
Automatica 49 (2013) 2994–3006
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Identification of dynamic models in complex networks with
prediction error methods—Basic methods for consistent
module estimates✩

Paul M.J. Van den Hof a,1, Arne Dankers b, Peter S.C. Heuberger c, Xavier Bombois b

a Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
b Delft Center for Systems and Control, Delft University of Technology, The Netherlands
c Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands

a r t i c l e i n f o

Article history:
Received 26 October 2012
Received in revised form
2 April 2013
Accepted 20 June 2013
Available online 7 August 2013

Keywords:
System identification
Closed-loop identification
Graph theory
Dynamic networks
Identifiability
Linear systems

a b s t r a c t

The problem of identifying dynamical models on the basis of measurement data is usually considered in a
classical open-loop or closed-loop setting. In this paper, this problem is generalized to dynamical systems
that operate in a complex interconnection structure and the objective is to consistently identify the
dynamics of a particularmodule in thenetwork. For a known interconnection structure it is shown that the
classical prediction error methods for closed-loop identification can be generalized to provide consistent
model estimates, under specified experimental circumstances. Two classes of methods considered in this
paper are the direct method and the joint-IO method that rely on consistent noise models, and indirect
methods that rely on external excitation signals like two-stage and IV methods. Graph theoretical tools
are presented to verify the topological conditions under which the several methods lead to consistent
module estimates.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

One of the challenges in the systems and control field is to
develop effective synthesis methods for distributed control of sys-
tems that operate in a network structure. While considerable at-
tention is devoted to this problem from a model-based control
perspective, attention for the underlying modeling problem is
much more limited. In particular the problem of identifying dy-
namical models on the basis of measurement data that is obtained
from a (complex) dynamic network, and where use can be made
of external probing/excitation signals, has not been addressed in
much detail yet. At the same time, modeling of interconnected
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systems is playing an increasingly important role in many fields
of science and engineering: power systems, biological systems,
flexible mechanical structures and economic systems, to name a
few.

In this paper, we will consider identification problems in
networks of dynamic systems. From an identification perspective
this can be considered as a natural extension of the situation of
open-loop data, closed-loop data in a single loop, toward data
that is obtained from systems operating in a predefined network
structure, where some of the modules may have known dynamics
(as e.g. a particular controller in the network). Since dynamic
networks typically contain (feedback) loops, it is expected that
methods for closed-loop identification are an appropriate basis
for developing more generalized tools to deal with complex
networks.

In our framework discussed here, a dynamic network is
defined as an interconnection of transfer functions or modules
where the interconnecting signals (terminals) are considered as
nodes/vertices in the network, and proper transfer functions are
considered as links/edges. In this paper it will be assumed that
the interconnection structure (topology) of the network is known,
and our goal is to identify the dynamics of a single module or a
collection of modules in the network.
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Classical methods for closed-loop identification are addressed
in Forssell and Ljung (1999) and Van den Hof (1998). For a single
contribution to the problem of structured systems see also Leskens
and Van den Hof (2007). Much of the dynamic network identifica-
tion literature focuses on identifying the dynamics of the full net-
work, or on detecting the topology of the network. Nonparametric
methods have been used to detect the structure of dynamic net-
works in Friedman, Hastie, and Tibshirani (unpublished),Materassi
and Innocenti (2010), Materassi, Salapaka, and Giarrè (2011) and
Sanandaji, Vincent, and Wakin (2011) (without worrying about
obtaining consistent estimates of the dynamics of the network).
Consistency-based parametric identification of the interconnec-
tion structure is addressed in Dankers, Van den Hof, Heuberger,
and Bombois (2012b), Gonçalves and Warnick (2008) and Yuan,
Stan, Warnick, and Gonçalves (2009, 2010). The conditions un-
der which the network identification algorithms work typically
include the condition that all disturbance/noise processes are un-
correlated and should be modeled exactly in conjunction with the
dynamic transfer functions in the network. However, in a large-
scale dynamic network it can be questioned if this is realistic. In
this paper, we thereforewill particularly also include identification
methods that can consistently identify dynamic transfer functions
without relying on exact noisemodels, andwhereweaker assump-
tions on the noise sources are considered.

Taking classical principles of closed-loop identification as a
starting point we will analyze the sketched problem by generaliz-
ing several closed-loop identificationmethods to the dynamic net-
work situation. The direct method (Ljung, 1999) will typically rely
on exact noise models (system in the model set). This is similar for
the joint-IO method. On the other hand, the closed-loop identifi-
cation methods referred to as two-stage method (Van den Hof &
Schrama, 1993) and instrumental variable method (Gilson & Van
den Hof, 2005) typically rely on the presence of external excitation
or probing signals. They also will be generalized to deal with the
dynamic network situation. Throughout the paper we will focus
on conditions on the interconnection structure as well as on the
presence of noise sources and excitation/probing signals for con-
sistently identifying a particular module in the network.

The paperwill proceed as follows. In Section 2 a particular setup
of dynamic network is chosen and defined, and the problem under
investigationwill be formally stated. In Section 3 some background
information will be presented on Prediction-error identification,
the Direct and Two Stage closed loop methods, and some graph
theoretical results. Next some network properties are presented
in Section 4. In Sections 5–7 the Direct and Two-Stage Methods
for interconnected systems will be presented and analyzed, and in
Section 8 the Joint IO method. Finally, some concluding remarks
will be made.

Notation: [·]ji is matrix element (j, i) of the matrix [·].
The research presented in this paper further builds on the

preliminary results presented in Dankers, Van den Hof, Heuberger,
and Bombois (2012a) and Van den Hof, Dankers, Heuberger, and
Bombois (2012).

2. System setup

2.1. Dynamic network and problem setup

The network structure that we consider in this paper is built
up of L elements or nodes, related to L measured scalar signals
wj, j = 1, . . . , L. Every node signal wj in this network is written
as:

wj(t) =


k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t) (1)
Fig. 1. Single building block in a network structure related to the construction of
node signal wj .

with G0
jk(z) a proper rational transfer function,

• Nj the set of indices of node signalswk, k ≠ j, forwhichG0
jk ≠ 0,

i.e. the set of indices of measured variables with direct causal
connections to wj;

• vj an unmeasured disturbance signal being a realization of
a stationary stochastic process with rational spectral density,
represented by vj = H0

j (q)ej with ej a white noise process and
H0

j a monic, stable and stably invertible filter;
• rj an external excitation signal, quasi-stationary (Ljung, 1999),

that is available to (and possibly can be manipulated by) the
user,

• q−1 the delay operator q−1u(t) = u(t − 1), and
• signals vj and rj may or may not be present.

All the measured variables can be written in a single matrix
equation as:

w1
w2
...

wL

 =


0 G0

12 · · · G0
1L

G0
21 0

. . . G0
2L

...
. . .

. . .
...

G0
L1 G0

L2 · · · 0




w1
w2
...

wL

+


r1
r2
...
rL

+


v1
v2
...
vL


= G0w + r + v (2a)

= (I − G0)−1(r + v) (2b)

where in the latter equation it is assumed that the inverse (1 −

G0)−1 exists.
A single building block of the network related to the construc-

tion of node signalwj is sketched in Fig. 1, where the transfer func-
tion G0

ji has been separately indicated to focus on the module that
is supposed to be identified.

A dynamic network is then constructed by interconnecting
the several blocks through their node signal. For a particular
example this is visualized in Fig. 2. It shows a node-and-link
visualization (Fig. 2(a)) that is popular in many fields such as
artificial intelligence, machine learning (Materassi et al., 2011),
biological systems (Yuan et al., 2010), where the arrows between
signals wj represent causal relationships. It emphasizes the links
between measured variables (measurement-centric). The second
visualization is a transfer function based visualization (Fig. 2(b))
(module-centric), commonly used in control.

All node signals wj, j = 1, . . . , L are supposed to be measur-
able, while at each node a noise signal vj (non-measurable) and
excitation signal rj (measurable) may or may not be present. Each
excitation signal rj is assumed to be uncorrelated to all noise signals
vi. Some parts of the network may have dynamics that are known
a priori. This is e.g. the case in a classical closed-loop systemwith a
known controller. Since all node signals are supposed tomeasured,
and the network structure is supposed to be known, we do not face
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Fig. 2. Two popular visualizations of the same dynamic network. (a) Node-
and-Link visualization (measurement-centric). Each node represents a measured
variable. The links between node wi and node wj represent a transfer function G0

ji .
(b) Transfer function representation (module-centric). Each block represents a
transfer function between twomeasured variableswi andwj . The signals are added
together by adders represented as circles.

the problem of ambiguous or hidden states/variables, see e.g. Ye-
ung, Gonçalves, Sandberg, and Warnick (2010).

