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Abstract

Linear regression models are analysed in the least squares identifica-
tion of linear multivariable finite-dimensional models. Using the con-
cept of system behaviour, the identification problem is formulated in
a deterministic, signal-oriented framework, showing clearly the distinc-
tion between problems of identification (choice of model sets) and of
parametrization. In order to obtain nontrivial identified models, the
identification criterion should be able to distinguish between the dif-
ferent models in the set. This requirement of discriminability, puts
restrictions on the model sets to be considered. Sets of sufficient con-
ditions are formulated, in terms of the polynomial representations of
the models, while noting that the identified models finally obtained,
are essentially dependent on the restrictions that have been chosen.
The problem discussed is shown to be closely related to the problem of
constructing identifiable parametrizations for model sets described in
(forward or backward) polynomial forms.

1 Introduction

The use of equation error models, often also denoted by linear
regression models, is widespread in issues of modelling and identi-
fication of dynamical systems. The essential characteristic of the
linear regression model is that a residual component ¢ is defined
which is a linear function of the unknown model coefficients. In
the SISO (single input single output) situation we can write:

et) = ay(t)+ay(t-1)+. . +anylt—n)- (1)
bou(t) — byu(t — 1) — bu,u(t — ny)

with y(t) the output signal, and u(t) the input signal of the model,
and ao, a3, ..,8n,, by, .., by, the unknown parameters. With the re-
striction ap = 1, the above model is known as the ARX model
(Ljung, 1987).

The use of these kinds of models in estimation and identification
problems is essentially based on the argument that a least squares
identification criterion, is an optimization problem that is analyt-
ically solvable.

However note that, as in the ARX-case with ao = 1, we have to
restrict the general model (1) in some way, in order to prevent
the resulting parameter estimation problem from only having the
trivial solution @p = .. = @,, = by = .. = b,, = 0. In some areas
of application it is well known that the - through least squares
- identified model, is essentially dependent on the choice of this
restriction. Very often, as e.g. in statistical estimation, this re-
striction is not even recognized as a choice, but fixed a priori. In a
statistical framework, the additional assumption is generally made
that the residual signal e(t) is a white noise sequence, which causes
the identified model to be invariant under different choices of re-
strictions, as e.g. ap = 1, or by = 1 in (1). However, in many
situations it appears to be rather unrealistic to assume that we
can construct models on the basis of measured data, in such a way
that the residual signal (or error signal) is a white noise sequence.
Therefore in approximate identification, the problem as indicated
becomes relevant.
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Linear regression models have been analysed before in the con-
text of approximate identification of dynamical systems. In [8, 9]
properties have been shown of least-squares identified equation er-
ror models in an approximative sense, formulated in terms of the
Markov parameters of the models. For single input, single out-
put systems, a frequency domain formulation of properties in the
approximative situation is given in [16], while [3] gives frequency
domain results for the consequences of choosing different coeffi-
cient restrictions.

In this paper the mechanism of restricting the models will be anal-
ysed in the multivariable situation. It will be investigated in which
sense models of the type discussed above have to be restricted, in
order to serve as appropriate models to be used in least-squares-
based identification.

In sections three and four we will present some basic concepts
concerning the notions of models and their use in (approximate)
identification. We will adopt part of the signal-based framework
of Willems (17, 18] for this discussion, as this framework is espe-
cially appropriate for formulating the problem of identification as
well as of clearly distinguishing the problems of identification and
parametrization. This refers to a clear distinction between choices
that really effect the identified models (choice of the model set),
and choices that only refer to matters of representation (choice of
parametrization). The choice for a restriction is generalized into
the requirement that a model set should be discriminable by an
identification criterion, and severa] sets of sufficient conditions for
this discriminability are presented in section 5.

The construction of discriminable model sets appears to have
close connections to the problem of constructing identifiable
parametrizations of dynamical systems, and of constructing sets of
canonical forms for polynomial matrices. Albeit that in the present
case we essentially do not have a parametrization problem, but a
problem of constructing model sets.

