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Abstract

The topic of this paper is the design of a high performance compensator
for an imprecisely known plant by means of approximate identification
and model-based control desip. For this purpose identification and
control desip have to be treated as the joint problem of finding a
nominal model whose compensator achieves a high performance for the
plant. This joint problem is tackled by an iterative scheme of repeated
identification and control desip. The scheme combines a frequency-
domain identification technique and a robust control design method
that are conceived in terms of coprime factors. An exanple attests to
the utility of our iterative scheme for high performance control design.

1 Introduction

Recent years have seen a growing interest in the use of system
identification as a means to build models for control design. The
traditional identification methods deliver a model in the form of
a linear time-invariant finite dimensional system. Such a model,
called a nominal model, approximately describes the dynamics
of the plant of concern, so that a robust controller is needed.
Many robust control desip methods demand a quantifica-

tion of the so-called 'model-error'. This has motivated the de-
velopment of identification techniques that estimate an upper
bound on the deviations between a plant and its nominal model
[5, 8, 10, 4]. With this upper bound a controller can ideally be
designed such that some performance is guaranteed for the plant.
However, by itself, a tight estimated upper bound is not suffi-
cient for high performance control design. As the bound cannot
be smaller than the true model-error, it is the true model-error
that limits the achievable performance. Hence a well-suited nom-
inal model is needed.

In this paper we address the identification of a nominal model
for high performance control design. The controller Cp designed
from P has to achieve a high performance for the modeled plant
P and a similar performance for the nominal model P. The for-
mer is the true control objective; the latter is needed in order
that we are confident about the compensator Cp Simultane-
ous high performances are accomplished, if the feedback system
composed of the nominal model P and its own high performance
compensator Cp approximately describes the feedback system
containing the plant P and the same compensator Cp. On the
other hand if there does not exist a compensator that achieves a
high performance for the plant as well as for the nominal model,
then the nominal model is not suited for this control desig prob-
lem.
The quality of each candidate nominal model depends on its

own compensator and vice versa. Hence the problem of designing
a high performance compensator for an imprecisely known plant
boils down to a joint problem of approimate identification and
model-based control design. This jodt problem can be solved by
means of system identification and model-based control design,
only if these procedures are embedded in an iterative scheme [15].
We elaborate an iterative scheme, in which each identification is
based on new data collected while the plant is controlled by the
latest compensator. Each new nominal model is used to design
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an improved compensator, which replaces the old compensator.
This iteration is closely related to adaptive control. However,
in the proposed iteration we can study identification and con-
trol design separately, whereas these procedures are completely
intertwined in adaptive control.
A few iterative schemes proposed in literature have been

based on the prediction error identification method together with
LQG/LTR control design [1], with LQG control design [6] and
with LQ control design [18]. Alternatively, in [9] the identifica-
tion and control design are based on covariance data. In [12] an
iteration is used to build prefilters for a control-relevant predic-
tion error identification from one open-loop dataset.
Our iterative scheme is composed of a robust control desip

method and a frequency domain identification technique that are
conceived in terms of coprime factorinzations. In Section 2 the
control design method is delineated and the control objective
is used to link identification and control design together. The
resulting problem of control-oriented approximate identification
from closed-loop data is tackled in Section 3. For this purpose
we represent the imprecisely known plant by a coprime factoriza-
tion that is based on a dual generalized Youla parameterization.
The identified nominal model is used for an enhancement of the
controller as discussed in Section 4. The proposed iteration is
applied in a simulation study in Section 5, and the final section
contains some concluding remarks.

