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Abstract

Identification of linear mnodes in view of robust control desip re-
quir the identification of a control.relevant nominal model, and a
quantification of model ubcertainty. In this paper a procedure is pre-
sented to quantify the model uncertainty of any prespecified nominal
model, from a squence of measurement data of input and output s-
nals from a plant. By employing a non-parametric empirical tranfer
function estimate (ETFE), we are able to split the model uncertainty
into three parts: the inherent uncertainty in the data due to data-
imperfections, the unmodelled dynamics in the nominal model, and
the uncertainty due to interpolation. A frequency-dependent hard
error bound is constructed, and reuts are given for tightening the
bound through input design. When the upper bound on the model
uncertainty is too conservative, in view of the control design specifi-
cations, information is provided as to which additional experiments
have to be performed in order to improve the bound.

1 Introduction

In the systems and control community there is a growing in-
terest in merging the problems of system identification and
(robust) control system design. This interest is based on the
conviction that, in many situations, models obtained from pro-
cess experiments will be used as a basis for control system de-
sign. On the other hand, in model-based robust control design,
models and model uncertainties have to be available that are
essentially provided by, or at least validated by, measurement
data from the process.

Recently several approaches to the identification problem
have been presented, considering the identification in view
of the control design. By far the most attention is paid
to the construction of so-called hard error bounds, see e.g.
t6, 7, 8, 9, 10, 15]. In [4, 51 an identification procedure is pre-
sented that provides probabilistic (soft) error bounds.

In the references mentioned, there is a strong connection
between the identification of nominal models and the quantifi-
cation of model uncertainty. Only identification methods for
nominal models are selected for which (HRo) error bounds can
be derived. This seems to exclude many methods and model
structures that could be useful but are rather intractable when
it comes to deriving error bounds. When discussing the suit-
ability of models as a basis for control system design, the avail-
ability of reliable hard error bounds certainly is important in
order to obtain robust stability, and possibly also robust per-
formance. However the nominal model that is used as a basis
for the design, will determine the nominal performance of the
control system, and one will definitely not be willing to im-
plement a control system when the nominal performance does
not meet the specifications. As a result, the identification of
nominal models, apart from the quantification of model uncer-
tianty, is an important issue in identification for control design,
see e.g. [1, 13, 14].

In addition to this reasoning, in this paper we will deal with
the following problem: given a prespecified nominal model

G. for an unknown hear plat GM, with C,,m and GC, ra-
tional transfer functions, can we costrct an erro bound for

Go(e-) - Gum(e) (1)

based on noise corrupted measurements im nput and output
samples of the plant ? Note that the nominal model -may be
available from any (control-releant) identification procedure.
The problem is going to be tackled, through the construction of
an intermediate data representation in the frequency domain,
leading to the inequality:

Go(ej"%) - Gno.(eJ>Id) 1<
<1 Go(ej3w)-G(eJw)I + tI (eIdw)-Gw(#ut)I (2)

with G(e"w") an -intermediate- represetation of the measure-
ment data in the frequency domain. Thi means that C(eJk)
basically constitutes a finite number of complex points on the
unit circle, obtained from the Dire Fourier Tranformation
(DFT) of the time-domain data. The first term on the right
hand side of (2) can be considered to reflect inherent uncer-
tainty in the data at w*, whereas the send term is related
to the quality of the nominal model, e.g. determined by un-
modeled dynamics. Having constructed a data representation
t(eJwk), the second term can be calculated exactly. Hence, to
give an upper bound for I G,(eMl) - G...(e'lk) 1, the prob-
lem is to construct an upper bond forj G(ewk) -G(e) 1.
Note however that (2) is only defined at the finite number of
frequency points wk, while our aim is to bond the model error
for all w E [0, 2r). The second problem therefore is to bound
the model error for all w E [0, 2r) using the error bounds at
Wk. These two problems will be the main topics of this paper.

