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Summary

Dynamic optimization of waterflooding using optimal control the-
ory has significant potential to increase ultimate recovery, as has
been shown in various studies. However, optimal control strate-
gies often lack robustness to geological uncertainties. We present
an approach to reduce the effect of geological uncertainties in the
field-development phase known as robust optimization (RO). RO
uses a set of realizations that reflect the range of possible geolog-
ical structures honoring the statistics of the geological uncertain-
ties. In our study, we used 100 realizations of a 3D reservoir in a
fluvial depositional environment with known main-flow direction.
We optimized the rates of the eight injection and four production
wells over the life of the reservoir, with the objective to maximize
the average net present value (NPV). We used a gradient-based
optimization method in which the gradients are obtained with an
adjoint formulation. We compared the results of the RO procedure
to two alternative approaches: a nominal-optimization (NO) and
a reactive-control approach. In the reactive approach, each pro-
duction well is shut in when production is no longer profitable.
The NO procedure is based on a single realization. In our study,
the NO procedure is performed on each of the 100 realizations
in the set individually, resulting in 100 different NO-production
strategies. The control strategies were applied to each realiza-
tion, from which the average NPVs, the standard deviation, the
cumulative-distribution functions, and the probability-density func-
tions were determined. The RO results displayed a much smaller
variance than the alternatives, indicating an increased robustness to
geological uncertainty. Moreover, the RO procedure significantly
improved the expected NPV compared to the alternative methods
(on average 9.5% higher than using reactive-control and 5.9%
higher than the average of the NO strategies).

Introduction

In this paper, we consider the secondary-recovery phase of a petro-
leum reservoir using waterflooding. In this case, a number of injec-
tion and production wells are drilled to preserve a steady reservoir
pressure and sweep the reservoir. The use of smart wells expands
the possibilities to manipulate and control fluid-flow paths through
the oil reservoir. The ability to manipulate (to some degree) the
progression of the oil/water front provides the possibility to search
for a control strategy that will result in maximization of ultimate
oil recovery.

Dynamic optimization of waterflooding using optimal control
theory has significant potential to increase ultimate recovery by de-
laying water breakthrough and increasing sweep, as has been shown
in various studies (Brouwer and Jansen 2004). However, optimal
control strategies often lack robustness to geological uncertainties.
By discarding these uncertainties, the sensitivity to a possibly large
system/model mismatch is not taken into account within the optimi-
zation procedure. As a result, the optimal control strategy may cease
to be optimal or may even result in very poor performance.

Dealing with uncertainty is a topic encountered in many fields
related to modeling and control. It can essentially be divided into
two different strategies, which are not mutually exclusive: reducing

the uncertainty itself using measurements [i.e., history matching
(Landa and Horne 1997, Li et al. 2003)] and reducing the sensitivi-
ty to the uncertainty. In this paper, we consider a situation in which
no production data are assumed to be available, which rules out any
history-matching approach to reduce the geological uncertainty.
Our study forms part of a larger research project to enable closed-
loop, model-based reservoir management (Jansen et al. 2005).

A suggested approach from the process industry, to optimization
problems that suffer from vast uncertainty and limited measurement
information, is the use of a so-called RO technique (Srinivasan
et al. 2003, Terwiesch et al. 1998, Ruppen et al. 1995). In RO, the
optimization procedure is performed over a set of realizations, ac-
tively accounting for the influence of the uncertainty. The imple-
mentation of multiple realizations within the optimization process
has been addressed by Yeten et al. (2002). However, their study
deviates in the way the realizations are incorporated in the objec-
tive function, in the optimization method, and in the number of
realizations. The goal of our paper is to present an RO procedure
on the basis of a set of 100 realizations of a 3D oil/water reservoir,
which leads to a control strategy that accounts explicitly for geolog-
ical uncertainty.

