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Summary 

In this  paper  some  interesting  properties  are  derived 
for  simple  equation  error  identification  techniques, 
least  squares  and  basic  instrumental  variable  methods, 
applied to a  class  of  linear  time-invariant  time-dis- 
Crete  multivariable  models.  The  system  at  hand  is  not 
supposed  to  be  contained  in  the  chosen  model  set. 
Assuming  that  the  input  is  unit  variance  white  noise, 
it is  shown  that  the  Markov  parameters  of  the  system 
are  estimated  asymptotically  unbiased  over  a  certain 
interval  around  t = 0. 

1. Introduction 

In system  identification  literature  there is a  growing 
interest  in  identification  methods  that  give  reliable 
results in situations  where  the  process  at  hand is not 
necessarily  contained  in  the  chosen  model  set.  This 
aspect  is  considered to be  a  valuable  robustness  prop- 
ertyl.  Its  importance  is  indicated  by  realizing  that 
in many  practical  situations of  system identification, 
a  model  will  be required  that  is of  restricted  com- 
plexity,  approximating  the  essential  characteristics 
of  the - possibly  very  complex - process,  rather  than 
a  very  sophisticated  model  that  exactly  models  the 
process  behaviour. 

If the  problem  of  system  identification, or rather 
approximate  modelling,  is  considered  in  this  context, 
an  important  item  now  becomes:  which  criterion  has  to 
be  used to approximate  the  original  process,  and  which 
model set has  to be  chosen. 
It has been  recognized  that  these  choices  highly  de- 
termine  the  performance  of  the  model,  when  used  for 
specific  purposes  such  as  simulhtion,  prediction, 
(minimum  variance)  control etc.2,3. In many  situa- 
tions  the  performance  of  an  identified  model is judged 
upon  its  ability  to  simulate  the  process  under  consi- 
deration. However,  output  error  methods,  being  most 
appropriate  if the  simulation  behaviour  of  the  model 
is  concerned,  are much  more  complex  than  equation 
error  methods.  It is therefore  important to analyse 
the simulation  behaviour  of  an  equation  error  model. 
A frequency  domain  analysis of  this  aspect  of approx- 
imate  models  identified  by  prediction  error methods, 
is  given in ,5. By considering  the  Markov  parameters 
of  the  identified  model,  we will  focus  on  properties 
of the  approximate  model  in  the  time  domain. 

Earlier  work  on  this  subject  has  been  published  in 
1976  by  Mullis  and  Roberts ', who  established  a 
connection  between  results  in  model  reduction  and 
asymptotic  results  in  least  squares  system  identific- 
ation. An extension to the  multivariable  case  has 
been  worked  out  by Inouye ', but  restricted  to a full 
polynomial  parametrization.  The  previous  work  will  be 
extended  to  a  general  class  of  multivariable  models, 
while  also  the  basic  instrumental  variable  method  will 

be  considered. 

We  will  consider  a  discrete-time,  linear,  time-invari- 
ant  process: 

y(t) = H(z)  u(t) + c(t) (1) 

with  y(t),  c(t)ERq,  u(t)ERP, tEZ, H(z) a  (qxp)-trans- 
fer  matrix, z the  forward  shift  operator,  and  c(t)  a 
random  signal  that is uncorrelated  with  the  input 
signal u(t); u(t)  and c(t) are  supposed to be  jointly 
wide-sense  stationary  and  ergodic. 
The  class of  models that  we  use is a  parametrized  set 
of  linear  time-invariant  discrete-time  multivariable 
1/0 models, given  by  the following  general  MFD  (Matrix 
Fraction Description)-form: 

P(z;e)y(t) = ecz;e)uct) + &(tie) ( 2 )  

where  P(z;B):=[p.  .(z)Iqxq  and Q ( Z ; ~ ) : = [ ~ ~ ~ ( Z ) ] ~ ~ ~  are 
(qxq),  resp.  (qxp)-polynomial  matrices;  for  ease  of 
notation  the  explicit  dependency  of  the  polynomial 
entries  on  the  parameter e has been  omitted. 
The  polynomials  are  specified by: 

1 3  

l<i,j<q ( ' 1  
where bij = 1 for i=j and 6ij= 0 for  iij. 