Related work has been published in [10, 9] where error
bounds for G0(ej.?k) - G(e"O) have been obtained at a finite
number of frequency points. In [10] this has been done by em-
ploying the Emperical Transfer Function Estimate (ETFE, see
[11]), and in [9] through sinewave excitation and actually mea-
suring the frequency response in a finite number of points. In
[6, 8] the frequency domain estimate and discrete error bound
are used to obtain a model in , and a continuous error bound
(valid on the whole unit circle). It is tried to keep the Ho. er-
ror small by using an intermediate high order Lot model and
Nehari approximation, obtaining a Finite Impulse Response
(FIR) model.

In section 3 of this paper also the ETFE is used to obtain a
nonparanetric frequency domain estimate c(ePwb), and a dis-
crete error bound. In contrast with [6, 8, 9] this error bound is
frequency-dependent, which makes it more informative than a
simple H,10-bound. Moreover it does not require the frequency
points of the discrete estimate to be equidistantially distributed
over the unit circle. This paves the way for desiging specific
input signals in order to improve the estimates, and tightening
the bound. Additionally a frequency-dependent continuous er-
ror bound is constructed in section 4 by interpolation of the
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discrete bound, using smoothness conditions on the system. In
section 5 it is shown how robust control design specifications
can advocate new experiments in order to reduce model un-
certainty in specific frequency ranges. Finally, in section 6,
a simulation example is given to illustrate the merits of the
procedure proposed.

Due to space constraints all proofs are omitted, they can be
found in [2].

2 Preliminaries

It is assumed that the plant, and the measurement data that
is obtained from this plant, allow a description:

y(t) = Go(q)u(t) + v(t) (3)

with y(t) the output signal, u(t) the input signal, v(t) an ad-
ditive output noise, q-1 the delay operator, and Go a proper
transfer function that is time-invariant and exponentially sta-
ble. The transfer function can be wrritten in its Laurent expan-
sion around z = xo, as

00

G0(z) = E g.(k)z-k
k=O

(4)

with g0(k) the impulse response of the plant.
Throughout the paper we will consider discrete time intervals
for input and output signals denoted by TN := [0, N - 1],
TN := [N,, N + N, -1] with N and N, appropriate integers.
We will denote

u= sup lIu(t)l =
tETN+N.

For a signal z(t), defined on TN, we will denote the N-point
Disrte Fourier Transform (DFT) and its inverse by:

)= E (t)c-jl't for k E TN
t=N

z(t) = rE1:X(z$freT for tETN
Nk=O

3 Discrete error bound.

3.1 Motivation.

The motivation to consider the ETFE is that we want G(eJwk )
to be an intermediate data representation in the frequency do-
main. The ETFE is the quotient of the DFT of the output
signal and the DFT of the input signal, and in discrete Fourier
transforming a signal no information is lost or added, the map-
ping from time to frequency domain is one to one. The motiva-
tion to look at input design is that the ETFE for an arbitrary
input signal is in general not satisfactory. We wil try to im-
prove the quality of the frequency domain data by input design.

3.2 Results.

A nonparametric frequency domain discrete upper bound on
the additive error for the ETFE will be presented in this sec-
tion. Errors due to unknown initial and final conditions of the
system and additive noise on the output are taken into account.
We will use a partly periodic input signal for excitation, and
we will discard the first part of the signals in the estimation.

Definition 3.1 A partly periodic signal x is a signW having
the first part equal to the lat pat = [Xl x2 ]-

The length of x1 will be denoted by N.. Only the last part
[x2 zX] wil be used in the identification and has length N.
The total length of the signal z now is N, + N. We will show
that the value of N, influences the error due to initial and final
conditions in the estimate. Note that the largest possible value
of N, is N.