Preliminary work on the subject of this paper has been published
in [11, 12]. For the proofs of the results, the reader is referred to
[15].

2 Notation

In order to be able to deal with both forward and backward
time shift operations in one model representation, we have to
consider polynomial matrices in two indeterminates, (sometimes
called binomials). To this end, consider a polynomial matrix
T € R?™?[z,z7]). We will denote:

T.. := the i* row of T(z,27Y), i=1,..,p;
T.; := the j* column of T(z2,2z7"), j =1, o
v“")(T) i= the maximum power of 7 in Ti.(z,271);
upper row degree;
V,.(')(T) := the minimum power of z in Ti.(2,2z7%);
lower row degree;
pNT) = the maximum power of z in T.i(z,27");
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upper column degree;
#O(T) := the minimum power of z in Tui(z,27);
lower column degree;
T4 := the leading row coefficient matrix of T,
i.e. the coefficient matrix related to the highest
row degree terms in T';
Ti, := the trailing row coefficient matrix of T,
i.e. the coefficient matrix related to the lowest
row degree terms in T';
Th =
T =

the leading column coefficient matrix of T’
the trailing column coefficient matrix of T’

Tefny,.mg(T) := the column coeficient matrix of T related
to the column degrees n1,.., 7.

Note that the integer indices v, v, ) and u?) are either

positive or negative and that v > 9 and psu) > udh.
The notation M; = M,(T}) refers to the dynamical system M,
that is being induced by the polynomial matrix (autoregressive)
representation T} (see section 3). Further we will use Z for the
set of integer numbers, R(z) for the field of rational functions,
IR{z,z~Y] for the ring of polynomials in two indeterminates. T’ €
IRP*?(z, 2] is unimodular if its inverse is polynomial, i.e. det T =
¢z%, with ¢ # 0 and d € Z. For polynomial or rational matrices
T, the notation det T, and rank T, will refer to the determinant
and the rank of T taken over the field of rational functions R(2),
while [|T||, refers to the Lz-norm of T

3 Dynamical systems and equation error
models ’

In correspondence with [17] we will refer to a linear dynamical
system, and consequently also to a model of a system, as a triplet
(T, W, B), with T the time set on which the signals that are related
to the system will be defined; W the signal set, i.e. the vector space
in which the signals take on their values; and B the behaviour of
the system, i.e. the set of signal-trajectories that are admissible by
the system. In this paper we will restrict attention the linear, time-
invariant and finite-dimensional discrete-time systems (' = Z).
For a dynamical system having m inputs and p outputs the signal
set W will generally be fixed to W = IRP*™. Having specified
T and W the essential characteristic of a dynamical system is
reflected by its behaviour B.

A more extensive discussion on these concepts related to the com-
mon input-output description of dynamical systems, can also be
found in {10, 14].

For the purpose of approximate identification on the basis of mea-
sured input-output data we will consider models that have three
different types of prespecified external signals: a p-dimensional
output signal y, an m-dimensional input signal u, and a p-
dimensional residual signal e. In an identification context, (part
of) the signals u and y will be measured. The residual signal is not
actually measured, but acts as a basis for a measure of fit between
a measured data sequence {u,y} and a model (cf. (1)).

The class of models that we will be dealing with in this paper,
will be restricted to the class of input-output-processing residual
(i/o/pr) models, see [10, 11, 15], denoted by X,m, which means
that the signal set W = IR”*™*? and that each model from this
set can be represented by a polynomial description:

P(o,0™)y — Q0,07 )u — R(g,67 )e =0 (2)
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with T=[P| —Q| — R] a full row rank polynomial matrix,
T € RP*P+m+9)[; 2~1) with det P # 0, and det R # 0; the shift
operators o, o' are defined by: (ow)(t) = w(t + 1),t € Z and
(e7lw)(t) = w(t-1),t € Z.

