0) =
N∏

t=1

fe(ε(t, θ0); θ0). (25)

Assuming a zero-mean Gaussian distributed noise e, i.e.

fe(ε(t, θ0); θ0) =
1√
2πσ2

e

exp
[
− 1

2σ2
e

ε2(t, θ0)
]

(26)

and taking the logarithm of the joint pdf delivers

log fy(yN ; θ0) = −N
2

log(2π) −N log σe − N

2σ2
e

VN (θ0).

(27)
If we substitute the available observations yN for the cor-
responding indeterminate variables in (25) and regard the
resulting expression as a function of the parameter vector θ
for fixed observations yN , this leads to the likelihood func-
tion which now is written as fy(θ; yN ). The maximum like-
lihood estimator (MLE) of θ0 is given by

θ̂N = arg max
θ
fy(θ; yN ) = arg min

θ
VN (θ). (28)

We need three additional notions to specify relevant test
statistics. The Fisher score SN (θ) is defined as

SN (θ) :=
∂ log fy(yN ; θ)

∂θ
=

−N
2σ2

∂VN (θ)
∂θ

, (29)

the Fisher information matrix [12] JN (θ0) as

JN (θ0) = −E

[
∂2 log fy(yN ; θ)

∂θ2

∣∣∣∣
θ=θ0

]
, (30)

and the generalized likelihood ratio LG(θ) ([16]) as

LN (θ) =
fy(θ; yN )

supθ fy(θ; yN )
=

fy(θ; yN )

fy(θ̂N ; yN )
. (31)

The latter function is bound between 0 and 1.

There are a number of (asymptotic) statistical results that
can serve as test statistics for the hypothesis test required
for uncertainty bounding procedures. They are formulated
in the following Proposition

Proposition 1 Under appropriate conditions on the data
generating system as formulated in Section 2, the following
distributions hold asymptotically in N :

(a) The Maximum likelihood estimator has an asymptotic
normal distribution ([12]),

θ̂N → N (θ0, J−1
N (θ0)) (32)

(b) According to Wald ([26]), the covariance matrix of the
asymptotic ML estimator, can be replaced by an estimated
covariance,

θ̂N → N (θ0, J−1
N (θ̂N )) (33)

(c) The Fisher score has an asymptotic normal distribution
([28]),

SN (θ0) → N (0, JN (θ0)) (34)

(d) The log generalized likelihood has an asymptotic χ2
d

distribution ([16]),

−2 logLN (θ0) → χ2
d. (35)

The several notions can be specified for the situation of ARX
models. This is formalized in the following Proposition.

Proposition 2 For the ARX models defined before, the fol-
lowing expressions hold:

(1) JN (θ0) =
1
σ2

e

E[ΦT Φ] (36)

(2) SN (θ0) =
1
σ2

e

ΦT e (37)

(3)−2 logLN (θ0) =
N

σ2
e

[
VN (θ0) − VN (θ̂N )

]
(38)

=
N

σ2
e

(θ̂N−θ0)T 1
N

ΦT Φ(θ̂N−θ0) (39)

Proof
(1) This follows directly from the fact that ∂2

∂θ2VN (θ) =
2
N ΦT Φ and utilizing this in the definition of JN (θ0).

(2) By writing SN (θ0) =
−N
2σ2

e

∂VN (θ)
∂θ

∣∣∣∣
θ0

, and substituting

∂VN (θ)
∂θ

∣∣∣∣
θ0

=
−2
N

N∑
t=1

ε(t, θ0)ϕ(t) =
−2
N

ΦT e the result

(37) follows.
(3) Expression (38) follows directly from applying the defi-
nition of JN (θ). The step from (38) to (39) is motivated as
follows. Writing VN (θ̂N , Z

N ) = 1
N (y−Φθ̂N )T (y−Φθ̂N )

and substituting y = e + Φθ0 it follows that VN (θ̂N ) =
V (θ0)− 2

N (θ̂N −θ0)T ΦT e+ 1
N (θ̂N −θ0)T ΦT Φ(θ̂N −θ0).

Since ΦT e = ΦT (y − Φθ0) = ΦT Φ(θ̂N − θ0) the result
(39) follows. �

The several asymptotic results (a)-(d) formulated in Propo-
sition 1 all give rise to test statistics that can be used for the
construction of parameter confidence bounds. Their formu-
lation follows directly from the reasoning around hypothesis
testing as discussed in Section 3.