Theorem 3.2 Consider a SISO sytem, saisfying the as-
sumption stated in setion 2. Using a partly periodic input
sigal, N, E TN+1, and the estimate

G(O - _) for
{

= t(ETN I U'(WV)# O}

the folklown errorobsd is ntifi

1G4t) -G(')1 <sa(%)
with

2sf li +iMp(1 -.gN) No___a(-r)= i*UQ )I (p-i1)2 -p + _(2_f)'

The first term on the right hand side of the error bound given
in the theorem is the error due to the effects of initial and
final conditions of the system, i.e. the effects of the unknown
signals outside the measurement interval. This error converges
exponentially with N, as p-rN. The properties of IUs(2Q)I of
course depend on the specific choice of the input signal u(t) for
t E T4. For a random signal the expectation of the magnitude
of the N point DFT, as defined in (5) and (7), is approximately
proportional to VW, see [11, lemma 6.2]. Hence, if the input is
random for t E Tv', the error due to the effects of initial and
final conditions approximately converges as prNs/-/X.
The second term on the right hand side of the error bound

given in theorem 3.2 is the error due to the additive noise on
the output. If the input is random for t E TN,, this error
does not converge at all, it is just the noise to signal ratio
in the frequency domain. It is possible to obtain convergence
for the error due to the noise by choosing the input signal to
be periodic. The highest rate of convergence is obtained by an
input signal having an integer number of periods in the interval

(5)

(6)

For a signal x(t) that is defined on the interval Tff, N, >0, we
will denote the N-point DFT of a shifted version of the sigal
a, shied over N, time instats, by

N-i ~~~.2rk
X. 1= x(t + N,)e"W5 for k E TN (7)

t=C

z(t) = kzX"(t)er N'-N) for t E TNJ (8)
kcO

Note that this reflects the N-point DFT of a signal, of which
the first N, time instants are discarded.
Throughout this paper we wiMl adopt a number of additional
assumptions on the system and the generated dat&

Assumption 2.1 There exists a finite

i. uP, such that Iu(t)l < iiP fort < 0;

ii. pair {M,p} E R, p > 1, such that Ig0(k)l < Mp-k, for
k e ZZ+,

iii. upper bound on the DFT of the output noise: IV,(2ig)I
T7(2!k), for k e TN.
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Let No denote the length of one period of the input signal

and let the interval TXt contain exactly 4 periods, so that
N = k0No. In this case US(2T) = 0 if k/ko is not an integer,
see [11, example 2.2]. Therefore only U'(W) is not identically
equal to zero. It is now straightforward to show that the DFT
over ko periods of a periodic signal is exactly ko times as large
as the DFT over one period. In conclusion, IUQ(2l1 is exactly
proportional to N if N = koNo with ko E Z.

Corollary 3.3 Consider a S1SO system, satisfying the as-
sumptions stated in section 2. Using a pertly periodic input
signal having an integer number of periods in the intermtv Ti,
N, E TN+I, and the estimate

(us(W for t={tETNdTUo(-)#0}
the following error bound is satisfied

IG,(*') _ &(2 )15< (bA)
with

VI) Dp + i Mp(1- -N) N __(W)I(WI (p - 1)2 P + _

The error bound given in the corollary goes to zero if N, and
N are going to infinity, No is constant, and the noise v(t) does
not contain a periodic component. The error due to the ef-
fects of initial and final conditions converges as p-N/N. The
error due to the additive noise on the output converges approx-
imately as i/W, if v(t) is a random signal. The expectation
of the magnitude of the N point DFT of a random sipal is ap-
proximately proportional to IN-, while the magnitude of the
N point DFT of the periodic input is exactly proportional to
N, see [11]. The price for this convergence is that less points
of transfer function are estimated (No instead of N = koNo).

3.3 Remarks.

A partly periodic sigal can be seen as a generaization of
a sinewave input. This generalization is profitable because
sinewave testing (sinewave excitation and actually measuring
the frequency response in a finite number of frequency points)
is time consuming. For each new sinewave input one must wait
until the system has reached its steady state response. A partly
periodic signal can consist of N sinewaves, but one has to wait
only one single time for the effects of initial and final conditions
to vanish.

