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Abstract 
A least squares identification method is studied that estimates 
a finite number of expansion coefficients in the series expansion 
of a transfer function, where the expansion is in terms of gen- 
eralized basis functions. The basis functions are orthogonal in 
1-12 and generalize the pulse, Laguerre and Kautz bases. The 
construction of the basis is considered and bias and variance 
expressions of the identification algorithm are discussed. The 
basis induces a new transformation (Hambo transform) of sig- 
nals and systems, for which state space expressions are derived. 

1 Introduction 
The use of orthogonal basis functions for the Hilbert space 
Hz of stable systems has a long history in modelling and 
identification of dynamical systems. The main part of this 
work dates back to the classical work of Lee and Wiener. 
In the past decades orthogonal basis functions, as e.g. the 
Laguerre functions, have been employed for the purpose of 
system identification in e.g. [8, 111. In these works the 
input and output signals of a dynamical system are trans- 
formed to a (Laguerre) transform domain, being induced 
by the orthogonal basis for the signal space. Consecutively, 
more or less standard identification techniques are applied 
to the signals in this transform domain. The main mo- 
tivation for this approach has been directed towards data 
reduction, as the representation of the measurement data 
in the transform domain becomes much more efficient once 
an appropriate basis is chosen. 
In [15, 161 orthogonal functions are applied for the identi- 
fication of a finite sequence of expansion coeffients. Given 
the fact that every stable system has a unique series expan- 
sion in terms of a prechosen basis, a model representation 
in terms of a finite length series expansion can serve as an 
approximate model, where the coefficients of the series ex- 
pansion can be estimated from data. As the accuracy of 
the finite expansion models is limited by the basis func- 
tions, the development of appropriate basis functions is a 
topic that has gained considerable interest. The issue here 
is that it is profitable to design basis functions that reflect 
the dominant dynamics of the process to be modelled. 

Laguerre functions (see e.g. [12]), exhibit the choice of a 
scalar design variable a that has to be chosen in a range 
that matches the dominating (first order) dynamics of the 
process to be modelled. For moderately damped systems, 
Kautz functions have been employed, which actually are 
second order generalizations of the Laguerre functions, see 
[7, 16, 171. 
Recently a generalized set of orthonormal basis functions 
has been developed that is generated by inner (all pass) 
transfer functions of any prechosen order, [4, 5, 61. This 
type of basis functions generalizes the Laguerre and Kautz- 
type bases, which appear as special cases when chosing first 
order and second order inner functions. An alternative gen- 
eralization in [lo] is closely related. 
The resulting identification method employs a model struc- 
ture determined by the following expression for the predic- 
tion error 

where y, U are the (measured) output, input of the system, 
Lk is a sequence of unknown coefficients, and vk reflects the 
specific basis functions chosen. q-' is the delay operator. 
The corresponding least squares identification method has 
some favourable properties. Firstly it is a linear regression 
scheme, which leads to a simple analytical solution; sec- 
ondly it is of the type of output-error-methods, which has 
the advantage that the input/output transfer function can 
be estimated consistently whenever the unknown noise dis- 
turbance on te output is uncorrelated with the input signal 
(Ljung, 1987). 
However, it is well known that for moderately damped sys- 
tems, and/or in situations of high sampling rates, it may 
take a large value of n, the number of coefficients to be es- 
timated, in order to capture the essential dynamics of the 
system G into its model. If we are able to improve the basis 
functions, we can arrive at  an accurate description of the 
model with only few coefficients to be estimated. This is 
beneficial for both aspects of bias and variance of the model 
estimate. 
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In section 3 we will first present the general class of or- 
thogonal basis functions that we will employ. After the 
formulation of the identification problem in section 4, we 
will introduce and discuss the Hambwtransformation of sig- 
nals and systems that is induced by the new basis. This 
transformation is used in section 6 to present asymptotic 
bias and variance results of the model estimates. A simu- 
lation example in section 7 is added as illustration of the 
identification method. 

2 Notation 
We will use the usual notation with Etpxm the set of real- 
valued ( p  x m)-matrices, l g x " [ O ,  m) the space of matrix 
sequences {Fk E lRPXm}~=0,1,2, ... such that C'p=, tr(FrFk) 
is finite; 'h!gxm the set of real p x m matrix functions that 
are squared integrable on the unit circle, 11 . I I p  the pnorm 
of a vector, and I( . 11H2 the '&-norm of a stable transfer 
function; E is the operator limN,m k E ,  and e; is 
the i-th Euclidian basis vector in IR". 
The transfer function G(z )  has a state space realization 
(A, B, C, D ) ,  if G ( z )  = C(z1- A)-'B+ D. The realization 
is balanced if the controllability and observability Gramians 
are equal and diagonal. A system G E 7-12 is called inner if 
it is stable and it satisfies G(z- l )G(z)  = 1. 

