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Abstract 

The problem of system identification is reconsidered as a 
problem of deterministic approximate modelling on the basis of 
input-utput data. In the approach presented, system identifi- 
cation methods are required to yield models that are well- 
defined, in the sense that the models obtained proceed from the 
available data sequence and from specified users' choices, and 
not from implicit (statistical) assumptions on the data and the 
underlying process. 
Based on the system theoretic concept of dynamical system 
behaviour, a framework is presented in which the identification 
problem as considered above can be formulated properly. In 
this framework the different components of an identification 
method: model set, parametrization, and identification crite- 
rion, are defined in a fundamental and natural way. A clear 
distinction is made between the problems of identification and 
parametrization. For the popular class of equation error identi- 
fication methods, it is shown that the construction of parame- 
trizations that are identifiable by a least squares identification 
criterion, requires specific users' choices that not have been 
recognized before and that influence the optimal models obtain- 
ed. 

Introduction 

System identification can be defined as the problem of creating 
mathematical models of dynamical processes on the basis of 
measurement data of the processes concerned. Current methods 
of system identification have been mainly developed from a 
viewpoint of statistics. Assumptions on statistical properties of 
the available data sequences, play a crucial role in the 
methodology of constructing models from time series, see e.g. 
[1],[3],[5]., Inherent in this a.pproa.ch is the implicit assumption 
that one indeed is able to describe the process at hand exactly 
with a model of restricted complexity. However identifiation 
methods might be very sensitive with respect to the 
assumptions underlying the methods. From a methodological 
point of view this situation is not satisfactory. The presence of 
statistical assumptions in the funhmental formulation of the 
identification problem has brought a number of authors to  
express their opinion on the state of the art quite strongly, as 
illustrated in the following quotations: "The subject is so 
underdeveloped at present that it is not possible to say v e y  
much about the identification of dynamical systems", (Kalman 
[4]), and "Notwithstanding the fact that identification the0 y 
and time series analysis have produced some v e y  useful 
algorithms and important applications, it can be stated that 
there is a need to put a c1ea.r and rational foundation under the 
problem of obtaining models fiom time series. It is ve y much of 
an area where some of the first principles still need to be sorted 
out. In particular one should start by  formalizing what is meant 
by an optimal (approximate) model" (Willenis [lo]). 
In the course of years the conviction has been growing that 
processes to be modelled a.re in general far too complex to be 
modelled exactly by linear, time-invariant and finite dimensio- 
nal models. On the other ha.nd, the resulting models have to be 
relatively simple, in order to be a,pplicable in a mana eable 
way, e.g. in control system design. Consequently the motelling 
errors that we have to deal with, will not be mused mainly by 
random effects like measurement noise, but will rather be due 
to the fact that our models are not complex enough. 
In this paper the opinion of Willems [ll] will be supported, 

stating that although there may be many situations in which a 
statistical framework indeed is a suitable one, it has many 
fundamental drawbacks as a general philosophy. As an alterna- 
tive approach the problem of system identification will be 
considered as a roblem of deterministic approximation, in 
which the modelk) finally obtained, should be an optimal 
approximation of the process a t  hand, in a prespecified and 
well-defined sense. Explicit users' choices have to replace the 
implicit statistical assumptions discussed before. 
In this paper we will direct our attention to  the construction of 
(a) model(s) out of measurement data of input and output 
signals. We will not make any reference to a data gemrating 
process, since this process is principally unknown. The step 
from data to model is a well-defined problem that allows a 
formal treatment without having a priori knowledge avrilabk. 
In view of these starting points the main parts of an identifica- 
tion procedure are reflected by the following three choices: 

1. the choice of a model set 
2. the choice of a parametrization 
3. the choice of an identification criterion 

In order to  discuss the construction of models in a fundamental 
way, there is a need of having a proper definition of the notion 
of model, and, even more general, a need of having a proper 
definition of a dynamical system. Linear timeinvariant a d  
finite dimensional dynamical systems are commonly defined in 
terms of transfer functions, state space representations or 
difference equations, all having their own specific properti-. 
However, all these definitions have one thing in common: t h y  
impose restrictions on the external signals of the d y n m i c d  
system. In a dynamical system with inputs and outputs, not all 
pairs of input and output signals are admissible, but only those 
signals that are related through the laws of the dyniunid  
system. In the recent system theoretic work of Willems [lo], 
[12] this notion has been formalized and a dynamical system 
correspondingly is defined in terms of its behaviour, i.e. the set 
of admissible signal trajectories. This fundamental concept hrs 
been adopted in this paper and has been used to construct L 
framework for the formulation of the identification problem. 
Within this framework the basic choices of model set (4, 
parametrization (M) and identification criterion (J) will be 
defined, and their mutual relations and distinctions will be 
stated clearly. The purpose of the identification criterion is to 
select, given an available data sequence, that (those) model s) 