For N, = 0 the ETFE as defined in [11] arises. In this case
the error due to initial and final conditions converges only as
1/N if u(t) is a random sipal for t E TN, as was also shown
in [11]. The error due to intial and final conditions now will
in general dominate the error bound. Note however that for
Ns = 0 the input signal is completely free. The choice for
N, > 0 hence is a choice to restrict the input signal in order to
be able to obtain a tight error bound for the nominal model.
By designing an appropriate input signal (i.e. by choosing

IU'("4t)j) one can of course shape the error due to the noise.
An input signal having a DFT with desired magnitude and
satisfactory time domain properties can be easily designed, see
[12].

Finally we note that the extension to the MIMO case of
theorem 3.2 has been made by the authors. To be able to
do this, the Discrete Fourier Transforms of the different input
signals have to satisfy an orthogonality condition.

4 Continuous error bound.

4.1 Motivation.

We now have an upper bound a(^w) on the error IGo(ejwk) -
G(ejiW)I. This error bound is only defined at a finite number
of frequency points wk E (I, with i := {wi IR n [0,2w) 1
1U'(ej-)I $ 0}. This is due to the fact that G(eJwk) is only
defined at a finite number of frequency points when N, the
number of datapoints used in the estimate, is finite. The aim
is to find an upper bound 6(w) such that

IGo(ejw) - G..(etw)I < 6(w)
for all frequences in the interval [0,2r). It is straightforward
to give a discrete upper bound 6(wk). From the knowledge of
Guaomwe can exactly calculate f(wa) := 1O(en)-Gn (eM)I.
From inequality (2) it now folws that 6(wa) can be set to
6(wa) = cv(wk) + ,(wk). Hence the problem is to find the be-
haviour of 6(w) betweet the estimated freuency points for the
prespecified nominal model. As argued in section 3.1, the data
does essentially not contain more information about the trans-
fer function of the system than is captured by the discrete esti-
mate G(eSwk). Therefore, assumption- about the system must
be used to be able to bound the error at frequencies w $ wk.
We will use smoothness aumptions on the system, and we will
interpolate the discrete error bound 6(wk) using these smooth-
ness properties.
Note that we do not interpolate a(w), as is done in [8]. To

be able to interpolate a(wk), one first has to interpolate the dis-
crete estimate G(e'lk). However, in doing this, an intermediate
model is constructed that is not based on the data. Therefore
we take the approach of interpolating the error bound 6(wa).

4.2 Bounds on derivatives.

Smoothness properties of the system in the form of upper
bounds on the derivatives of G0(e3i) with respect to the fre-
quency, can be obtained from the assmed upper bound on the
impuls reponse.

Proposition 4.1 For a SISO sstem with 19.(m)l < Mp-^
themr hol

d GS(eYj) Mp

dw I- (.p- 1)2
and 1d G(ew)< :pp

Note that the upper bounds on the derivatives are not obtained
in the same way as in [8], the M and p used in this paper are
different from the ones used in [8]. It is the authors' opinion
that.it is easier in practice to obtain a good upper bond on
the impulse response of the system, than to obtain a margin of
relative stability of the system together with the infinity norm
of the system over the circle in the complex plane with radius
equal to this margin.
To be able to bound the derivatives of the magnitude of

the error system IG,(eW) - we need the following
proposition.

Proposition 4.2 For a SISO system there holds, for k = 1
and k = 2

|jG0(eJw) -Gno,m(ejw)| <

dk G.,(ew) +dk G.. (ei)
(9)

An upper bound for (9) can be calculated using proposition 4.1
and the knowledge of G,,,(eiu)
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Fig. 1: The interpolating function f(z) for the discrete error
bound.