The integer  indices  vi,  vij,  pij, rij and sj determine 
the  structure  of  the  model set (2);  Without  loss of 
generality  they  are  restricted  to: vi > 0, v.. > 0, 
pij > 0, rij > 1, s .  > 1. 3 v .  

1 3  

If vij < rij then  pij(z) = 6. . z . j ,  and  if pij < sj 
then  qij(z) = 0. 1 3  

As a  restriction on the  model  set  we  will  require  that 
vj > vij for 1 < i,j < q. (5) 

This  means  that  the  leading  column  coefficient  matrix 
of P ( z )  is  equal to the  identity  matrix. 

In this  paper we will  consider  the  situation  where  the 
vector e of  unknown  parameters  consists  of  all  the 
coefficients a and  occurring  in  the  polynomial ma- 
trices  P(z;e) and  Q(z;B).  The  equation  error 

E(t;e) = P(z;e)y(t) - Q(z;B)u(t) (6) 

is  dependent  on  the  parameter  vector 8 ,  but  is  not 
parametrized  itself. 
The  model  set  (2)-(5) is very  general  and  encompasses 
most  uniquely identifiable MFE-forms,  currently  used 
in  the  identification of  multivariable  systems. For 
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most  forms  it  will  follow  that rij = 1, s = 1. Note 
that  the  model  set  is  not  necessarily  restricted  to 
causal  models,  and  that  it  admits  both  one  step  ahead 
and  more  general k-step ahead  prediction  models. 

Asymptotic  least  squares  results  are  presented  in  sec- 
tion 2, and  applied  to  a  number  of  different  parametri- 
zations.  The  results  are  illustrated  with  a  practical 
experiment  in  section 3. In section 4 the  analysis  is 
extended  to  the  basic  instrumental  variable  method. An 
overall  discussion  on  the  results  follows  in  section 5. 

j 

2. Asymptotic  results for least  squares  equation 
error  minimization 

Equation  error  methods  are  very  popular in system 
identification.  The  main  reason  for  this  is  the  sim- 
plicity  of  the  corresponding  identification  algorithm, 
due  to  the  linearity-in-the-parameters  of  the  model. 

A common  equation  error  method  for  obtaining  an  esti- 
mate  of 8 in (2) is  the  simple  least-squares  estima- 
tor, minimizinc 

1 N 
vN(e) = r; 1 E(t;e)T E(t;e) ( 7 )  

t=l 

with  respect tc 8. N  denotes  the  number of  data 
samples.  Being  interested  only  in  asymptotic  results, 
the  asymptotic  analogon  of  this  problem  will  be  con- 
sidered,  minimizing 

v(e) = E E(t;e)TE(t;e) ( 8 )  

with  respect  to 8, under  assumption of stationarity 
and  ergodicity  of  the  input  and  output  signals. (E 
denotes  the  expectation-operator) . 
Remark 1 
In our  theoretical  analysis  we do-not impose  the  con- 
dition that the  parameter  vector 8 minimizing  V(8) is 
unique.  With  respect  to  the  identification  algorithm, 
however,  one  would  like  to  use  model sets which  guar- 
antee  uniqueness.  Examples  of  these  will  be  given 
later  on. For the  analysis,  there is no objection  to 
the  non-uniqueness  of 8. 

As  a  direct  result  of  the  linearity-in-the-parameters 
of  E(t,8)  the  asymptotic  least  squares  estimator 8 
satisfies: 

E  Ei(t;i)  zRe-'y.(t1 1 = 0 rij < II < Vij 
(9) 

1 < i,j < q  and 

E  Ei(t;i)zR-'u.(t) 3 = 0 sj < R < pij (10 1 
l < i < q , l < j < p  

Now we  define P ( z ) :  = P(z;6) (11) 

and ; ( Z ) :  = Q(z;$) (12) 

The  output  signal  y(t) of the  estimated  model,  when 
excitated by the  original  input  signal, is given  by: 

P(z)  y(t) = Q(z) u(t) - < t < - (13) 

If  we  assume  the  input  signal  u(. ) to be a  zero  mean 
stationary  white  noise  sequence  with  unit  variance 
(i.e. E u(k)uT(R) = 6(k-R).1), and  we  denote: 

M(k) = Ey(t)u (t-k) - m < k < m   ( M a )  

M(k) = Ey(t)u  (t-k) - < k < m  (14b) 

T 

- T  

then  M(k)  is  tne k-th Markov  parameter  of  the  pro- 
cess  and M(k) the k-th Markov  parameter  associated 

with  the  estimated  model. 