the available data sequence. Consequently the optimal models 
obtained are dependent on the specific model set and the 
identification criterion chosen. The parametrization takm care 
of a (unique) representation of the elements of the model set in 
terms of parameters; this is a problem of representation and 
consequently the parametrization itself should not influence the 
optimal models obtained. 
First appropriate definitions will be given of the models that 
will be considered in this paper. The basic elements of UL 
identification procedure: model set, parametrization and 
identification criterion will be defined subsequently. Next it L 
shown which kind of restrictions have to be imposed in order 
to arrive at  a useful identification problem, and the relation 
with the identifiability of parametrizations is discussed. Results 
are further specified for a least squares identification criterion. 
Some notational conventions: !Rp"(z) is the field of [p~m]  
rational matrices; RPxm[z,z-l] is the ring of [ xm] polynomial 
matrices in the indeterminate z and z-1; R\fO} is the set of 

out of the model set, that can be considered to be optimal r or 
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real numbers excluding 0; detR(z)( e ) ,  rankR(?)( e )  denote the 
determinant and the rank of a rational matrix over the field 
R(z), and rankC( e )  the rank of a matrix over C. 

Dynamical Systems and (i/o/prl-Models 

First we will define the notion of a dynamical system. 

Definition 1. (Willems [lo]). A linear, time-invariant, Jnite 
dimensional dynamical system S on R is defined as a triple: 
S = ( T ,  W,B), with 
- T = I ,  the time set; 
- W is the signal set, being a vector space in which the 

variables that are related to the system take on their 
values; 

- BcWT is the behaviour of the system, denoted by B ( S ) ,  
being a linear closed subspace of W in the topology of 
pointwise convergence. It is the space of all signal trajectc- 
ries w: T- W that are compatible with the system, and it 
satisfies the shift invariance property: 

T 

w E B ( S )  w m E B(S w 0-lw E B(S  
with the shift operators a, 0-1 de I ined by: (uw)lt)=w(t+l), 
tER and (rT'w)(t)=W(t-l), t d .  0 

For a dynamical system having m inputs and p outputs the 
signal set W will generally be fixed to W=RP+m. Having speci- 
fied T and W the essential characteristic of a dynamical system 
is reflected by its behaviour 6. This concept of a linear time- 
invariant finite dimensional system encompasses various defini- 
tions used in the literature such as the transfer function 
approach, representations with difference equations, and the 
well known state space approach. For the purpose of identifica- 
tion we will use models that are linear, time-invariant and 
finite dimensional dynamical systems, describing relations 
between three t pes of model variables: inputs (U), outputs (y) 
and.residuals (er. 

Definition 2. An input-output-processing residual model or 
(i/o/pr)-model M is defined as a linear time-invariant 
finite dimensional dynamical system on R ,  with W = YxUxE, 
Y = Utp, U = Utm, and E = Utp, with the properties that 
- U is free, i.e. 6u(M)=(R")n with 

P ,m 

B,(M):={u€dl 3(y,e)E( YxE)nl (y,u,e)EB(M)}, e is free and 
y processes (u,e), where 'lwl processes w2 means that once 
w:! has been specified, the space of admissible signals w1 
such that (wl,wz)EB(M) is finite dimensional; and 

- (u,y) are free and e processes (y,u). 0 

The notions of "free variables" and "processing variables" have 
been introduced in [ lo  The expression "WZ is free" and llwl 

as output can be considered as a "classical" input-output 
system. The signals YE$, UE#, e€$ will be denoted as 
output, input and residual. Signals w~f?(M) will be written as 
w = (y,u,e) or as w = (v,e) with VE 9, V= Yx U, and v=(y,u). 
The variables v will be the variables that can be measured, 
while residuals e in fact are artificially added to the model 
description t o  deal with modelling errors. 
Restrictions of signal variables and behaviours to  time sets I+ 

or TN=Lm[O,N-1] will be denoted by w+, Be or wN, # 
respectively, with I+=In[o,,). 
An (i/o/pr)-model is a special form of a dynamical system 
with auxiliary variables, as defined in [lo]. It can be 
interpreted in different ways: 
1. In terms of linear input-output systems with disturbances, 

an (i/o/pr)-model can be viewed as a dynamical system 
with input signals U, disturbance inputs e and output 
signals y. 

processes w:!" implies t E; a t  the system with w1 as input and w:! 