4.3 Interpolation.

In this section we will address the problem of calculating an
upper bond on the error iGo(eiw) - Gntn(esw)I between the
frequency points wk where an upper bound 6(w.t) is known.
Hence, we have to find the highest possible value 6(w) of
this error for each frequency w between two given points, say
6(wk) and 6(wA:+s). We are able to bound this error by taking
into account the bonds on the first and second derivatives of
1Go(ejw) - Gu7,,,(eJw)l that were derived in section 4.1, say 71
and 72 respectively. The maximum value of the error 6(w) now
arises by interpolating the discrete error bound 6(w,) using the
function f(x) depicted in figure 1. To explain the construction
of this function f(z), assume that there is a maximum between
the two frequency points. Starting at the maximum (x = 0,
f(s) = 0 and df(x)/dx = 0) we want f(s), in a smooth way,
to decrease as fast as posible: the faster f(s) decreases, the
higher the maximum ies above the two given points 6(W).
Hence we use a function having a constant secnd derivative
equal to the bound 72 on this derivative. In this way parts
11 and mI of the error bond are constructed. The absolute
value of the first derivative of this function will dearly increase
with the distance lxl to the maximum. At lxl = 71/72 the first
derivative becomes equal to the bound 71 on this derivative.
Hence, from thereon we use a function having a constant first
derivative equal to the bound 'Ti. In this way part I or IV of
the error bound is constructed. The function constructed in
this way is unique and given by

f(x) = _x2
= -'nlil + i;

for ixl <5 a

for 1z1 > zL
(10)

The function f(z) given in (10) directly gives the value of 6(w)

6(w) = h(wk) - f(Axj) + f(s) for w E [ws,wk+1] (I 1)

However, in (11) the values of Ax1 and x are unknown, be-
cause the location of the maximum is as yet unknown. Ana-
lytic expressions for the location of the maximum can be given
by specifying Ax1 or AX2, as a function of 'yl, 72, A(wk) and
6(w,+x). One has to distinguish several cases, depending on
which part of the interpolating function f(x) actually is used.
It is e.g. possible that 71, 72, 6(Wk) and 6(wt+x) are such that
the interpolating function f(x) reduces to part I. In all, there

are eleven possibilities: only part 1, only part 11, part I and 1H,
etc.

Alorithm 4.3 All possibilities of the function f(z) given in
(10) to interpote two points are given below, as a function of
Ax, Ay, 71 and72.
A mazimwu ocn if

iAhII<'y1Axr-j-L. and Ax> Y

2-a ~~~72
or qI

I 1 < 722A2a 71
If a maximum owucs we can distinguish the foliaing four

1. IfAxi.> 7/ -andAx2 71/72 thenAX= A+2
All four pars of f(x), as depicted in figum 1, are used.

2. IfAx .7/72 and Ax2< 7i/7n2then AiT = : +Ax -
22(7Ax - Ay). Parts , 11 an III of f(x) are used.

s. ff Ax1 < 71/72 @nd Ax2 > 71/72 then Ax1 =

\/Q71Ax + Ay) - 2L. Parts II, III and IV of f(x) are
used.

4. fAxi <7I/'y2 andAs2 < 71/72 thenAx X+ as.
Parts If and III of f(x) are used.

The mraimum height h1 above 6(w&) is given by h, = -f(A-TO,
where f(z) is given in (10).
If no maximum occurs we can distinguish the following seven
cases.

1. If'1Ax - MAZ2 < Ay < yflAx then Ax1 = 2L+ Ax -

V/. (,y,Ax - Ay). Note that Ax1 > Ax. Parts I and II
of f(z) are used.

2. If j'Ax2 < Ay< y1Ax- LAx2 then 1 - k+
Note that Ax1 . Ax. Only part I off(x) is used.

3. If7Ax AZ2 <-Ay < Az then Ax2 = X +A

,(-tiAz + Ay). Note that Ax2 > AZ. Parts III and
IV of f(x) are used.

If JA.T2 <_-Ay < y1AZ_ LA.T2 n X2=2-X4. iLAlC Ac'Ax AxthenAx2=4 -
Note that AxZ2 > Ax.r Only part III of f(z) is used.

5£ If Ay =-y1Ax then Ax=Ia + Ax. Only part I of f(z)
is used.