2 A link between identification and control design

We adopt the following control design paradigm from [2]. The
feedback configuration of interest is the interconnection H(P, C),
which is depicted in Fig. 1. The transfer matrix T(P, C) defined
as

2A). [(I+CP)-'C PAI+CP)-AP,C) = (I+CP)-,C (I+CP)-l (1)

maps col(r2, rl) into col(j, fi). This transfer matrix is called the
nominal feedback ratriz, because it embodies all feedback prop-
erties like disturbance and noise attenuation, sensitivity, stability
and robustness margins. The model-based controler Cp is de-
rived from the nominal model P according to

Cf, = arg mi jAP,C)11m. (2)

The resulting controller is optimaly robust against stable petur-
bations of the normalized right coprime factors of P (see [2, 17]
for details). At the same time this controller Cp pursues some
traditional control objectives like a small sensitivity at the lower
fiequencies and a small complementary sensitivity at the higher
frequences [11].

r2~~~~~r

Fig. 1: Feedback configuration for control design

Conformably to (2) the nominal performance is high, if
IItP,C,p)J)II is small. We examine the performance norm of

2842
Authorized licensed use limited to: Paul Van Den Hof. Downloaded on October 09,2023 at 15:05:59 UTC from IEEE Xplore.  Restrictions apply. 



the actual plant P by the upper bound

171P, Cp)l1oo< lix?, Ct)lIoo + IIT(P, (4) - A,ft, C4p)II. (3)
The left term reflects the performance of the controled plant.
The nominal performance norm IITl(P,Cp)ljao is minimized by
the design of (2); and 1121P, Cp)-T7P, Cp)IIoo is the 'worst-case'
performance degradation due to the fact that Cp has been de-
signed for the nominal model P rather than for the plant P.
With the above inequality we can make more precise the im-

plications of the high performance control design problem. The
model-based compentsator C, has to achieve a high performance
for the nominal model P, and thus I171P, Cp)llo, must be small.
The same compensator Cp has to achieve a similar performance
for the plant P. Therefore we require that the performance degra-
dation 1ITl(P, Cf)-T(P, CP)l(o is much smaller than the nominal
performance norm IJ7JP,Cf()1o1. If the latter is accomplished,
then the nominal feedback matrix 7P, C?) approximately de-
scribes the feedback properties of the controlled plant, i.e. of
H(P, C).
As the control design of (2) pursues a small nominal perfor-

mance norm 111PC,Cp)lloo, the remaining task for the approxi-
mate identification would be to find such a nominal model P that
the performance degradation jIT(P, Cpf)-TP, Cp)Iloo is relatively
small. This approximate identification problem cannot be solved
straightforwardly, because the compensator Cp, is not available
prior to the identification. This explains once more that the
problems of approximate identification and model-based control
design have to be treated as a joint problem.

Remark 2.1 The upper bound of (3) is used to express the identi-
fication objective in terms of the control objective of (2). The same
approach applies to any other control deig method that optimizes a
norm or a distance function of the nominal feedback matrix T(P, Cp).
As explained in [14] these methods include LQ control design and the
H4-optimization of a weighted sensitivity. G

We propose the following iterative scheme to tackle the joint
problem of approximate identification and model-based control
design. In the i-th step we obtain data from the plant, while
it operates under feedback by Ci-1. The nominal model Pi is
identified according to

P =arg min IIT(P,Cs_d-T(P,Ci-I)Ol0 (4)
PEP(U)

where P(G) is the set of parameterized candidate models. The
resulting Pi involves a small performance degradation for Ci-1,
so that this nominal model Pi approximately descibes the plant
Pin view of Ci-1. A new compensator Ci is constructed from Pi
by the optimization of (2), which brings forth a small nominal
performance norm lTAPi, Cj)lloo. The controller Ci is applied to
the plant P, and new data is collected for the identification of
the next nominal model.

In a straightforward application of the identification in (4) and
the control design in (2) we encounter the following problem. As
Ci is designed according to (2), this new compensator rests solely
on the nominal model AP, and the new compensator Ci can be
quite different from the old compensator Ci-.. In that case the
performance degradation l1T11P, C,)-T(Pi, Ci)ll, is rather large,
even though T(Pi,Ci-1) is a good approximation of T(P,Ci-I),
cf. (4). This implies that the resemblance between the feedback
properties of H(PA, C) and H(P, Ci) is quite poor, despite the
fact that Ci is optimally robust in view of the achieved nominal
performance. In order to provide for a small performance degra-
dation, we have to introduce weighting functions in the control
design of (2).