2. In terms of dynamical models used for identification it is 
much more appropriate to consider an (i/o/pr)-model as a 
model with the measured data consisting of U and y as 
inputs, and the residual e as output. 

Residual signals will play a.n important role in the modelling 
procedures t1ia.t will be treated. They reflect the error terms 
that are required for making a measured data sequence 
compatible with a given model. The residual signals determine 
the locations in the models where differences between models 
and measured data sequences are discounted for; consequently 
they can act as a basis for a measure of fit between a model 
and a data sequence. For an (i/o/pr)-model M the time set 
and the si nal set are fixed and the essential part of the model 
is reflectef by its behaviour. This behaviour can be represented 
in different ways. We will mainly restrict attention to a 
representation in polynomial matrix form. 

Proposition 3. For any (i/o/pr)-model M there exists a 

polynomial matrix T = [PI-QI-RI, T E R ~ ~ ( ~ + ~ + ~ ) [ Z , Z - ~ ]  with 
de tR(z)P[~ ,~- l ]  # 0 and detR(z)R[z,z-l] # 0, such that 

P ,m 

P P  

P( a,a-l)y-Q( a,0-l)u-R(u,a-l)e=O}. 

The (i/o/pr)-model M will be said to be induced by the 
polynomial matrix T ( ~ ~ z - 1 ) .  Note that polynomial matrices are 
considered in the two shift operators a and 0-1, generalizing the 
descriptions in either one of the two shift operators. 
By definitions 1 and 2 two (i/o/pr)-models M(1)  and M ( 2 )  

P,m P ,m 
are equal, i.e. MI ' )  = M ( 2 )  if and only if their behaviours 
are equal. In terms of the corres ondin polynomial matrices, 
this can be formulated as follows &ee [Id):  

ProDosition 4. Two (i/o/pr)-models M(1)  and M ( 2 )  , induced 

by full row rank polynomial matrices T(')(z,z-l) and T(2) 
respectively, have the same behaviour if and 0g-a 
T(')( z , z - ~ )  =U ( z , z - ~ ) T ( ~ ) (  qz-1) with U(~~z-1)  unimodular over 
the ring R(z,z-1], i.e. detR(z)U(z,z-l)=czd with cdR\{O}  and &I. 

Note that the unimodularity of U over the ring Ut{z,z-l] allows 
that its determinant is a function of z. 
In this signal based framework the notion of controllability 
becomes a property of the behaviour of the system. It is 
defined as the property that any two admissible trajectories w1, 
w2 E B ( S )  can be concatenated into a new admissible 
trajectory, by insertion of a finite time tra ector 121. In terms 
of a polynomial matrix representation o/ an $]o/pr)-model, 
the property of controllability can be formulated as follows. 

ProDosition 5 .  An (i/o/pr)-model M is controllable if and 
only if it can be induced by a full row rank polynomial matrix 
T(z,z-~) ,  that satisfies rankCT(X,X-l)=p for all k C \ { O } .  

The condition a.s formulated in this proposition is equivalent 
with the condition of left coprimeness of the polynomial 
matrices {P(z,z-~) ,Q(z,z-~) ,R(z,z- ' ) j .  
An (i/o/pr)-model M generates two transfer functions: one 
transfer function Hy(z) that considers y as the processing 
variable, and one transfer function He(z considering e as the 

polynomial matrix T=[P _Q~-R]E[R~~(~+~+~)[Z,Z-~]~ these two 

P W  

p,m p,m' 

P m P , m  

P ,m 

P ,m 

processing variable. If M is induce d by a full row rank 
P P 

(1) 

transfer functions can be d enoted by: 
H ~ ( z )  = [Hyu(z) I Hye(z)] := [ P-'Q I P-'R 1, and 
He(z) = [Hey(z)lHeu(z)] := [ R-'P I-R-'Q ] with (2) 

H ,He~IRPXm(z). 
Tie behaviour of Mp,, is completely characterized by either 
one of the two transfer functions if and only if Mp,, is 
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controllable, i.e. T does not contain nontrivial left factors. 
In order to  be able to separate the input-utput part of an 
(i/o/pr)-model, we will denote the i/o part of its behaviour by 
B'O(M) := {vEI/B I (v,e)EB(M), e=O}. If an (i/o/pr)-model M 
equals (Z,W,B(M)), then its i/o-pa.rt Mi' is defined by Mi' = 

(n,  v,B~o(M)). 