Corollary 1 The following test statistics all follow an
asymptotic-in-N χ2

d distribution under the hypothesis
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θ = θ0:

TJ : (θ̂N − θ)TJ−1
N (θ)(θ̂N − θ) (40)

TW : (θ̂N − θ)TJ−1
N (θ̂N )(θ̂N − θ) (41)

TR :
1
σ2

e

(θ̂N − θ)T ΦT ΦJ−1
N (θ)ΦT Φ(θ̂N − θ) (42)

TLR :
1
σ2

e

(θ̂N − θ)T ΦT Φ(θ̂N − θ) (43)

As a result, for each of these test statistics there exist cor-
responding parameter uncertainty sets D(α, θ̂N ) for which
holds that θ0 ∈ D(α, θ̂N ) with probability α, where

D(α, θ̂N ) := {θ | T∗ ≤ χ2
d,α}

where ’*’ refers to the particular test statistic TJ , TW , TR, or
TLR and values of T∗ are evaluated according to one of the
expressions (40)-(43) substituting the particular realization
θ̂N for θ̂N .

It appears that the uncertainty sets based on TW and TLR

are ellipsoidal regions, due to the fact that the “covariance”
matrix in between the terms (θ̂N − θ)T and (θ̂N − θ) is
known and determined by θ̂N . However the uncertainty sets
based on the test statistics TJ and TR are typically non el-
lipsoidal and are computationally more expensive, requiring
function evaluations at many parameter points θ in order to
construct a contour of the uncertainty set.

It is now also fairly easy to formulate the relations with
the uncertainty sets that were constructed in Section 5. We
formalize these relations in the following observations:

Corollary 2

• The uncertainty set based on test statistic TJ is the finite-
time equivalent of the asymptotic Result 1 in section 5;
however whereas in the earlier situation the “covariance”
matrix is considered a fixed matrix JN , in the test statis-
tic TJ it is considered a function of θ0 and therefore it
becomes parametrized as a function of θ in (40).

• A similar relation exists between the result for test statistic
TR and the uncertainty set related to Result 2 in section 5.

• The uncertainty set based on test statistic TLR is equiva-
lent to the one related to Result 3 in section 5.

In particular the latter observation, stating that there is an
exact likelihood ratio interpretation of Result 3, is stressed
here.

Finally we close the discussion on handling ARX models by
showing the results of a second simulation example, in which
we will illustrate the finite-time properties of the several test
statistics.

8 ARX Simulation Experiment

A Monte Carlo simulation experiment is performed to eval-
uate and compare the methods for computing confidence re-
gions described in the preceding sections. For different data
lengths N , a number of K = 50, 000 data sets (yN , uN ) =
{y(t), u(t)}t=1,··· ,N were generated using a data generating
system S that is completely known and belongs to the ARX
model class:

y(t)+a1y(t−1)+a2y(t−2) = b0u(t−1)+b1u(t−2)+e(t),
(44)

with a1 = −1.5578, a2 = 0.5769, b0 = 0.1047 and b1 =
0.0872. For each value ofN , we used a fixed input sequence
uN , with uN a realization of a zero mean, Gaussian dis-
tributed white noise process with variance σ2

u = 1 being
uncorrelated with the zero mean, Gaussian distributed white
noise process {e(t)} having a variance σ2

e = 0.5. From each
data set, the model was identified using a model set M
with the same ARX structure as the data generating system
(S ∈ M); then for each data set the estimate θ̂N was calcu-
lated and it was recorded whether or not the several confi-
dence regions described before contained the true value θ0.
Note that the latter action does not require the construction
of the full confidence regions. The observed coverage γ0.95,
for a nominal confidence level α = 0.95, is defined as the
percentage of the total number of data sets K, for which the
true parameter values lay within the confidence region. This
means that the asymptotical theory predicts an observed cov-
erage of 95%. Figure 5 shows the observed coverage rates
γ0.95 as a function of the number of data pointsN . The 95%
confidence intervals for γ0.95 can be obtained from the bi-
nomial distribution. For K = 50000, the maximum width
of these confidence intervals was approximately 0.01. The
results show that for increasing data lengths, all observed
coverage rates tend to 0.95, as predicted by asymptotic the-
ory. For finite data lengths, however, the different confidence
regions show different reliability. Of all confidence regions
evaluated, the one based on the likelihood ratio test statis-
tic turns out to be the most reliable one. Furthermore, it is
clearly seen that the confidence regions according to TW

and Result 1 are unreliable for small N . Note that the region
of Result 1 was constructed on the basis of the theoretical,
asymptotically valid, expression for the covariance matrix
P0 (14), whose calculation is presented in [5].