The combined set of signals (y,u,e) will be denoted by w. The
behaviour of the model, defined by (2), is denoted by

B(M) = {w € (R"*™**)Z | T(0,0™")w = 0}

Two models are equal, i.e. their behaviours are the same, if
and only if the corresponding polynomial matrices T are related
through unimodular premultiplication.

Note that this type of model is strongly related to the (stochastic)
models that show up in prediction error identification methods.
Taking a closer look at the polynomial matrix T that generates
a dynamical system in the class Epm, it follows that T induces
two rational matrices, that can be considered as transfer functions
of the corresponding system. These two transfer functions are
denoted by:

Hy(2) = | Hu(2) | Hye(2) ]:=[PT'Q | PT'R], and  (3)

H(z)=| Hey(z) | He(2)] = [ RP| - R'Q] 4)

The behaviour of M is completely characterized by either one of
the two transfer functions H,, H., if and only if M is controllable
(Willems, 1988), i.e. if T is left coprime with respect to R[z,z7Y),
or in other words: rankcT(A,A™) = p for all A € C\{0}. The
controllable part B.(M) of a system behaviour B(M) is determined
by the behaviour that is induced by the polynomial matrix T’ that
is left coprime with respect to IR[z,z7"] and that generates the
transfer functions of M according to (3), (4)-

The i/o-part of an (i/o/pr)-model will also be specified as

BP(M) = {v € R#*™7 | (v,e) € B(M), e = 0}, with v = (y,u).

If an (i/o/pr)-model M is defined by the behaviour B(M), then
its i/o-part M is defined by B(M). For evaluation of the i/o-
part of a (i/o/pr)-model, the residual component in the model is
simply discarded. We will also refer to the so called i/o-transfer-
equivalence relation, My ~, M;, being defined by B(M}°) =
B.(Mj°), which is equivalent with H{) = H{Y.

Restrictions of signal variables and behaviours to the time set Z,
will be denoted by w* and B*.

Definition 3.1 A linear regression (equation error) model is an
(i/0/pr)-model that satisfies the additional property that the resid-
ual e is observable from (y,u), or in other words:

{(yvu’el) € B(M) A (yvuveﬂ) € B(M)} = {61 = Cz}

The notion of observability of signals is defined in [17].

The definition implies that in the polynomial representation, the
matrix R is restricted to be unimodular. Since unimodular pre-
multiplication does not change the behaviour, this means that a
linear regression model can always be represented by a full row
rank polynomial matrix T =[P | — Q| — I, ], with I, thep x p
identity matrix. Moreover it follows that any equation error model
is a controllable (i/o/pr)-model.

4 Modelling on the basis of data

In the problem of modelling dynamical systems on the basis of
input-output data, three central aspects will be distinguished: (1)
The set of models that is considered; (2) a parametrization, repre-
senting the models in the model set with (real valued) parameters,
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and (3) an identification criterion that selects “best” or “optimal”
models from the set of models, given the measured data.

Given the measurement data, the models that are finally obtained
as a result of the modelling procedure should be determined by
the set of models taken into account and by the identification cri-
terion, and should not be dependent on other choices, like e.g. the
parametrization of the model set. The parametrization acts as a
tool for representing the models by real-valued parameter values in
order to apply identification algorithms. In this paper we will con-
sider as a set of models M any collection of (i/o/pr)-models with a
fixed number of inputs m and outputs p, and having the additional
property of being of the equation error form. A parametrization
of a model set M is defined as a surjective mapping M : © — M,
with © C IR* the parameter set, and M the parametrized set of
models. Parametrizations will be considered in terms of the poly-
nomial representations discussed before, with parameters being
defined through the coefficients of the polynomials.

We will now focus on a formal definition of an identification cri-
terion. Let there be given a measured data sequence v*, and any
set of models M.