Theory

Optimal Control. We consider an optimal control problem in
which the injection-flow rates and production-flow rates are manip-
ulated directly (i.e., a rate-constrained scenario). The objective is to
maximize the simple NPV of the cumulative oil and water produc-
tion over a fixed time horizon. The objective function (or cost
function) is thus given by (Brouwer and Jansen 2004)

J q1:Kð Þ=
XK
k=1

Jk q1:kð Þ=

XK
k=1

Dtk -ro � qo;k q1:kð Þ+ rwp � qwp;k q1:kð Þ- rwi � qwi;k
� �

1+ btð Þ
tk
t

; (1)

where ro is the oil revenue, rwp is the water-production cost, and
rwi is the water-injection cost, which are all assumed positive and
constant. The variable qo,k represents the total flow rate (i.e.,
summed over all wells) of produced oil, qwp,k is the total flow rate
of produced water, and qwi,k is the total flow rate of injected water,
at discrete time k. We use the convention that injection rates are
positive and production rates negative, such that the oil revenues
in the objective function Eq. 1 are positive and the costs negative.
The variable K represents the total number of timesteps k, Dtk the
time interval of timestep k, and tk is the cumulative time until k.
The variable qk is a vector of the liquid-flow rates in all wells,
which act as the control variables (input variables) in our optimi-
zation problem, at discrete time k. The colon in the subscript is
used to indicate a sequence (i.e., q1:K implies qk,k = 1, . . . ,K).
The oil- and water-production rates qo,k and qwp,k at discrete time k
are functions of the total flow rates qk through their dependence on
the (saturation-dependent) fractional flow in the well gridblocks.
The saturations are, in turn, functions of the current and all previ-
ous inputs q1:k, such that qo,k and qwp,k become complex functions
of q1:k. The parameter b in the denominator of Eq. 1 is the dis-
count rate per time unit t and is considered to be equal to zero in
this paper. The optimization problem involves finding the optimal
injection- and production-flow rates q1:k that maximize the perfor-
mance measure J(q1:K), while honoring the dynamic system
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equations. We use a gradient-based optimization algorithm to con-
verge to the (possibly locally) optimal flow rates. The gradients
are the transposes of the derivatives (i.e., rJk = ðdJ=dqkÞT , and
the derivatives

dJ

dqk
=
XK
k=k

∂Jk
∂qk

; k = 1; . . . ;K (2)

are obtained by solving a system of adjoint equations as described
by, for example, Brouwer and Jansen (2004) and Sarma et al.
(2005). (See Appendix A for a brief description of the adjoint-
based method to obtain the gradient information.) The gradients
are used in a steepest ascent (SA) algorithm to iteratively con-
verge to the optimal input trajectory:

qi + 1k =qik +a
dJ

dqk

� �T

; k = 1; . . . ;K; (3)

where a is the step size of the algorithm and i is the iteration
counter. A line search to find the optimal step size along the
direction of the greatest ascent could be used to speed up the
iterative procedure, but because our study was not aimed at improv-
ing convergence speed, we used a fixed a for simplicity’s sake.

Using Eq. 3, a situation may occur in which the new flow
rates qi+1k ; k = 1; . . .K do not obey the constraint equations as
addressed in more detail in Eqs. A-7 and A-8 in Appendix A. To
ensure that they comply with the constraints, feasible search di-
rections dk of the gradient vectors (dJ/dqk)

T need to be determined.
Sarma et al. (2006) proposed an effective but rather complicated
method to obtain feasible directions if there are state constraints. De
Montleau et al. (2006) and Kraaijevanger et al. (2007) also discuss
production optimization under state constraints. However, because
we are dealing with linear equality and inequality constraints on the
input variables only, we can simply apply the gradient projection
method as described in Luenberger (1984) to determine dk. Using
dk, the SA algorithm thus becomes

qi+1k = qik + adk: (4)

Determining a feasible search direction dk, however, still does
not guarantee that qi+1k is feasible, given the fixed step size a. It
merely ensures that a certain a>0 exists for which it is feasible.
For this reason, after dk is determined, it is subsequently checked
for its feasibility. If the result of this check is negative, a is scaled

down until a feasible qi+1k is reached. Reducing the step size slows
down the convergence rate of the SA method. However, we note
that checking if feasibility of the input (flow rates) is violated and
subsequently finding a reduced step size that ensures feasibility
does not require any additional simulation runs.

Geological Scenarios. The need to model uncertainty is an in-
evitable result of the modeling process itself; it is simply imprac-
tical or impossible to capture all dynamics and properties of a real
dynamical system. Often, adopting an “uncertain” model descrip-
tion in a model-based control scheme does not create problems.
The modeling error may be small, and output and measurement
data can be used to correct the predicted state and parameter
values to their real values.