In this note we simply use an adjustable scalar weight a,. The
controler Ci is designed according to

C, = argmin |lT(aiPi C/la)lI,,.C (5)

This causes Ci to optimize robustness for a nominal performance
level associated with ap. The resulting designed feedback system
has its bandwidth close to the cross-over frequency of caP, [11],
and thus a large ai corresponds to a high nominal performance.
We intend to gradually increase the scalar design weight during
the iteration in order to keep the performance degradation small
at each iteration step. Eventually we reach a large design weight
producing a high performance controller for the plant. The se-
lection of appropriate design weights is discussed in Section 4.
The corresponding identification problem that has to be solved

at each iteration step is

A = arg m IT(ai,iP, Cj_j1aj_j)-T(cr_jP, Cj_j/aj_-)jjoo (6)

As there exists no identification technique that can be used to
solve (6), we replace the above He,, (or La>) approximation by
an L2 approximation. The rationale for this replacement is that
the L2 approximation yields a reasonably good nominal model in
an L,, sense, provided that the error-term is sufficiently smooth.
This observation is backed up by the result in [3] on the Loo
consistency of L2 estimators. The L2-identification problem is
discussed in the next section.

3 Control-relevant identification

We consider the feedback configuration of Fig. 2, in which the
plant P is stabilized by the controller Ci-I. The feedback system
is driven by the exogenous inputs r1 and r2 and the additive
output noise v. The noise v is uncorrelated with r1 and r2 and
it is modelled as v= P. wU, where w is a white noise.
The problem of concern is to identify a nominal model Pi from

measurements of u and y such that

Pi =ag min IlT(P, C_1)O-T(P, Ci-1)112.P,EP(O) (7)

This identification problem and the results below are readily ex-
tended to the caseof aij 1, cf. (6). We recall from the previous
sections that we actually use system identification to find an ap
proximate description of the feedback properties of H(P, Ci1).
Therefore we concentrate on the so-called "asymptotic bias dis-
tribution0 due to undermodeling.

w

Fig. 2: Feedback confignration for identification

The set P(O) of candidate nominal models does not contain
the plant, i.e. P S P(O). As a consequence the minimization of
(7) from u and y combines all problems that are encountered in
approximate identification and in closed-loop identification. The
desired Pi cannot be derived by a direct application of some stan-
dard identification method to u and y (see [13] for a discussion).
In order to obviate this problem we first represent the plant P by
a right coprime factorization (definitions are provided in [17]).
The plant P is known to be stabilzed by the latest controller

Ci... As P belongs to the set of all systems that are stabilzed
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by Ci-1, it can be represented by a coprime factorization that is
dual to the (Youla-) parameterization of all stabilizing compen-
sators [17]. We extend this dual parameterization to incorporate
the "noise filter" P,. The proof is given elsewhere in these
proceedings [16]. A similar parameterization has been used by
Hansen [7] for closed-loop experiment design.
Theorem 3.1 (116]) Let an auxiliary model P. be such that
H(Po, C.-1) i ste. Further let P. and CjiI have right coprime
factorizotions (NO, D.) resetivl (N., De). Then the feedback
system of Fig. 2 is stabk if and only if [Pv,w P] has a right
coprime factoriztion

(P,w pP=[ DcS NO+DR ] I[NjS D,-N0R] (8)
whee R and S are stabe transfer functions.
This coprime factor representation of P and Pw has been de-
picted in Fig. 3. The variable z appearing in this figure will be
used for the identification of P. For notational convenience we
define N'eN,+D0R; De-D,- NR, (9)

so that P= N'(D't)-, which is the dual of the Youla parame-
terization.

------------ ---------

w s

Fig. 3: Coprime factor representation of P and P,.

