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Abstract 

Recently introduced methods of iterative identification 
and control design are directed towards the design of high 
performing and robust control systems. These methods show 
the necessity of identifying approximate models from closed 
loop plant experiments. In this paper a method is proposed 
to approximately identify normalized coprime plant factors 
from closed loop data. The fact that normalizedplant factors 
are estimated gives specific advantages both from an identi- 
fication and from a robust control design point of view. It 
will be shown that the proposed method leads to identified 
models that are specifically accurate around the bandwidth 
of the closed loop system. The identification procedure fits 
very naturally into the iterative identification/control design 
scheme as presented in [15]. 

1 Introduction 
Recently it has been motivated that the problem of designing a 
high performance control system for a plant with unknown dy- 
namics through separate stages of (approximate) identification and 
model based control design requires iterative schemes to solve the 
problem [lo, 15, 17, 24). In these iterative schemes each identifica- 
tion is based on new data collected while the plant is controlled by 
the latest compensator. Each new nominal model is used to design 
an improved compensator, which replaces the old compensator, in 
order to improve the performance of the controlled plant. 
A few iterative schemes proposed in literature have been based 
on the prediction error identification method, together with LQG 
control design [24, 71. In [15, 16, lo] iterative schemes have been 
worked out, employing a Youla parametrization of the plant, and 
thus dealing with coprime factorizations in both identification and 
control design stage; as control design methods a robustness opti- 
mization procedure of (12, 31 is applied in [15, 161, while in [lo] the 
IMC-design method is employed. For a general background and 
a more extensive overview and comparison of different iterative 
schemes the reader is referred to [6, 11. 
One of the central aspects in almost all iterative schemes is the fact 
that the identification of a control-relevant plant model has to be 
performed under closed loop experimental conditions. Standard 
identification methods have not been able to provide satisfactory 
models for plants operating in closed loop, except for the case that 
input/output dynamics and noise characterictics can be modelled 
exactly. 
Recently introduced approaches to the closed loop identification 
problem [8, 14, 10, 15, 201 show the possibility of also identify- 
ing approximate models, where the approximation criterion (if the 
number of data tends to infinity) becomes explicit, i.e. it becomes 
independent of the - unknown - noise disturbance on the data. 
This has opened the possibility to identify approximate models 
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from closed loop data, where the approximation criterion explicitly 
can be "controlled" by the user, despite a lack of knowledge about 
the noise characteristics. In the corresponding iterative schemes of 
identification and control design this approximation criterion then 
is tuned to generate a control-relevant plant model. The identi- 
fication methods considered in the iterative procedures presented 
in [15, 16, 101 employ a plant representation in terms of a coprime 
factorization P = ND-', while in (15, 161 the two plant factors 
N ,  D are separately identified from closed-loop data. 
Coprime factor plant descriptions play an important role in con- 
trol theory. The parametrization of the set of all controllers that 
stabilize a given plant greatly facilitates the design of controllers 
[22]. The special class of normalized coprime factorizations has 
its applications in design methods [12, 31 and robustness margins 
[21,5,13]. If we have only plant input-output data at our disposal, 
then a relevant question becomes how to model the normalized co- 
prime plant factors as good as possible. In this paper we will focus 
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Fie. 1 :  Feedback confieiiratian 