Unfortunately, this does not hold for control strategies based
on reservoir models. The geological uncertainty is generally pro-
found because of the noisy and sparse nature of seismic data, core
samples, and borehole logs. Besides, during production, this un-
certainty can be reduced only marginally because the measure-
ment and output data provide only limited information on the true
values of the (large number of) states and model parameters.

The consequence of a large number of uncertain model param-
eters (q) is the broad range of possible models that may satisfy the
seismic and core-sample data. Nevertheless, in many cases, for
reasons of simplicity, a single reservoir model is adopted in which
the uncertain parameters q are converted to deterministic param-
eters h by taking their expected values (i.e., h := E[q]). However,
because we are looking at the NPV (denoted by J) as a measure of

performance, we are far more interested in the expected NPV over
the uncertainty space Y (spanned by the uncertain parameters q). It
should be noted that this is generally not the same as taking the
expected value of the uncertain parameters:

Ey J q1:K ; yð Þ½ � =/ J q1:K ;Ey y½ �ð Þ; y 2 Y: (5)

A better approximation of the expected NPV may be obtained by
discretizing the uncertainty space Y, resulting in a finite number
(Nr) of realizations of q, and calculating the expected value over
the discretized uncertainty space:

Ey J q1:K ; yð Þ½ � �
Eyd J q1:K ; ydð Þ½ �; yd := y1; . . . ; yNr

gf ; (6)

where qd is the finite set of (deterministic) realizations of q. In the
special case that the realizations are equiprobable, the right-hand
side of Eq. 6 is simply the average of the Js, given by:

Eyd J q1:K ; ydð Þ½ �= 1

Nr

XNr

i=1

J q1:K ; yið Þ: (7)

If the realizations are not equiprobable, a weighted average of the
Js can be used, by applying different weighting factors to the Js
resulting from each realization. If we assume that the modeling
uncertainty is limited to uncertainty caused by a lack of informa-
tion on the true geological structure of the reservoir, the realiza-
tions of q are usually referred to as geological scenarios. Several
methods are available to create an ensemble of geological scenar-
ios. A geologist may create a number of scenarios based on his
own knowledge and experience with comparable reservoirs. The
uncertainty space thus provides the geologist with the boundaries
within which he/she can design possible realizations. The advan-
tage of such a method is that geological realism of the scenarios
is guaranteed. It is, however, a rather subjective process; there-
fore, the set may be biased. A geostatistics-based method, such
as multiple-point geostatistics (Strebelle 2000, Caers et al. 2003),
incorporates statistical information on geological parameters and,
consequently, does not suffer from this problem. It is, however, more
difficult to generate geologically realistic structures in this man-
ner. Alternatively, geological realizations may be created with
object-based or process-based algorithms, which usually produce
realistic geological structures but are difficult to condition to well
data (Deutsch and Tran 2002, Viseur 1999, Thomas and Nicholas
2002, Gross and Small 1998).

RO. The use of an ensemble of geological scenarios to determine
the expected revenues from a reservoir given a specified produc-
tion strategy is not uncommon. Implementing such an ensemble in
an optimization scheme has, however, not found its way into oil-
recovery-optimization methods yet. Using a set of realizations to
account for the effect of uncertainty within optimization problems,
which suffer from uncertainty and limited measurement informa-
tion, is not uncommon in the downstream petroleum industry.
These optimization procedures are referred to as RO techniques.
Within RO, the set of realizations may be used in various ways to
account for the effect of uncertainty. These different approaches are
represented by RO objectives (Srinivasan et al. 2003, Terwiesch
et al. 1998, Ruppen et al. 1995). The most straightforward RO
objective is using the expected outcome over the set of realizations,
which is, in our case, equivalent to Eq. 7. Other objectives may
involve incorporating the variance of the outcomes or a worst-case
approach. In this work, however, we limit ourselves to the expected
NPV, represented by the robust objective function Jrob.