On the basis of the presented results it can be concluded
that uncertainty bounds on the basis of the likelihood ratio
test TLR are equivalent to the earlier derived Result 3, and
show the best performance for finite time results. Moreover
they are simply to calculate as they are formed by closed-
form ellipsoidal regions in the parameter space. They out-
perform the theoretical uncertainty regions that are used in
classical prediction error theory, but they are in fact equal to
the pragmatically chosen implementations of the theoretic
expressions.
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Fig. 5. ARX simulation results for a fixed input input sequence
from 50,000 Monte Carlo simulations. Observed coverage rates for
parameter uncertainty sets based on the test statistics according to
the likelihood ratio test TLR (43) (�), the Rao test TR (42) (×),
the Wald test TW (41) (◦), the test TJ (40) (*) and the uncertainty
region according to the classical Result 1 (16) (+). The nominal
confidence level is 0.95.

9 Uncertainty bounding in Output Error (OE) models

9.1 Identification setting and standard approach

In the situation of ARX models fruitful use can be made of
the fact that there exists a closed form (linear) expression for
the parameter estimator (12). The situation becomes more
complex if we turn to model structures that are nonlinear in
the parameters. An Output Error (OE) model set is deter-
mined by

G(q, θ) =
q−nkB(q−1, θ)
F (q−1, θ)

, H(q, θ) = 1

with the notation similar to the situation of ARX models,
replacing polynomial A by the output error denominator
polynomial F , and the dimension of the parameter vector
now equals d = nb + nf . The one-step-ahead predictor
becomes

ŷ(t|t− 1; θ) =
B(q−1, θ)
F (q−1, θ)

u(t).

For quantifying parameter uncertainty bounds in the classi-
cal (PE)- approach, the starting point is to derive a closed-
form approximation of θ̂N on the basis of a first order Taylor
expansion:

(θ̂N − θ0) ≈ −[V ′′
N (θ0)]−1[V ′

N (θ0)] (45)

where V ′
N (θ0) = ∂VN (θ)/∂θ|θ=θ0

and V ′′
N is the second

derivative of VN (θ). Under the common regularity condi-
tions in the PE approach ([18]), V ′′

N (θ) in the neighbor-

hood of θ0 converges uniformly to V̄ ′′(θ0), being the sec-
ond derivative of V̄ ′θ) = limN→∞ 1

N

∑N
t=1 Eε(t, θ)2. This

implies that V ′′
N (θ0) → V̄ ′′(θ0) with probability 1. The first

derivative V ′
N (θ0) asymptotically reaches a Gaussian distri-

bution:

V ′
N (θ0) → N (0, Q), Q = σ2

e lim
N→∞

[
1
N

Ψ(θ0)T Ψ(θ0)](46)

with
ΨT (θ) = [ψ(1, θ) · · ·ψ(N, θ)] (47)

and ψ(t, θ) being the predictor gradient:

ψ(t, θ) :=
∂

∂θ
ŷ(t|t− 1; θ).

Additionally V̄ ′′(θ0) = limN→∞[ 1
N ΨT (θ0)Ψ(θ0)].

Note that due to the fact that the predictor only contains data
from a filtered input signal, Ψ(θ0) is a deterministic matrix.

Substituting these asymptotic results in (45) leads to the
asymptotic distribution

√
N(θ̂N − θ0) → N (0, Poe)

with

Poe = σ2
e [ lim

N→∞
1
N

Ψ(θ0)T Ψ(θ0)]−1. (48)

A confidence bound for θ0 is obtained by a hypothesis test
on the basis of the test statistic

1
N

(θ̂N − θ)TP−1
oe (θ̂N − θ) (49)

which under the hypothesis θ = θ0 is known to have a
χ2

d-distribution. This leads to the following -standard- result
[18]:

Result 4 (OE-standard) On the basis of the test statis-
tic (49), it follows that asymptotically in N , θ0 ∈
D(α, θ̂N ) w.p. α, with

D(α, θ̂N ) := {θ |N(θ̂N−θ)TP−1
oe (θ̂N−θ) ≤ χ2

d,α}. (50)

This result is built on the Taylor approximation (45) and
the asymptotic normality of the term V ′′

N (θ0)−1V ′
N (θ0),

the latter being equivalent to the asymptotic normality of
[ΨT (θ0)Ψ(θ0)]−1ΨT (θ0)e.

It has to be noted that in the reasoning leading to (49) the
covariance matrix Poe is considered to be fixed, and not a
function of θ0. If Poe would be written as Poe(θ0) this would
give rise to an expression Poe(θ) in (49) and as a result the
ellipsoidal shape of (50) would be lost.

In standard practice the theoretical covariance matrix Poe

in 50 which of course is unknown is replaced by a sample
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estimate

P̂oe = σ2
e

1
N

ΨT (θ̂N )Ψ(θ̂N ). (51)

Since Ψ(θ0) is a deterministic matrix, the asymptotic nor-
mality condition of the above result is no problem. The
biggest problem is the fact that Poe depends on the exact
system parameter θ0, which is unknown.