on the problem of identifying normalized coprime plant factors on 
the basis of closed loop experimental data. 
As an experimental situation we will consider the feedback con- 
figuration as depicted in Fig. 1, where Po is an LTI-(linear time- 
invariant), possibly unstable plant, Ho a stable LTI disturbance 
filter, eo a sequence of identically distributed independent random 
variables and C an LTI-(possibly unstable) controller. The ex- 
ternal signals rl,rZ can either be considered as external reference 
(setpoint) signals, or as (unmeasurable) disturbances. In general 
we will assume to have available only measurements of the input 
and output signals U and y, and knowledge of the controller C that 
has been implemented. We will also regularly refer to the artificial 
signal r(t) := rl(t) + CrZ(t). 
First we will discuss some preliminaries about normalized coprime 
factorizations and their relevance in control design. In section 3 
a generalized framework is presented for closed loop identification 
of coprime factorizations. Next we present a multi-step algorithm 
for identification of normalized factors. In section 5 we briefly 
show the experimental results that were obtained when applying 
the algorithm to the radial servo-mechanism in a Compact Disc 
player. 
R'H, will denote the set of real rational transfer functions in 7i,, 
analytic on and outside the unit circle; R[z-'] is the ring of (finite 
degree) polynomials in the indeterminate z-l and q is the forward 
shift operator: qu(t) = u(t + 1). 
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2 Normalized coprime factorizations 
Consider a LTI system P, then P has a right coprime fuctoriration 
(r.c.f.) ( N , D )  over RH, if there exist U , V , N ,  D E 72NW such 
that 

P ( z )  = N(z )D- ' ( z ) ;  U N  + V D  = I .  (1) 

In addition a right coprime factorization (Nn,Dn) of P is called 
normalized if it satisfies 

N,T(2-')Nn(z) + DT(z-l )D, , (z)  = I .  (2) 

Dual definitions exist for left coprime factorizations (1.c.f.). 
One of the properties of normalized coprime factors is that they 
form a decomposition of the system P in minimal order (stable) 
factors. In other words, if the plant has McMillan degree npl then 
normalized coprime factors of P will also have McMillan degree 
npl. Additionally there will always exist polynomials a , b , f  E 
R[r-'] of degree rap such that N,, = f( .z-')-'b(z-')  and D,, = 

In robust stability analysis normalized coprime factors play an 
impoftant role, reflected in the following robustness result [12, 31. 
Let P be a plant model that is stabilized by the  controller C. 
Moreover let (N,,, Dn) be a normalized r.f.c. of P ,  and let the real 
plant Po be such that there exist stable perturbations AN, AD 
such that PO = ( N ,  + A,v)(Dn + AD)-'. 
Then C stabilizes the plant PO for all AN, AD E R'H, satisfying 

< 7 if and only if 7 5 l[T(p,Cp)ll2, with T ( j , C )  := 

~ ( 2 - - ~ ) - 1 a ( z - ' ) .  

I ; 1  it CB]-1 [ c I ] * 

?his-result shows that when we would have access to the normal- 
ized coprime factors of the plant, together with an error bound 
on these (estimated) factors (in the form of error bounds on the 
mismatches AN and AD), then immediate results follow for the 
robust stability of the plant. 
This result may not seem to be too striking, since a similar sit- 
uation can be reached by any hard-bounded uncertainty on the 
system's transfer function, and application of the small gain t h m  
rem. However uncertainty decriptions in normalized coprime fac- 
tor form have been shown to have some specific advantages, as 
the ability to deal with unstable plants and their close connection 
with uncertainty descriptions in the gapmetric [5]. 
The control design method of [3, 121 is directed towards optimiz- 
ing this same robustnesq margin as discussed above. This control 
design method is employed in the iterative identification/control 
design scheme of (15, 161. 

3 Closed loop identification of coprime factor- 
izat ions 

3.1 Closed loop identification 

The closed loop identification problem is not straighforwardly solv- 
able in the case that one is not sure that exact models of the plant 
and its disturbances can be obtained in the form of a consistent es- 
timate of Po and Ho. What *we would like to find - based on signal 
measurements - is a model P of the plant PO such that there exists 
an explicit approximation criterion J(Po,  P) indicating the way in 
which PO has been approximatFd (at least asymptotically in the 
number of data), while J(P0, P) is independent of the unknown 
noise disturbance on the data. 
Additionally one would like to be able to tune this approximation 
criterion to get an approximation of Po that is desirable in view 

'In the exceptional c w  that P contains all-paam factors, (one of) the nor- 
malized coprime factors will have McMillan degree < n,, see [lQ]. 

of the control design to be performed. This explicit tuning of the 
approximation criterion is possible within the classical framework 
only when open-loop experiments can be performed. 
Let's consider a few alternatives to deal with this closed-loop ap- 
proximate identification problem, assuming the signal r is available 
from measurements': 

If we know the controller C, we could do the following: 
Consider a parametrized model P(0) ,  0 E 0,  and identify 0 
through: 

(3) 

by least squares minimization of the prediction error ~ ( t ) .  