The problem that will be addressed in this paper is: given
the interconnection structure of the dynamic network, specify
conditions under which a particular module transfer function G0

ji
can be estimated consistently.

The conditions for consistency of an identified module, will
typically involve the interconnection structure of the network, and
the presence and properties of disturbance and excitation signals.

One might think that identifying the full dynamic network
can always be cast into a – standard – multivariable closed-
loop identification problem, while relying on classical methods to
resolve this. However the problem of deciding which variables to
classify as inputs and outputs, or to include structural constraints
(zeromodules, knownmodules), and to determine the ‘‘minimum’’
excitation conditions under which consistent identification is
possible, makes this nontrivial. By focusing on one particular
module G0

ji we intend to reveal these structural phenomena in the
identification problem.

Different approaches will be presented and analyzed that can
address the formulated problem. They are direct generalizations
of classical closed-loop identification methods:

• direct identification (Ljung, 1999), with an emphasis on includ-
ing the identification of exact noise/disturbance models.

• indirect identification, such as the two-stage method and the
IV-method (Gilson & Van den Hof, 2005; Van den Hof &
Schrama, 1993), with an emphasis on the use of external ex-
citation or probing signals.

• joint-IO identification (Anderson &Gevers, 1982), where the in-
put and output signals aremodeled as the output of a stationary
stochastic process.

In general each of the several methods will be able to identify the
module G0

ji in the network, dependent on the presence of noise
and excitation signals, the network topology and the presence of
a priori known transfers. This will be analyzed in the rest of this
paper.

The dynamic networks that we consider are assumed to satisfy
the following general conditions.

Assumption 1. We consider a dynamic network of which one
building block, leading to the construction of node signal wj, is
depicted in Fig. 1, with the additional properties that,

a. All module transfer functions in the network are proper.
b. The network is well-posed in the sense that all minors of (I −

G0(∞)) are non-zero.2
c. (I − G0)−1 is proper and stable.
d. The vector noise process v := (v1, . . . , vL)

T has a positive semi-
definite spectral density, Φv(ω) ≥ 0, not necessarily diagonal.

2.2. Network topology and graph theory

Wewill need some further notation to characterize the network
interconnection (topology), as well as some tools from graph
theory.

For the specification of the topology of the network we will
utilize a directed graph that indicates the locations and causal
directions ofmodule transfers in the network. It can be represented
by an adjacency matrix A ∈ RL×L, defined as:

A(j, i) = 0 if G0
ji(q) ≡ 0;

A(j, i) = 1 elsewhere.

Because of the interconnection structure thatwe consider here (see
(1)) it follows that A(i, i) = 0, i = 1, . . . , L.

The following lemma from graph theory will be very useful:

Lemma 1 (Diestel, 2006). Consider a directed graph with adjacency
matrix A. Then for k ≥ 1, [Ak

]ji indicates the number of different path
connections of length k from node i to node j. �

In addition to the adjacency matrix A defined above, we will
also consider a related delay-adjacency matrix Ad of which the
elements have three possible values: 0 (no link), 1 (a link with no
delay), and d (a link with a delay). Through the use of the following
rules for addition and multiplication:

0 + 0 = 0 0 + d = d 0 · 0 = 0 0 · d = 0
0 + 1 = 1 1 + d = 1 0 · 1 = 0 1 · d = d
1 + 1 = 1 d + d = d 1 · 1 = 1 d · d = d

summation and multiplication of matrices Ad can be defined, and
one can evaluate [Ak

d]ji. The following lemma will be helpful in
characterizing the presence of delays in particular network loops.
See also e.g. Diestel (2006).

Lemma 2. Consider a directed graph with delay-adjacency matrix Ad
and the rules of multiplication and addition with d. Then for k ≥ 1,

• [Ak
d]ji = 1 indicates that there is a path of length k from i to j

without a delay,
• [Ak

d]ji = d indicates that all paths of length k from i to j have a
delay,

• [Ak
d]ji = 0 indicates that there is no path of length k from i to j.

We will further consider the following sets:

• V denotes the set of indices of node signals to which additive
noise sources v are directly connected.

• R denotes the set of indices of node signals to which external
excitation signals r are directly connected.

• Vj is the subset of V of indices of noise signals for which there
exists a path to wj.

• Rj is the subset of R of indices of excitation signals for which
there exists a path to wj.

2 The property of well-posedness is adopted from Araki and Saeki (1983). It
imposes (weak) restrictions on allowable feed-through terms in the network but
still allows the occurrence of algebraic loops.
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• Kj denotes the set of indices of node signals wk, k ∈ Nj for
which the module transfers Gjk are known.

• Ui
j denotes the set of indices of node signals wk, k ∈ Nj, k ≠ i

for which the module transfers Gjk are unknown.

Note that if i ∈ Nj then Nj = i ∪ Kj ∪ Ui
j. In the sequel variables

j and i are used to denote the particular module G0
ji that we intend

to identify.

3. Prediction error identification and extension to dynamic
networks

3.1. Prediction error identification

For reviewing a standard prediction error identificationmethod
we express a measured variable wj which is chosen as output vari-
able, as a function of a particular set of variables {x1, x2, . . . , } = X,
which are chosen as the inputs. Inputs can be external excitations
rk or other measured variables wk, k ≠ j. We assume that the out-
put can be expressed in terms of the inputs as

wj(t) =


xk∈X

G0
jk(q)xk(t) + H0

j (q)ẽj(t) + rj(t),

with G0
ji proper transfer functions, H

0
j a stable and stably invertible

transfer, and ẽj a white noise process. Note that in the situation
of the previous sections, this assumption holds e.g. if we choose
xk = wk, X = Nj and ẽj = ej.

The module transfers G0
jk and noise filter H0

j are modeled using
parametrized transfer functionsGjk(q, θ) andHj(q, θ), and the one-
step-ahead predictor for wj is given by Ljung (1999):

ŵj(t|t − 1; θ) − rj(t) = (1 − H−1
j (q, θ))(wj(t) − rj(t))

+H−1
j (q, θ)


xk∈X

Gjk(q, θ)xk(t)


, (3)

or equivalently

ŵj(t|t − 1; θ) = (1 − H−1
j (q, θ))wj(t)

+H−1
j (q, θ)


xk∈X

Gjk(q, θ)xk(t) + rj(t)


. (4)

The unknown parameters are estimated through a quadratic pre-
diction error criterion:

θ̂N = argmin
θ

VN(θ) (5)

with VN(θ) =
1
N

N−1
t=0 ε2

j (t, θ) and the prediction error εj(t, θ) :=

wj(t) − ŵj(t|t − 1; θ).
Under standard -weak- assumptions the estimated parameter

converges in the number of data N , to satisfy (Ljung, 1999):

θ̂N → θ∗ w.p. 1 as N → ∞

with θ∗
= argminθ Ē[ε2

j (t, θ)], with Ē := limN→∞
1
N

N−1
t=0 E,

and E the expectation operator. If Gjk(q, θ∗) = G0
jk(q) the module

transfers are estimated consistently. Consistency is possible under
several different conditions, dependent on the experimental
circumstances, and the chosen model parametrizations.

3.2. Direct method of closed-loop identification

In a simple closed-loop data generating system, as depicted
in Fig. 3, with the objective to identify the module transfer
G0
21, the direct method of closed-loop identification comes down

to choosing w2 as output, w1 as input, and then applying the
Fig. 3. Closed loop data generating system.

identification method as sketched in the previous section, with a
parametrized predictor determined by G21(q, θ) and H2(q, θ).

Typical conditions for consistency of the estimate of themodule
transfer are the following:

• G0
21 andH0

2 are present in the parametrizedmodel set generated
by G21(q, θ) and H2(q, θ) respectively. This is referred to as
‘‘system in the model set’’.

• the feedback loop is sufficiently excited with external signals r1
and/or e2.

• plant feedback loop and model feedback loop should have at
least one time-step delay (no algebraic loop).