Proposition 1 
Let P(z) and Q(z) be as  defined  above  and  let 8 be an 
asymptotic  estimator  fulfilling  (10).  Then  the  Markov 
parameters of the  estimated  model  and  the  process 
satisfy: 
Pi,,(z)M,.(k) = Q. .(z)b(kl 1-1.. < k < 1-s (15) 

3 11 1 3  j 

P(z)M(k) = 6(z)6(k)I - m < k < m  (16) 
and l < i < q , l < j < p  

where  Gif(z),  resp. M,. (k) denote  the  ith  row  vector 

of G ( z ) ,  resp.  the jt' column  vector of M(k). 

Proof The result  follows  directly  from (6), ( 1 0 1  and - 
(13). 

Note  that  the  Markov  parameters of the  process  satisfy 
the  same  relationship  as  the  Markov  parameters of the 
identified  model,  however  on  a  restricted  interval. 
It will  be  shown that, as  a  result  of  this,  under  some 
conditions,  the two sequences of Markov  parameters  are 
equal  on  a  restricted  interval. 

Theorem 1 
Consider  a  multivariable 1/0 model  as  defined  in  (2)- 
( 5 ) .  If this  model  is  used  for  identifying  a  linear 
time  invariant  system  by  an  equation  error  technique, 
fulfilling ( l o ) ,  if  the  input  signal is zero mean, 
stationary  unit  variance  white  noise  and  if  the  number 
of  data  samples  tends  to  infinity,  then  the  Markov 
parameters M(t) of the  identified  model  satisfy: 
M. .(t) = M. '(t) for -pj + ri < t < 1-s. + vi (17) 

under  the  condition  that  the  Markov  parameters  of  the 
original  process  satisfy, 

1 3   1 3  
h -  

3 

M. .(t) = 0 
11 

where- 

for -Gj + Fi< t < yij (18) 

rj:= min  rij 1 < j < q  (19) 
i - 

pj:= "X pij 1 < j < p  (20) 
I 

yij:=  maX[Vi - pij,  maX(VRi - 1 - pR j ) ]  (21) 
R 

Proof  The  proof  of  this  theorem  is  given  in  the  ap- 
pendix. 
- 
Theorem 1 has  been  stated in a  general  setting,  due to 
the  generality  of  the  chosen  model  set  (2)-(5). Its 
full implications  will  become  clear  if  it is applied 
to specific  parametrizations,  with  specific  restric- 
tions on the  structure  indices.  If  condition (18)  is 
fulfilled,  the  result  shows  that  apparently  a  Pad6 
type  of  approximation  is  involved,  where  the  length of 
the  matching  interval  is  determined by the  chosen 
parametrization  and  the  chosen  structure  indices of 
the  model. 

Note  that by (211, y .  . can  be  interpreted  as  the  maxi- 
mal difference  between  the  degrees of  pRi(z)  and 
qRj(z)  minus 1: 

11 

yij = max [degr(pRi(z)) - deyr(qilj(z))] - 1 (22) 
R 

When  modelling  causal  systems by M F D  model  sets  the 
degrees of the  polynomials  qij(z)  are  usually  chosen 
equal  to  the  i-th row degree  of  P(z): 

This  choice  is  motivated by  the  fact  that  for  causal 
MFD's the  row  degrees of P(z) have  to  be  greater  than 
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CANONICAL 

OBSERVABILITY 

mw 

llFD 
structure 
specification -min(vi.vj),i<j 

vij-nin(vi+l , v j )  ,i>j 

Vi] = v i  + 1 

r i j  = 1; s. - 1 

Auxiliary r.= 1; p j  - vm+l 
variables 

Theorem 1: 

I4 (t)-Mij(t) 

- . .  