In the sequel we will present several alternatives to this
uncertainty set in attempts to obtain results that avoid the
Taylor approximation and/or the dependence on θ0.

9.2 Alternative 1a - Ellipsoid without Taylor approxima-
tion

We start the analysis of the parameter estimate with the
derivative of the identification criterion: V ′

N (θ̂N ) = 0 or
equivalently

1
N

N∑
t=1

[y(t) − B(q, θ̂N )

F (q, θ̂N )
u(t)] · ψ(t, θ̂N ) = 0. (52)

By defining

yF (t) = F (q, θ̂N )−1y(t); uF (t) = F (q, θ̂N )−1u(t)
(53)

equation (52) can be rewritten as

1
N

N∑
t=1

[F (q, θ̂N )yF (t) −B(q, θ̂N )uF (t)] · ψ(t, θ̂N ) = 0.

The parameter estimator θ̂N satisfying these equations can
now be written in a linear regression-type equation through:

θ̂N = (ΨT ΦF )−1ΨT yF (54)

with ΦT
F =

[
ϕF (1, θ̂N ) · · ·ϕF (N, θ̂N )

]
,

ϕT
F (t, θ̂N ) = [−yF (t−1)··−yF (t−nf ) uF (t−1)··uF (t−nb)]

being a vector with dimension n = nb + nf , and yF =
[yF (1) · · · yF (N)]T . Here and in the sequel we are using
shorthand notation Ψ = Ψ(θ̂N ) and ΦF = ΦF (θ̂N ).

Note that (54) is an equation that characterizes θ̂N ; how-
ever it cannot be used to calculate an actual estimate θ̂N , as
the right hand side of the equation is also dependent on θ̂N .
Nevertheless the equation can fruitfully be used to charac-
terize the parameter uncertainty on θ̂N .
To this end we write the system’s relations as:

y(t) =
B0(q)
F0(q)

u(t) + e(t), (55)

which by filtering through the filter F0(q)/F (q, θ̂N ) be-
comes

F0(q)yF (t) = B0(q)uF (t) +
F0(q)

F (q, θ̂N )
e(t),

that can be written in the regression form:

yF = ΦF θ0 + eF , (56)

where eF = F0(q)

F (q,θ̂N )
[e(1) · · · e(N)]T .

Substituting (56) into (54) now delivers:

θ̂N − θ0 = (ΨT ΦF )−1ΨT eF

which with an svd of ΨT : ΨT = UΣVT can be written as

VT ΦF (θ̂N − θ0) = VT eF . (57)

Similar to the situation of ARX models we can now employ
the test statistic

1
σ2

e

(θ̂N − θ)T ΦT
FV V

T ΦF (θ̂N − θ) (58)

which under hypothesis θ = θ0 will have an asymptotic χ2
d

distribution, under the conjecture that VT eF is asymptoti-
cally normally distributed.

This leads to the following conjecture:

Result 5 (OE-Alt-1a) On the basis of the test statistic (58),
it follows that asymptotically in N , θ0 ∈ D(α, θ̂N ) w.p. α,
with

D(α, θ̂N ) := {θ | 1
σ2

e

(θ̂N−θ)T ΦT
FV V

T ΦF (θ̂N−θ) ≤ χ2
d,α}.
(59)

This result is built on the presumed asymptotic normality of
the term VT eF .

The ellipsoidal uncertainty set (50) does not contain any un-
known variables; it is completely determined by the mea-
surement data and the estimated parameter θ̂N . At the same
time it does not rely on a Taylor approximation, and there-
fore from an analysis point of view it seems to be more
powerful.

9.3 Alternative 1b - Without Taylor approximation

When substituting (55) into (52) it follows that

1
N

N∑
t=1

[
B0(q)
F0(q)

u(t) − B(q, θ̂N )

F (q, θ̂N )
u(t) + e(t)] · ψ(t, θ̂N ) = 0,

(60)
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which can be rewritten as

1
N

N∑
t=1

[F (q, θ̂N )G0(q)uF (t)−

B(q, θ̂N )uF (t) + e(t)] · ψ(t, θ̂N ) = 0.

By denoting ϕT
oe(t, θ0) =

[−G0uF (t−1) · · −G0uF (t−nf ) uF (t−1) · ·uF (t−nb)]

the equation reduces to

1
N

N∑
t=1

[e(t) − ϕT
oe(t, θ0)(θ̂N − θ0)] · ψ(t, θ̂N ) = 0.