A generalization of this method to the dynamic network case
is obtained by applying the predictor model (4) for a particular
output signal wj and selecting xk as a subset of the set of node
signals {wk}k∈[1,L]\j.

3.3. Two-stage method of closed-loop identification

The two-stage or projection method of closed-loop identifica-
tion (Forssell & Ljung, 2000; Van den Hof & Schrama, 1993) uses
the same predictor structure (4), to address the closed loop identi-
fication problem in Fig. 3. However instead of using predictor input
xk = w1, it uses the part ofw1 that is correlated to the external sig-
nal r1.

Note that r1 and w1 are quasi-stationary signals (Ljung, 1999)
such that the cross-correlation function

Rw1r1(τ ) := Ē[w1(t)r1(t − τ)]

is zero for τ < 0 and non-zero for τ ≥ 0. Then there exists a proper
transfer function F 0

w1r1 such that

w1(t) = F 0
w1r1(q)r1(t) + z(t)

with z uncorrelated to r1. This provides a decomposition

w1(t) = w
(r1)
1 (t) + w

(⊥r1)
1 (t)

withw
(⊥r1)
1 (t) = z(t). Note thatw(r1)

1 is the projection of signalw1
onto the space of (causally) time-shifted versions of r1.

If r1 and w1 are available from measurements then F 0
w1r1(q)

can be consistently estimated from the data, provided that the
signal r1 is persistently exciting of a sufficiently high order. This
consistent estimation can be done without the necessity to model
the noise dynamics of z, because it is essentially an open-loop type
of identification problem (r1 and z are uncorrelated). Subsequently
the projection

ŵ
(r1)
1 (t) := F̂w1r1(q)r1(t)

can be calculated, with F̂w1r1(q) the estimated transfer. This esti-
mate then can serve as an accurate estimate of w(r)(t).

In the second step of the algorithm ŵ
(r1)
1 is used as an input in

the predictor model (4), determined by G21(q, θ) and H2(q, θ).
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Fig. 4. Graphical representation of a data generating system where the measured
variable wi is excited through an external excitation signal rm .

Typical conditions for consistency of the estimate of themodule
transfer G21 are the following:

• in the first step a consistent estimate should be obtained of
Fw1r1 . This is typically achieved by high order modeling.

• if in the second stage G21(q, θ) and H2(q, θ) are parametrized
independently, then only G0

21 needs to be an element in the
parametrized model set.

• the feedback loop is sufficiently excitedwith external signals r1.
• there are no conditions on (absence of) algebraic loops in the

feedback system.

The generalization of thismethod to the dynamic network case can
now be made as follows, and as illustrated in Fig. 4:

(1) find an external excitation signal rm that is correlated to wi.
(2) project wi onto rm.
(3) identifyG0

ji by applying a predictormodel ŵj(t|t−1, θ) leading
to a prediction error

εj(t, θ) = Hj(q, η)−1
[wj(t) − Gji(q, θ)ŵ

(rm)
i (t) − rj(t)], (6)

where Hj and Gji are parametrized independently, and a
prediction error criterion such as (5).

3.4. Joint-IO method of closed-loop identification

The classical joint input–output method of closed loop identifi-
cation, see e.g. Anderson and Gevers (1982) and Ng, Goodwin, and
Anderson (1977), models the vector signal composed ofw1 andw2
in Fig. 3, as a stationary stochastic process that is driven by inde-
pendent identically distributed randomvariables (white noise), ac-
cording to

w2
w1


= Υ0(q)


e2
e1


,

withΥ (z)monic, proper, stable andminimum-phase. This implies
that r1 is modeled as a filtered white noise e1. Υ0(q) can be
estimated as a noise model in a prediction error method with no
measured input. From the estimated model Υ (q, θ̂N) estimates of
the transfersG0

21 andpossiblyG0
12 can thenbe calculated in a second

step.
Typical conditions for consistency of the estimate of themodule

transfer G0
21 are basically the same as the conditions that are

required for the direct method, i.e. sufficient excitation of the
closed-loop, and an absence of algebraic loops. One of the points
of difference is that the joint-IO method also allows to estimate to
feedback path represented by G0

12.
A generalization of this method to the dynamic network case

is obtained by enlarging the set of node signals that is taken into
account in the first step of the procedure.

In the next sections it will be shown how the direct, the two-
stage and the joint-IO methods can be used to obtain consistent
Fig. 5. Closed loop representation of wj .

estimates of G0
ji. However, first a few network properties will

be presented that will facilitate the analysis of the identification
methods.

4. Network properties

It will be natural to talk about paths and loops in a network. A
path from i to j will be understood to mean that there are transfer
functions such that Gjn1Gn1n2 · · ·Gnki is non-zero. A loop is a path
that has the same starting and ending node. The length of a path is
the number of transfer functions in the product.

One of the properties of a dynamic network is the possible
occurrence of algebraic loops, i.e. loops forwhich the transfer func-
tion has a direct feed-through term. For analyzing the proper-
ties of direct identification algorithms it is attractive to be able to
characterize these loops. In a network with modules that are re-
stricted to be strictly proper transfer functions, algebraic loopswill
not occur but in the situation that we consider here they are not
excluded.

Lemma 3. Consider a dynamic network that satisfies Assumption 1,
with transfermatrix G0 (2a). Let G0

ab be the (a, b)th entry of (I−G0)−1.
Then G0

ab, has a delay if every path from b to a has a delay. Moreover,
G0
ab = 0 if there is no path from b to a.

The proof of the lemma is included in the Appendix.
The next proposition shows that the dynamic network can

be rewritten in a classical feedback structure by denoting one
particularwj to be as ‘‘output signal’’. Any node signal can serve this
purpose. This equivalent structurewill facilitate the understanding
and analysis of the several identification results.

Proposition 1. Consider a dynamic network that satisfies Assump-
tion 1, and select one particular node signal wj to be referred to
as ‘‘output’’. Classify the remaining signals wi, i ∈ D with D :=

{1, . . . , L}\{j} as inputs, denoted as

wD = [wk1 wk2 · · ·]
T , k∗ ∈ D.

The vectors rD and vD are defined analogously.
Let G0

jD denote the row vector [G0
jk1

G0
jk2

· · ·], k∗ ∈ D , let G0
D j de-

note the column vector [G0
k1j

G0
k2j

· · ·]
T , k∗ ∈ D , and let G0

DD denote
the corresponding matrix.

The measured node signals {wk}k=1,...,L are equivalently described
by the feedback connection structure as indicated in Fig. 5, with wj
interpreted as output, and wD as input, determined by

wj = G0
jD(q)wD + rj + vj (7)

wD = Ğ0
D j(q)wj + Ğv(q)vD + Ğr(q)rD , (8)

with

Ğv
= Ğr

= (I − G0
DD)−1 (9)

Ğ0
D j = (I − G0

DD)−1G0
D j (10)

and with proper square transfer matrices Ğv, Ğr
∈ R(L−1)×(L−1)(z),

and proper transfer vector Ğ0
D j ∈ R(L−1)×1(z).
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Proof. Using the introduced notation the network equations (2b)
can be written as

wj
wD


=


0 G0

jD
G0

D j G0
DD

 
wj
wD


+


rj + vj

rD + vD


leading to the network equations:

wj = G0
jDwD + rj + vj (11)

wD = (I − G0
DD)−1G0

D jwj + (I − G0
DD)−1(rj + vj) (12)

provided that the inverse (I − G0
DD)−1 exists and is proper. This is

guaranteed by condition 1 of Assumption 1. �

One of the important observations from the presented feedback
structure is that the disturbance/excitation terms that directly af-
fect the ‘‘output’’ wj, do not appear as disturbance/excitation sig-
nals directly acting on the ‘‘input signals’’wD ; they only contribute
to these inputs through the ‘‘feedback’’ operation Ğ0

D j.

5. Direct method for general network topology

The direct method for closed-loop identification can rather
simply be generalized to the situation of dynamic networks. To this
endwe consider the one-step ahead predictor that was formulated
in (4). The principal choice that has to be made is the set of input
signals xk ∈ X that has to be taken into account in the predictor.
If the module transfer function G0

ji needs to be identified it is
tempting to choose wi as input for the predictor. However in most
cases this will lead to biased results of the estimates due to the
fact that other (neglected) input signals will affect the output also.
Therefore the most safe situation is to choose in the predictor all
inputs that have a direct link to the output wj, i.e. X = Nj, leading
to the predictor:

ŵj(t|t − 1; θ) = H−1
j (q, θ)


k∈Nj

Gjk(q, θ)wk(t) + rj(t)



+ (1 − H−1
j (q, θ))wj(t). (13)

For this predictor the following result is obtained.