In this paper a restriction will be made to identification criteria
that are based on the residual function:

N

Uet) = Jim g el (t)e(t) (5)
The identification criterion takes residual signals that are compat-
ible with the measured data v+ for a model M, as “measures of fit”
between the data and the model. The residual function is exam-
ined on the residual signals that, together with the measured data
sequence v*, constitute an admissible trajectory wt € B*(M) for
M € M. In formal terms: given a measured data sequence v+,
then each model M € M generates a set of admissible residual
signals, defined by:

E(v*, M) := {e* | (v*,e*) € B*(M)}. (6)

The residual function £ is evaluated on the set £ for each M € M
in order to determine the set of identified models, by:

It M) = argyen o Uet) (7)
= {M e M| 3t e Evt, M), (&) < fe*) for all
et € £(v*, M) and M € M} (8)

Actually the identification criterion is defined as a selection rule.
Given a time series and a model set, the criterion J selects one or
more "optimal” models from the model set. This formulation is a
very general one. It provides a means for discussing fundamental
properties of model sets, parametrizations and identification cri-
teria, as e.g. identifiability and discriminability (see next part) at
a higher level of abstractness and in a more generalized way, than
is usual in the identification and parametrization literature.

Now the question arises if any combination of choices for model
set and identification criterion leads to a useful identification prob-
lem. Apparently restriction of the model set is required in order
to come up with a sensible identification problem, but it is also
necessary in order to guarantee that all models in the model set
can be distinguished by the identification criterion. The ability
to distinguish the different models in a model set during identifi-
cation experiments will now be formalized through the notion of
discriminability, as was introduced in f10].

Definition 4.1 An model M is called discriminable within M by
an identification criterion J, defined on M, if there ezists a data
sequence vt such that J(vt, M) = {M}. a
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When all models in a model set M are discriminable, the model
set will be called discriminable by J, and J will be called discrimi-
nating on M. An identification criterion that is discriminating on
a model set can distinguish between the different models in this
set. In general terms it can be stated that if a model set is not
discriminable by J, discriminability can be obtained by making a
restriction to a discriminable subset M; C M. The main goal of
this paper is to discuss how to construct model sets that have this
discriminability property.

Remark 4.2 The concept of discriminability is closely related to
the more conventional concept of system identifiability. However
system identifiability very often refers to consistency properties of
identification methods. In order to stress that we consider a dif-
ferent situation, we have chosen to denote the property of discrim-
inability.

Remark 4.3 The definition of a discriminable model as presented
in definition 4.1 also shows the aspect of ezperimental conditions
under which the model is discriminable. In [13] discriminability
under closed loop ezperimental conditions is discussed.

It has to be stressed that the concept of discriminability, as dis-
cussed, is a property of a model set in conjunction with an iden-
tification criterion; it is not related to any parametrization of the
set of (i/o/pr)-models.

5 Discriminability of equation error models
through LS-identification

5.1 General results

In the next two theorems we will formulate two different sets of
sufficient conditions for discriminability of model sets.

Theorem 5.1 Let M be a set of controllable (i/o/pr)-models,
MC Xpm. If for all My, My € M :

M]_;;'Mz = M]:Mz (9)
then M is discriminable by J. [m]

Proof: Consider any element My € M, and a signal w = (v,e) €
B(Mo), with e =0, v = (y, u), and u satisfying

. 1 N-1 T
dim & ; w(t)uT(t + 1) = Lb(r)

with I, the m x m-identity matrix, and () the delta-function:
8(r) = 0, for 7 # 0, and §(7) = 0, for 7 = 0. Consequently for any
other model M; € M it follows that

M € J("+1M) ©{3es € g("'+le) | 4e) = 0}.