- v < t <  vi 
i j  

PSEUW-CANONICAL 

FOPJ4 

HERnITE DIAGONU  GENEWLIZED 

PSEUDO-CANONICAL 

vij = Y,,  i > j  

Y :=lMx(vi) 
i Table -1- Structure  specifications  for a number of multivariable  paranmtrirations 

in WD-form; results for the  asymptotic  fit of Markov parameters. 

or equal to the  corresponding  row  degrees  of Q(z). AS 
a  result,  the  corresponding mdel sets  will fulfil 

We can  now  present  the  following  result  as  a  direct 
consequence  of  theorem 1: 

y .  . <  -1. 
11 

Proposition 2 
Consider  the  situation  as  described in theorem 1. If 
the  original  system is causal  and if yij < -1 then 
M. .(t) = M. .(t) for t < 1 - sj + vi 

1 3  11 
( 2 4 )  

l < i < q , l < j < p .  

Proof:  The  result  follows  directly  from  theorem 1 and 
the  observation  that  Mij(t) = 0 for  t < vi - :j. 
A  remarkable  result  is  that  the  estimated  model will 
necessarily  be  causal too, notwithstanding  the  fact 
that  the  applied  model  set  possibly  admits  non-causal 
models. 
For most  common  MFD-models, s = 1 and  the  above 
result ( 2 4 )  can  be  formulated  as j 

M. .(t) = M a  .(t) , t < vi 1 3   1 3  
( 2 5 )  

l < i < q , l < j < p .  

The  asymptotic  matching  of  Markov  parameters,  as  given 
in theorem 1, finds  its  source  in  the  correlation 
result ( 1 0 ) .  Bearing  this in mind,  the  number of 
Markov  parameter  entries  that  is  forced to be  matched 
by the  equation  error  method,  will  be  equal  to  the 
number of p-parameters in the model.  If the  transfer 
matrix [;(Z)]-~~(Z) of  the  model ( 2 1  is  proper,  the 
sequence of  matched  Markov  parameter  entries  lies 
completely in the  causal  range (t > 0); if not,  also  a 
non-causal part will  be  involved. 

It is  illustrated in table 1 how  the  results  of  this 
section  work  out  for  a  number of - comonly used - 
parametrizations  of  the  original  model  set.  The  para- 
metrizations  will  not be described in detail;  for  a 
thorough  description  the  reader  is  referred  to  the 
literature.  A  general  and  up-to-date  account on the 
use of  identifiable  parametrizations  for  multivariable 
linear  systems  is  given in '. 
Table 1 shows  the  structure  specification,  and  results 
of  Theorem 1, for  a  number  of  MFD  forms:  the  canonical 
observabilit  form '; the  pseudo-canonical  (overlap- 
''n:Al:c generalized  pseudo-canonical  form 13. 

It;; the  Hermite  form l l ;  the  diagonal  form 

Although  the  analysis  and  discussion  has,  until  now, 
been  based on MFD-model sets, defined in the  forward 
shift-operator z, the  obtained  results  can  also  be 

used  for  ARMAX  model  sets,  which  are  defined in the 
backward  shift  operator z-l. By  transforming the 
ARMAX-model to a  corresponding  MFD-form,  the  results 
of  this  section can still be applied. 
In  Table 2 ,  the  results  are  listed  for  two  commonly 
used  ARMAX-model  forms:  the  yerescribed  maximum  lag"- 
form S(n  l,...,nq,ml,...,m ) , and  the full polyno- 
mial  form  s(n,m) 15.  
The  asymptotic  fit of Markov  parameters  for  the  full 
polynomial  ARMAX  form  has  been  presented  before by 
Mullis  and  Roberts for the  single  input-single  out- 
put (SI=)  case,  and  by  Inouye ', for  the  multivari- 
able (MIMO) case. 

P 

Structure 
specification 

W D  

Auxiliary 
variables 

Theorem 1: 

PRESCRIBED  MAXIMAL FULL POLYNOMIAL 

LAG F O M  FOR4 

s(nl,..n ,m ..,m ) 
q l  P 

S l n , m )  

v .  = s :* maxln k,l k'ml' vi - s :- max(n,ml 
v .  ,=  v .  = s 
'I 1 

p., - 8 + 1 

Y .  ,- v .  - s 
11 1 

XI P i j  = s + 1 

r . ,  - 8-n.+l; s.= s-m.+l 
11 1 1 1  

rij - s-n+l; s.- s-mi 
r,- s-n,+l; p - 8 + 1  
I l j  r , =  s-n+l; p = s +1 

j 

- ni < t < m .  - n < t < m  

Table -2- W D  structure  specifications for two  multivariable  para- 
metrirations in AFXAX-fom; results for the  asymptotic 
fit of Uarkov parameters. 