Lemma 3.2 Let the assumptions of Theorem 3.1 hoLd. Then z
of Fig. 3 can be reconstructed from u and y thrugh

x = (D*+Ct_iNO)j1(u+C-jry). (10)

The signal: is uncormeated with w.

Proo: From Fig. 3 and with (9) we ca write v and y a
u=D':-N0Sw; y=N'z+D.Sw. (11)

Further, the equality

DotCj_jN, = DI+C6_1N' (12)
follows from replacing D' and N' with their definitions of (9). Subsi-
tuting theme expressions for u, y and D*+C"1N. into the right had
side of (10) demonstrates the equivalence. Finally, from Fig. 3 we ca
expre u as u=r1+C-Ir2 -Ci- 1y so that uC-l-C4-Iy equals rl+C.-Ir2.
Hence z is uncorrlated with w, because ri and r2 are uncormlated
with w. 0

Next we use r to estimate the frequency response of Tl(P, C_1).
Theorem 3.3 Let the assumptions of Theorem 3.1 hold. Then
an estimate of the frequency mspon ofT(P, Ci-1) can be derived
from u, y and CiI..
Proof: By expressing P as N(D)-1 ad with (12) we can rewrite
the transfer function T(P, Ci-1) to

T(P,GC,)= [D.N (DO+Ci-.N,)1' [ C;.1 I (13)

As (D., + C_-INJ d [Ci-I 1] are known, their frequency respons
can Ibe calculated. The frequency respones of Na,D can be obtained
directly from (11) with: as in Lemma 3.2. 0

With Theorem 3.3 we have access to the frequency response of
T(P,GCi1) and thus P1 can be identified from (7). This miini-
mization problem is all but trivial, because the nominal model
P, appears in T(Pi,C,.1) in a multiple and non-linear fashion.
This optimization problem is attacked by the Newton-Raphson
method in [14]. Due to its highly non-limear character the utility
of this particular optimization hinges on a good initial estmate.
In [14] suchanestimate is obtained by identifing Pi in terms of
its coprime factors.

4 Enhancement of the controller

The controller Ci-1 has been obtained for some aj_ by a min-
imization like in (5). Correspondingly, we use the method of
the previu section to identify Pi as in (6) with l1.l00. replaced
by 11.112. Reveting to the discussion at the end of Section 2 we
have to verify whether the minimal H2-performance degradation
actualy involves a small H,,-performance degradation. None
of these norms can truly be determined, because we have only
a finite number of frequency respone samples over a restricted
range of frequencies. Instead we evaluate both norms only for the
available frequency response data. As the discussion below holds
for both these (semi-)norms, we use the notation Il-fl without a
subscript.

In the light of(3) we require that the performance degradation
ItT(ai-,P,Ci-l/laj.)-T(aoj.P ,Ci_.lfai-.)lI is.(much) smale
than the nominal performance norm 11T(ai_1P1,Ci_i/aiqr)I1.
(Otherwise a better Pi has to be determined, which might imply
that a more complex modelset is needed.) Under this condition
H(P1C,Ci1) provides a good description of H(P,CCi.1) in view
of the weighted performance norms. We may expect that this
holds also if C,_1 is slightly changed. Hence we design an im-
proved controller Ci for Pi in such a way that Ci does not differ
too much from the old controller C_1. Then Ci will achieve an
improved performance for the plant P as well.
The change of the compensator will be moderate if the per-

formance requirements are increased moderately. Hence we may
choose ai a bit larger than ai-I. We outline how, in essence, this
selection of ai is guided by a frequency response estimate of P
(details can be found in [14]). We build this estimate from the
frequency response estimates of N' and DI used in the previous
section. Then we evaluate the ratio ofm um singular values

i{T(aiP, Ci_.1./cai)W))} &{T(aiA, Ci-1/ai)&w)}
i{T(aiP, Ci/ai)(jw)) et{T(aji, Cj/a$(jw)}