In [10] it is shown that the latter expression is equivalent with
M, 4 M,. Under the condition as formulated in the theorem,
it follows that {Mo} = J(v*, M). Since M can be chosen any
element of M, this proves discriminability of M by J. o

The theorem shows that absence of distinct models that are ifo
transfer-equivalent, is sufficient for guaranteeing discriminability
of the model set by J. Apparently, in the context of this theorem,
the problem of constructing discriminable model sets is very closely
related to the problem of constructing identifiable parametriza-
tions, as e.g. discussed in [5]. Models that are equivalent through
the equivalence relation 4 , should be removed from the model
set. Further consequences of this theorem are analysed in more
detail in section 5.2.

A second set of sufficient conditions, being less restrictive than the
condition of theorem 5.1, is formulated in the following theorem.
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Theorem 5.2 Let M be a set of equation error models, M C
Lpim.

Then M is discriminable by J if for any two models My, M; € M
satisfying My 4 M, and H.., := HS (HS))™' a stable rational
matriz !, it holds that

{|{Heyey (2)W; 2 p with equality if and only if My = M,.

The sufficient condition stated in this theorem is less restrictive
than the condition of theorem 5.1; whereas in theorem 5.1 distinct
i/o-transfer-equivalent models are abandoned, in theorem 5.2 re-
strictions are formulated on distinct i/o-transfer-equivalent mod-
els. When discussing the consequences of these theorems, we will
most often deal with the transfer functions H,(z) of the models,
see (4). Because of the fact that we deal with equation error mod-
els this transfer function is polynomial and uniquely related to (the
behaviour of) the model.

In the next two subsections we will analyse the consequences of
the sufficient conditions as formulated in the above theorems sep-
arately.

5.2 Removing i/o-transfer-equivalent models

If it is not premitted to allow distinct i/o-transfer-equivalent mod-
els in the model set, it is straightforward to impose the condition
that for all models M € M, M* is required to be controllable.

Corollary 5.3 Let M be a set of equation error models, M C
Ypm, such that for all models M € M, M is controllable.

Then M is discriminable by J if for all My, M, € M with corre-
sponding transfer functions HY H® ¢ RexGtm)[y 2-1);

{H® = UH® with U € RP*?[z,z7"], unimodular} = {U =1}
(10)

The corollary clearly reflects the type of problem that is concerned.
In this setting the construction of a discriminable model set comes
down to the construction of a set of canonical forms for polynomial
matrices based on the equivalence relation of unimodular premulti-
plication (unimodularity here has to be considered with respect to
the ring RP*®*+™{z >-1]). This directly refers to a parametriza-
tion problem, as discussed in [5] and [4] for polynomials in one
indeterminate, and in [6] for the binomial case. Note however
that the problem of constructing the model set as such, is not a
parametrization problem, since it is not a matter of representation,
but the identified models finally obtained, are essentially depen-
dent on the model set that has been chosen. This means that,
referring to this problem as a parametrization-like problem, when
we choose for a different set of canonical forms we will end up with
a different set of identified models J(v*, M), since the model set
M essentially will have changed, and not only its representation
in terms of parameters.

A further specification of the results in the corollary are given
below.

Corollary 5.4 Let M be a set of equation error models, M C
$p.m, such that for all models M € M, M*™ is controllable.

Then M is discriminable by J if there exist rational matrices
K € Re+mxa () N € RO+™*0(2), and L € RPH™XB(2), with
q1,92,93 = p, such that for all M, My, M; € M with corresponding
transfer functions H,, H", H® e RPG+m)[z 271):

(i) H.K, H.N and H.L are polynomial matrices

1A rational matrix is called stable if it is analytic in | z [> 1, except
possibly in z = co.
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(i) there exist integers my, .., my,, satisfying
m; > ug")(Hi')K), i=1,2,j=1,.,q, such that
rank Cegmy...mq)(HVK) = rank Tomy,mg)(HOK) = p;

(iii) there ezist integers ny, .., nq,, satisfying
n; < pHON), i =1,2, j =1,..,q, such that
rank T gy, ng)(HEON) = rank Teo,me)(HON) = p;

(iv) HOL = S G'f)z“, for some 3; < t;,i=1,2, and
Gf,') = Gga), with rank Gf,l) = rank Gf,z) =p.