Proposition 2. Consider a dynamic network that satisfies Assump-
tion 1, and consider a direct prediction error identification accord-
ing to (5) with predictor (13). Then the module transfer functions
G0
jk, k ∈ Nj as well as H0

j are estimated consistently under the fol-
lowing conditions:

(a) the noise vj is uncorrelated to all reference signals.
(b) the noise vj is uncorrelated to all noise signals vk, k ∈ Vj\{j}.
(c) for both the network and the parametrized model, every loop

through node j has a delay.
(d) the spectral density of [wj wn1 · · · wnn ]

T , n∗ ∈ Nj, denoted as
Φj,Nj(ω) is positive definite for ω ∈ [−π, π].

(e) the system is in the model set, i.e. there exists a θ0 such that
Gjk(z, θ0) = G0

jk(z) for all k ∈ Nj, and Hj(z, θ0) = H0
j (z).

The proof is added in the Appendix.
Note that in the considered situation all transfers G0

jk, k ∈ Nj
need to be estimated simultaneously in order for the result to
hold, and that the dynamics of noise source vj need to be modeled
correctly through a noise model Hj. Note also that, both the noise
signal vj and the probing signal rj provide excitation to the loop
that is going to be identified. The excitation condition (d) is a rather
generic condition for informative data (Ljung, 1999). A further
specification for particular finite dimensionalmodel structures can
most likely be made along the results for classical feedback loops
as developed in Gevers, Bazanella, Bombois, and Misković (2009).
Fig. 6. Dynamic network with 5 node signals, of which 2 (red-colored) transfer
functions G0

21 and G0
23 can be consistently identified with the direct method using

a MISO predictor. The blue-colored transfer functions can be identified with SISO
predictors.

Whereas in classical closed loop identification with the direct
method there is a condition on the absence of algebraic loops in the
full feedback system (Van denHof, de Vries, & Schoen, 1992), this is
further specified here in condition (c) by limiting that condition to
only apply to the output signal that is considered for identification.

Remark 1. In the proposition above the predictor that is used
employs all possible inputs that directly connect to the output
signal wj. If some of these transfers are known already, e.g. they
could be controllers with known dynamics, then the result above
can simply be generalized to the predictor

ŵj(t, θ) = H−1
j (q, θ)

 
k∈Nj\Kj

Gjk(q, θ)wk(t)

+


k∈Kj

G0
jk(q)wk(t) + rj(t)



+ (1 − H−1
j (q, θ))wj(t), (14)

leading to consistent estimates of the transfers G0
jk, k ∈ Nj\Kj,

while in the formulation of the conditions of Proposition 2, the set
Nj is replaced by the set Nj\Kj. �

Next, an algorithm for checking condition (c)will be presented. The
other conditions are straightforward to check and do not need an
algorithm. Recall that the matrix Ad is the adjacency matrix with
d’s in the entries with strictly proper module transfer functions,
and 1’s in the entries with proper module transfer functions (see
Section 2.2).

Algorithm 1. Check if all loops through node j have a delay

(1) Evaluate Aℓ
d for ℓ = 1, . . . , L using the multiplication and

addition rules defined in Section 2.2.
(2) If for any considered power ℓ entry (j, j) equals 1, condition (c)

is not met.

Example 1. If we apply the result of the direct method to the
network example of Fig. 6, it appears that the direct method can
be applied to each of the nodes w1, . . . , w5. Note that in this
scheme G0

43 = 1. The blue-colored transfers G0
15,G

0
32,G

0
54,G

0
45 can

be identified by SISO predictors, using only a single input in the
predictor, provided that appropriate conditions are satisfied on
excitation and absence of algebraic loops. The transfers G0

21 and
G0
23 can only be estimated simultaneously in a MISO predictor,

employing both w1 and w3 as inputs and w2 as output. Under
the condition that a delay is present in the loops (G0

32G
0
23) and

(G0
54G

0
32G

0
21G

0
15) and by the use of an appropriate model set that

includes accurate noise modeling, the transfers G0
21 and G0

23 can be
estimated consistently. In Fig. 6 they are indicated in red.
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Fig. 7. Example of a systemwhere not allwk, k ∈ Nj need to be included as inputs
in the predictor (w3 can just be considered as an uncorrelated disturbance).

It is clear that in large and complex networks only under very
limited circumstances, a SISO predictor, i.e. having only the input
wi present in the predictor, suffices to consistently identify the
transfer G0

ji.

Remark 2. It is not always necessary to include all wk, k ∈ Nj
as input in the predictor. For instance consider the case shown
in Fig. 7(a). Suppose that the objective is to obtain consistent
estimates of G0

21. According to Proposition 2 both w1 and w3 must
be included as inputs in the predictor. However, from the figure,
it can be seen that w3 only acts as a (uncorrelated) disturbance on
w2, and does not need to be modeled for consistent estimation of
G0
21. This idea is illustrated in Fig. 7(b) where ṽ2 = v2 + w3.
Further analysis of this is beyond the scope of the current paper

and will be presented elsewhere.

Note that for using signalwj as an output, it is not strictly necessary
that a noise source vj is present. This special case is considered in
the next corollary.

Corollary 1. Consider the situation of Proposition 2. If the noise
source vj is not present then the module transfer functions G0

ji, i ∈ Nj
can be estimated consistently, under the conditions of Proposition 2,
where the excitation condition (d) is replaced by:
(d) The spectrum of [wn1 · · · wnn ]

T , n∗ ∈ Nj, ΦNj(ω) is positive
definite for ω ∈ [−π, π],

the delay condition (c) is removed, and the noise model is fixed to 1,
thereby focusing condition (e) on the module transfer property only.

Proof. The same procedure as the proof of Proposition 2 can be
followed starting with (B.3) and plugging in vj = 0,H(θ) = 1, and
σ 2
ej = 0. �

6. Two-stage identification for general network topology

The two-stage method for closed-loop identification as de-
scribed in Section 3.3 follows a different approach than the di-
rect method. It explicitly utilizes the presence of measurable
external excitation signals, and has the potential to consistently
identify module transfers without the necessity to consistently
identify noise models also. Based on the scheme depicted in Fig. 4
we pursue the following strategy in an attempt to consistently
identify the module transfer G0

ji.

Algorithm 2 (Two-Stage SISO Model).
(1) Select a set of measured excitation signals {rm}, with m ∈

Ris ⊆ Ri, each of them correlated with wi.
(2) On the basis of measured signals {rm}, m ∈ Ris and wi, deter-

mine w
(Ris)
i .

(3) Construct the signal

w̃j(t) = wj(t) −


k∈Kj

G0
jk(q)wk(t) − rj(t),

i.e. correct wj with all known terms.
(4) Identify the transfer function G0
ji on the basis of a predictor

model with prediction error

εj(t, θ) = Hj(q, η)−1
[w̃j(t) − Gji(q, θ)w

(Ris)
i (t)]

using measured signals w̃j and w
(Ris)
i , an identification crite-

rion (5), and where Hj is a fixed noise model or parametrized
independently of θ .

For this algorithm the following result can be obtained:

Proposition 3. Consider a dynamic network that satisfies Assump-
tion 1. Then the module transfer function G0

ji can be consistently esti-
mated with Algorithm 2 if the following conditions are satisfied:
(a) the set Ris is non-empty.
(b) the external excitation signals rm, m ∈ Ris, are uncorrelated to

all noise signals vk, k ∈ {j, Ui
j}.

(c) the signal w
(Ris)
i is persistently exciting of a sufficiently high

order.3
(d) all node signals wk, k ∈ Ui

j, k ≠ i, are uncorrelated to all rm,
m ∈ Ris.