Residual-Based System Identification 

In the problem of modelling input-output data of a dynamical 
system, three central aspects will be distinguished: 
1. The set of models that is considered; i.e. the set of all 

models among which (a.) best model(s) is (are) searched for, 
given the measured data; 

2. a parametrimtion, representing the models in the model set 
with (real valued) parameters, and 

3. an identification criterion that selects "best" or "optimal" 
models from the set of models. 

Given the measurement data, the models that are finally 
obtained as a result of the modelling procedure should be 
determined by the set of models taken into account and by the 
identification criterion, and should not be dependent on other 
choices, like e.g. the parametrization of the model set. We will 
now present a formal introduction of the three notions 
mentioned above. 

Definition 6. Denote with I any collection of controllable 

(i/o/pr)-models {Mi::, (Y E I a }  with Io an index set. 0 

If the subscripts are clear from the context, Ap,m will be 
written as A. The restriction that is made to controllable 
(i/o/pr)-models in I will be motivated later on. Note that, 
because of this controllability, the models can be characterized 
by their transfer function Hy(z) or H,(z) as discussed in the 
previous section. 

p m  

Definition 7. A parametrization M for a model set 1 is a 

surjective mapping M: 0 -+ A with OcRd the parameter 
set, and A the parametrized set of models. 0 

The image of a parametrization is a model set. The representa- 
tion of models in terms of polynomial matrices can also act as 
a parametrization, which formally can be denoted by: 
M = M, o Gp with mappings: 

P m '  

P,m' 

P P 

G,: 0 -+ 0, 
M,: 0, - lp,m, with G p  bijective, M,, surjective, and 

M=M,(T) specified by B( M ) : = { W E ( R ~ + ~ + ~ ) ~  I T( a,u-')w=O}. 
With slight abuse of the definitions we will also speak about 
@e polynomial matrix parametrization Mp (in stead of M). 
Without loss of generality it will be implicitly assumed that 
the polynomial matrix parametrization is restricted to  
polynomial matrices having full row rank, ran$(z)T(z,z-l)=p. 
Since any (i/o/pr)-model M admits such a representation, 
this assumption can be made without loss of generality. 
We will now focus on the identification criterion (see also 

Definition 8. An identification criterion JN on a model set 1 
over a time set TN=2m[0,N-1] is defined as an operator 

with OcRd, and OpCRPX(P+m+P)[~,z-~], and 

P,m 

PI U ) .  

JN: ;N x 2 A ~  2 A  with 2&the  set of all subsets of A, such 

that for all J f c I a n d  vN€1/TN it holds that J N ( v N , d )  c d.0 

For a given data sequence vN€ a model ME& is called an 

optimal model within A with respect to JN if M E JN(vN,&). 
Actually the identification criterion is defined as a selection 
rule. Given a time series and a model set, the criterion J 
selects one or more optimal models from the model set. If J is 
defined on model set 1, then by definition it also can be 
applied to any subset of A. This definition is a very general 
one. It allows a unifying approach to  a number of system 
identification methods, and moreover it offers the possibility to  
incorporate extensions to  them. 
In this paper a restriction will be made to identification 

criteria that are based on a residual junction, p: ETN --+ RU{m}. 
Such criteria take residual signals that are compatible with the 
measured data vN for a model M, as "measures of fit" between 
the data and the model; The residual function is examined on 
the residual signals that, together with the measured data 
sequence vN, constitute an admissible trajectory wN&(M) for 
M E &  these residuals are contained in EN(vN,M). In formal 
terms this can be denoted as follows: 

= ar g min eN(eN) (3) 

eNEEN(vN,M) and ME&} (4) 

eNE E N (  vN ,M) 
:= {MEA I 3 e N ~ ~ N ( v N , M ) ,  eN(eN)<eN(eN) for all 

with EN(vN,M) := {eNEETNl ( v N , e N ) d ( M ) } .  