This first alternative leads to a complicatedly parametrized 
model set, and as a result it is not attractive, although it 
provides us with a consistent estimate of P irrespective of the 
noise modelling, and with an explicit approximation criterion. 

Identify transfer functions 

1 
and H,,, = - 

1 + P C  1 + P C  
P Hyr = - 

as black box transfer functions Hgr, H,,,, then an estimate of 
P can be obtained aa P = HgvH;, .  

This method shows a decomposition of the problem in two 
parts, actually decomposing the system into two separate 
(high) order factors, sensitivity function and plant-times- 
sensitivity function. In this setting it will be hard to "control" 
the order of the model to be identifed, &B the quotient of the 
two estimated transfer functions H,, H,,, will generally not 
cancel the common dynamics that are present in both func- 
tions. As a result the model order will become unnecessarily 
high. 

As a third alternative we can first identify H,,, as a black box 
transfer function H,,,, and consecutively identify P from: 

y ( t )  = P(B)ir,(t) + ~ ( 1 )  with & ( t )  := &,,,r(t). 

This method is presented in [20]. It also uses a decomposition 
of the plant P in two factors as in the previous method, now 
requiring a very accurate estimate of H,, in the first step. An 
explicit approximation criterion can be formulated. 

If, as io the last two methods, the plant is represented as a quo- 
tient of two factors of which estimates can be obtained from data, 
it is advantageous to let these factors have the minimal order, 
thus avoiding the problem that the resulting plant model has an 
excessive order, caused by non-cancelling terms. 

3.2 A generalized framework 

We will now present a generalized framework for identification of 
coprime plant factors from closed loop data. It will be shown to 
have close connections to the Youla-parametrization, as employed 
in the identification schemes as proposed in [8, 14, 15, lo]. 
Let us consider the notation3 

(4) 
(5) 

So(2) = (I+C(Z)Po(z))-'  and 
WO(2) = ( I  + Po(z)C(z))-'. 

lSimilar results follow if either rl or r2 are available from measurements. 
'The main part of the paper is directed towards multivariablesystems, and 

80 we distinguish between output and input sensitivity. 
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Then we can write the system's equations as4 

Y( t )  = Po(q)So(q)r(t) + Wo(q)Ho(deo(t) 
u ( t )  = So(Q)r(l) - C(!l)WO(q)HO(Q)eo(t). 

(6) 
( 7) 

(8) 

Note also that 

r ( t )  = r l ( t )  + C(q)rz(t)  = 4t) + C(q)y( t ) .  

Using knowledge of C(q) ,  together with measurements of U and 
y, we can simply "reconstruct" the reference signal r in (8) So in 
stead of a measurable signal r ,  we can equally well deal with the 
situation that y ,  U are measurable and C is known. 
It can easily be verified from (6),(7) that the signal { u ( t )  t 
C(q)y( t ) }  is uncorrelated with {eo( t )}  provided that r is uncor- 
related with eo. This shows with equations (6),(7) that the iden- 
tification problem of identifying the transfer function from signal 
T to ( y ,  U)* is an "open loop"-type of identification problem, since 
r is uncorrelated with the noise terms dependent on eo. The cor- 
responding factorization of Po that can be estimated in this way 
is the factorization (PoSo,So), i.e. PO = (POSO) . Si', as also em- 
ployed in e.g. [25]. 
However this is only one of the many factorizations that can be 
identified from closed loop data in this way. By introducing an 
auxiliary signal 

x(1) := F(q)r ( t )  = F(q)(u( t )  + C ( d Y ( t ) )  (9) 

with F ( z )  a fixed stable rational transfer function, we can rewrite 
the system's relations as 

Y ( t )  = Po(q)So(q)F(q)-'4t) + Wo(q)Ho(q)eo(t) 
U(t)  = So(q)F(q)-" - C(Q)Wo(q)Ho(q)eo(t), 