and a similar ratio for the upper bound of (3). We choose aq
such that these ratiso are just bonded by 0.7 and 1.3 for every
frequency response sample of P. Thereby C, changes H(P,Cs-1)
similarly to H(Pi,C_4).
As the choice of ai is based on a "prediction' of the fre-

quency response of 7XP,CO), the feedback systems H(Pi, Ci) and
H(P, Ci) areexpected tobe similar in an LO.-sene. We sti have
to ascertain the stabilty of the new control sytem H(P, Ci) be-
fore the enhanced compensator Ci is actualy applied to the plant
P. This ascertainment of stability is necessary anyway, because
the optimization of robustness against stable coprime factor per-
turbations is an unconstrained optimizationl, cf. (2) and (5). In
ascertaining that H(P,Ci) is stable, we use the frequency re-
spone estimates of N' and LI and a robustness margins that
are conceived in terms of coprime factor perturbations. For de-
tails the interested reader is referred to [14, 16].

'With an unconstrained optimisation there i no prior guarantee about
the robutns tha wi be aciee.
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5 Simulation Study

We apply the identification method of Section 3 and the con-

troller enhancement of Section 4 to a simulation example. The
data consist of 100 frequency response samples that are uniformly
distributed over a logarithmic interval ranging from 0.1 to 100
rad/s. We use exact frequency response data in order that the
effects due to undermodelling are not obscured by noise contri-
butions. We merely list the results of this iterative high perfor-
mance control design procedure, which is investigated in much
more detail in [14].
The continuous-time plant P under investigation has a transfer

function n(s)/d(s) with

n(s) = 30sG+3020a5+30538 4+40373s35+74041s2+41972a+ 12467
d(s) = sa+26.023s7+321.7Oa6+2635.9a5 +1412..4

+3091.4s3+11032s2+30.81+986 86.

In order to simulate a real application we pretend that the plant
P is imprecisely known. Accordingly we do not use any knowl-
edge of the plant's number of poles or (unstable) zeros; we just
know that P is open-loop stable. Hence we cannot tell a priori
how complex a compensator must be in order to obtain some

performance. Conversely we do not hkow what performance is
achievable with a compensator of constrained complexity.

-p

102~~~~~~~~~~

101

10:

10-1 10' 10' 10'

Frequecy Irad/sI

Fig. 4: Log-magnitudes of P (-), PI (--), P4 (.) and Ps (-.-)

The iteration commences with an open-loop identification of

P1. Fig. 4 shows the Bode log-magnitude plots of P (-) and PA
(--). The nominal model PA provides an accurate description of
the low frequency behavior of P. The mismatch at the higher fre-

quencies hardly contributes to the identification criterion of (7)
with Co= 0, because this criterion measures an additive error on

a linear scale2. From P we design the compensator C1 as in (5)
with ai =0.113. We apply C1 to P, we obtain new data, and we
subsequently derive several nominal models and compensators.
The iteration ends with the nominal model PS(s) = 9s)/dvs),
where

n(S) = 8.8 10-4s-4.77- 10-S4+34.7S3 +2494a2+1663S+6028
d(s) = ss5+13.3S4+156.3a3%+712.4a2 +131.3a+369.4,

with the compensator Cs(s) =n()/d0(s), where

n,(s) = 71.407s4 + 2182.1s3 + 28718.2 + 23854. + 68457
dc(s) = a4 + 129.16s3 + 4829.0s2 + 3344.1s + 11571,

and with a5 = 20. The evolution of the nominal models and of
the controllers are illustrated respectively in Fig. 4 and Fig. 5.

2We want a small 'additive" performance degradation measured on

a linear scale, cf. (3). Hence a minimization of some relative error is

inappropriate.

10I

I0
Ai

100

10-3

10-I 10' 10l 10l

Frequency (rad/sJ

Fig. 5: Log-magitudes of the designed controllers.

