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Abstract 

An indirect method is introduced that is able to consis- 
tently estimate the transfer function of a linear plant on the 
basis of data obtained from closed loop experiments, even in 
the situation that the model of the noise disturbance on the 
data is not accurate. Moreover the method allows approxi- 
mate identification of the open loop plant with an explicit and 
tunable expression for the bias distribution of the resulting 
model. 

1 Introduction 
The problem of parametric identification of a linear system on 
the basis of data obtained from closed loop experiments, has ob- 
tained considerable attention in the literature. Several methods 
have been proposed and analysed, either in the framework of 
(least-squares) prediction error methods (2, 4, 11, or in terms of 
instrumental variable methods [3]. In the prediction error context, 
well known approaches are the direct method, the indirect method 
and the joint input-output method. It has been established that 
- under weak conditions - the system's transfer function can be 
consistently identified, provided that the system is in the set of 
models that  is considered. This rather restrictive condition refers 
to both the input-output transfer function of the system, as to 
the noise-shaping filter of the noise contribution on the data. For 
instrumental variable methods, similar results have been derived, 
restricting only the input-output transfer function of the system 
to be present in the model set. 
In many practical situations, our primary interest is not the con- 
sistent identification of the system, but the gathering of a good 
approximation of its input-output transfer function. In this paper 
this problem will be discussed for a closed loop system configura- 
tion, in which an external (sufficiently exciting) reference signal or 
setpoint signal is present and measurable, and the controller is not 
assumed to be known. In the light of the remarks made above, we 
would like to come up with an identification method that is able 
to 

(i) consistently identify the i /o transfer function regardless of 
the fact whether the noise contribution on the data can be 
modelled exactly, and 

(ii) formulate an explicit expression for the asymptotic bias distri- 
bution of the identified model when the i/o transfer function 
of the system can not be modelled exactly. 

Note that property (i) alone can also be reached through instru- 
mental variable methods 131. 
We will propose and analyse a two-stage identification method 
that reaches the two requirements mentioned above, while still 
being composed of -classical- prediction error methods and using 
standard identification tools. Knowledge of the controller will not 

be required. Firstly the sensitivity function of the closed loop 
system is identified through a high order linear model. This sensi- 
tivity function is used to  simulate a noise free input signal for an 
open loop identification of the plant to be identified. Using output 
error methods, in accordance with [5], an explicit approximation 
criterion can be formulated, characterizing the bias of identified 
models in the case of undermodelling. 

2 Problem setting 
The identification framework we consider is adopted from [5]. We 
will consider a single-input single-output data generating system 
that is defined as: 

S : ~ ( t )  = Go(q)u(t) + Ho(q)e( t )  (1) 

with y(t) the output signal, u( t )  the input signal, and e ( t )  a zero 
mean unit variance white noise signal. Go(q)  and H,(q)  are proper 
rational functions in q, the forward shift operator, with Ho(q) sta- 
ble and stably invertible. The  input signal is determined according 
to: 

with C a linear controller and r ( t )  a reference or setpoint signal. 
The closed loop system configuration that we consider is depicted 
in figure 1. 
The parametrized set of models, considered to model the system 
S is denoted by 

4 t )  = r ( t )  - Wdt) (2) 

M : ~ ( t )  = G(q,o)u( t )  + H(q ,e )&( t )  e E o c EP (3) 

with G(q, 6) and H ( q ,  6) proper rational transfer functions, de- 
pending on a real-valued parameter vector 0 that is lying in a set 
0 of admissible values, and E the one step ahead prediction error 
151. The notation S E M is used to indicate that there exists a 
Bo E 0 such that G(z,Oo) = Go(z) and H ( r , $ )  = Ho(z) for al- 
most all z E C. The notation GO E 0 accordingly refers to  the 
situation that only G(z,O0) = G o ( t )  for almost all z E C. 
In the open loop case C(q) G 0, it is well known, [5], that when 
Go E 0, S $! M ,  it is possible - under weak conditions - to consis- 
tently estimate Go using prediction error methods, provided that 
G(q, 0) and H ( q ,  0) are independently parametrized within M .  To 
this end very often prediction error estimates are suggested with a 
fixed noise model: H(q,O) = L(q) ,  as e.g. the output error model 
structure, having L(q)  = 1. In this situation the asymptotic pa- 
rameter estimate is characterized by the explicit approximation 
criterion: 

lim 8, = arg min IGo(eaw) - G(e iw ,  O ) I z s  dw w.p. 1, 
N-m I L(eiw) I z  

with @,(U) the spectral density of U. 
In the closed loop situation, this consistency-property of CO is lost, 