The corollary formulates conditions on column degree properties
of the postmultiplied transfer functions H, of the models in the
model set. Note that in the situation ¢ = p, implying that HYK
is a square matrix, the integers my, ..,m, are the upper column
degrees of HYK, which have to be equal for HYK and HPK.
Similarly in the situation ¢; = p, H9N iss uare, and the integers
ni,..,np are the lower column degrees of H,')N .

Specific choices for matrices K and N can be made, e.g. in order
to select columns within HK s HYN on which the restrictions
formulated in conditions (ii), (iii) should be applied to. Consider

for instance K = N = [ L ], leading to the situation that the

0
restrictions operate on the polynomial matrices H,, of the models
in the model set. Condition (iv) states that one of the coefficient
matrices (Markov parameters) of HYL should be fixed to a full
row rank matrix.
The consequences of the corollary are best illustrated in a simple
example.

Example 5.5 Consider the model set M:

{Me £1,1|M induced by T(z,27") = [ao+a12™Y| = bo— b2~ | —d],
ao, a1, bo, by € IR, ((a0 + a127"), (Bo + b1z7")) coprime,
ap # 0V a; # 0;c € R\{0}}.

it follows that the transfer functions of the models in this set can
be written as:

a @ -
% 41 Zh

H°=[c [

+ iz'l |
c

Applying corollary 5.4 for K =N = [ 1 now shows the restric-

0

tions: & # 0, (i), and & # 0, (iii), while condition (iv) of the

corollary is satisfied if any of the coefficients 2, %1, 9} or '—’cl is

unequal to 0 and fized over the model set. These four possibili-

ties respectively refer to the choices L = [ 10 ]T, L= [ z 0 ]T,
a

L=[[) l]T, andL:[O z]T.

In order to restrict the number of conditions that have to be im-

posed on the model set in order to achieve discriminability, the

rank conditions (ii) and (iii) of the corollary above, can be chosen

in line with the rank condition in (iv), and with the requirement

that M is controllable. For instance if, in example 5.5, we choose

K=L=[10]",and N = I, then (ii) and (iv) are satisfied by .
requiring that % = 1, while additionally the coprimeness condi-

tion on ((ao 4 a12™1), (bo + b12™")) and (iii) are satisfied by rank

(2 2=

Remark 5.6 For the situation of a higher order SISO ARX
model, as in (1). Corollary 5.4 states (by (iv)) that we can restrict
any of the coefficients a;, b; to 1, but that neverthless restrictions
have to be satisfied on ao,by on the one hand, and on a,,, by, on
the other hand, in order to satisfy the requirements of the corollary.
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Remark 5.7 Conditions (ii), (iii) of corollary 5.4 have been for-
mulated in terms of column degree and column coefficient proper-
ties of polynomial matrices. Similar statements can also be made
based on row degree and row coefficient properties, however only
in the situation that all upper (c.q. lower) row degrees are equal.

We have already mentioned that constructing discriminable model
sets, based on theorem 5.1, is a problem which is very similar to the
problem of constructing identifiable parametrizations for polyno-
mial matrices, dealing with the equivalence relation of unimodular
premultiplication. This implies that any polynomial parametriza-
tion characterized by a set of matrices H, € RP*®+™|[z,z71]
that satisfies the conditions of corollary 5.4 constitutes a set of
canonical forms under the equivalence relation mentioned. Specific
parametrizations that are dealt with in the literature are covered
by this corollary, as e.g.