(10) 
(11) 

and thus we have obtained another factorization of PO in terms of 
the factors (PoSoF-', SoF-I). Since we can reconstruct the signal 
x from measurement data, these factors can also be identified from 
data, a8 in the situation considered above, provided of course that 
the factors themselves are stable. We will now characterize the 
freedom that is present in choosing this filter F. 
Proposition 3.1 Consider a data generating system according to 
(6),(7), such that C stabilizes PO, and let F ( t )  be a rational trans- 
fer function defining 

x ( t )  = F(q)(u( t )  + C ( d Y ( t ) ) .  (12) 

Let the controller C have a left coprime factorization (Be,f ic) .  
Then the following two expressions are equivalent 

a. the mappings coZ(r2, TI) + I and 5 + cul(y, U )  are stable; 

b. F ( z )  = WD, with W any stable and stably invertible rational 
transfer function. 0 

The proof of this Proposition is added in the appendix. 
Note that stability of the mappings mentioned under (a) is required 
in order to guarantee that we obtain a bounded signal x as an 
input in our identification procedure, and that the factors to be 
estimated are stable, so we are able to apply the standard (open- 
loop) prediction error methods and analysis thereof. 
Note that all factorizations of PO that are induced by these different 
choices of F reflect factorizations of which the stable factors can 
be identified from input/output data, cf. equations (lO),(ll). 
The construction of the signal x is schematically depicted in Fig- 
ure 2. Note that we have employed (8) which clearly shows that 
x is uncorrelated with eo provided the external signals are also 
uncorrelated with eo. 
For any choice of F satisfying the conditions of Proposition 3.1 
the induced factorization of PO is right coprime, aa shown next. 

4Note that we have employed the relation8 WOPO = POSO and SOC = CWO. 

Fig. 2: Construction of auxiliary signal I from closed loop data. 

Proposition 3.2 Consider the situation of Proposition 3.1. For 
any choice of F = W O ,  with W stable and stably invertible, the 
induced factorization of PO, given by  (PoSoF-',SoF-') is right 
coprime. D 

Proof: Let (X,Y) be right Bezout factors of (N, D ) ,  and denote 
[XI &] = W(D,D + f i c N ) ( X  Y]. Then by employing (A. l )  it 
can simply be verified that XI, 6 are stable and are right Bezout 
factors of (POSOF-', SoF-'). 0 

We will employ the freedom in the filter F, in order to tune the 
specific coprime factors that can be estimated from closed loop 
data. Similar to the Youla parametrization, we will use an auxil- 
iary model P, that is required to be stabilized by C. 

Proposition 3.3 Consider the situation of Propositions 8.1,3.2. 
Let P, be an auziliary model-with r.c.f. (N , ,  O r )  that is stabilized 
by  C, which has 1.c.f. (Dc,N,).  Then a vahd choic: of W (sat- 
isfying (a) in Proposition 3.1) is given by  (DcD, + N c ~ z ) - l ,  and 
the induced right coprime factorization of Po is given by 

No = Po(] + CPo)-'(I+ CP,)D, (13) 
Do = ( I  + CPo)-'(I + CP,)D,. (14) 

Proof: With Lemma A. l  it follows that DcD, -t NCN, is stable 
and stably invertible, and thus it is an appropriate choice for W-I. 
The resulking NO ?nd DO follow by simple substitution of F = 
W D ,  = (DcD, + N,N,)-'D, = (0, + CNz)-'.  0 

Note that for any given controller C, and any stable and stably 
invertible W, t k r e  always exists an auxiliary model P, that sat- 
isfies (bC& t NcN,)-' = W .  This implies that the freedom that 
is present in w, as shown in Proposition 3.1, is not restricted by 
the specific choice of W in Proposition 3.3. 
The representation of PO in terms of the coprime factoriza- 
tion above, shows great resemblance with the dual Youla- 
parametrization, i.e. the parametrization of all plants that are 
stabilized by a given controller. This connection is shown next. 