The latter figure displays the gradual increase of control action.
The former figure reveals that during the iteration the accuracy
of the nominal model is improved in the high frequency range at
the expense of a large mismatch for the lower frequencies. De-
spite the large open-loop mismatch between P and P5 (see again
Fig. 4), the nominal model Ps is suited for performance
control design. This is illustrated in Fig. 6, which shows the

Fig. 6: Log-magnitudes of TXP, Cs) and 7XPs,, Cs) (--).

log-magnitudes of T(P, Cs) and of T(Ps, Cs). Considering the
logarithmic scale we may conclude that P and Pt have very sim-
ilar high performances under feedback by C5. Hence the couple
P5,C5 is a solution to the joint problem of approximate identifi-
cation and model-based control design.

2.5

2

1.5

1

0.5

2 3

iteratla

4 5

Fig. 7: Logarithm of the performance norms.

We evaluate the performance norms for all pairs of nominm
models and compensators in regard of as as explained in Sec-
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tion 4. That is, we determine for instance tIT(asP,Ci/as)II as
the maximum singular value over all frequency reponse samples.
These performance norms have been plotted in Fig. 7. The
indices at the horizontal axis indicate the iteration step. The
performance norms corresponding to T(Pi, Cj) and TP, Ci) are
marked respectively by 'o' and '*'. The upper bound of (3),
indicated by (--), and the analogous lower bound (...) disclose
that the approximation of AP, Ct) by T(lPi, Ci) is relatively ac-
curate. This is a direct consequence of the frequency reponse
based controler enhancement of Section 4. The figure also dis-
plays that the "worst-case" performance (--) is improved in each
step of the iteration. Fnally Fig. 8 shows the evolution of the
sensitivity that is achieved for the plant P.

10'

10P,C

PIdtt(Pi

10

10
0-1 10' 101 102

Frequency rad/ ]

Fig. 8: Sensitivities achieved for the plant P.

We complete the evaluation by using the method of (5) and
a5 to design alo the compensator Cp of order 4 directly from
the plant P. In regad of as this Cp is the optimal compen-
sator of order 4 that can be designed for and from the plant
P. In Fig. 5 we see that the frequency responses of Cp and Cs
are indiscernible, which produces indiscernible sensitivities for
P (see Fig. 8). Thus the iteratively designed high performance
compensator Cs is almost identical with the optimal plant-based
compensator Cp, even though no exact knowledge of P nor any
information of Cp has been used to achieve Cs.

Lastly we elucidate the need of an iteration to solve the joint
problem of approximate identification and model-based control
design. The left upper term of T(P, Cs)-( Ps, C5), which equals
PC5(I+PC5)-A1A_P'C5C(I+sC can be rewritten to (I+
PCs)-'(P-Ps)Cs(I+PsCs)-'. Similar expressions can be derived
for the other elements of 1P, Cs) and T(Ps, Cs). Hence Ps,Cs
make a couple that produces a small mismatch

WL(P, Cs) (P-f5A) WR(PA, CS),
where WL and WR are weighting functions depending on P, PA
and Cs. It is tempting to suggest that Ps could have been ob-
tained directly from a weighted open-loop identification. How-
ever, WL(P, Cs) and WR(Ps,, Cs) depend on the outcome of the
iteration, and thus the required weighting functions are not avail-
able at the outset.

6 Concluding remarks
We addressed the problem of designing a high performance com-
pensator for an imprecisely known plant. We tacked this prob-
lem by an iterative scheme of repeated identification and control
design. At each stage of the iteration data is obtained from the
plant while it is controled by the latest compenstor. The task
of the identification is to model the current feedback propertie

of the controlled plant. The resulting nominal model is used to
slightly improve the nominal performance, so that the impre-
cisely known plant's performance is improved as well. As the
iterative desip procedure evolves, it learns about the control-
relevant dynamics of the plant in question. The resulting nomi-
nal model is accurate near the cross-over fiequency and, at least
as important, the large mismatch at other frequencies does not
impair the control design. In addition the iteration reveals the
performance that is attainable for the imprecisely known plant.
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