3 .  A  practical  example 

In  order  to  illustrate  the  theoretical  results  of  the 
previous  section,  some  results  will be shown of an 
equation  error  identification  algorithm  applied  to  a 
multivariable  industrial  process. 
The  process  concerns  the  shaping  part of  a  glass  tube 
production  process,  where  the  output  variables  wall- 
thickness  and  diameter  can  be  adjusted by manipulating 
two  input  variables: - the  pressure of the  air  through  the  tube  and - the  pulling  speed  at  the  end of the  tube. 
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A  two  input, two output  model  has  been  constructed by 
applying  a  least  squares  equation  error  technique  to  a 
model set with  iimension 6, parametrised in pseudo- 
canonical  overlapping  form. 
The  process  has  been  excitated  with  a  sufficiently 
rich  input  signal,  and  500  samples of input  and  output 
signals  have  been  used  for  the  identification. 

Figures 1 and  2  show  the  Markov  parameters  of  the 
estimated  model  for  two  transmittancies  within  the 
model,  and  for  three  sets  of  structure  indices. The 
results  for  the  estimated  models  are  compared  with 
Markov  parameters  that  are  directly  estimated  from 
input/output  data. 

Figure 1 shows  the  result of the  transfer  from  input 1 
(pressure) to output  2  (diameter).  The  fit  of  the 
start  sequence (of Markov  parameters  can  be  recognized, 
as  well  as an increasing  length  of  the  fit  if  the 
structure  index  corresponding  to  output  2  increases. 
A  similar  effect  for  output 1 is  shown  in  Fig.  2, 
showing  the  results  of  the  transfer  from  input  2 (pul- 
ling  speed)  to  ‘output l (wall-thickness). 

The  results  of  this  experiment  show  how  the  choice  of 
a  set  of  structure  indices  can  influence  the  perform- 
ance of the  approximate  model. 

4. Extension of the  results for basic 
instrumental  variable  methods 

In section  2  we  presented  some  asymptotic  results  for 
the  least-squares  equation  error  method.  Another 
useful  technique  for  estimating  the  parameters in 
equation  error  models  is  formed by  the  instrumental 
variable  methods.  Many  variants  of  this  technique 
have  been  proposed  (for  an  overview  see 1. In  this 
discussion  only  the  most  elementary one, the  basic  IV- 
method,  will be  considered. 
For this  method  we  will  establish  similar  results  such 
as  those  presented  in  section 2. 

Asymptotically,  the  basic  IV-method  for  estimating 0 
amounts  to  the  solution of the  set of  equations 

E z(t)E(t;e) = o (26 1 
where  Z(t)  is  a ngxq matrix  consisting  of  properly 
chosen  instrumental  variables,  and ne is  the  number  of 
parameters in the  model.  In  our  analysis  it  will  be 
assumed  that (26) indeed  has  a  solution.  Typical 
choices  for  Z(t)  are 16: 

Z(t) = diag[zl(t) ,... ,zq(t)] (27) 
where  the  length  of  vector  zi(t)  corresponds  to  the 
number  of  parameters  in  the  i-th  equation  of  (2),  and 
z.(t)  contains: 

II- 1 z @, .(t), rij c II < v 1 < j < q (28a) 
1 3  ij ’ 

and 
__ ES71H Y A R I ( 0 Y  P A R  
-----b MFD ETnUC 2 . 4  -- MCD  STIIUC 1 . 3  

_c MFD  ETRUC 1.2 1-1 
z u.(t), s G II < pij; 1 c j < p (28b) 

r 1 3 j 
with  @ij(t)  a filtered or delayed  input  signal. 

i i Because  of  (27),  equation  (26)  now  becomes: 

i I E z,(t)  tie) = o l < i < q  (29) 

D. m 1 
t Substituting  (28b)  gives: 
I 1-1 E z u.(t) ~ ~ ( t ; e )  = 0 1 < j < p, 1 < i < q, 

3 
s .  c II < p . ,  (30 1 
3 1 3  

i 
I 

j 
\ fJ L; i 

which  is  exactly  the  same  expression  as (10). 