Proposition 3.4 Schrama (1992). Let C be a controller with 
r.c.f. (A',, D,), and let P, with r.c.f. (N, ,  0,) be any system that 
is stabilized b y  C .  Then 

(a) A system PO is stabilized b y  C if and only if there ex i s t s  a 
stable R satisfying 

N, + D,R = Po(I+ CPo)-'(I t CP,)D, 
D, - N,R = ( I  + CPo)-'(I + CP,)D,. 

(15) 
(16) 

(b) The stable matriz R in (a) is uniquely determined by 

(17) R = D i ' ( I +  POC)-'(Po - P,)D,. 
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The proposition shows that the dual Youla-parametrization in- 
duces a set of coprime factorizations (15),(16) that have exactly 
the same Structure M the coprime factorizationr that can be iden- 
tified from closed loop data, with an appropriate choice of the data 
filter F. 
In the next section we will show how we CM exploit the freedom 
in choocring F,N, and D, in order to w i v e  at an estimate of 
normalized coprime factors of tbe plant. 

4 An algorithm for identification of normal- 
ized coprime factors 

The idea of arriving at normalized coprime factorizations of Po is 
based on the following observation. Consider the coprime factors 
(13),(14) that are accessible from closed loop data as discussed 
before. Suppose we can find an auxiliary model P, that is an ac- 
curate (possibly high order) approximation of the plant PO, and 
we construct a normalized r.c.f. (N,,, Dn)  of P,. Using these nor- 
malizedr.c.f.'sas N, and D, in (13),(14), it f o l h s  with (15),(16) 
that No = Nn + DcR and Do = Dn - NCR. Employing P, w Po 
which leads to R w 0 then shows that (NO,&) (approximately) 
equals a normalized r.c.f. of PO. This line of thought is formalized 
in the following algorithm 

Let there be available a nominal model P,, of the plant 
PO, such that P,, is stabilized by C. Set P, = Pn, and 
construct a r.c.f. P, = N,D;'. Construct the data filter F 
according to Proposition 3.3: 

F = D i l ( I  + CP,)-' (18) 

and use this data filter to construct an auxiliary si& z = 
F(u + Cy). The corresponding c l d  loop aystem equations 
become 

y(t) = N O N  t WoHoe.(f) (19) 
~ ( t )  Doz(t) - CWoHoe(t) (20) 

with NO, DO given by (13),(14). 

Uee the signals (y,u,z) in a (least squares) identification al- 
gorithm with a output error model Structure ([Ill): 

considering (y, U) iu output signals and z as input signal. 
Use this parametrisation to identify the coprime factors NO, 
DO as accurately BI possible through high-order modelling, 
e.g. by employing orthogonal basis functions in a linear re- 
gression scheme. In this reqect the new method of construct- 
ing orthogonal basis functions that contain system dynamics 
shows very promissing results, see [9], as slso Wplied for idem- 
tification purposes in [4]. 

This step is comparable to the first step in the  called two- 
stage identifcation pro+uAre in 120). The identified coprime 
factors are denoted as N ,  D .  

Denote P, := A6-l and construct a normalized right coprime 
factorization (Nn,  Dn) such that P, = NnD;'. A procedure 
for constructing this normalized r.c.f. can be found in (23, 21. 
Set P, = Pn, D, = D,,, Ns = N,,. 
Construct a new data filter F according to (18) and generate 
a new auxiliary signal z = F(u  + Cv). The corresponding 
system's equations we again given by (19),(20). 

Employing the results of Proposition 3.4 it follows that 

(22) 
(23) 

No = N , + D c R  
Do = D, - N,R, 

while (17) shows that when P, approaches Po, then R will 
approach 0 and the above equations show that the coprime 
factors NO, DO that can be estimated from closed loop data 
are "almost normalized". 