(4) 
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as well as the validity of the approximation criterion (4), due to 
the fact that  the input signal u is not uncorrelated with the noise 
disturbance e. We will show that, by reorganizing the closed loop 
configuration ( I ) ,  (2), we are able to create a situation where we 
can repeatedly apply the open loop results in order to reach our 
goals. 

3 A two-stage identification strategy 

(11, (21, 
Let us consider the sensitivity function of the closed loop system 

(5) 
1 

1 + Go(q)C(q)  
To(Q) = 

Using To we can rewrite equations ( I ) ,  (2): 

4 t )  = To(q)r(t) - C ( q ) T o ( q ) ~ ~ o ( q ) e ( t )  (6) 
Y ( t )  = G o ( q ) u ( t )  + f f o ( q ) e ( t )  (7)  

Since r and e are uncorrelated signals, and U and r are avail- 
able from measurements, it follows from (6) that  we can identify 
the sensitivity function To in an open loop way. Using the open 
loop results as mentioned in the previous section, we can even 
identify To(q) consistently, irrespective of the noise contribution 
C(q)To(q)Ho(q)e( t )  in (6), using any model structure 

~ ( t )  = T ( q , P ) r ( t )  t R(q.Y)E,(t)  B E B c Eldp; y E r c Eld7 
(8) 

where ~ , ( t )  the one step ahead prediction error of u ( t ) ,  and T and 
R parametrized independently. 
The estimate T ( q ,  P,v) of To(q) is determined according to a least 
squares cliterion: 

(9) 
l N  

BN = arg4 min - E , ( t 1 2  
b3-I 

Consistency of T(q,  P N )  can of course only be reached when To E 

By again manipulating equations (6), (7),  we can write: 
7 := tT(4J.P) I P E B ) .  

u T ( t )  := To(q)r ( t )  (10) 
Y ( t )  = G0(q)u7(t) + To(q)Ho(q)e(t)  (11) 

Since ur and e are uncorrelated, it follows from (11) that when 
ur  would be available from measurements, Go could be estimated 
in an open loop way, using the common open-loop techniques. In 
stead of knowing U',  we have an estimate of this signal available 
through 

~ b ( t )  = T(q ,  /3N)r( t )  (12) 
Consider the model structure 

y ( t )  = G(q,Q)Ch(t) + H(Q,7I)Edt)  (13) 

with G(q,Q), H ( q , q )  parametrized independently, 8 E 0 < Rd', 
7 E R c E l d v .  It will be shown that the estimate G(q,ON) of 
Go(q),  determined by 

under weak conditions converges to G0(q)  with probability 1. This 
result is formalized in the following theorem. 

T h e o r e m  3.1 Given the closed loop system determined b y  (l) ,  
(Z), with To(q) asymptotically stable, e and r uncorrelated quasi- 
stationary signals, and r persistently exi t ing of suficient order. 

Consider the two-stage identification procedure presented in  this 
section with model structures and identification criteria (8), (9) 
for  step 1, and (13), (14) for step 2. 
rf To E 7 and Go E E then, under weak conditions, G(q,9N) + 
Go(q) with probability f as N + 03. 

Proof:  The identification procedure in the first step, determined 
by (8), (9), is known to yield a consistent estimate of the transfer 
function To, provided that r is persistently exciting of sufficient 
order. This implies that  

T ( Q , ~ N )  --t To(q) with probability 1, as N + 00 (15) 

For the second step (13), (14), we can write: 

We know from (51 that under weak conditions, for N + M, 

d,v i arg8 rninEK~r(Q,7, t )  
8.71 

with probability 1. 