Jrob q1:Kð Þ = 1

Nr

XNr

i=1

J q1:K ; yið Þ: (8)

This results in the following RO problem:

max
q1:K

Jrob q1:Kð Þ: (9)
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From this formulation, it follows that calculating the expected
NPV (i.e., the value of Jrob) involves a linear operation. As a re-
sult, calculating the gradients of Eq. 9 involves a linear operation in
terms of the gradients of each realization.

dJrob
dqk

=
1

Nr

XNr

i=1

dJ q1:K ; yið Þ
dqk

: (10)

The fact that calculating the mean gradients (dJrob/dqk)
T involves

a linear operation has the advantage that the gradients of each
realization can be determined separately. As a result, the gradients
can be calculated sequentially instead of simultaneously, which
would result in a considerable computational burden, limiting the
number of realizations to be used. Calculating the gradients se-
quentially solves this problem, but it does lead to an extended simu-
lation time by a factor Nr. However, the fact that the calculations are
decoupled allows for parallel calculations on multiple processors.

Example

We considered a waterflooding example of a 3D oil/water-reservoir
model containing eight injection wells and four production wells.
Production from the reservoir was simulated over a time horizon
of 10 years, with timesteps of 1/16 year. The model contains 18,553
gridblocks 8�8�4m in size, and there are seven vertical layers.
The average reservoir pressure was set at 400 bar, and the initial
water saturation was taken to be uniform over the reservoir at a
value of 0.1. The remaining geological and fluid properties used in
this example are presented in Table 1. The reservoir is located in a
fluvial depositional environment with known main-flow direction.
Seismic and core-sample data from appraisal wells were assumed
to provide no specific knowledge on the meandering structure of
the fluvial depositions. In this example, the lack of information about
the real geological structure was assumed to be the only contributor
to the modeling uncertainty.

Two different sets of 100 geological realizations of the reser-
voir were generated, based on geological insight rather than a geo-
statistical method. In other words, the geologist sketched them by
hand. Although it may be argued that a more sophisticated method
is to be preferred in practice, the method of creating realizations
is unrelated to the optimization strategy presented in this paper.
Each set of realizations represents the range of possible geological
structures within the boundaries of the geological uncertainties. The
number of 100 realizations is assumed to be large enough to be a
good representation of this range. To check whether this is a reason-
able assumption, the responses of the two sets to identical control
strategies were compared. It should be noted that similar responses
(in a statistical sense) indicate that this assumption is plausible,
but do not provide a conclusive validation. The manual method by
which the different realizations were created does not give a classi-
fication between the members in the set. No information from seis-
mic, production, or other data was assumed to be available to rank
the realizations; therefore, they were assumed to be equiprobable.

The absolute-permeability field and well locations of the first
realization of the set are depicted in Fig. 1. Fig. 2 displays the
absolute-permeability field of six realizations randomly selected
from the set without the wells. The minimum rate for each well
was chosen equal to 0.02 m3/d because setting the rate equal to
0 m3/d presented numerical problems when solving the system of
adjoint equations. The maximum rate for each well was fixed at
64 m3/d. To keep the reservoir pressure constant, the total injection
rate must be equal to the total production rate at each time instant.

. . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 1—Permeability field and well locations of Realization Num-
ber 1 of a set of 100 realizations.

Fig. 2—Permeability field of six (randomly chosen) realizations out of a set of 100, showing alternative fluvial structures.
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Production Strategies. We considered three production strate-
gies: a reactive approach, an NO approach, and an RO approach.
Their performances were evaluated using the objective function
as defined in Eq. 1, with ro = USD 126 /m3, rw = USD 19 /m3, and
ri = USD 6 /m3. However, because of the geological uncertainty,
a deterministic estimate of performance cannot be given. There-
fore, the performance of each of the three strategies was estimated
in a probabilistic sense, using the set of 100 realizations. For each
strategy, the 100 deterministic values of the objective function
resulting from the set were used to determine a cumulative distri-
bution function (CDF) and to estimate a probability density func-
tion (PDF).