3 Generalized orthonormal basis func- 
t ions 

We will consider the generalized orthogonal basis functions 
that were introduced in [5], based on the preliminary work 
[41. 

Theorem 3.1 Let Gb(z) be a scalar inner function with 
McMillan degree nb > 0 ,  having a minimal balanced real- 
ization (A ,  B, C,  D ) .  Denote 

Vk(z)  := Z ( 2 I -  A)-'BG:(Z) (2) 

Then the sequence of scalar rational functions 
{ eTVk(eiW)},=l, ....nb;k=O,...m forms an orthonormal basis for 
the Hilbert space 7-12. 0 

Note that these basis functions exhibit the property that 
they can incorporate systems dynamics in a very general 
way. One can construct an inner function Gb from any given 
set of poles, combining e.g. both fast and slow dynamics in 
damped and resonant modes. 
A direct result is that for any specifically chosen Vk(z) ,  
any strictly proper transfer function G(z) E 7-12 has a 
unique series expansion G ( z )  = z - ' C E o L k h ( z )  with 

For specific choices of G ~ ( z )  well known classical basis func- 
tions can be generated. The choice Gb(2) = 2-l leads to 
the standard pulse basis K ( z )  = z - ~ .  The first order inner 
function Gb(z) = (1 - a . ) / ( .  - a ) ,  la1 < 1, generates the 
Laguerre basis 

L k  E P"b[O, w). 

whereas a second order inner function 
-cz2 + b(c - 1)" + 1 

Gb(2)  = 2 2  + b(c - 1)" - c with some real-valued b, c 

satisfying I C [ ,  Ib( < 1, induces the Kautz basis [7, 161. 
Dually, when writing h ( z )  = CEO #@)z-' it is straight- 
forward that { eTq5k(l)};=l ,..., nb;k=O ,._., is an orthonormal ba- 
sis for the signal space &[O,m). These e 2  basis functions 
can also be constructed directly from Gb and its balanced 
realization ( A ,  B, C, D ) ,  see [5]. 

4 Identification of expansion coefficients 
Following the standard framework of Ljung [9] we will con- 
sider a data generating system: 

y(t) = Go(q).u(t) + 4 t )  

with Go a scalar stable transfer function, and v a stochastic 
process, uncorrelated with U .  The prediction error that 
results from applying the appropriate model structure is 
given in (1). We will assume that the input signal { ~ ( t ) }  
is a quasi-stationary signal [9] having a rational spectral 
density QU(w), with a stable spectral factor Hu(eiw), i.e. 
QU(w)  = Hu(eiw)Hu(e-iy). 
The unknown parameter 0 is written as: 

0 := [Lo. ' .  Ln4]T f IR"b'". (3) 

We will further denote ~ k ( t )  := Vk(q)u(t - 1) and 

(4) 

and consequently e( t ,e )  = y(t) - $T(t)O. 
Following [9], under weak conditions the least squares pa- 
rameter estimate e N ( n )  := arg mixu & x:;' ~ ( t ,  e)* will 
converge with probability 1 to the asymptotic estimate 

e*(n) = ~ ( n ) - l ~ ( n )  (5) 
with R(n) = E+(t )qT( t )  and F(n) = E+(t)y(t) .  
For the analysis of bias and variance errors of this identifi- 
cation scheme, we will further use the following notation: 

m 

k=O 

leading to the following expression for y(t): 

d t )  = + $T(m t (6) 

For the analyis of the statistical properties of the identified 
model, fruitful use can be made of a signal and system 
transformation, induced by the new set of basis functions. 
This transformation is presented next. 

5 The Hambo transform of signals and 
systems 

The presented generalized orthonormal basis for 3-12/& in- 
duces a transformation of signals and systems to a trans- 
form domain. Next to the intrinsic importance of signal 
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and systems analysis in this transform-domain (for some 
of these results see [4]), we can fruitfully use these trans- 
formations in the analysis of statistical properties of the 
identified models. 

Definition 5.1 (Hambo-transform). Let {4k(t)}k=O, ... m be 
an orthonormal basis for &, being generated b y  an inner 
function Gb with McMillan degree nb as presented in section 
3. Then we define the Hambo-transform as the mapping: 

--$ RI;""", determined b y  

03 

?(A) := c X(k)X-k (7) 
k=O 

with x(k) := E;"=, 4k(t)ZT(t) ,  where x is an arbitrary sig- 
nal in e. 0 

Through the transformation, the &behaviour or graph of 
a dynamical system is transformed to a transform domain. 
This induces a corresponding transformation of the sys- 
tem's transfer function. 