Since T ( q , b N )  + To(q) with probability 1 as N -+ DO, and r and 
e uncorrelated, it follows that 

If r is persistently exciting of sufficient order, Go E 8, and G and H 
parametrized independently, (18) implies that  G(q, 6,) + Go(q) 

0 with probability 1 as N + 00. 

In the case that we accept undermodelling in the second step of 
the procedure, (Go $! G ) ,  the bias distribution of the asymptotic 
model can be characterized. 

P ropos i t i on  3.2 Consider the situation of theorem 3.1. 
If To E 7, and i f  in s t e p  2 of the identification procedure, deter- 
mined b y  (13), (14), n jxed noise model is used, i.e. H ( q ,  '7) = 
L ( q ) ,  then, under weak conditions, Qhr -+ 8' with probability f as 
N -+ 03, with: 

Proof: The proposition follows from transforming equation (18) 
0 t o  the frequency domain, employing Parsseval's relation. 

In this situation of approximate modelling of Go, the asymptotic 
estimate can be characterized by the explicit approximation crite- 
rion (19). It is remarkable, and a t  the same time quite appealing, 
that  in this closed loop situation, the approximation of GO is ob- 
tained with an approximation criterion that has the sensitivity 
function To of the closed loop system as a weighting function in 
the frequency domain expression (19). An even more general re- 
sult is formulated in the following proposition, dealing also with 
the situation TO 7. 
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Propos i t ion  3.3 Consider the situation of theorem 3.1. 
If both in step 1 and step 2 of the identification procedure fized 
noise models are used,  i.e. R iq ,7 )  = K ( q )  and H ( q , q )  = L(q) ,  
then, under weak conditions, ON + 6" with probability 1 as N 4 
00, with: 

Proof:  The proof follows from similar reasoning as in the proof of 
theorem 3.1, and proposition 3.2, however now with the sensitivity 

0 

Proposition 3.3 shows that even when in both steps of the proce- 
dure nonconsistent estimates are obtained, the bias distribution of 
G(q,  0.) is characterized by a frequency domain expression which 
is dependent on the identification result from the first step (cf. 

function To substituted by its limiting estimate T(q,P*) .  

(21)). 

R e m a r k  3.4 Note that in (20) the integrand expression can be 
rewritten, using the relation: 

Go ( eiw )To ( e;'") -G( eiw , O)T( eiw , p* ) = 

= [Go(elw) -G( eiW, 6')]To(e''") +G( e'", O)[To( e;'") - T (  e'", p')] (22) 

which shows how an error made in the first step affects the esti- 
mation of Go. I f  T ( q , p * )  = To(q) then (20) reduces to (19). If 
the error made in the first step is suficiently small it will have a 
limited effect on the final estimate G ( q ,  0.). 

Note that the results presented in this section show that a consis- 
tent estimation of the sentivity function To is not even necessary to 
get a good approximate identification of the transfer function Go. 
Equations (20) and (22) suggest that as long as the error in the 
estimated sensitivity function is sufficiently small, the i-o transfer 
function can be identified accurately. In this respect one could also 
think of applying an FIR (finite impulse response) model structure 
([5]) in the first step, having a sufficient polynomial degree in or- 
der to describe the essential dynamics of the sensitivity function. 
This model structure will be applied in the simulation example 
described in the next section. 
The fixed noise model L ( q )  can be used as a design variable in 
order to "shape" the bias distribution (20) to a desired form. 