Reactive Approach. Using the reactive approach, each produc-
tion well is simply shut in if production is no longer profitable,
where the profitability threshold corresponds to a water cut of
87%. The production-flow rates are initially fixed at their max-
imum capacity of 64 m3/d. The injection-flow rates are equal for
each injection well and are initially fixed at 32 m3/d to honor the
balanced injection and production. If a production well is shut in,
the injection rate of each injection well is proportionally scaled
down to meet the equality constraint, described in Appendix A
by Eq. A-8. This reactive strategy will be used as a benchmark
for the optimal control strategies that need predictive reservoir
models to determine a strategy. The advantage of a reactive strat-
egy is that it is model-free. Thus, when applied to an actual
field, it does not suffer from a wrong representation of the geolog-
ical realizations, whereas model-based methods do. However, the
disadvantage is that it usually does not lead to an optimal reservoir
flooding in terms of life-cycle performance. In the field-development
phase of a project, we can assess the performance of a reactive
strategy vs. a model-based strategy by simulating the performance
of both strategies on a set of realizations. This assessment is valid
only under the assumption that the set is a good representation of the
true modeling uncertainty and, thus, can reflect the truth. If the used
set is far from the truth, it is impossible to say which of the con-
sidered control strategies will perform better. We applied the reac-
tive control strategy to each of the 100 members of the set of

realizations. Fig. 3 displays the response of the four production
wells in terms of water cut over time for each of the 100 realiza-
tions. The large spread in water-breakthrough times gives an indica-
tion of the level of variability that the realizations are meant to
represent. Note that the production wells are shut in when the profit-
ability threshold of 87% water cut is reached. Applying the reactive
control strategy to each of the 100 members also resulted in 100
values of the objective function (Eq. 1). The corresponding CDF
and PDF, as depicted in Fig. 4, provide a probabilistic estimate of
the performance of the reactive production strategy when applied to
the true reservoir. The expected NPV and estimated standard de-
viation of the strategy are presented in Table 2.

NO. The NO approach is based on a single realization. However,
because none of the realizations in the set of 100 is preferred over
the others, the decision of which realization to use in the NO
approach becomes an arbitrary one. To avoid the possibility of a
biased choice, the NO procedure was performed on each of the 100
realizations in the set individually, resulting in 100 different NO
production strategies. The number of control parameters for the
optimization procedure is equal to the number of timesteps times
the number of wells, which comes to 1,920 parameters. However,
by using the adjoint method to obtain the gradients, the number
of control parameters is not an issue because it requires only a sin-
gle adjoint simulation to compute the gradients to all control param-
eters. The initial injection- and production-flow rates were set
constant over time and equal to 24 m3/d and 48 m3/d, respectively.
In the SA algorithm, a fixed step size t is used of 3 � 10–4, which
was chosen on the basis of a number of trial runs. The optimization
was brought to an end after 80 iterations, at which point the in-
cremental change of the objective function was less than 0.04% for
all cases. The optimization procedure required a little more than
3 hours to converge to the optimal solution on a single computer for
a single realization. Using a different optimization scheme or better
constraint handling, we could have reached the convergence faster.
However, improved convergence was not the goal of this study and
was, therefore, not investigated further. The optimal injection- and
production-flow rates resulting from the NO procedure based on

Fig. 3—Response of the four production wells to the reactive control strategy in terms of water cut over time for each of the
100 realizations. The production wells are shut in when the profitability threshold of 87% water cut is reached.
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Realization Number 1 have been displayed in Fig. 5. The perfor-
mance of each of these 100 strategies on the entire ensemble was
assessed by applying them to each member of the set. This resulted
in 100 � 100 values of the objective function (Eq. 1), from which
100 CDFs and PDFs were determined, one for each strategy, as
shown in Fig. 4. For each NO strategy, the expected NPV and the
standard deviation were determined. The averages of these 100 ex-
pected NPV values and standard deviations are presented in Table 2.

RO. The RO approach uses the entire set of realizations to de-
termine a control strategy that maximizes the expected NPV over
the entire set of realizations. The robust optimal control strategy is
determined using the same gradient-based optimization procedure
and optimization parameters that were used in the NO approach.
However, calculating the robust gradient information requires cal-
culating the gradients for each realization individually. Hence, the
simulation time is approximately 100 times longer than the time
needed for the NO approach (i.e., approximately 2 weeks). The RO
control strategy was again applied to each realization in the set, and
the value of the objective function was determined for each mem-
ber. The resulting CDF and PDF are depicted in Fig. 4, and the
expected NPV and standard deviation are presented in Table 2.