~ Using  (30)  it  is  obvious  that  Proposition 1 and 
Theorem 1 will  also  hold  for  the  basic  IV-estimator 
(27) - (28). -1. IS 

obtaii  an  IV-vector zi (t) consisting  of  the  compon- 
ents: - ESTIM MARKOV CAR 

-----b MFD STRUC 2. 4 
_c MFD STRYC ., 2 - YPD FTRUC a. 3 z’-’uj(t)  hij < L < gij; 1 G j < p  (31) 

I 

Here hij are integers  such  that  hij < sj for 1 < j < p 
and  such  that 7 (pij-h +1) is  equal to the  number 

j=l ij 
+ of  parameters in the  i-th  equation  of  (21. 

1 Using (31 

1 Therefore  the  relationship  (15)  in  Proposition 1 will’ 
1 hold  for  l-pij < k < 1 - hij,  while  relationship (16) 

i 
as  IV-vector,  it  is  obvious  that  equation 

(30) will  be  valid on the  extended  interval hij < pi 

i remains valid. 

1 By using  similar  arguments  as in the  proof  of  Theorem 
j 1, it can  now  be  shown  that  Theorem 1 will  hold  true 
~ for  this  specific  basic  IV-estimator if we  replace s 

in (17) by fij,  where f . .  are  integers  which  fulfill 
-a. 1 j 

-11 >I 3. N 
ShMPLE NULUER 

78 the  following condition;? 

fij > h .  
11 

l < i < q , l < j < p  (32) 
Fig. 2 mrkov parameters Ml2lk) of estrmated W O  model, parametrized in 

overlapping form, fo r  structures  (2,4), ( 3 . 3 )  and 14.2); directly 
estimated Markov parameters. and 
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min (v - v .  +l+f  -f ) > 0 1 < j < p 
l < i , k < q  (33) 

k lk ij kj 

It can  easily be seen  that  the  special  choice 

:= X := max A l<i<q, l<j<p 
fij j l j  

satisfies (32)-(33). 
This choice  illustrates  that  the  asymptotic  matching 
of  the  Markov  parameters of  process  and  model will 
hold on a  (possibly)  larger  interval  than in the  orig- 
inal  results of Theorem 1 (namely  f .:= x .  < s. since 
h n j  < s j  for 1 < 2 < q). il 3 3 

The  consequences of this  general  result  will be illus- 
trated by  a simple  example: 

Example 4.1: 
Consider  a  causal  SISO-system.  Suppose  that  we use 
the  model  set 

n  m 
y(t) = - 1 aiy(t-i) + 1 p j  u(t-1) + c(t;e) 

i= 1 j = O  
(35) 

The  instrumental  variable  vector is chosen  to  consist 
of  delayed  input  signals  u(t-2) ( 0  < 1 < m+n). 
Application  of  the  foregoing  results  gives  that: 

M(t) = M(t) for 0 < t < m+n  (36) 

All  the  parameters of the  model  are  used to match the 
Markov  parameters.  Therefore  the  model  is  completely 
determined  by  the  first  m+n+l  Markov  parameters  of  the 
system,  a  result  which  is,  if  fact,  equivalent to a 
Pad6 approximation.  As  a  consequence  of  this,  use  of 
this  IV-method  can  result  in  unstable  models,  a  pheno- 
menon  which is inherent to Pad6 approximations. 

5. Discussion 

The  analysis  in  this  paper  has  been  motivated by the 
consideration  that  in  many  practical  situations  the 
performance  of  an  identified  model  is  assessed  by  its 
ability to simulate  the  given  process. 
In the  asymptotic  eqdation  error  results,  all  p-para- 
meters  are, in fact, determined  in  such  a  way  that  the 
Markov  parameters  of  the  process  are  matched  over  a 
certain range. The a-parameters  determine how the 
start-sequence  of  Markov  parameters  of  the  model is 
extended to infinity. As a  result,  the  choice  of  a 
parametrization  can  have  a  severe  effect on the  empha- 
sis  that is adjusted  to  the  start-sequence c.q. the 
extension  sequence  of  Markov  parameters;  the  specific 
set  of  structure  indices  determines  the  length of the 
matching  interval for the  various  input-output  trans- 
mittances  within  the  model. 