A , =  

Proposit ion 5.2 [14] Let G E 'HZ and let U, y E L2 such 
that y ( t )  = G(q)u(t), and consider the Hambo transform as 
defined in definition 5.1, induced by an inner function Gb 
with balanced realization ( A ,  B, C ,  D). Then 

a. There exists a 6 6 wxnb satisfying g(X) = 6(X)i i (X).  

b. Let G be written as G ( z )  = z p d g k Z - k .  Then G in 
(a) is determined by  

m 

G(X) = x g k N ( X ) k  (8) 
k=O 

with N ( X )  := A + B(XI - D)-'C. 0 

The Hambo-transform of any system G can be obtained 
by a simple variable-transfomation on the original transfer 
function, where the variable transformation concerned is 
given by 2-l = N(X). In the case of a Laguerre basis this 
transformation becomes z = (X+a)/( l+aX) (see also [15]). 
Note that, as G is scalar, N(X) is an nb x nb rational transfer 
function matrix of McMillan degree 1 (since D is scalar). 
Note also the appealing symmetric structure of this result. 
Whereas Gb has a balanced realization ( A ,  B, 6, D ) ,  N(X) 
has a realization (0, C,  B ,  A)  which also can be shown to 
be balanced. One of the typical properties of this transfor- 
mation is formulated next. 

Proposit ion 5.3 [I41 Consider a scalar inner transfer 
function Gb(z) generating an orthonormal basis as dis- 
cussed before. Then eb(X) = X-'Inb, with Znb the nb x nb 
identity matrix. 

The basis generating inner function transforms to a simple 
shift in the Hambo-domain. 
The transformation discussed also generalizes to the situ- 
ation of (quasi-)stationary stochastic processes. Let be 
a scalar valued stochastic process or quasi-stationary sig- 
nal (Ljung, 1987), having a rational spectral density @,(U). 
Let H,(e") be a stable spectral factor of @,(U), then the 

D 0 0 . .  
C B  D 0 . .  

C A B  C B  D . 0 B e =  
. . . .  

CA"#-2B . . . D 

Hambo-transform of the spectral density @,(U) will be de- 
fined as 

A closed form construction of the Hambo transform of any 
stable system G is given in the next Proposition. 

Proposit ion 5.4 Let Gb be an inner function with McMil- 
lan degree nb and balanced realization ( A ,  B ,  C,  D), induc- 
ing a corresponding Hambo transform. Let G E ?& be given 
by: 

&,(U) := kT(e- iw)kv(e iw) .  (9) 

AB B 0 . .  I AaB AB B . 0 1 D e =  

F1 = [h,I,, blInb ... bngInb] 
FZ = [I", alZnb ... an9Inb] 

E R"rxnb("~+l) 
E ~ b " ~ b ( ~ g + l ) .  

Proof: The transform can be written as Go,,(%) = 
Gl(z)G;'(z)  where 

G1(z) = bo x I + b, x N ( z )  + - . .  + bn, x Nn9(2) 

G2(z) = I + a l  x N ( z ) + . . . + a n g  x N " g ( 2 )  

It is straightforward that Gj(z) has realiza- 
tion (Ae ,  Be, FjC,, FjD,). It can be readily veryfied ([4]) 
that G1(z )Gi l ( z )  is a fractional representation of Gort and 
that (A,,,, Bo,,, CO,,, Dmt) is a realization of GWt. Here the 
stability of G and Gb ensures the invertibility of FzD.. 0 

Corollary 5.5 Consider the situation of the previous 
proposition. Then the eigenvalues of Aort, denoted as 
{A;};=] ,..., satisfy X i  = Gb(prl) ,  with { j i ; } , = ~  ,..., n9 the 
poles of G.  

Proof: Analysing Proposition 5.4 for the case n, = 1 (i.e 
G has one pole in z = -a l ,  shows that the resulting trans- 
formed system has a pole in D-alC( l+alA)- 'B ,  which is 
equal to Gb(-a;'). Since Gort can be written as the prod- 
uct of (the transform of) such first order systems, it follows 

0 that all poles can be written in this way. 
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In this section we will review some of the main results of 
the least squares (linear regression) identification method 
as sketched in section 4. For the proofs of the results, the 
reader is referred to [14, 131. 
Some important properties of the asymptotic parameter es- 
timate hinge on the characteristics of the matrix R(n),  that 
occurs in ( 5 ) .  