Now again identify coprime plant factors as in Step 2, us- 
ing measurement signals (y, U, z) and an output error model 
structure (21) where N ( 0 )  and D(0)  are parametrized as 

N ( 0 )  = j (q-* ,O)- 'b(q- ' ,@)  (24) 
(25) D(O)  = j(*-', e)-'a(q-l,o) 

with a, b and f (matrix) polynomials of specified degree, hav- 
ing coefficients that are collected in the parameter vector 8. 
This parametrization, where N and D have a common denom- 
inator, guarantees that the McMillan degree of the ultimately 
identified model is equal to the McMillan degree of the esti- 
mated coprime factors. 

The parameter estimate is obtained by 

with E,( t ,O)  = LE(L,B), and L E R?i~+nu)x(n~+nu), decom- 
posed as L = d i a g ( l , ,  Lu). 

The result of the algorithm is composed of estimated- (almost 
normalized) right coprime plant factp's (!(ON), D ( ~ N ) )  and 
a resulting plant model P(O,) = N ( B N ) D ( O N ) - ' .  

As shown in the previous section, the plant coprime factorizations 
that are accessible from closed experimental data are determined 
by the specific choice of filter F and signal z that are chosen. The 
coprime factorizations that can be obtained in this way can be 
made exactly normalized only in the situation that we have exact 
knowledge of the plant Po. In the algorithm presented above, we 
have replaced this exact knowledge of PO by a (very) high order 
accurate estimate of PO. This knowledge is used to shape the 
specific set of coprime factors that is accessible from data. 
The nominal model P,,, that the algorithm is started by, can 
be obtained from previous experiments on the plant, or from the 
previous iteration step in an iterative identification/controI design 
procedure. Note that the order of the "high order" estimate of 
PO in step 2 may be strongly dependent on the nominal model 
P,,, that is used as an auxiliary model in the first step. The 
more accurate this auxiliary model, the more common dynamics 
is cancelled in the coprime factors (13),(14), and consequently the 
easier NO, DO can be accurately described by a model of limited 
order. This motivates an iterative repetition of steps 1-3 in the 
algorithm presented above, in which the high order normalized 
r.c.f.5 in step 3 are used as auxiliary factors again in step 1 of 
the procedure, thus generating a new signal z to be used again for 
identification. Such an iterative procedure has also been applied 
in the application example discussed in the next section. 
In order to explicitly write down the asymptotic identification cri- 
terion that has been minimized in the last step, note that we can 
write 
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with NO, Do given by (22),(23). ~ As a result the asymptotic pa- 
rameter estimate B' = plimN+oo ON is characterized by 

B' = arg m j n l  [INo(eiw) - N(eiW,B)(21L,(eiW)J2 + 
+ IDo(eiW) - D(eiw,O)~z~L, , (e iw)~z]  @z(w)dw (28) 

with s( t )  = D;'(I + CP,)-'[u(t) t C(q)y(t)] and NO, DO given by 

If the first identification step (Step 1) of identifying ( N ,  D )  is ac- 
curately enough (P, + Po), then N,,,D, tend to be normalized 
right coprime factorizations of the plant. Since P, = Pn, applying 
(17) shows that R + 0, and the R-dependent terms in (22),(23) 
will vanish. The resulting frequency-domain expression shows that 
we obtain a (frequency-weighted) LS-approximation of normalized 
rcf's of the plant. The type of frequency-weighting can be influ- 
enced by designing the spectrum of the reference signal r and by 
appropriate prefilter L. 
Note that in this identification method there is no additional prob- 
lem if the plant and/or controller are unstable. 

(22),(23). 