1. the monic ARMA form (Deistler, 1983).
This concerns polynomial matrices T = [P|Q] €
RP*(P+m)[-1], with det P # 0, (P,Q) left coprime with re-
spect to IR[z"!] and additionally T4.(P) = I, us{(P) = 0,
#(T) > n;, and rank Geny .cupym)(T) = p-

2. the canonical and pseudo-canonical (overlapping) observabil-
ity forms (Guidorzi, 1981; Gevers and Wertz, 1987).
This concerns polynomial matrices T = [P]Q] € RP*?+™)[2],
with det P # 0, (P, Q) left coprime with respect to IR[z] and
additionally T (P) = I, p{(P) prespecified, yg)(T) >0,
and rank G, (o,.0)(T) = p.

In terms of corollary 5.4 both pa.rametrTizations reflect the choices
. _ (%) . T
L= [dwg{z[ 5O =1,..,p} 0] yK=[I0] andN=

p+m-

5.3 Restricting i/o-transfer-equivalent models

When we analyse the results of theorem 5.2, we come to a second
set of sufficient conditions for obtaining discriminability.

Corollary 5.8 Let M be a set of equation error models, M C
pim-

Then M is discriminable by J if there exist rational matrices K,

N € RF™X9(3) ¢ > p, such that for all M,My,M; € M

with corresponding polynomial transfer functions H., He(l), HP ¢

RP¥P+m)[; =1 H_K and H.N are polynomial and cither one of

the following conditions (i) to (iv) is satisfied.

() a Tw(HPK)=TW(HPK), having rank p, and
b JHDK) = v HPK) fori=1,..p;
(i) e I‘hr(He(l)K) = I‘;.,(Hg)K), having rank p, and

b T v (HPK) = T, vU(HOK); and
c. SYYUHON)=OHDN), fori=1,..,p, and
d. rank T,,(H'N) = rank T, (HP'N) = p;
(i) there ezist integers my,..,m,, satisfying m; > pf.“)(Hii)K),
i=1,2,j=1,.,q, such that
Fq(mh.._m,l)(He(l)K )= I‘c,(,,,h“,,,,“)(HemK ), having rank p;
(i) a q=p;
b. Th(HVK) = Th(HPK), having rank p, and
. LK) = L, O K); and
d. u,-(')(ng)N) = v HPN), fori=1,..,p, and

3112

e. rank Flr(H:l)N) = rank I"z,(ng)N) =p; u}

Especially if we take a closer look at situations (i) and (iii) of the
corollary, the conditions that have to be imposed on the model set
are less restrictive than the conditions formulated in the previous
subsection. In situations (i) and (iv) even the row (column) de-
grees do not have to be specified, only the sum of the row (column)
degrees. Moreover note that, in contrast with the situation of the
previous subsection, it is not required that M is controllable for
all models in the model set.

One of the main differences between the conditions of corollaries
5.4 and 5.8, is that in corollary 5.4 a surjective matrix is fixed
(part (iv)) that is one of the coefficient matrices of a polynomial
matrix, whereas in corollary 5.8 the matrix to be fixed is specifi-
cally a surjective leading row or column coefficient matrix. This
means that the situation now becomes different e.g. for the type
of models as discussed in remark 5.6. In this general SISO ARX
situation, if we want to fix any of the coefficients a; or b; to 1, but
not ag or by, then the situation does not match anymore with the
results of corollary 5.8. Apparently in that situation, controllabil-
ity of M* is required - as is assumed in corollary 5.4 - in order to
achieve discriminability. This is briefly illustrated in the following
example.