Proposition 6.1 Consider the matrix R(n) as in ( 5 ) .  

(a) R(n) is block-Toeplitz, being the covariance matriz re- 

Asymptotic bias and variance errors 

Iated to the spectral density function 6,(w). 

(b) For all n, the eigenvalues Xj(R(n)) of R(n) are 
bounded by 

ess inyf @,(U) 5 X,(R(n)) 5 ess sup @,,(U); 
W 

(c) limn+, maxj Xj(R(n)) = ess supw @,,(U). 

These results on R(n) can be employed in the derivation 
of upper bounds for the asymptotic bias errors both in es- 
timated parameters and in the resulting transfer function 
estimate. Combining equations (5) and (6), it follows that 
8' - 80 = R(n)- 'e[$J( t )$~T( t )8~] .  Consequently 

118' - 80112 -5 llR(n)-1112. I I ~ [ $ J ( t ) ~ T ( t ) l l l Z ~  I I ~ c l l z ,  (11) 

where for a (matrix) operator T, llTl12 refers to the in- 
duced operator 2-norm. For simplicity of notation we have 
skipped the dependence of 8' (and 0,) on n. 
The asymptotic bias errors can now be bounded as follows. 

Proposit ion 6.2 Consider the identification set-up as dis- 
cussed in section 4 .  Then 

ess sup, @,,(w) 
'le' - e ~ " z  5 ess inf, e,,(w) 

For all q E IR, IG(eiw,8') - Go(eiwl)( 5 

I IIV,(eiWl)llm{fi  essinf, @&) l l ~ e l l z  + 1 1 ~ e l l l ) r  

. I lee l l z  

ess supw QU(w) 

(12) 
where IIV,(eiwI)I!, is the [,-induced operator norm of 
the matriz V,(ely1) E Cnbxl, i.e. the mazimum abso- 
lute value over the elements in &(eiW'). 

ess supw @,,(U) 
llG(z,e.) - Go(t)lln, 5 (1  + essinfw @&) )I l8el l2,  

In this result an upper bound for l lR(n)- l l [~  is employed 
as provided by Proposition 6.1. In many situations the 
input signal and its statistical properties will be known, 
and llR(n)-1112 can be exactly calculated. In that case we 
can replace (ess inf, @,,(U))-' in the expressions above by 

Note that these asymptotic bias errors are dependent on 
the basis functions chosen. The factor I18elli is determined 
by the convergence rate of the series expansion of Go in the 
generalized basis. 

llR(n)-1112. 

Proposit ion 6.3 ( [ 5 ] )  Let Go(z) have eigenvalues p i ,  i = 
1,. . . , ng, and let G ~ ( z )  have eigenvalues p i ,  j = 1 , .  . . nb. 
Denote 

Then there exists a constant c E IR such that for all > X 
,,"+I 

( I o e J l 2  5 C .  ~ (14) m. 
When the two sets of eigenvalues converge to each other, 
X will tend to 0, the upper bound on 118,112 will decrease 
drastically, and the bias error will reduce accordingly. 

The results of Proposition 6.2 (a), (c), show that we achieve 
consistency of the parameter and transfer function esti- 
mates as n t 00 provided that the input spectrum is 
bounded away from 0 and l18ellz 4 0 for n + 00. The 
latter condition is guaranteed if Go E '7-t~. 
As in the FIR-case, corresponding with G ~ ( z )  = z-l, we 
can arrive at consistent parameter estimates for finite n 
under specific experimental conditions. 

Corollary 6.4 Consider- the identification setup as dis- 
cussed in section 4. If H,, is an inner transfer function, 
then for all n 2 1 it follows that 8' = 80.  

Note that a special case of the situation of an inner H,, is 
obtained if the input signal U is uncorrelated (white noise). 
In that situation H, = 1 and consequently H,, = In,, being 
inner. 
For the asymptotic variance of the estimate the following 
generalization of the (classical) FIR result is obtained. 

Theorem 6.5 Assume the spectral density @*(U) to be 
bounded away from zero and suficiently smooth. Then for 
N,n t 00, n 2 / N  -+ 0: 

$%v( G( eiWt, 8 * N  ) , G(eiY, iN))  + 

for Q ( e i W )  # Gb(eh), 

bT(eiwl)G(e-i*). for w1 = w2. (" @U (U1 ) 
Theorem 6.5 gives a closed form expression for the asymp- 
totic covariance. It implies that the variance of the trans- 
fer function estimate for a specific w1 is given by the noise 
to input signal ratio weighted with an additional weight- 
ing factor that is determined by the basis functions. This 
additional weighting, which is not present in the case of 
FIR estimation, again generalizes the weighting that is also 
present in the case of Laguerre [15] and Kautz functions 
[l6]. Since the frequency function &(eiw) has a low pass 
character, it ensures that the variance will have a roll-off 
at high frequencies. This is unlike the case of FIR estima- 
tion, where the absolute variance generally increases with 
increasing frequency. 
The role of V, in this variance expression clearly shows that 
there is a design variable involved that can be chosen also 
from a point of view of variance reduction. In that case VO 
has to be chosen in such a way that it reduces the effect 
of the noise (@"(U))  in those frequency regions where the 
noise is dominating. 