restriction will be made to the most straig 6 tforward choice for 

( 5 )  
The identification criterion has been formulated as a minimiza- 
tion problem. It has to be stressed that this is a specific choice, 
and that other formulations are possible 81. In this paper a 

the identification criterion, i.e. the minimization of a sum of 
squared residual terms: 

N-1 

eN(eN) = f 1 eT(t)e(t) (6) 
t =o 

For N-OI this expression will be denoted by t'+(e+) and the 
corresponding identification criterion by J l s .  
Returning to the set of models A, one of the important proper- 
ties of a model M ~ 1 i s  the way in which the residual signal is 
connected to the measured input and output signals of the 
model. The connection between i/o signals and residual signals 
determines the "location" in the model where disturbance 
terms between data and the i/o-part of the model are repre- 
sented. In residual-based identification methods the residual 
si nals form the basis for the "measure of fit" between measur- 
ecf i/o-data and (i/o/pr)-models. Consequently the residual 
signals have a reat influence on the properties of the optimal 
models finally attained. 
We will characterize three different types of (i/o/pr)-models 
with respect to their residual types: prediction error (PE) 
models, output error (OE) or simulation error models, and 
equation error (EE) models. These expressions are generally 
known in the literature, see e.g. [5 ] .  In this paper the different 
types of residuals will be presented as general properties of 
controllable (i/o/pr)-models, formulated in terms of their 
polynomial matrix representations. For the basic definitions of 
these types of models in terms of their behaviour, one is 
referred to  [8], [9]. 

Prouosition 9. Let Mp,, be a controllable (i/o/pr)-model, 
that is induced by a full row rank polynomial matrix T(z,z-1) 
with T = [PI-QI-RI. Then: 
a. M is a k-step ahead prediction error (PE) model if and 

P F  
only if 
1 .  P(z,z-')-'Q(z,z-') is a proper rational matrix, and 
2. there exists a nonsingular matrix L€RPxP such that 

{~iz,z-i)-~~(z,z-i)-~}z~ is proper. 
b. Mp,, IS an output error (OE) or simulation error model if 
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and only if P(~,z-l)-~R(z,z-l) = L E Rpxp, nonsingular. 

is unimodular with respect to  RPXP[z,2-1]. 

c. M is an equation error (EE) model if and only if R(z,z-l) 

0 

Note that the different model roperties are not conflicting. 
Any combination of (PE), (OEP and (EE) properties is also 
possible. These different residual type models will be 
distinguished in the sequel of this paper. 
In this section the three basic components of an identification 
procedure have been introduced. In the following section it will 
be discussed which interrelations between these three notions 
have to  be taken into account. 

p m  

Discriminable model sets and identifiable mxametrizations 

Let us consider the following example in which a least squares 
identification criterion is applied to a set of equation error 
models. 

ExamDie 1. 
Consider a set A o f  (i/o/pr)-models with one input and one 
output, and consequently one residual signal (SISO situation): 
A= {Ml, l lMl, l  is induced by T(z,z-1)=[a0+alzI-bo-b1zI-c], 

Because of the fact that we are dealing with (I/o/pr)-models 
the parameter c in T(z,z-1) is not allowed to be equal to 0, and 
at least one of the parameters {ao,al} has to be unequal to 0. 
As an identification criterion we will consider the well known 
least squares criterion J l s  as formulated in (3)-(6). 

When given a data sequence v+ the following situations can be 
distinguished. 

aO,al,bO,bl,C€R,((aO+alz),(bo+blz)) coprime}. (7) 

a. 

b. 

In 

Data sequences v+ for which holds that ft(v+,M)>O for all 
MEM, for these data sequences it follows that 
J l s ( v + , 4 = 0  since e(e+)-O for a,o,al,bo,bl+O, or 

similarly C+m, and the limit point ef(e+)=O can not be 
reached within A. 
Data sequences v+ for which holds that fe(v+,M)=O for 
some ME& any such data sequence can be written as 
v+E@(M'") with M E A  and for such a data sequence the 
following expression holds true: 
M I E J ~ ~ ( v + , A )  w {3dER\{O} such that (v,e)EB(M) H 