Example 5.9 Consider two equation error models My, My in-
duced by H(2), HO(z), with

HO(z) = [(z=a)(z~¢) | k(z=b)(z~¢)]
HP(z) = [(z=a)(z—d) | k(z - b)(z-d) ]

and (11)
(12)

with a,b,¢c,d, k € R\{0}. Consequently
z—b

zZ—a

H{)(2) = H{)(z) =k

and Mj°, M are not controllable. It follows that H.,., (z) = =%

Since the highest powers of z in HS), He(z) have been prespecified
to 1, it follows that H.,. (z) is proper with lim, o He,e, = 1.
Consequently [|Heye,|l, > 1. If, alternatively, the coefficient of
any of the other powers of z had been fized in H.,, as e.g. the
coefficient of 2° being related to the lower column/row degree, then
{{Hezeyll, = 1 would not be guaranteed, and lack of discriminability
would be possible. o

We want specifically to pay some more attention to situations (ii)
and (iv) of the corollary. To this end we isolate the following set
of restrictions.

Set 1
e Fhr(He) =1

Set 2
o Th(Ho) =1

t=1 "su)(He) = n, fixed LIS 80 #su)(H,v) = n, fixed

vO(H.) =0, fixed
rank I'i (H.) = p

o v)(H,) =0, fixed

e rank I',(H.) =p

If the models in the two sets reflect causal input-output systems,
i.e. if the transfer functions H,,(z) are proper rational functions,
then the McMillan degree of the models is fixed to be n. A de-
tailed analysis of McMillan degree and structure indices of these
polynomial representations is presented in [14].

Now taking a closer look at set 2, presented above, then this set
of conditions exactly appears to be the set of restrictions that is
imposed on polynomial matrices to generate the so-called pseudo-
canonical or overlapping parametrization of all input-output mod-
els having a prespecified McMillan degree n, see e.g. (1, 4]. In
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our setting, set 2 does not describe overlapping sets of models,
but one set of models that for a given value of n can be split up
into several subsets related to a specific choice of the integer in-
dices pﬁ" ,-»fp", while all the elements in the whole set can be
discriminated from eachother. One of the consequences is that
when, choosing for a specific set of integer indices ui"), .y u,(,"), and
performing an (approximate) identification with a corresponding
model set, different dynamical models will be identified, dependent
on the specific structure indices that have been chosen (but still
summing up to n). This above observation was already pointed
out in [12]. It is supported by results of [9], where properties are
derived of approximately identified equation error models, being
dependent on the specific sequence of integer indices chosen in an
overlaping parametrization.

5.4 Parametrization of equation error models

Having determined sufficient conditions for equation error model
sets to be discriminable by J we have to spend a few words on the
problem of parametrizing these model sets. Actually this problem
does not exist. Because of the fact that the restrictions on the
models have been formulated in terms of restrictions on the poly-
nomial matrices H.(z), any equation error model can simply be
represented by the polynomial representation

T(z,27") = [Hey | Heuw | = 1]

in line with (2). This polynomial representation is unique be-
cause of the identity matrix, which prevents the polynomial to be
transformed into an equivalent form by premultiplication with a
unimodular matrix not equal to I.

Conclusions

Equation error models are known to inherently require the a priori
choice for specific signal variables to be considered as regressands
and/or regressors. The choice for a different regressand will influ-
ence the models that will be obtained by applying a least squares
identification criterion in an aproximative sense. We have gen-
eralized this notion to the multivariable case, by quantifying the
restrictions that can be laid upon the model set, in order to guar-
antee that all models in a model set can be distinguished by a
least squares identification criterion. This property, denoted by
”discriminability of the model set by the identification criterion”
has been analyzed, and different sets of sufficient conditions have
been formulated, employing system representations dealing with
both forward and backward shift operators.

The first set reflects a problem of constructing sets of canonical
forms for polynomial matrices given the equivalence relation of uni-
modular premultiplication. The result presented directly resem-
bles and generalizes results that are obtained in a related problem
of constructing identifiable parametrizations.

The second set of sufficient conditions is less restrictive, and does
not directly refer to such a parametrization problem. Nevertheless
the result has close connections to parametrization issues, and it is
shown that the pseudo-canonical or overlapping parametrization of
all dynamical systems with prespecified McMillan degree, actually
constitutes a nonoverlapping set of models that is discriminable
by a least squares identification criterion.
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