3385 

Authorized licensed use limited to: Paul Van Den Hof. Downloaded on October 09,2023 at 15:20:25 UTC from IEEE Xplore.  Restrictions apply. 



7 Simulation example 
In order to illustrate the identification method considered 
in this paper, we will show the results of an example where 
an identification is performed on the basis of simulation 
data. 
The simulated system is determined by Go(z) = 

0.25302-1 - 0.9724~-~ + 1.4283~-~ - 0.9493~-~ +0.2410f5 
1 - 4.15~-'+ 6.883k2 - 5.687k3 + 2.3333~-~ - 0.3787~~' 

(15) 
having poles: 0.95 f 0.24 0.85 f 0.09i and 0.55. The static 
gain of the system is 0.9966. 
An output noise is added to the simulated output, coloured 
by a second order noise filter. As input signal is chosen 
a zero mean unit variance white noise signal, leading to a 
signal-to-noise ratio at the output of lOdB, being equivalent 
to around 30% noise disturbance in amplitude. 
Orthogonal basis functions have been chosen generated by 
a fourth order inner function, having poles: 0.9 f 0.3i and 
0.7 f 0.22. We have used a data set of input and output 
signals with length N = 1200, and have estimated 5 coeffi- 
cients of the series expansion. 
In figure 3 the Bode amplitude plot of Go is sketched to- 
gether with the amplitude plots of each of the four compo- 
nents of VO, i.e. the first four basis functions. Note that all 
other basis functions will show the same Bode amplitude 
plot, as they only differ in postmultiplication by an inner 
function, which does not change its amplitude. We have 
used 5 different realizations of 1200 data points to estimate 
5 different models. Their Bode amplitude plots are given 
in figure 1 and the corresponding step responses in figure 
4. 
To illustrate the power of the identification method, we 
have made a comparison with the identification of 5th or- 
der (least squares) output error models. In figures 2 and 
5 the results of the estimated 5th order output error mod- 
els are sketched. Here also five different realizations of the 
input/output data are used. It can be observed that the 
models based on the generalized orthogonal basis functions 
have a good ability to  identify the resonant behaviour of 
the system in the frequency range from 0.15 to 0.5 rad/sec, 
while the output error models clearly have less performance 
here. The variance of both types of identification methods 
seem to be comparable. Note that the OE algorithm re- 
quires a nonlinear optimization whereas the expansion pro- 
cedure is a convex optimization problem. 

Discussion 
We have discussed and illustrated the use of a general 
class of orthonormal basis functions in system identifi- 
cation. These basis functions generalize the well known 
pulse, Laguerre and Kautz basis functions. When cho- 
sen properly, these basis functions can provide a linear 
model parametrization that can provide accurate estimates 
by only identifying a few parameters, and utilizing simple 
linear regression schemes. Expressions for asymptotic bias 
and variance are available. 
The identification method discussed, points to the use of 
iterative procedures, where the basis functions are updated 

iteratively by previously estimated models. Such iterative 
methods already have been applied succesfully in practical 
experiments, see e.g. De Callafon et a1.(1993). 
Apart from the identification of nominal models, the basis 
functions introduced here, have also been applied succes- 
fully in the identification of model uncertainty bounds, see 
De Vries (1994) and Hakvoort (1994). 
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Fig. 1: Bode amplitude plot of simulated system Go (solid) 
and of five estimated finite expansion models with 
n = 5 ,  N = 1200 (dashed). 
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IO.' 10. 1 0' 
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Fig. 2: Bode amplitude plot of Go (solid) and five 5-th or- 
der OE models (dashed). 
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Fig. 3: Bode amplitude plot of simulated system GO 
(solid) and of basis functions Vo (four-dimensional) 
(dashed). 

Fig. 4: Step response of simulated system Go (solid) and of 
five estimated finite expansion models with n = 5, 
N = 1200 (dashed). 

Fig. 5: Step response of Go (solid) and five 5-th order OE 
models (dashed). 
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