(v,e')EB(M1) with e=de'}. 
Consequently all models that lead to residual signals that 
are related by scaling factors, are always selected together 
in the identification criterion. 0 

the generic situation [a) of the examde, there will not be 
selected- any optimal model, i.e. the identification criterion 
Jls(v+,A) will be empty. Apparently the chosen A and J l s  
do not lead to a useful identification problem. The classical 
way to  circumvent this problem is to restrict the considered 
model set by requiring that the polynomial matrix T(z,z-l) in 
eq. y) satisfies the additional constraint ao/c=l. However it 
shoud be stressed that this is a specific choice out of many 
different alternatives and, moreover, that each different choice 
of restricting the model set will generally lead to different 
selected optimal models. Apparently restriction of the model 
set is required in order to come up with a sensible 
identification problem, but it is also necessary in order to 
guarantee that all models in the model set can be distinguished 
by the identification criterion. The ability to distinguish the 
different models in a model set during identification 
experiments will now be formalized. 

Definition 10. A model set A is called discriminable by  an 
identification criterion JN,  defined on A, if for all M E A  there 

exists a data sequence v N e g N  such that JN(vN,A)=(M}. 

If A i s  discriminable by JN,  then J N  is called discriminating on 
A. An identification criterion that is discriminating on a model 
set can distinguish between the different models in this set. 
This aspect of discriminability can also be approached from a 
different point of view, using a slightly weaker formulation in 
terms of an identification criterion-based equivalence relation 
on A, see [6] and [7]. 

Dealing with model sets that are not discriminable by the iden- 
tification criterion is an undesirable situation; this is exactly 
the situation as illustrated in the example shown. 
Apart from the "usefulness" of the identification problem, the 
concept of discriminability is also important for the construc- 
tion of identifiable parametrizations. Identifiability of a param- 
etrization will be considered as the ability in identification 
experiments to distinguish between different parameter values 
81, 82 E 0 in a pa.rametriza.tion M: 0 - A. In this line of 
thought it is very natural to relate the identifiability of a 
parametrization to the identification criterion that is applied. 
This is formulated in the following definition. 

Definition 11. A parametrization M: 0 + A with OCRd is 
strictly identifiable by an identifica.tion criterion JN defined on 
& i f  * M is a bijective mapping, and 

* J N  is discriminating on A. U 

The strict identifiability of a parametrization deals with the 
question whether it is possible a t  all to find a unique 
parameter e as the solution to an identification problem, 
irrespective of the data. In line with this philosophy, identi- 
fiability is defined as a property of a parametrization and an 
identification criterion, in contrast with the current approach 
in the literature where it is only directed towards the bijective 
mapping M, see e.g. [2], [5]. In line with this approach, a 
parametrization will be called identifiable if, in stead of M 
being bijective, it holds that M ( 4 )  = M(&) =+ 81 = & for 
almost all &,&EO, reflected by the expression that M is almost 
bijective. 

lIdentificationI I criterion JN h 
A discriminable I 

M identifiable 8 7 1  
Figure 1 Schematic representation of the requirements for a 

parametrization M of A to  be identifiable by JN. 

The situation as formulated in this section is represented in 
Figure 1. In the following section the discriminability of 
specific types of model sets will be discussed in view of the 
least squares identification criterion presented before. 

662 

Authorized licensed use limited to: Paul Van Den Hof. Downloaded on October 09,2023 at 15:29:03 UTC from IEEE Xplore.  Restrictions apply. 



Discriminabilitv of model sets with resDect to J l s  

In this section it will be discussed which specific choices can be 
made in order to guarantee that model sets are discriminable 
by the asymptotic least squares identification criterion J:s. 
We will consider model sets of controllable (i/o/pr)-models. 
Any such model set 1 can be uniquely represented by a set 

of rational functions Ot~RPX(P+m)(~)  with He(z)€Ot the transfer 
function of a model M E A  considering the residual e as the 
output (processing) variable. According to (2) this transfer 
function is written as He(z) = [Hey(z)lHeu(z)]. 
We consider two elements M I , M ~ E X  being induced by rational 
matrices Hd')(z), H?)(z)EO,. It can be shown [8] that a 
sufficient condition for discriminability of X with respect to 
J l s  is given by the requirement that for any such MI, M2 it 

holds that the rational function H:;)(H$))-', if it is stable, can 
be written as: 

H$)(HLk))-'(z) = I + *c M(k)zVk for some t d .  (8) 

It seems to be a straightforward choice to satisfy this condition 
by imposin restrictions on the transfer function Hey(z), or its 
inverse HyJz), within 0,. 
Considering the classification of models in terms of their 
residual-type properties, as presented in proposition 9, the 
following observations can be made. K-step ahead prediction 
error models and output error models intrinsically contain a 
nonsingular matrix L E ~ R ~ ~ ~  in their representation. This matrix 
L is directed towards the relation between outputs and resi- 
duals in the corresponding models, reflected by the expression 
L = L i m  {zk-l Hye(Z)}. In view of the statements made above, 

this property advocates a special restriction of model sets in 
order to arrive a t  discriminability by J is ,  by fixing this matrix 
L for all models in a model set on beforehand. This is formu- 
lated in the following corollary [8]. 