Results

The first observation from Fig. 4 is that, given the set of realiza-
tions used in this example, a different choice of realization as a
basis for the NO procedure can have a profound effect on the
performance of the resulting NO strategy. A bad choice may lead
to a drop of almost 10% in terms of expected NPV, compared to
the expected NPV of a good choice.

A second observation from Fig. 4 is that, in this example,
almost all NO control strategies perform better than the reactive
control strategy. Table 2 shows that, on average, the expected NPV
of the NO control strategies is 5.9% higher than the expected NPV
of a reactive control strategy. Also, the standard deviation is, on
average, smaller than that of the reactive approach. This indi-
cates that the NO control strategies, on average, show an increased
robustness to the effect of the considered geological uncertainty.

Fig. 4 and Table 2 show that the performance of the RO con-
trol strategy is greatly improved over the performance of the
reactive control strategy. The expected NPV increases 9.5%. The
standard deviation is also reduced considerably, although a re-
duction in variance is not part of the objective function (Eq. 1).
On average, the performance of the RO strategy is also improved
compared to the NO strategies. It performs better than 99 out of
the 100 NO strategies, though the difference in the expected NPV
of the best NO control strategy and the RO control strategy is very
small. This may be the effect of an RO procedure that was not
fully converged or of the RO strategy leading to a local optimum
in expected NPV. This was not investigated further.

Finally, using the mean gradients (dJrob/dq)
T in the RO proce-

dure has a regularizing effect on the resulting control strategy, as
can be seen in Fig. 5. The RO control strategy shows less-frequent
and much smoother changes of the flow rates compared to the NO
control strategy of Realization Number 1.

Validation

The results show that the RO strategy leads to an increase in ex-
pected NPV and reduced variance against the considered set of
realizations. Improved performance of the RO strategy against the

Fig. 4—CDF and PDF based on the first set of 100 realizations of the reactive control strategy, the 100 NO strategies, and the
RO strategy.
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actual underlying geological uncertainty can be claimed only if
the set is, in fact, a proper representation of this uncertainty, as
was assumed in the introduction of the example. To validate that
this assumption is plausible, the different control strategies were
checked against the second set of 100 realizations. If both sets are
large enough to give a good representation of the range of possible
geological structures, the different strategies should lead to similar
responses in a statistical sense.

Table 3T3 presents the averaged expected NPV and standard de-
viation of the reactive, NO and RO strategies, applied to this sec-
ond validation set. Figs. 6a and 6bF6 show the estimated PDFs of
the reactive control strategy and of the RO control strategy, respec-
tively, applied to the original and the validation set. Figs. 6b and 6c
show the PDFs of the NO strategy with the lowest expected NPV
and with the highest expected NPV, respectively; Figs 6d and 6e
show two intermediate values of expected NPV. Table 3 and Fig. 6
show that the responses of the strategies to the different sets are very
similar. This indicates that the assumption of the set being a proper
representation of the geological uncertainty is, in fact, plausible.

Remarks

In this work, injection- and production-flow rates are used to
manipulate the progression of the oil/water front in the reservoir.
The equality constraint, resulting from using flow rates as control
variables, limits the search space of the optimization algorithm.
Alternatively, the optimization may be performed using bottom-
hole pressures or control-valve settings as control variables, which
would require the use of well-inflow models. In that case, the use
of an equality constraint to enforce balanced injection and pro-
duction would no longer be necessary. Moreover, in this study,
no measurement information was assumed to be available. Addi-
tional measurement information could be used, however, to re-
duce the geological uncertainty associated within the reservoir
model. In future research on RO of reservoir flooding, a more
integrated approach is advised, in which measurements are used
to narrow the set of realizations or to improve the quality of the
set through history matching.

Conclusions

An RO technique is an attractive approach to oil-recovery-
optimization problems because it creates a bridge between two

aspects of the E&P industry: geological uncertainty and maxi-
mizing oil-recovery revenues. We tested its expected performance
against those of NO strategies and reactive strategies by simulating
a waterflooding example using 100 realizations of a fluvial reser-
voir. From the results of the example, we conclude that
• The performance of the NO strategy depends heavily on the
particular realization that is selected to base the optimization
on. In the example, there is no motivation to regard one geolog-
ical structure to be more likely than the others, but the results of
the resulting NOs are very different and nearly always worse
than the result of the RO strategy.