R e m a r k  3.5 In the procedure presented we have made use  of three 
available signals r ,  U and y to perform two identification steps: 
first estimating the sensitivity of the closed loop system, and sec- 
ondly estimating the open loop plant. IJ, instead of r ,  we would 
have knowledge of the controller C ,  an alternative method could 
meet our requirements (i), (ii) as mentioned in the introduction, 
by solving the identification problem 

with a least squares criterion. This has been suggested in prob- 
lem l4T.2 in 151. However on the one hand this would require the 
solution of a complicatedly parametrized identification problem for 
which no standard tools are available. On the other hand, the prob- 
lem of estimating C ,  when it is not avaiable a priori, again leads 
to a closed loop identification problem, for which a consistent esti- 
mate might be obtained, but for  which an  approzimate model shows 

dependency on the plant dynamics and the  noise contribution in 
the loop. 
A n  alternative nonparametric solution to the problem, using a pr i -  
ori knowledge of the controller, is discussed in [6]. 

R e m a r k  3.6 The feedback structure ( 2 )  is conformable to the one 
used in related identification papers. Similar results can be derived 
for the alternative one-degree-of-jreedom controller, U = C(r - y). 

4 Simulation example 
In order to illustrate the results presented in this paper, we con- 
sider a linear system operating in closed loop according to  figure 
1, with 

1 
1 - 1.6q-I + 0.89q-' 

Go = 

(25) 
1 - 1.56q-' + 1.0459-' - 0.3338q-3 
1 - 2.35q-' + 2.09q-' - 0.6675q-3 

Ho = 

The noise signal e and the reference signal r are independent unit 
variance zero mean random signals. The controller is designed 
in such a way that the closed loop transfer function GOTO has a 
denominator polynomial Z ' ( Z  - 0.3)'. 
The two-step identification strategy is applied to a data set gen- 
erated by this closed loop system, using data sequences of length 
N = 2048. 
In the first step, the sensitivity function is estimated by apply- 
ing an FIR output error model structure, estimating 15 Markov 
parameters: 

14 

T(q,  P )  = P(k)!7-k ; R(P, 7) = 1 (26) 
k=O 

Note that the real sensitivity function TO is a rational transfer 
function of order 4. The magnitude Bode plot of the estimated 
sensitivity function is depicted in figure 2, together with the exact 
one. 
The estimate T(q,fip,) is used to reconstruct a noise free input 
signal ilk according to (12). Figure 3 shows this reconstructed 
input signal, compared with the real input u(t )  and the optimally 
reconstructed input signal ~ ' ( 1 )  = To(q)r(t). Note that, despite of 
the severe noise contribution on the signal U caused by the feedback 
loop, the reconstruction of U' by Ch is extremely accurate. 
In the second step an output error model structure is applied such 
that Go E B, by taking 

Figure 4 shows the result of estimating GO. The magnitude Bode 
plot is compared with the second order model obtained from a di- 
rect (one-step) output error method, using only the measurements 
of U and y. The results clearly show the degraded performance of 
the direct identification strategy, while the indirect method gives 
accurate results. This is also clearly illustrated in the Nyquist plot 
of the same transfer functions, as depicted in figure 5. 

5 Conclusions 
A indirect method has been analysed for identification of transfer 
functions based on data obtained from closed loop experiments. 
It is assumed that a persistently exciting external reference signal 
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is available, and the controller is not assumed to  be known. Us- 
ing classical prediction error methods, the two-stage procedure is 
shown to  yield consistent estimates of the open loop plant, irre- 
spective of the noise dynamics. Similar t o  the open loop case, an 
explicit and tunable frequency domain expression is given for the 
bias distribution of the asymptotic model. 
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Fig. 1: The closed loop system configuration 

Fig. 2: Bode amplitude plot of exact sensitivity function To (solid 
line) and estimated sensitivity function T ( g ,  j,) (dashed line). 

Fig. 3: Simulated input signal U (solid line), non-measurable input 
signal U‘ caused by r (dashed line) and reconstructed input signal 
Gh (dotted line) 
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Fig. 4: Bode amplitude pl?t of transfer function Go (solid line), 
output error estimate G(q, O N )  obtained from the indirect method 
(dashed line), and output error estimate obtained from the direct 
method (dotted line). Order of the models is 2. 
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Fig. 5 :  Nyquist curve of transfer function Go (solid line), output 
error estimate G(q, O N )  obtained from the indirect method (dashed 
line), and output error estimate obtained from the direct method 
(dotted line). Order of the models is 2. 
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