Corollarv 12. 
Denote with Me (L), ke (L) any collection of controllable 
k-step ahead prediction error models, c.q. output error models, 
with a prespecified -and for all models equal- nonsingular 
matrix LcRPXP as defined in proposition 9. Then ke (L), 

P ,m 

k= t 
k#O 

Z* 

P,? P3m 

p,m 

J$:m(L), is discriminable by Jls .  0 

Considering model sets with a fixed nonsingular matrix L=I is 
the most common situation in prediction error and output 
error modelling. For prediction error models this situation can 
actually be compared with the application of a (stochastic) 
innovations representation in state space form. In contrast with 
these prediction error and output error models, the definition 
of equation error models does not point to a specific restriction 
of the corresponding model sets. However also for equation 
error models discriminability can be achieved. One of the 
options is to  choose prediction error or output error form 
restrictions, i.c. by requiring the models in the EE model set to 
satisfy L i m  {zk-l Hye(Z)} = L with the nonsingular 

fixed over the model set (PE-form), or even Hye(z) = L 
(OGform) . 
Apart from these possibilities, equation error models give extra 
opportunities to restrict corresponding model sets to be dis- 
criminable, by exploiting the fact that for an equation error 
model the transfer function He(z)=[Hey(~)lHeu(~)] is a polyn+ 

Z* 

mial matrix. This special property points to  alternative ways 
for obtaining discriminability, through restrictions on the poly- 
nomial degrees in this transfer function. In this line of thought 
we will present one result for obtaining discriminability of 
equation error model sets. Without loss of enerality we will 
restrict attention to  models having a transkr function He(z) 
that is polynomial in one indeterminate, i.e. H ~ ( z ) E W ~ ~ ( ~ + ~ ) [ Z ] .  

Theorem 13. 
Let L be a nonsingular matrix LclRPxP and let Ot(L) be a set of 
polynomial transfer function matrices: Ot(L)cRPX(P+m) z with 
He€Ot(L) written as He=[HeyIHeu], satisfying ran$ key'p 
and rhc(He )-L for all He€O,(L), with rhc(Hey) the leading 
column coefYficient matrix of H ~ ~ .  
Let Ot(L) induce an equation error model set $ 
Denote with pi(Hey) the i t h  column degree of He, and consider 
the following conditions. 

(z) 

d L ) '  

He@t + rank[Hey(0)]=p. 

If Ot satisfies ( i )  or (ii)  then 

Proof. See [8]. 

is discriminable by Jls.o 
t(L)  

The restriction that is proposed for obtaining discriminability 
of equation error model sets, is not presented in the form of a 
fixed Markov parameter of the transfer function Hye(Z), but in 
the form of a fixed leading column coefficient matrix of the 
polynomial transfer function Hey z). Some additional conditions 

Hey(Z), or a fixed sum of column degrees of Hey(z) and absence 
of poles in z=O of the transfer function Hy(z). It has to be 
stressed that the result as presented in this theorem reflects 
only one choice out of a great number of possibilities for 
obtaining discriminability of equation error model sets in 
general. A dual approach directed towards row degrees in stead 
of column degrees can be found in [8. It has to be stressed 

to different model sets, and generally also to different results 
for the identification procedure, i.e. to  different sets of selected 
optimal models. 
The specific restrictions as formulated in the theorem are 
chosen because of their very close relationship with representa- 
tions of model sets of all models having a specified McMillan 
degree. 
The two different approaches for obtaining discriminability 
with respect to  J l s  for P E  and OE model sets on the one 
hand, and EE model sets on the other hand, also imply a 
separate treatment of the problem of constructing identifiable 
parametrizations see fig. 1). These consequences will be briefly 

have to be fulfilled, such as a 1 ixed set of column degrees of 

that every other choice of arriving at  d iscriminability will lead 

glanced at in the h inal section. 