• The RO strategy is able to improve the expected NPV signifi-
cantly compared to the NO and reactive strategies, and it results
in a smaller range of possible NPV outcomes (variance reduction)
when tested using the initial set of realizations. The improved
performance is maintained when the RO strategy is tested using
a second (validation) set of realizations. This indicates that the
set of 100 realizations is likely to be a proper representation of
the geological uncertainty considered in this example.

• The advantage of a reactive strategy is that it is model-free.
Thus, when applied to an actual field, it does not suffer from a
wrong representation of the geological realizations, whereas the
model-based RO and NO methods do. However, the disadvan-
tage is that it usually does not lead to an optimal reservoir
flooding in terms of life-cycle performance.

• It should be stressed that the conclusion of improved perfor-
mance of the RO strategy compared to those of the NO and
reactive strategies holds only if the used set of geological reali-
zations is a good representation of the true modeling uncertain-
ty. If the used set is far from accurate, it is impossible to say
which of the considered strategies will perform better.

Nomenclature

b = discount rate

c = compressibility, Lt2/m, 1/Pa

d = feasible-direction vector

E = expected-value operator

F = fractional-flow matrix

g = system equations

i = iteration counter

J = objective function, M, USD

Fig. 5—Injection- and production-flow rates resulting from the NO (left) and the RO (right) of Realization Number 1.
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�J = modified objective function, M, USD

k = timestep counter

K = total number of timesteps

Nr = total number of realizations

p = pressure, m/(Lt2), Pa

q = vector of flow rates, L3/t, m3/s

r = price per unit volume, M/L3, USD/m3

t = time, t, seconds

x = state vector

a = weight factor (step size)

h = vector of averages of model parameters

q = vector of uncertain model parameters

Y = uncertainty space

k = dummy variable in summation

l = Lagrange-multiplier vector

m = viscosity, m/Lt, Pa�s
r = density, m/L3, kg/m3

t = reference time for discounting, t, seconds

f = porosity

Subscripts

cow = oil/water capillary

d = deterministic

max = maximum

min = minimum

o = oil

r = realization

rob = robust

w = water

wp = produced water

wi = injected water
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Appendix A—Gradient Calculation Using a
System of Adjoint Equations

We consider the usual equations for multiphase flow through porous
media on the basis of conservation of mass and Darcy’s law,
equations of state and the empirical closure equations for capillary
pressure, and relative permeabilities (Aziz and Settari 1979). Using
some form of spatial discretization, such as a finite-volume or
finite-element method, and an implicit time discretization, we ob-
tain discrete-time system equations that can be expressed as

gk+1 uk+1; xk+1; xkð Þ= 0; (A-1)

where g is a vector-valued function and x is the state vector contain-
ing pressures and phase saturations (or component accumulations)

in each gridblock (i.e., finite volume or finite element). In general,
the input vector u contains well flow rates, well pressures, or valve
settings in those gridblocks that are penetrated by wells. In this
paper, we restrict the input variables to total flow rates. Therefore,
we can write

gk+1 qk+1; xk+1; xkð Þ= 0: (A-2)

To complete the model, we specify the initial conditions

x0 = x
^

0: (A-3)

Next, we consider the flooding-optimization problem

max
q1:K

J q1:Kð Þ; (A-4)

with objective function

J q1:Kð Þ=
XK
k=1

Jk q1:kð Þ; (A-5)

where Jk represents the contribution to J in each timestep as
defined in more detail in Eq. 1. Note that we could formally write
Eq. A-5 as

J q1:Kð Þ=
XK
k=1

Jk qk xk q1:kð Þð Þð Þ (A-6)

to reflect the dependence on earlier inputs through the recurrence
relationship (Eq. A-1), but we will refrain from doing so to keep
the notation tractable. The injection and production rates are sub-
ject to inequality constraints as they are bounded by a minimum
(qmin) and maximum (qmax) rate. An additional equality constraint
is required stating that the total water-injection rate qwi must equal
the negative of the total production rate (qo + qwp) at each time-
step k, such that reservoir pressure remains constant:

qmin ≤ qk ≤ qmax (A-7)

and

qo;k + qwp;k = -qwi;k: (A-8)