(e) the module transfer function G0
ji is in the model set, i.e. there exists

a parameter θ0 such that Gji(q, θ0) = G0
ji(q). �

Proof. Note that wj can be expressed as

wj(t) = G0
ji(q)wi(t) +


k∈Kj

G0
jk(q)wk(t)

+


k∈Ui

j

G0
jk(q)wk(t) + rj(t) + vj(t)

= G0
ji(q)wi(t) + pj(t) + sj(t) + vj(t)

where pj reflects the contributions of all signals G0
jk(q)wk that are

known because of the fact that the dynamics G0
jk are known, as well

as rj(t); and sj(t) similarly reflects the contributions of all signals
G0
jk(q)wk that are unknown, because the dynamics G0

jk is unknown.
Subsequently

wj(t) − pj(t) = G0
ji(q)wi(t) + sj(t) + vj(t)

with the left hand side being a known signal.
Condition (b) together with the fact that by construction all

rm,m ∈ Ris are correlated to wi, guarantees that wi can be de-
composed as wi = w

(Ris)
i + w

(⊥Ris)
i . Then,

wj − pj = G0
ji(q)


w

(Ris)
i + w

(⊥Ris)
i


+ sj + vj. (15)

Conditions (b) and (d) guarantee that the signal sj is uncorrelated
to all rm, m ∈ Ris. And by condition (b) the noise vj is uncorrelated
to all rm, m ∈ Ris, while w

(⊥Ris)
i is uncorrelated to all rm, m ∈ Ris

by construction.
As a result a prediction error identification on the basis of in-

put w
(Ris)
i and output wj − pj will provide a consistent estimate of

G0
ji, provided that the input signal w(Ris)

i (t) is persistently exciting
of a degree at least equal to the number of parameters in Gji(q, θ),
see the classical conditions on consistency of prediction error esti-
mates in Ljung (1999). �

Note that as an alternative for the two-stage algorithm, also an IV
estimator could have been used, using rm as instrument,wi as input
andwj−pi as output, leading to the same consistency result, Gilson
and Van den Hof (2005).

3 Within the classical prediction error framework (Ljung, 1999), the recon-
structed signal w

(Ris)
i (t) will need to be persistently exciting of an order at least

equal to the number of unknown parameters that is estimated in Gji(q, θ).
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Fig. 8. Dynamic network with 5 node signals, of which 4 (blue-colored) transfer
functions can be consistently identified with the two-stage method presented of
Algorithm 2.

Next question is how to check whether the conditions of
Proposition 3 are satisfied. Both the appropriate construction of the
set Ris and condition (d) can be checked mainly on the basis of the
adjacency matrix A of the network.

Algorithm 3. Check for candidate reference signals to be corre-
lated to wi:

(1) evaluate element (i,m) of Aℓ for ℓ = 1, . . . , L.
(2) if for any considered power ℓ this element is non-zero, then the

reference signal rm qualifies as a candidate excitation source
that excites the input wi.4

Check whether all wk, k ∈ Ui
j are uncorrelated to all rm, m ∈ Ris

(check whether there is no path fromm to k):

(1) evaluate Aℓ for ℓ = 1, . . . , L.
(2) for all k ∈ Ui

j, k ≠ i, check whether the entries (k,m) of Aℓ are
zero for all powers ℓ.

Example 2. Consider the dynamic network from Example 1,
depicted in Fig. 8. When applying the conditions of Proposition 3
it appears that the blue-colored transfers, G0

32,G
0
54,G

0
15 and G0

45 can
be consistently identified with the two-stage approach presented
in this section. These four transfers satisfy the conditions that their
inputs are correlated to r1, while their outputs do not include non-
modeled terms that are correlated with r1.

Note that, the transfers G0
21 and G0

23 do not satisfy the conditions
of the proposition because there are unknown contributions to w2
that are correlated to r1.

Actually the conditions that are formulated for Proposition 3
are very restrictive and it may be very well possible that even
in the case of networks that have several external excitation
signals present, there is no choice of Ris possible that satisfies the
conditions. Additionally, by limiting attention to SISO predictors,
i.e. by only considering wi as input in the predictor, the effect of all
other inputs that affect wj will be modeled as noise and therefore
will increase the variance of the parameter estimate. An alternative
reasoning, that matches the situation of the direct method, is
then to extend the predictor to a MISO format, as reflected in the
following algorithm.

Algorithm 4 (Two-Stage MISO Model).

(1) Select a set of measured excitation signals {rm}, with m ∈

Ris ⊆ Ri, each of them correlated with wi.
(2) Determine the set of node signals wk, k ∈ {Ui

j, i} that is corre-
lated to any of the excitation signals {rm}, withm ∈ Ris. Denote
this set as {wk}, k ∈ Uis.

(3) Determine w
(Ris)
k , for k ∈ Uis.

4 In the case that
N

ℓ=1[A
ℓ
]im > 1, there is a hypothetical option that different

path connections cancel each other. Since the actual correlation between rm and wi
always needs to be checked, this situation will not be dealt with separately.
(4) Construct the signal

w̃j(t) = wj(t) −


k∈Kj

G0
jk(q)wk(t) − rj(t),

i.e. correct wj with all known terms.
(5) Identify the transfers G0

jk, k ∈ Uis on the basis of a predictor
model with prediction error

εj(t, θ) = Hj(q, η)−1


w̃j(t) −


k∈Uis

Gjk(q, θ)w
(Ris)
k (t)


using measured signals w̃j and w

(Ris)
k , an identification crite-

rion (5), and where Hj is a fixed noise model or parametrized
independently of θ .

For this algorithm the following result can be obtained:

Proposition 4. Consider a dynamic network that satisfies Assump-
tion 1. Then the module transfer function G0

ji can be consistently esti-
mated with Algorithm 4 if the following conditions are satisfied:
(a) the set Ris is non-empty.
(b) the external excitation signals rm, m ∈ Ris are uncorrelated to

noise signals vk, k ∈ {j, Ui
j}.

(c) the power spectral density of [w
(Ris)
n1 · · · w

(Ris)
nn ]

T , n∗ ∈ Uis is
positive definite for ω ∈ [−π, π].

(d) the module transfers G0
jk are in the model set, i.e. there exists a

parameter θ0 such that Gjk(q, θ0) = G0
jk(q) for all k ∈ Uis. �

Under the considered conditions, all model transfer functions G0
jk, k ∈

Uis are estimated consistently.
Proof. The proof follows along similar lines as the proof of
Proposition 3 with an appropriate change of notation. �

Example 3. Returning now to the situation of Example 2, it can be
observed that with Algorithm 4, the remaining module transfers
G0
21 and G0

23 can be identified by using aMISO predictor with inputs
w1 and w3 and output w2. The external excitation signal r1 excites
both inputs. It only has to be checked whether this excitation is
sufficiently informative. Adding a second excitation signal could
be helpful in this respect.

Moving from a SISO to a MISO predictor further increases the
complexity of the identification procedure, in terms of the number
of models and parameters to be estimated. However it also can
substantially reduce the variance of the estimates by improving
the effective signal-to-noise ratio in the output. The choice for
which inputs to use in the predictor, andwhich external excitation
signals to project upon, leaves more freedom here to choose from.
This aspect is further developed elsewhere (Dankers, Van den Hof,
Bombois, & Heuberger, 2013).

Although in the framework of this paper, we are dealing with
noise-free measurements of node signals wj, it has to be noted
that the two-stage method can simply be generalized to deal with
the situation of having measurement noise on the node signals
also. This is caused by the property that measurement noise will
disappear when the measured node signals will be projected upon
external excitation signals.

7. Extension of two-stage method with reconstructible noise
signals

Whereas in the two-stagemethodmeasured external excitation
signals serve as a basis for removing noise influences from the
input signals by way of projection, a similar mechanism can be
realized under particular circumstances by noise signals. Consider
the situation that somewhere in the network there is a noise signal
vm present, that can be reconstructed on the basis of measured
signals and known transfers, and that provides excitation for the
node signal wi that is an input to the transfer function G0

ji. Then a
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Fig. 9. Single node in a network structure, where the input wi is excited through a
reconstructed noise signal vm .

Fig. 10. Dynamic network with 5 node signals, of which 1 (red-colored) transfer
function can be consistently identifiedwith the two-stagemethod presented in this
Section 7 based on reconstructed noise signals.5

reasoning that is completely similar to the two-stage method of
the previous section can be applied by treating this reconstructible
noise signal as an external excitation signal.

The situation is depicted in Fig. 9, where noise signal vm is
reconstructible if all transfers G0

mk, k ∈ Nm are known. Then signal
xm can be calculated and vm can be reconstructed according to
vm = wm − xm. From this moment onwards vm can act as an
external excitation signal that can be used in both the SISO and
MISO predictor of the two-stage method.