6. If Ay = -71Ax then As2 = L +A. Only part IV of
f(s) is used.

7. If IAYI > 1iAx then the estimated point of the discrete
estimae with the hiOest error bound must not be used.
Interpolation from neighbouring points, although over a
grater distance, gives a lower error bound. This situa-
tion can also arise when IAy c5 y1Ax, see figure 2.

Now we are able to give an upper bound for the difference
between the system and the nominal model over the whole
frequency interval.

Note that, as opposed to [8, 6], algoritm 4.3 allows for a dis-
crete error bound a(wk) that is frequency dependent, and it
yields a continuous error bound 6(w) that is frequency depen-
dent. Moreover, the discrete frequency points are not required
to be equidistant.
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6(w) * (w&)

(w_.6+
w

Fig. 2: A situation in which the point (wa) must not be used.

4.4 Remnrks.

Taking a closer look at the results up ti now, we can summa-
rize as folows. In section 3 a bound a(w&) has been derived

IG.(e') -d(e")j C O(k) (12)

for all wa; in a set n C R n [0, 2r) containing a finite number
(5; N) of elements. Since the nominal modd is asumed to be
known, the eror

(13)

ca be calculated exactly for all wk E 0. In this section 4, a
continuous bound 6(w) has been derived

IGC(Ctw)-G(r) I 5 &(w) (14)

with 6(wA) = a(wa) + P(w&) for WA E 0. In the nonparametric
discrete estimate, d. (12), no error due to under modering
present, i.e. no error due to approximation is made, because
complete freedom exist for each frequency point to fit Go(e" ).
The approximation error therefore is eompletely due to the
nominal model, cf. (13).

In the procedure presented, the determination of the nomi-
nal model and the determination of the error bound clearly are
completely separated. We addressed the problem of determin-
ing the error bound. The problem of determining, from the
discrete estimate, a nominal model such that the error bound
is as Iow as possible is addressed in [8, 6]. Methods for tuning
the nominal model to nominal control-design specifications are
discussed in [1, 13, 14].

5 Relation with control design specifications.

To show the applicability of the approach presented in this
paper to robust control desig, we will consider the following
situation. In order to verify desired robustness properties of a
designed controller for the system, an allowable error bound is
specified for the difference between GC and G,,.,,

IG,(eSw) - G%,(e")I < 6,a(w)
The allowable error 6.(w) is a function of the nominal model,
the designed controller and the robust control desig specifi-
cations. Given measurement data from the system, it now has
to be verified whether a specific nominal model lies within the
specified error bound, If not, there should be determined which
action should be taken in order to solve the problem: either
constructing a new nominal model, or performing new experi-
ments to reduce the uncertainty. This can be done by compar-
ing the allowable error 6.(w) with the actual error bound 6(w).
For those values of w where 6(w) > 6.(w) we can analyse 6(w)
and evaluate its different components.

At the finite number of frequecy points wk E 0, we have
6(w&) =a(w)+P(wk). Thereowe know that

1 when a(wk) >> gw) the certanty is mainly due to
the inherent uncertainty in the data, i.e. effects of ini-
tial and final conditions, bad signal-to-noise ratio and/or
restricted length of the data set. Actions to be taken to
improve the bound include: increasing N., increasing the
power of the input signal, and increasing N. In the case of
periodic input signals, the sigal-to-noise ratio in the fre-
quency domain is proportional to 4/RJN. Consequently
the error bound can also be improved by decreasing No.

2. when a(wk) <c #(wa), the uncertainty is mainy due to
a bad nominal model (approximation error). A strit-
forward action is then to choose a new nominal model,
that is better able to represent the system dynamics in
the specific frequency range.

In between the finite number of frequecy points wk iE , say
forw <a < ww1, the error bound 6(w) i's determied through
interpolation between the adjacent points 6(), (wa+i).
Therefore

3. when 6(w) >> maz(6(wO),(wa+s) the uncetinty is
mainly due to the interpltion p. Note that u -
tainty due to interpolation is stngly determined by the
distance between two adjacent disete fequency points.
Consequetly new expermets should be performed with
a mnaler distance betwnm' the direte frequency points
in the specific frequency region.