Some conseauences for identifiable Darametrizations 

When constructing identifiable parametrizations for model sets 
that satisfy the conditions of discriminability as presented in 
the previous section, we have to distinguish between the diffe- 
rent residual type of models. 
Any set of prediction error or output error models, satisfying 
the conditions of corollary 12, can be parametrized in a polyno- 
mial matrix parametrization by means of a set of polynomial 
matrices 0 c R P x ( P + m + P ) [ ~ , ~ - I ]  with TEO written as 
T=[PI-CI-R], satisfying the properties as formulated in propo- 
sition 9a or 9b. 
In order to obtain an identifiable parametrization it is required 
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that the parametrization is (almost) bijective, i.e. that 0 does 
not contain distinct elements that generate the same model. 
With proposition 4 it follows that obtaining an identifiable 
parametrization comes down to restricting 0 in such a way 
that there do not exist two distinct elements that are related 
through premultiplication with a unimodular matrix. Note that 
the restrictions for obtaining discriminability with respect to 
J t s ,  do not solve the parametrization problem. A parametriza- 
tion problem remains in terms of removing unimodular premul- 
tiplication within 0. 

For equation error model sets that are discriminable by JLs 
the situation is different. Any set of equation error models, 
satisfying the conditions of theorem 13 can be parametrized in 
a polynomial matrix parametrization by means of a set of poly- 
nomial matrices @,, c RPx(P+m+P)[~,~-l] with TEO,, written as 
T=[PI-Q-RI. Because of the unimodularity of matrix R (by 
definition\, it follows directly that any such set of models can 
also be represented by a set of polynomial matrices @:e c 
R p x ( p + m + p ) [ ~ , ~ - l ]  with T*E@$, written as T*=[P*IQ*l-I]. The 
parametrization induced by @:e is bijective since the identity 
matrix on the position of matrix R* does not allow a unimod- 
ular premultiplication. The identifiability problem for this kind 
of EE model sets has now been solved straightforwardly. 

For a summary of the results of the previous sections, it is 
illustrative to reconsider figure 1. The upper part of the dia- 
gram refers to  the discriminability of the model set, being an 
essential choice that influences the optimal models finally 
obtained by J ls .  The lower part refers to the uniqueness of the 
parametrization which is just a matter of representation. For 
output error and prediction error model sets it has been shown 
that there exists a straightforward choice for obtaining discrim- 
inable model sets (corollary 12) and that a problem of parame- 
trization remains when identifiability with respect to JLs is 
required. For equation error model sets this situation is diffe- 
rent. There are many different ways for obtaining discrimina- 
bility with respect to J l s ,  and each different choice generally 
yields different identified models. As shown in this section, 
there actually does not exist a parametrization problem for the 
equation error model sets discussed. Where the essential 
problem of PE and OE model sets is a problem of parametriza- 
tion, the main problem for EE model sets is a problem of 
obtaining discriminability. 
For equation error identification methods the aspect of 
discriminability is generally not recognized as an explicit users' 
choice; this leads to optimal models that are partly determined 
by the (arbitrary) way in which discriminability was achieved. 
Moreover it means that the experimenter - without notice - 
can have an essential influence on the optimal models finally 
obtained. In view of the fact that the identification methods 
discussed are required to  be based on explicit users' choices, 
the statement made above makes the equation error approach 
rather questionable. This is especially remarkable if we take 
into account that equation error methods are by far the most 
popular methods in the application of system identification 
techniques . 

Conclusions 

In this paper the problem of system identification is considered 
as a problem of deterministic approximate modelling of 
input-output data. In order to deal with this problem a 
framework has been constructed in which the basic components 
of a modelling procedure are reformulated. Residual signals are 
incorporated in the model descriptions in order to  deal with 
modelling errors and to determine a measure of fit between a 
measured data sequence and a model. A clear distinction has 
been made between the problems of identification and 

parametrization. The identifiability of parametrizations has 
been reconsidered and has been shown to consist of two 
different aspects: the discriminability of the model set with 
respect to the identification criterion, and the uniqueness of the 
parametrization of the models in the set. Whereas for output 
error and prediction error model sets the construction of unique 
parametrizations is the main problem, it is shown that for 
equation error model sets the essential problem is to obtain 
model sets that are discriminable by a (least squares) 
identification criterion. 
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