An algorithm for checking whether a noise signal is recon-
structible is easily generated. For every index m ∈ V: check if
Km = Nm. If so, vm qualifies as a reconstructible noise signal. Al-
gorithms for checking whether vm satisfies the appropriate corre-
lation properties with respect to the inputs wi and wk, k ∈ Nj are
equivalent to the ones provided in the previous section.

Example 4. If we consider the network example of Fig. 8, it
appears that both v3 and v5 qualify as a reconstructible noise
signal, provided that the transfers G0

32 and G0
54 are known a priori.

However in the considered situationnoneof the remaining transfer
functions satisfies the other condition of Proposition 3 that the
outputs should not be disturbed by unknown terms that are
correlated to the (reconstructible) noise source.

However if we remove the outer loop connection G0
15, as

depicted in Fig. 10, then G0
23 can be identified consistently through

reconstructible noise signal v3 if G0
32 is known. In Fig. 10 this

transfer is indicated in red. Similarly, using a two-input predictor
the two-stage method can now be applied to node signal w2 with
inputs w1, w3 and external excitation signals r and v3.

The special phenomenon with reconstructible noise signals, is the
appealing mechanism that a noise signal with variance-increasing
effects on the model estimates, by the use of a prior knowledge
of particular module transfers, can be turned into an external
excitation signal that reduces the variance of the estimates.

8. Joint IO method for general network topology

Also the joint IO method can be generalized to the situation of
dynamic networks. As with the other methods presented before,

5 For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.
we will focus on a particular node signal wj, for which we intend
to identify the module transfer G0

ji. When isolating the two node
signals wi and wj, and modeling the vector process (wT

j , w
T
i )

T as
the output of a stationary stochastic process, it is very unlikely that
the resulting process will allow to determine consistent estimates
of G0

ji, if the two node signals are part of a complex network
topology. Like in the direct method, we have to extend the number
of node signals that we take into account.

Consider the following partition of measured variables: w =

{wj, wNj , wZj} where Nj has the usual meaning, and Zj is a set of
all remaining variables. In the subsequent text the subscript j will
be dropped from Nj and Zj for notational simplicity. Using these
partitions the data generating system can be written as follows6:

wj
wN

wZ


=

 0 G0
jN 0

G0
N j G0

NN G0
N Z

G0
Zj G0

ZN G0
ZZ

 wj
wN

wZ


+


vj
vN

vZ


(16)

where the vector vN is defined as vector of the same dimension as
wN with either vi, i ∈ N present or 0 if the particular node signal
does not contain an external disturbance (or excitation) signal. The
vector vZ is similarly defined.

In the joint-IO method we first model the measured signals
(wj, wN ) as output of a stationary stochastic process. Next, an
estimate of the module transfer function G0

ji is extracted from this
previously estimated noise model.

First, we are going to formalize the properties of the vector
process (wj, wN ) in the next lemma.

Lemma 4. The node signals wj, wN satisfy the following representa-
tion:

wj
wN


= W 0


ej
ẽN


with (17)

W 0
:=


W 0

jj W 0
jN

W 0
N j W 0

NN


=


Ğ0
jjH

0
j G0

jN Ğ0
NN H̃0

N

Ğ0
NN G̃0

N jH
0
j Ğ0

NN H̃0
N


(18)

with ej and ẽN uncorrelated white noise processes, and where

Ğ0
jj = (1 − G0

jN (I − G̃0
NN )−1G̃0

N j)
−1

Ğ0
NN = (I − G̃0

NN − G̃0
N jG

0
jN )−1

G̃0
NN = G0

NN + G0
N Z(I − G0

ZZ)−1G0
ZN

G̃0
N j = G0

N j + G0
N Z(I − G0

ZZ)−1G0
Zj,

and H̃0
N is the monic, stable minimum-phase spectral factor of the

stochastic process vN + G0
N Z(I − G0

ZZ)−1vZ. �

If the matrixW 0 in (17) is available (or an estimate thereof) then it
is possible to reconstruct G0

jN and H0
j , according to:

G0
jN = W 0

jN (W 0
NN )−1

H0
j = W 0

jj − W 0
jN (W 0

NN )−1W 0
N j.

An estimate of W 0 can be obtained by estimating a noise model
which whitens the stochastic processes which generate the data.
In particular, the output of the stochastic process is w(t) =

[wj(t) wN (t)]T , and the input is e(t) = [ej(t) ẽN (t)]T . The one-
step ahead prediction error is:
ε(t, θ) = w(t) − ŵ(t|t − 1; θ) = W−1(θ)W 0e(t)
and W (θ) is the parametrized noise model.

Whereas in the standard prediction error situation it can be
assumed that W 0 and W (θ) are monic, stable minimum-phase

6 Since in the Joint IO method no explicit use is made of measured external
excitation signals, we assume that r-signals are not present, and that all external
excitation originates from noisy v-signals.
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transfer function matrices, this condition is infeasible here, as W 0

is not necessarily monic. As a result, a dedicated parametrization
of W (θ) needs to be chosen, in particular for the modeling of
the constant feedthrough term W 0(∞), to be parametrized by
W (∞, θ).

The algorithm for the joint-IO method now becomes:

Algorithm 5 (Joint-IO Method).

(1) choose a parametrizationW (θ) ofW 0.
(2) determine θ̂N by minimizing the sum of squared prediction

errors, VN(θ) =
1
N

N−1
t=0 εT (t, θ)ε(t, θ).

(3) calculate ĜjN = WjN (θ̂N)W−1
NN (θ̂N).

For this algorithm the following result can be formulated.

Proposition 5. Consider a dynamic network that satisfies Assump-
tion 1. Algorithm 5 leads to a consistent estimate of G0

jN if the follow-
ing conditions are satisfied:

(a) noise vj is present and uncorrelated to all noise signals vk, k ∈

Vj \ {j}.
(b) the process vN + G̃0

N ZvZ is full rank.
(c) every loop through node k, k ∈ {N , j} has a delay.
(d) the system is in the model set, i.e. there exists a θ0 such that

W (θ0) = W 0.
(e) W (∞, θ) is parametrized such that there exists a permutation

matrix

P =


1 0
0 PNN


, such that (19)

PW (∞, θ)PT
=

 1

djN (θ) 0


0

dN j(θ)


L(θ)

 (20)

where djN (θ) and dN j(θ) are parametrized vectors with length
(dN j) + length(djN ) = card(Nj), and L(θ) is lower triangular
with ones on the diagonal. �

The result of the proposition shows that besides the parametriza-
tion issue of Part (e), the estimation results are quite similar to the
ones obtained for the direct method. Like in that method all mod-
ule transfer functions G0

jN need to be estimated simultaneously in
order to arrive at a consistent estimate of G0

ji. The delay structure
conditions are tighter for the joint IO method: the set of loops that
is restricted to have at least a delay is extended to all loops that run
through any of the considered node signals, whereas for the direct
method this only considered loops through node j.

The parametrization restriction formulated in Part (e) can be
interpreted as follows. As mentioned before, restricting W (∞, θ)
to be I is generally not leading to consistent estimates, because
of algebraic off-diagonal terms that might be present in W 0. The
parametrization (20) allows direct feedthrough terms to be present
in the model, without the occurrence of algebraic loops that run
through variables wk, k ∈ {N , j}. It is achieved by reordering the
node signals wk, k ∈ N , such that the parametrized structure
of (20) appears. Through the property that [PW (∞, θ)PT

]k1k2 ·

[PW (∞, θ)PT
]k2k1 = 0 for k1 ≠ k2, algebraic loops in the parame-

trized model are avoided, while the restrictions on W (∞, θ)
are sufficient to guarantee a unique solution to the parameter
estimation problem.

Whereas in the classical closed-loop situation the joint IO
method is able to also estimate the feedback dynamics of the
controller, in the generalized method this will typically not lead
to consistent estimates of any of the module transfer functions in
the network, unless Z is the empty set.
Concerning the handling of a priori known module transfers in
the estimation procedure, Remark 1 that wasmade concerning the
direct method, applies to the Joint IO method also.