The optimization problem can now be formulated as finding the
input vector qk that maximizes J over the time interval k = 1, . . . , K,
subject to system Eq. A-2, initial conditions Eq. A-3, and con-
straints Eqs. A-7 and A-8. We aim to compute the optimal control
q1:K with the aid of a gradient-based algorithm, which requires the
derivatives of J with respect to q1:K . The complex dependence of
J on q1:K can be taken into account by considering Eqs. A-2 and
A-3 as additional constraints to the optimization problem, and ap-
plying the technique of Lagrange multipliers to solve the con-
strained optimization problem:

�J q0:K ; x0:K ; l0:Kð Þ=
XK-1
k=0

Jk+1 q1:k+1ð Þ+ lT0 x0 - x
^

0

� �
dk

þlTk+1gk+1 qk+1; xk; xk+1ð Þ

2
4

3
5 ; (A-9)

where the constraints have been adjoined to J with the aid of
vectors of Lagrange multipliers l. The Kronecker delta dk ensures
that the initial-condition constraint is included in the summation.
We note that the ordinary constraints Eqs. A-7 and A-8 are not
included in this formulation because they are taken care of with
the aid of the gradient projection method, as described in the body
of the text. We can obtain a first-order description ∂�J=∂qk of the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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effect of changing qk on the magnitude of �J through taking the
first variation of Eq. A-9. A necessary condition for an optimum is
stationarity of �J for all variations, which leads to the following set
of equations:

∂Jk+1
∂qk+1

+ lTk+1
∂gk+1
∂qk+1

= 0T ; (A-10)

lT1
∂g1
∂x0

+ lT0 = 0
T ; (A-11)

lTk+1
∂gk+1
∂xk

+ lTk
∂gk
∂xk

= 0T ; (A-12)

lTK
∂gK
∂xK

= 0T ; (A-13)

x0 - x
^

0

� �T
= 0T ; (A-14)

and

gT qk+1

‘

xk

‘

xk+1ð Þ= 0T : (A-15)

The last two equations are identical to system equation Eq. A-
2 and initial-condition equation Eq. A-3 and are, therefore, auto-
matically satisfied. Eq. A-13 reveals that the Lagrange-multiplier
vector lK for the final discrete time K is equal to 0, and the discrete-
time differential equation Eq. A-12 allows us to recursively com-
pute the multipliers lK for k ¼ K-1; . . . ; 0 (i.e., backward in time).
Eq. A-11 represents the effect of changing the initial condition x0
on the value of the objective function, while keeping all other
variables fixed. However, because we prescribed the initial con-
dition through Eq. A-3, in our case, this term is of theoretical
relevance only. Finally, Eq. A-10 represents the effect of changing
the control on the value of the objective function while keeping all
other variables fixed. For a nonoptimal control, this term is not
equal to zero, but then its residual is just the gradient that we re-
quire to obtain iteratively the optimal control using a gradient-based
algorithm. Solution of the optimization problem now consists of
choosing an initial control vector q1:K and repeating the following
steps until the optimal control vector q1:K has been found:

• Compute the states x1:K using Eq. A-2, starting from initial-
conditions equation Eq. A-3.

• Compute the value of the objective function J using Eq. A-5.
If converged, stop; otherwise continue.

• Compute the Lagrange multipliers l1:K using Eqs. A-13 and A-12.
• Compute the derivatives (transposed gradients) of the ob-

jective function to the controls from the residuals of Eq. A-10 ac-
cording to:

dJ

dqk+1
=

∂�J

∂qk+1
=
∂Jk+1
∂qk+1

þ lTk+1
∂gk+1
∂qk+1

: (A-16)

• Compute an improved estimate of the control vector q1:K,
using the derivatives as obtained from Eq. A-16 and a gradient-
based minimization routine of choice (e.g., the SA method as de-
scribed in Eq. 3).

Because of its computational efficiency in calculating the
gradients of the objective function, adjoint-based optimization is
particularly attractive for problems with a large number of con-
trol parameters.
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