Note that it is possible, at each frequency, to determine whether
the main source of the actual error is the inherent uncertainty
in the data, the nominal model, or the interpolation step caused
by the absece of data due to the specific excitation of the sys-
tem. Also it is possible to derase the contribution of these
different error ources almost independently. Now it is posible
to iteratively decrease the error bound, until the level of the
allowable errr is reached, successively by input desip and ad-
ditional experiments, and by tuning the nominal modeL Usin
this procedur we can determine whether or not specific robust
control design specifications can be met. Note that the error
bound n(wk) is essentially fiequency dependent and that the
frequency points w E fl need not be positioned equidistan-
tially over the frequency axis. In comparison with the existing
methods (see e.g. [8, 6]), this creates a lot of freedom to shape
the error bound into an allowable form, which from a control
point of view definitely should be frequency-dependent.

6 Example.
To ilustrate the menrts of the procedue a simulation was
made with a fifth order, system who's impulse response sat-
isfies M = 2.5 and p = 1.25, and a third order nominal model.
There was 10 percent (in amplitude) noise on the output. The
upper bound V(wk) was set to W(w&) 2 * max,, IV'(w)I.
The input signal was chosen to obey iP- 2 and ui = 1. We
used 1074 points with N = 1024, No = 256 and N. = 50.
The magnitude of the DfT of the input signal in the interval
TN1, IU'(w,)1, is given in figure 3. Note that the frequencies
Wk are not equidistant. The input was designed to result in an
error bound smaller than the allowable error by choosing the
frequency grid and the magnitude of U'(wk). In figure 4 the
allowable error 64(w), the error bound 6(w) and the error due
to approximation P(wi,) are given. The inhert uncertainty in
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ified nominal model can be split into three parts: one part due
to the inherent uncertainty in the data, a second part due inter-
polation, and a third part due to imperfections of the nominal
model. These three components can be tuned almost indepen-
dently, by experiment design and by choosing an appropriate
nominal model. When the error bound is too conservative in
relation with control design specifications, information is pro-
vided as to which action should be taken (new experiments
or alternative nominal model) in order to satisfy the design
requirements.

In the procedure presented an upper bound on the DFT of
the noise is assumed to be known. Current investigation is
aimed at relaxing this assumption, using a probabilistic de-
scription for the influence of the noise, see [31.35

Fig. 3: IUN(wa)l, the magnitude of the DFT of the input signal
in TAt.

O S SIL5 2 23 3 3.5

w[rad/a]

Fig. 4: The error bounds and the true error: 6.(w) (dash),
6(w) (solid), 6(wk) (o), 1(wk) (*), JG,,(w) - G,,(w)
(dashdot).

the data a(wk) equals 6(wk) - (w&). The error due to inter-
polation is indicated by the curves between the points 6(wk).
Note that f(w&) provides a good indication of the true am

proximation error, and that the error bound 6(w) can be made
almost equal to the true approximation error by input design.
Comparimg 13(w&) and 6(w), it follows that in the fiequency
interval w E [1.1, 1.3] the error due to approximation dearly
dominates, whereas for w E [2, r] the inherent uncertainty in
the data and the error due to interpolation dearly dominate.

7 Conclusions

In this paper a procedure is presented to quantify the model un-

certainty of any prespecfied nominal model, given a sequence

of measurement data from a plant. The empirical transfer func-
tion estimate (ETFE) is used to construct a -nonparametric-
estimate of the transfer function in a discrete number of fre-
quency points, together with an upper bound on the error.

Through interpolation, this error bound is transformed to a

bound which is available on a continuous frequency interval. A
frequency dependent upper bound is obtained, which is much
more tailored to the needs of a robust control design scheme,
than an H,,,,-bound. In order to obtain a tight error bound,
a special input signal is proposed (partly periodic) which has
advantages over -classical- sinewave experiments.
The estimated upper bound for the model error of a prespec-
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