9. Conclusions

Several methods for closed-loop identification have been
generalized to become applicable to systems that operate in a
general network configuration. In the current setting we have
focused on networks in which all node signals are measurable, and
where our intention is to model one particular module. Complex
networks can be handled and effective use can bemade of external
excitation signals. These excitation signals limit the necessity to
perform exhaustive consistent modeling of all noise sources in the
network. The several prediction error methods presented (direct
method, two-stage method based on either excitation signals or
on reconstructible noise signals, and joint-IO method) are shown
to be able to estimate particular subparts of the network. It opens
questions as to where and how many external probing/excitation
signals are required to identify particular parts of the network.

Appendix A. Proof of Lemma 3

Let G0(∞) denote limz→∞ G0(z), and let G0(∞) represent a
directed graph, denoted by G. If every path from b → a has a
delay then there is no path from b to a in the graph defined by
G0(∞). We can now separate the nodes of G into two groups, one
called A, containing node a and all nodes that have a path to a, and
a second group of nodes called B, containing b and all remaining
nodes that have no path to a. By reordering the nodes in the graph
G, the matrix G0(∞) related to this reordered representation can
be written as

G0(∞) =


GAA 0
GBA GBB


where GAA and GBB both have zeros on the diagonals.

With the inversion rule for block matrices it follows that:
I − G(∞)

−1
=


I − GAA 0
−GBA I − GBB

−1

=


∗ 0
∗ ∗


which shows that the (a, b) entry in (I − G0(∞))−1 is zero. Since
(I − G0)−1 is proper, this implies that the (b, a) entry in (I − G0)−1

has a delay.
The reasoning to show that if there is no path from b to a then

G0
ab = 0 is completely analogous except that instead of working

with G0(∞), it is necessary to work with G0. �

Appendix B. Proof of Proposition 2

The proof will proceed as follows:
(1) show that the lower bound of the objective function V̄j(θ) :=

Ēε2
j (t, θ) is σ 2

ej , the variance of ej.
(2) show that V̄j(θ) = σ 2

ej implies that θ = θ0 (i.e. the global
minimum is attainable and unique).

Step 1. Throughout the proof, it will be useful to expand the
measured variable wi in terms of all noise sources and external
inputs that affect wi. From (2b) and using the notation from
Lemma 3 we have:

wi =

L
k=1

G0
ik(vk + rk) =


k∈Vi

G0
ikvk +


k∈Ri

G0
ikrk (B.1)

where the second equality holds by Lemma 3 and the definitions
of Vi and Ri.

Now, (B.1) will be used to express the objective function in
terms of only noise sources and external inputs.With the predictor



3004 P.M.J. Van den Hof et al. / Automatica 49 (2013) 2994–3006
(13) it follows that

V̄j(θ) = Ē


H−1

j (θ)


vj +


i∈Nj


G0
ji − Gji(θ)


wi

2

= Ē


H−1

j (θ)


vj +


i∈Nj

1Gji(θ)

×


k∈Vi

G0
ikvk +


k∈Ri

G0
ikrk

2

= Ē


1Hj(θ)vj + H−1

j (θ)

i∈Nj


k∈Vi

1Gji(θ)G0
ikvk

+H−1
j (θ)


i∈Nj


k∈Ri

1Gji(θ)G0
ikrk + ej

2
(B.2)

where 1Gji(θ) = G0
ji − Gji(θ), and 1Hj(θ) = H−1

j (θ) −H0
j

−1. Next
condition (c) will be used to simplify this expression.

By (c) if G0
ji has a delay, then Gji(θ) will be parametrized with

a delay (i.e. 1Gji(θ) has a delay if G0
ji has a delay). Moreover, by

Lemma 3 the term G0
jiGij has a delay if all paths from j to j have a

delay. By condition (c), every path from j to j has a delay, therefore,
1Gji(θ)G0

ij has a delay for all i.
Consequently every term in (B.2) is uncorrelated to ej:

• since Hj(θ) and H0
j are both monic, 1Hj(θ)vj is a function of

vj(t − k), k ≥ 1;
• as described above, 1Gji(θ)G0

ijvj is also a function of vj(t − k)
k ≥ 1;

• by condition (b) any term involving vk, k ∈ Vj, k ≠ j is uncor-
related to ej;

• by condition (a) ej is uncorrelated to rk for all k.

Using this reasoning to simplify (B.2) results in:

V̄j(θ) = Ē


1Hj(θ)vj + H−1

j (θ)

i∈Nj


k∈Vi

1Gji(θ)G0
ikvk

+H−1
j (θ)


i∈Nj


k∈Ri

1Gji(θ)G0
ikrk

2
+ σ 2

ej

= Ē


1Hj(θ)vj + H−1

j (θ)

i∈Nj

1Gji(θ)wi

2
+ σ 2

ej (B.3)

where σ 2
ej is the variance of ej. From (B.3), it is clear that V̄j(θ) ≥ σ 2

ej .
This concludes the first step.
Step 2. Next it must be shown that the global minimum of V̄j(θ) is
attainable and unique. This will be done by showing

V̄j(θ) = σ 2
ej ⇒ θ = θ0.

Using (B.3), V̄j(θ) = σ 2
ej can be written as

Ē


i∈Nj

1Gji(θ)

Hj(θ)
wi + 1Hj(θ)vj

2
+ σ 2

ej = σ 2
ej

or equivalently

Ē


1Hj(θ)

1Gjn1(θ)

Hj(θ)
· · ·

1Gjnn(θ)

Hj(θ)


vj

wn1
...

wnn




2 = 0
Ē


1x(θ)


1 −G0

jn1 · · · −G0
jnn

1
. . .

1




wj
wn1
...

wnn




2 = 0

Ē


1x(θ)T Jw{j,Nj}

2
= 0 (B.4)

where

1x(θ)T =


1Hj(θ)

1Gjn1(θ)

Hj(θ)
· · ·

1Gjnn(θ)

Hj(θ)


,

wT
{i,Nj}

= [wj wn1 · · · wnn ], nk ∈ Nj.

Using Parseval’s Theorem results in:
1
2π

 π

−π

1x(ejω, θ)T JΦ{j,Nj}(ω)J∗1x(e−jω, θ)dω = 0

forω ∈ [−π, π), where J∗ denotes the conjugate transpose of J . By
condition (d), Φ{j,Nj}(ω) is positive definite. Moreover, J(ejω) is full
rank for all ω. Thus the only way the equation can hold is if each
entry of [1Hj 1Gjn1 · · · 1Gjnn1

] is equal to zero for allω. Therefore,
by condition (e) and if the parametrization of Gji(θ) is such that the
only way that G0

ji − Gji(θ) is equal to zero is when Gji(θ) = G0
ji, the

global minimum of V̄j(θ) is unique. �

Remark A.1. There exists an alternative reasoning to prove the
proposition, by utilizing the equivalent feedback structure as pre-
sented in Proposition 1, combined with the reasoning in Van den
Hof et al. (1992) concerning absence of algebraic loops. However
the proof presented above naturally includes the excitation condi-
tions also.

Appendix C. Proof of Lemma 4

The variables wZ can be eliminated from the equations:
wj
wN


=


0 G0

jN
G0

N j G0
NN

 
wj
wN


+


0

G0
N Z


(I − G0

ZZ)−1 G0
Zj G0

ZN

  wj
wN


+


0

G0
N Z


(I − G0

ZZ)−1vZ +


vj
vN



=


0 G0

jN

G̃0
N j G̃0

NN

 
wj
wN


+


I 0 0
0 I G̃0

N Z

 vj
vN

vZ


,

where the several matrices G̃ are implicitly defined through the
equations. The transfer from wN to wj is still G0

jN , whereas the
transfer fromwj towN has become a composite function of various
transfers (denoted G̃0

N j). Subsequently the map from v to [wj wN ]
T

is
wj
wN


=


1 −G0

jN

−G̃0
N j I − G̃0

NN

−1 
I 0 0
0 I G̃0

N Z

 vj
vN

vZ


.

Consider the stochastic process vN + G̃0
N ZvZ which appears as part

ofwN . Denote the power spectral density of this process as Φ̃N (ω),
and let H̃0

N be itsmonic, stable andminimum-phase spectral factor.
Substituting this into the expression of the data generating system
results in

wj
wN


=


Ğ0
jj G0

jN Ğ0
NN

Ğ0
NN G̃0

N j Ğ0
NN

 
H0

j

H̃0
N

 
ej
ẽN


where ej and ẽN are uncorrelated since vj and vN and vZ are
uncorrelated. �
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Appendix D. Proof of Proposition 5

Before proceeding to the proof, consider the following useful
lemmas.