In matrix notation this is formulated as

ΨT Φoe(θ0)(θ̂N − θ0) = ΨT e

with ΦT
oe(θ0) = [ϕoe(1, θ0) · · ·ϕoe(N, θ0)].

When similar to the approach in the previous section, we
apply the svd of ΨT it follows that

VT Φoe(θ0)(θ̂N − θ0) = VT e. (61)

The resulting test statistic

1
σ2

e

(θ̂N − θ)T Φoe(θ)TV V T Φoe(θ)(θ̂N − θ) (62)

which under hypothesis θ = θ0 is known to have an asymp-
totic χ2

d distribution.

This leads to the following result:

Result 6 (OE-Alt-1b) On the basis of the test statistic (62),
it follows that asymptotically in N , θ0 ∈ D(α, θ̂N ) w.p. α,
with

D(α, θ̂N ) := (63)

{θ | 1
σ2

e

(θ̂N − θ)T ΦT
oe(θ)V V

T Φoe(θ)(θ̂N − θ) ≤ χ2
d,α}.

This result is built on the asymptotic normality of the term
VT e.

Note that unlike alternative 1a in the previous section the
weighting matrix in the quadratic expression (62) is depen-
dent on θ. Therefore the construction of (63) is generally
computationally expensive, requiring the evaluation of (62)
at a sufficient number of points to produce contours. Unlike
all earlier presented uncertainty sets, the confidence region
(63) generally is not ellipsoidal.

9.4 Alternative 2 - Ellipsoid with alternative Taylor ap-
proximation

In a second alternative, an alternative Taylor approximation
is employed. Starting with a first order approximation of
ε(t, θ) around θ̂N , we can write

ε(t, θ)≈ ε(t, θ̂N ) +
∂ε(t, θ)
∂θ

∣∣∣∣
T

θ=θ̂N

(θ − θ̂N )

= ε(t, θ̂N ) − ψ(t, θ̂N )T (θ − θ̂N ).

Then for θ̂N in the neighborhood of θ0, we can substitute
θ = θ0 which leads to

ε(t, θ̂N ) ≈ e(t) − ψT (t, θ̂N )(θ̂N − θ0). (64)

When substituting this relation in the expression for the cost
function gradient:

V ′
N (θ̂N ) =

1
N

N∑
t=1

ε(t, θ̂N ) · ψ(t, θ̂N ) = 0

it follows that

θ̂N − θ0 = (ΨT Ψ)−1ΨT e, (65)

which with applying the svd ΨT = UΣVT leads to

VT Ψ(θ̂N − θ0) = VT e. (66)

Similar to the situation of ARX models and of the previous
section, we can employ the test statistic

1
σ2

e

(θ̂N − θ)T ΨT Ψ(θ̂N − θ) (67)

which under hypothesis θ = θ0 is known to have an asymp-
totic χ2

d distribution. The following result is now immediate.

Result 7 (OE-Alt-2) On the basis of the test statistic (67),
it follows that asymptotically in N , θ0 ∈ D(α, θ̂N ) w.p. α,
with

D(α, θ̂N ) := {θ | 1
σ2

e

(θ̂N − θ)T ΨT Ψ(θ̂N − θ) ≤ χ2
d,α}.

(68)
This result is built on the Taylor approximation (64) and
asymptotic normality of the term VT e.

The uncertainty set presented here is also completely deter-
mined from data and the estimated parameter θ̂N . It does
not rely on unknown quantities.

For OE models the matrix Ψ is composed of filtered input
samples (and no output samples). As a result in an open-
loop experimental set-up, V and e will only be correlated
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through the fact that ψ(t, θ̂N ) depends on θ̂N which in
turn is correlated to the noise in e. This correlation can be
considered a secondary effect.

Note that when in the standard uncertainty set (50) the un-
known covariance matrix Poe is replaced by the sample es-
timate (51) then the two uncertainty sets (50) and (68) coin-
cide. Note however that in the latter alternative case we do
not have to make the compromise of a sample estimate re-
placement. Therefore the conclusion is, similar to the ARX
case, that the standard method that is commonly used in
practice, has a stronger theoretical support than is usually
recognized.

Example 2 (Example 1 continued) A similar simulation
experiment as shown in Example 1 is performed but now
formulated in an output error model structure. This implies
that the data generating system has an additive unit vari-
ance output white noise, and a first order model structure
is chosen according to

ε(t, θ) = y(t) − θb

1 + θfq−1
u(t).

The parameters θf and θb are estimated with a least-squares
identification criterion.