It has  been  illustrated in for  some SISO examples 
that  the  asymptotic  unbiasedness of the  start-sequence 
of  Markov  parameters  causes  the  equation  error  model 
to generate  a  bad  sequence  of  Markov  parameters in the 
extension to infinity.  This  effect  especially  occurs 
when  the  system  impulse  response  is  small in the 
start-sequence , and  increases  outside  this interval1*, 
a  very comon situation in practice (e.9. because  of 
time delays).  A  similar  result  will  probably  hold  for 
MIMO  systems. 

We have  to  note  that  the  results  of  section  3  cannot 
simply  be  generalized to situations of  non-white  input 
signals.  Although  the  quantitites 

Q,(t) and Qh(t) 
satisfy  the  same  relationship on a  restricted  interval 

(see proposition l ) ,  they  will  not  match in general, 
since the associated  initial  conditions  for  the re- 
cursive  relations  are  different  in  the  case  of  non- 
white  input  signals. 

The results in this  paper,  presented in terms  of Mar- 
kov parameters  can  of  course  also  be  formulated in 
terms  of step responses. 

6. Conclusions 

For a  general  class  of  linear  multivariable  models, 
asymptotic  properties  are  derived  for  the  Markov  para- 
meters  of  approximate  models,  when  identified by 
equation  error  identification  methods. 
The results  of  this  paper  are  valid  for  general  linear 
time-invariant  systems  corrupted by output  noise  that 
is  not  correlated  with  the  input  signal. Under the 
condition of white  input  noise,  it  has  been  shown that 
the  Markov  parameters  of  the  system  are  estimated 
asymptotically  unbiased  over  a  certain  interval  around 
t=O. The  position  of  the  interval is dictated by the 
chosen  structure  indices  of  the  model.  Moreover  it 
has been  shown  that  for  causal  systems  the  identified 
model is asymptotically  causal,  notwithstanding  the 
fact  that  the  applied  model  set  might  contain  non- 
causal  models. 
The results  have  been  obtained  for  a  very  general 
class  of  linear  models,  having  the  property of linea- 
rity in the  parameters.  This  class  of  models  covers 
all  commonly  used  MFD (Matrix Fraction  Description)- 
forms  and  ARMAX  forms. 
The theoretical  analysis  has  been  illustrated by re- 
sults of a  practical  identification  experiment. 
For basic  IV  techni  it  has  been  shown that the 
method  of  Wouters  asymptotically equivalent  to 
Pad6  approximation in model  reduction. 

Appendix 

Proof  of Theorem 1. 
From (16) we obtain: 

z 5 .  .(t) = -Pf,(z)M*j(t) + Q. .(z)6(t) 

where  P*(z) = P(z) - diag [z"', zv2, .. , 2'91. 

V.- 

1 7  1 7  (A-1) 
- < t < m  

Since Qij(z)  6(t) = 0 for  t < -;. it  follows  directly 

that z 'Mij (t) = 0 for  t < -Ej. Combining  this  with 
condition (18) results  in: 

7 
V.- 

z 'Mij(t) = z 'M. .(t)  for - + ?.-  Vi < t < -: V.- V .  

1 3  1 1  j 
(A-2) 

In order  to  prove  the  remaining  part  of (17) we  ob- 
serve  with (15) that 
zvhij(t) = -Pi,(z)M,j(t) -* + iij(2)6(t) 

(A-3) 
1-1.1. .<t<l-s 

1 3  1 
Under  condition (18) this  relation  will  also  hold 
for 1-;.< t < -pij. 3 
Using  (A-l), (A-2) and (A-3) on the  extended  interval 
l-ii.< t< 1-sj it  follows by induction  that 

3 

zvi iij(t) = zvi M. .(t), =I I-;. < t < 1-sj  (A-4) 

In order  to  proof  this,  consider  that  (A-4)  holds  for 
1 

t = 1 - pj .  
For the  inductive  continuation  we  assume  that 
z M .  .(t) = zvi Mij(t)  for 1 - G .  < t < s* , 
vi - 

1 7  3 
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where 1 - ji. < s* < - 5 . .  As  a  result of  (A-3): 
7 3 

Using  the inductive assumption  and (A-2) it  follows 
that 

P;*(Z)M*.(S*+~)=P~,(~)M*~(S +1) 
*-• 

3 (A-6 ) 

Combination of (A-l), (A-5) and (A-6) finally  gives 
vi - 

2 Mii(S +I)  = zvi Mii(s*+l),  providing  the  induc- 
argument  leading to (A-4). 
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