Lemma A.1. Consider a dynamic network that satisfies Assump-
tion 1. If every path from wk2 → wk1 , k1 ≠ k2 ∈ {j, Nj} has a delay,
then [W 0

]k1k2 has a delay. If every path from wk → wk, k ∈ {j, Nj}

has a delay then [W 0
]kk is a monic transfer function.

Proof. The result follows directly from the combination of
Lemmas 3 and 4. �

Lemma A.2. Consider a dynamic network that satisfies Assump-
tion1. If every loop that runs through k ∈ {j, N } has a delay then there
exists a permutationmatrix P structured as (19) such that PW 0(∞)PT

is structured according to (20).

Proof. Since we are assuming that every loop through wk, k ∈

{j, Nj}has a delay, it follows by LemmaA.1 that the diagonal entries
ofW 0 are monic transfers. This proves the left upper part of (20).

Consider a graph of W 0
NN (∞) − I . By Lemma A.1, since every

loop involving wk, k ∈ {j, Nj} has a delay this is an acyclic graph,
and thus (see Deo, 1974) there exists a permutation matrix PNN

such that PNN W 0
NN (∞)PT

NN is lower triangular, conforming to the
right lower part of (20). Note that PNN may not be unique. LetPNN

denote the set of permutation matrices that satisfies the above
condition.

Then it must be shown that for at least one PNN ∈ PNN , the
off-diagonal blocks are structured according to (20). The reasoning
will be split into two steps. First it will be shown that there exists a
PNN ∈ PNN such that PNN W 0

N jW
0
jN PT

NN is strictly lower triangular.
Then it will be shown that for this matrix to be strictly lower
triangular, the structure of (20) must hold.

Consider the graph of W 0
NN (∞) + W 0

N j(∞)W 0
jN (∞) − I . This

graph is equal to the original graph ofW 0
NN (∞)− I with some new

edges added. The set of permutation matrices that triangularizes
the corresponding matrix, will be a subset of PNN since the edges
have only been added to W 0

NN (∞) − I and none have been
removed. This implies that if it is not triangularizable by any PNN ∈

PNN , then there does not exist a permutation matrix such that it
is triangularized.

Denote P ′
NN ∈ P ′

NN ⊆ PNN as the set of permutation matrices
that triangularizeW 0

NN (∞) +W 0
N j(∞)W 0

jN (∞) − I . By the condi-
tion that all loops passing throughwk, k ∈ {j, Nj} have a delay, the
graphW 0

NN (∞)+W 0
N j(∞)W 0

jN (∞)−I is acyclic. Then this implies
(Deo, 1974) that there exists a permutation matrix P ′

NN such that

P ′

NN


W 0

NN (∞) + W 0
N j(∞)W 0

jN (∞) − I

P ′T

NN

is lower triangular. Consequently PNN is not empty. Since P ′
NN ⊆

PNN it follows that there exists a permutation matrix such that
P ′

NN W 0
NN (∞)P ′T

NN and P ′
NN W 0

N j(∞)W 0
jN (∞)P ′T

NN are both lower
triangular.

From Lemma A.1 it follows that the diagonal entries of P ′
NN

W 0
N j(∞)W 0

jN (∞)P ′T
NN are zero and therefore this matrix is strictly

lower triangular. Next it will be shown that, the fact that
P ′

NN W 0
N jW

0
jN P ′T

NN is strictly lower triangular implies the off-
diagonal structure of (20). Consider two vectors, xT = [xT1 xT2] and
yT = [yT1 yT2]. Then,
x1
x2

 
yT1 yT2


=


x1yT1 x1yT2
x2yT1 x2yT2


.

The only way this matrix can be strictly lower triangular is if both
x1 and y2 are zero. Let x = P ′

NN W 0
N j(∞) and y = W 0

jN (∞)P ′T
NN ,
then by this reasoning, the structure of the off-diagonal blocks in
(20) follows. �

The proof of Proposition 5 proceeds in the usual fashion:

(1) calculate a lower bound on V̄ (θ).
(2) show that achieving this lower bound implies that θ = θ0.

Step 1. The expression for V̄ (θ) is

V̄ (θ) = Ē[εT (t, θ)ε(t, θ)] = tr{Ē[ε(t, θ)εT (t, θ)]}

= tr{Ē[W (θ)−1wwTW (θ)T ]} (D.1)

with w := [wj w
T
N ]

T . Then with Q := cov(e),

V̄ (θ) =
1
2π

 π

−π

tr{W (θ)−1W 0Q (W (θ)−1W 0)∗}dω.

Now consider the LDU-decomposition of the symmetric matrix
Q : Q = LQDLTQ with LQ lower triangular with ones on the di-
agonal, and D diagonal, then because of the structure of e, LQ will
be a block diagonal matrix with diagonal blocks (1, LQNN ) and LQNN

lower triangular with ones on the diagonal.
The expression for V̄ (θ) can be expanded as:

V̄ (θ) =
1
2π

 π

−π

tr

(W (θ)−1W 0LQ − I)

×D(W (θ)−1W 0LQ − I)∗ + (W (θ)−1W 0LQ − I)D

+D(W (θ)−1W 0LQ − I)∗ + D

dω. (D.2)

Two important properties of (D.2) is that the first term is ≥ 0 for
any θ , and secondly that the last term is not a function of θ . In the
following text it will be shown that the second and third terms of
(D.2) are zero. Consequently, V̄ (θ) ≥ tr{D}.

Consider the second term of (D.2), while using the matrix
inversion lemma forW (θ)−1:
A B
C D

−1

=


A − BD−1C 0

0 D − CA−1B

−1 
I −BD−1

−CA−1 I


then (W (θ)−1W 0LQ − I)D =Wjj(θ) − WjN (θ)W−1

NN (θ)WN j(θ) 0
0 WNN (θ) − WN j(θ)W−1

jj (θ)WjN (θ)

−1

·


W 0

jj − WjN (θ)W−1
NN (θ)W 0

N j W 0
jN − WjN (θ)W−1

NN (θ)W 0
NN

W 0
N j − WN j(θ)W−1

jj (θ)W 0
jj W 0

NN − WN j(θ)W−1
jj (θ)W 0

jN



·


1 0
0 LQ

N N


− I

D

then the first diagonal term
Wjj(θ) − WjN (θ)W−1

NN (θ)WN j(θ)
−1

·

W 0

jj − WjN (θ)W−1
NN (θ)W 0

N j


− 1

is a strictly proper transfer function, which means that the first
diagonal element of (W (θ)−1W 0LQ − I)D is a strictly proper
transfer function.

Secondly,
WNN (θ) − WN j(θ)W−1

jj (θ)WjN (θ)
−1

·

W 0

NN − WN j(θ)W−1
jj (θ)W 0

jN


LQ
NN

is a product of three lower triangular matrices with ones on
the diagonals. This is induced by condition (e), and Lemmas A.1
and A.2. The statement follows, since the inverse of a product of
triangular matrices with ones on the diagonal, is a lower triangular
matrix with ones on the diagonal. Consequently, the diagonal
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terms of (W (θ)−1W 0LQ − I)D are all strictly proper transfer
functions.

Finally, since
 π

−π
[F(eiω)+ F∗(eiω)]dω = 0 for strictly proper F ,

(D.2) can be simplified to

V̄ (θ) =
1
2π

 π

−π

tr

(W (θ)−1W 0LQ − I)

×D(W (θ)−1W 0LQ − I)∗ + D

dω ≥ tr{D}. (D.3)

Step 2. From (D.3) V̄ (θ) = tr{D} implies that

1
2π

 π

−π

tr

(W (θ)−1W 0LQ − I)D(W (θ)−1W 0LQ − I)∗


dω = 0.

Since D is positive definite ∀ω ∈ [−π, π) this implies that
(W (θ)−1W 0LQ − I) = 0 ∀ω ∈ [−π, π). Consequently,

W (θ) = W 0LQ for all ω ∈ [−π, π)
Wjj(θ) WjN (θ)

WN j(θ) WNN (θ)


=


W 0

jj W 0
jN LQ

NN

W 0
N j W 0

NN LQ
NN


.

By condition (e) and Lemma A.2 the parametrization is such
that there exists a solution to this equation. In particular the
parametrization is such that the equality WjN (θ) = W 0

jN LQ
NN can

hold. This completes the proof. �
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