We illustrate the difference in the distributions of the ran-
dom variables (65) and (66) for different values of N .
Figures 6 and 7 show the corresponding results for the nu-
merator parameter θb and the denominator parameter θf

respectively. The top rows show the histogram of the sec-
ond element of (ΨT Ψ)−1ΨT e corresponding with θ̂b as a
function of data length N and for 5000 Monte Carlo simu-
lations. The bottom rows depict the distribution of the sec-
ond element of VT e, related to Result 6 (OE-Alt-2) in (68).
The red solid curves indicate closest Gaussian distributions
to the results. Clearly, the bottom rows are nearly indis-
tinguishable from the Gaussian distribution, while the top
rows show that a Gaussian distribution is approximated for
N = 50 (θb), or not even achieved for the considered val-
ues of N (θf ). The Output Error results are based on 2000
Monte Carlo simulations.

The results of the example show the relevance of the step
from (65) to (66) in the analysis leading to Result 6. Similar
to the ARX case, the results of the example suggest that
the existing correlation between V and e hardly affects the
normality of the test statistic. This would allow to apply the
Gaussian distribution to finite time signals also, even in the
case of nonlinearly parametrized model structures as OE.

9.5 Likelihood alternatives for OE models

In Section 7 asymptotic results were presented for test statis-
tics in a likelihood perspective. The statistical results of
Proposition 1 are not dependent on any particular model
structure, and so they are valid for Output Error models as
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Fig. 6. Distribution of parameters in OE structure. Top: second
element of (ΨT Ψ)−1ΨT e corresponding to θ̂b for data length
N = 2, 5, 25, 50. Bottom: the distribution of the second element
of VT e corresponding to θ̂b. Red solid curves are best fitting
Gaussian distributions.
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Fig. 7. Similar simulation results as in Figure 6 but then for the
test statistic related to the denominator parameter θ̂f . Red solid
curves are best fitting Gaussian distributions.

well. We only need to specify the particular expressions for
the variables in the case of Output Error models.

Proposition 3 For OE models defined before, the following
expressions hold:

(1) JN (θ0) =
1
σ2

e

[ΨT (θ0)Ψ(θ0)] (69)

(2) SN (θ0) =
1
σ2

e

ΨT (θ0)e (70)

(3)−2 logLN (θ0) =
N

σ2
e

[
VN (θ0) − VN (θ̂N )

]
(71)

Proof
The proof follows along similar lines as the proof of Proposi-
tion 2, however now with the ARX predictor gradient ϕ(t, θ)
present in matrix Φ being replaced by the OE predictor gra-
dient ψ(t, θ) in matrix Ψ. �
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As a result of the above Proposition, we can again formulate
several test statistics that are valid for OE models.

Proposition 4 The following test statistics all follow an
asymptotic-in-N χ2

d distribution under the hypothesis θ =
θ0:

TJ : (θ̂N − θ)TJ−1
N (θ)(θ̂N − θ) (72)

TW : (θ̂N − θ)TJ−1
N (θ̂N )(θ̂N − θ) (73)

TR :
1
σ2

e

εT (θ)Ψ(θ)(ΨT (θ)Ψ(θ))−1ΨT (θ)ε(θ) (74)

TLR :
N

σ2
e

[VN (θ) − VN (θ̂N )] (75)

where ε(θ) = [ε(1, θ) · · · ε(N, θ)]T .

Proof
The expressions for TJ and TW are immediate from
Proposition 1. The expressions for TLR follows di-
rectly from (38). For obtaining TR we need to write
S(θ) as S(θ) = 1

σ2
e
Ψ(θ)ε(θ). Based on the expression

ST (θ0)JN (θ0)−1S(θ0) → χ2
d, the related test statistic

follows. �

Similar to the situation of ARX models, the uncertainty sets
related to the different test statistics are formalized as

D(α, θ̂N ) := {θ | T∗ ≤ χ2
d,α} (76)

where ’*’ refers to the particular test statistic TJ , TW , TR,
or TLR.

When evaluating the resulting uncertainty sets we can make
the following observations:

• Due to their structure the uncertainty sets based on TJ ,
TR and TLR are not ellipsoidal. Only the uncertainty set
based on TW is. Therefore this latter form can be calcu-
lated analytically, whereas the other three sets have to be
computed by evaluating all possible parameter values in a
gridded parameter space. This is of course computation-
ally less attractive.

• The uncertainty set based on TW is equal to the uncer-
tainty set of Result 6 (OE-Alt-2), and equal to the set of
Result 4 (OE-standard) if in this latter set the covariance
matrix Poe is replaced by the sample estimate (51). This
is the test that is commonly used and that is implemented
in Matlab’s Identification Toolbox.

• The uncertainty set based on TR is the only set that does
not depend on an estimated parameter θ̂N .