loo 

5 

We will illustrate the proposed identification algorithm by apply- 
ing it to data obtained from experiments on the radial servo mech- 
anism in a CD (compact disc) player. For a more extensive de- 
scription of this servo mechanism we refer to [18, 41. The radial 
servo mechanism concerns an unstable system, due to a double 
integrator. In the present configuration the radial control loop has 
been realized by a controller which consists of a lead-lag element 
and proportional and integrating action. 
This experimental set up is used to gather time sequences of u(t)  
and y ( t )  in the radial control loop, exciting the signal q ( t ) .  The 
signals were sampled at 25kHz and the reference signal rl(t) was 
chosen to be a bandlimited white noise signal in the frequency 
domain of interest (100Hz-10kHz). 
Results of applying the algorithm presented in section 4 are shown 
in a couple of figyre?. Figure 3 shows the result of the estimated 
coprime factors N ,  D at step 2 of the algorithm. This is the high- 
order estimate, being the result of a number of iterations over 
steps 1-3 as mentioned before. Order of the models is 24. The 
results are compared with non-parametric spectral estimates of the 
corresponding plant factors. 
Figure 4 shows the final result, estimated low-order coprime fac- 
tors, with model order 10. In Fjgure 5*it is checked whether 
the finally obtained estimates N(BN), D(0,) indeed are normal- 
ized. To this en! we have plotted the-frequency response of 
NT(z-',&)N(z,BN) + D T ( z - ' , & ) D ( z , B ~ )  and the same re- 
sponse of the high order (unnormalized) estimates. 
Note that the control-relevant frequency region, i.e. the area of the 
cross-over frequency, is very well represented in both normalized 
coprime factors. I.e. the dynamics that is related to this frequency 
region is relatively easy to be identified from these factors. 

Application to a mechanical servo system 

....... 
: c -A- ... .___ ~ .- i 

Conclusions 
In this paper it is shown that it is possible to identify (almost) nor- 
malized coprime plant factors based on closed loop experiments. A 
general framework is given for closed loop identification of coprime 
factorizations, and it is shown that the freedom that is present in 
generating appropriate signals for identification can be exploited 
to obtain (almost) normalized coprime plant factors from closed 
loop data. The resulting multi-step algorithm is illustrated with 
results that are obtained from closed loop experiments on an open 
loop unstable mechanical servo system. 

Fig. 3: 

Fig. 4: 

Fig. 5: 
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Bode magnitude plots of high order model (step 2). 
a: Identifiefl coprime plant 

factors N ,  D of 24th or- 
der model (solid line), 
and spectral estimates of 
the same factors (dashed 
line). 

b: Estimated plant model 
ND-' 
(solid lipe) and spectral 
estimate (dashed line). 

Bode magnitude plots of final 10-th order model. 
a: Identified cqprime p l F t  b: EstimatedA plant model 

(solid line), and spectral (solid line) and spectral 
estimates of the same estimate (dashed line). 
factors (dashed line). 

factors N(BN) ,  D ( h )  N(BN)D(BN)-* 

Bode magnitude plot of 
(solid line) and N*(z-~,BN)N(z,BN)+ 
+DT(z-', BN)D(t,dN) (dashed line). 

T(z- l ) i '? (z )  + bT(z-')b(z) 
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Appendix 
Lemma A.l [22]. Consider mtional transfer functions Go(z) 
with right coprime factorization ( N , D )  and C ( z )  with left co- 

prime factorization (bc,fic). Then T(G0,C) = [ 71 ( I  + 
CG0)-' [ C I ] is stable i j  and only if DcD + &N is stable and 
stably invertible. 0 

Proof of Proposition 3.1. 

( a )  =+ (b) .  By writing [ = [ T ]  ( I  + CG$' and sub- 

stituting a right coprime factorization ( N , D )  for Go, and a left 
coprime factorization (Dc ,  N,) for C we get, after some manipula- 
tion, that 

is equivalent with stability of [ SoF-' ] and stability of 

[ :] (DcD + &N)"bcF-'.  Premultiplication of the latter ex- 

pression with the stable transfer function (DcD + &N) [ X Y ] 
with (X, Y) right Bezout factors ?f (N, D )  shows that &F-' is 
implied to be stable. As a result, DcF-' = W with W any stable 

Now stability of F and FC implies stability of W-' [ D, Ne 1, 
which, after postmultiplication with the left Bezout factors ?f 
(Dc,Nc)  implies that W-' is stable. This proves that F = W-'D, 
with W a stable and stably invertible transfer function. 
(b) 3 (a) .  Stability of F and FC is straightforward. Stability 
of S0F-I and G0SoF-I follows from (A.l ) ,  using the fact that 

' transfer function. 

(DcD + ficN)-' is stable (lemma A.1). 
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