• The uncertainty set based on TLR can be interpreted as a
level set of the cost function VN . Since VN is not neces-
sarily convex it is easily understandable that the resulting
uncertainty set might contain disconnected regions in the
parameter space.

The most important result is formulated in the next Propo-
sition.

Proposition 5 If e is Gaussian distributed then the uncer-
tainty set based on TR is valid for every value of N .

Proof Note that with (70) and the fact that Ψ(θ0) is deter-
ministic for OE models, the result is immediate. �

This Proposition is actually very strong. There exists a non-
asymptotic exact uncertainty bound that is valid for OE mod-
els. Its principal disadvantage is, that it is not easily com-
putable, as it is not formalized in a closed form, i.e. it is not
ellipsoidal. However for every individual parameter it can
simply be verified if it belongs to the set, by simply calculat-
ing 74 and verifying whether it satisfies (76). An overview
of the several results for Output Error models is provided in
Table 2.

10 Simulation Experiment

A simulation experiment has been performed in the same
setting as done for the case of ARX models in Section 8. A
data generating system has been chosen to be given by

G0(q) =
q−1(b0 + b1q

−1)
1 + f1q−1 + f2q−2

, H0(q) = 1, (77)

with b0 = 0.1047, b1 = 0.0872, f1 = −1.5578 and f2 =
0.5769, generating data sets of length N . For each value of
N , we used a fixed input sequence uN , with uN a realiza-
tion of a zero mean, Gaussian distributed white noise pro-
cess with variance σ2

u = 1 being uncorrelated with the zero
mean, Gaussian distributed white noise process {e(t)} with
variance σ2 = 1. From each data set, an Output Error model
was identified, and and it was recorded whether or not the
confidence regions described in the previous sections con-
tained the true value θ0. Figure 8 shows the observed cov-
erage rates γ0.95 as a function of the number of data points
N , on the basis of 50,000 Monte Carlo simulations.

With these numbers, the 95% confidence intervals for γ0.95,
obtained from the binomial distribution, is approximately
0.01. The results show that for increasing data lengths, all
observed coverage rates tend to 0.95, as predicted by asymp-
totic theory. For finite data lengths, however, the different
confidence regions show different reliability. The result of
the Rao test statistic turns out to yield the most reliable con-
fidence regions in the sense that the coverage probability
equals the nominal probability for all data lengths (as pre-
dicted by theory). For the other confidence regions consid-
ered, coverage and nominal probabilities differ significantly
for small N . Particularly the ”classical” confidence region
(73) and the alternative (59) that provide ellipsoidal confi-
dence regions turn out to be unreliable for small N . The re-
liability of the LR based confidence region (75) turns out to
be relatively high, but suboptimal when compared to the Rao
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Taylor approximation Ellipsoidal Convergence condition

OE-standard yes yes V ′′
N (θ0)

−1V ′
N (θ0)

OE-alt-1a no yes VT eF

OE-alt-1b no no VT e

OE-alt-2 yes, alternative yes VT e

TJ no no θ̂N

TW = OE-impl no yes θ̂N

TR no no –

TLR no no VN (θ̂N )

Table 2
Overview of properties of OE model uncertainty sets based on different test statistics. Indication of the involvement of a Taylor
approximation, an ellipsoidal structure of the parameter uncertainty set, and the random variable on the basis of which the asymptotic
distribution is derived. OE-impl is the algorithm that is typically implemented in current practice.

method. The simulation experiment was repeated for data
sequences obtained using different realizations of both the
noise contribution eN and the input sequence uN in each of
the K = 50000 data sets (for each value of N ). The results
were similar to those obtained with a fixed input sequence
uN . More simulation experiments were performed, using al-
ternative data generating systems (all belonging to the OE
model class), parameters and nominal confidence rates. All
experiments yielded similar results.
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Fig. 8. Observed coverage rates of the confidence regions based on
the ”classical” approach of Result 6 (OE-Alt-2) (68) and TW (73)
(◦), the alternative approaches OE-Alt-1a (59)(+) and OE-Alt-1b
(63)(*), the LR based approach based on TLR (75)(�), and the
Rao test based on TR (74)(×), as a function of N . The data
generating system is given by (77) and an OE model set is used
with the same structure. The nominal confidence level is 0.95. All
results are obtained from 50000 realizations.

11 Discussion and Extensions

In the commonly applied uncertainty bounding algorithms
often use is made of parameter linearizations, e.g. through a
Taylor approximation. This also typically holds for the un-
certainty analysis of variables that are nonlinear functions of
the estimated parameters as e.g. zero/pole locations. Unde-
sired effects of these linearizations can be avoided by con-
sidering alternatives based on level sets of the cost function
(see e.g. [22] pages 326-327, [23],[15]). This appealing al-
ternative is equivalent to the likelihood ratio test statistic
discussed before, but comes at the cost of a loss of the ellip-
soidal parameter bounding structure, and therefore requires
more computationally involved algorithms.

In the setting of this paper, the uncertainty bounding pro-
cedure as presented in [3] can be positioned as yet another
choice of test statistic.

The alternative way of bounding parameter uncertainty as
presented here has also been used fruitfully in the analysis
of cross-correlation tests for model validation, see [11].

The presented approach is also directly applicable to instru-
mental variable estimators. In this case the parameter error
will be given by

θ̂N − θ0 = (ZT Φ)−1ZT e

where Z is a (non-random) instrument matrix having ele-
ments that are correlated to the data, but uncorrelated to the
noise. The equation above is rewritten as

1√
N

(ZT Φ)(θ̂N − θ0) =
1√
N
ZT e.

If the instruments in Z are constructed as filtered versions of
the input signal with a pre-determined filter, (including a fil-
ter constructed on the basis of parameters that are estimated
from a data set that is different than the one used for esti-
mating θ̂N ), ZT and e will be statistically independent and
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the presented finite-time results will fully apply, leading to
the parameter uncertainty bound: θ0 ∈ Div(α, θ̂N ), w.p. α,

with Div(α, θ̂N ) := (78)

{θ | N(θ − θ̂N )TP−1
iv (θ − θ̂N ) ≤ χ2

d,α}
and Piv = σ2

e(
1
N
ZT Φ)−1ZTZ(ZT Φ)−1. (79)

being valid for any finite N , provided that the noise distur-
bance signal e is Gaussian distributed.

The presented approach has also good opportunities to be
applied to the situation of considering asymptotic bias errors
also (situation S /∈ M), see e.g. [7] and [10], and to Box-
Jenkins models, see [7].

12 Conclusions

In this paper alternative methods are presented for formu-
lating probabilistic parameter uncertainty intervals for pa-
rameters that are identified in the prediction error identifi-
cation framework. By exploiting the freedom to choose par-
ticular test statistics in the underlying hypothesis tests, al-
ternative formulations result. For both ARX and OE mod-
els it follows that the standard implemented results have a
stronger theoretical support than originally suggested, even
for finite-length data sets. For OE models several different
test statistics are analyzed. Uncertainty sets that are based on
linearization (Taylor approximation) leading to ellipsoidal
uncertainty sets, show a worse performance than tests that
avoid this linearization. However this comes at the cost of
computationally more involved algorithms for constructing
the sets. It is shown that there exist OE uncertainty sets that
are exact for finite-length data sets. The presented theory
directly extends to instrumental variable estimators.
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Appendix

Proof of (22)

The random variable VT e can be interpreted as a weighted
sum of independent identically distributed random variables
with variance σ2

e . In the considered situation the weights are
also random. By using an appropriate central limit theorem
(see e.g. [?], page 569) this expression asymptotically con-
verges to a normal distribution provided that limN→∞ VT V
exists and is nonsingular. Since for every realization V it
follows that V TV = I , the limit expression simply equals
the identity matrix, leading to the result (22).

Proof of Lemma 1

Define the vector valued function
g(·) : R

(n+n2)×1 → R
(n+n2)×1, defined by

g(z,v) :=

[
e

v

]
=

[
V 0

0 In2×n2

][
z

v

]
, (.1)

with v = col(VT ) a vector containing all elements of VT .
When denoting e′ := [eT vT ]T and z′ := [zT vT ]T it
follows that

pz(z) =
∫

v

pz′(z′)dv.

Using the mapping from z′ to e′ it follows from standard
theory on the transformation of random variables [?] that

pz′(z′) = pe′(g(z′)) · det(J(g(z′)))

with the Jacobian given by

J(g(z′)) =

[
V Z

0 In2×n2

]
,

and Z containing the partial derivatives of V z to v. Conse-
quently

fz(z) =
∫

v

fe′(g(z′)) · det(J)dv

=
∫

v

fe(V z)fv(v) · det(J)dv

where the latter equation follows from the fact that e and V
are independent. Using the Gaussian distribution of e and
the fact that det(J) = det(V ) = 1 it follows that

fz(z) =
∫

v

1
σ(
√

2π)n
e−

1
2 σ−2zT V T V z fv(v)dv

=
∫

v

1
σ(
√

2π)n
e−

1
2 σ−2zT z fv(v)dv

= fe(z)
∫

v

fv(v)dv = fe(z).

�
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