
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 6, JUNE 2023 3513

Identification of Diffusively Coupled Linear
Networks Through Structured

Polynomial Models
E. M. M. Kivits and Paul M. J. Van den Hof , Fellow, IEEE

Abstract—Physical dynamic networks most commonly
consist of interconnections of physical components that
can be described by diffusive couplings. These diffusive
couplings imply that the cause-effect relationships in the
interconnections are symmetric, and therefore, physical dy-
namic networks can be represented by undirected graphs.
This article shows how prediction error identification meth-
ods developed for linear time-invariant systems in polyno-
mial form can be configured to consistently identify the
parameters and the interconnection structure of diffusively
coupled networks. Furthermore, a multistep least squares
convex optimization algorithm is developed to solve the
nonconvex optimization problem that results from the iden-
tification method.

Index Terms—Data-driven modeling, diffusive couplings,
linear dynamic networks, parameter estimation, physical
networks, system identification.

I. INTRODUCTION

A. Dynamic Networks

Physical networks can describe many physical processes from
different domains, such as mechanical, magnetic, electrical,
hydraulic, acoustic, thermal, and chemical processes. Their dy-
namic behavior is typically described by undirected dynamic
interconnections between nodes, where the interconnections
represent diffusive couplings [1]–[3]. A corresponding repre-
sentation can be considered to consist of L interconnected node
signals wj(t), j = 1, . . . , L, of which the behavior is described
according to a second order vector differential equation

Mj0ẅj(t) + Dj0ẇj(t) +
∑
k∈Nj

Djk[ẇj(t)− ẇk(t)]

+ Kj0wj(t) +
∑
k∈Nj

Kjk[wj(t)− wk(t)] = rj(t) + vj(t)︸ ︷︷ ︸
uj(t)

(1)
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Fig. 1. Network of masses (Mj0), dampers (Djk), and springs (Kjk).

with real-valued coefficients Mj0 ≥ 0, Djk ≥ 0, Kjk ≥ 0,
Djj = 0; Kjj = 0; Nj is the set of indices of node signals
wk(t), k �= j, with connections to node signals wj(t); uj(t)
is the external signals composed of measured excitation signals
rj(t) and unmeasured disturbances vj(t); and ẇj(t) and ẅj(t)
are the first- and second-order derivative of the node signals
wj(t), respectively. The diffusive type of coupling induces the
symmetry constraints Djk = Dkj and Kjk = Kkj ∀j, k.

An obvious physical example of such a network is the mass-
spring-damper system shown in Fig. 1, in which masses Mj0

are interconnected through dampers Djk and springs Kjk with
k �= 0 and are connected to the ground with dampers Dj0 and
springs Kj0. The positions wj(t) of the masses Mj0 are the
signals that are considered to be the node signals.1 The couplings
between the masses are diffusive, because springs and dampers
are symmetric components.

The considered type of networks occur in many other appli-
cations, such as RLC circuits, power grids, and climate control
systems.

B. Network Identification

In this article, we address the problem of identifying the
physical components in the network on the basis of measured
node signals w(t) and possibly external excitation signals r(t).
We develop a general framework for identifying such networks.
Currently available methods for solving this problem can be
classified in different categories. Black-box prediction error
identification methods [4] can be used to model the transfer

1Note that a system as the one shown in Fig. 1 would require at least a two-
dimensional position vector wj(t), but for notational convenience and without
loss of generality, we will restrict our attention to scalar-valued node signals
wj(t).
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functions from measured rj(t) signals to node signals wj(t),
leading to a nontrivial second step in which the estimated
models need to be converted to the structure representation
of the physical network for arriving at estimated component
values. Moreover, this modeling procedure and the required
conversion would become essentially dependent on the par-
ticular location of the external signals rj(t). In a second cat-
egory, black-box state-space models can be estimated from
which the model parameters can be derived by applying matrix
transformations [5]–[7] or eigenvalue decompositions [8], [9].
However, these methods typically do not have any guarantees on
the statistical accuracy of the estimates and lack a consistency
analysis. In another approach, state-space models with tailor-
made physical parametrizations can be employed in a predic-
tion error/maximum likelihood setting, typically leading to the
situation that the network parameters appear nonlinearly in the
state-space model, resulting in highly nonconvex optimization
problems to solve [10].

In this article, we follow an approach that starts from
the network representation of the model, while we maintain
and exploit the network structure during the identification
procedure.

Dynamic networks are currently topic of research in different
areas, while exploiting different network representations. Of-
ten, state-space models are used, possibly involving diffusive
couplings, e.g., in model reduction [11], estimating network
connectivity [12], multiagent consensus-type algorithms [13],
and subspace identification [14]. A different model setting
is used by [15], where transfer functions are being used to
represent the dynamic interactions between node signals, ex-
ploited further in [16] and [17] for topology identification and
in [18] for prediction error identification of the network dy-
namics (modules). In the realistic situation that not all states
of a network can be measured, the transfer function approach
appears attractive for identifying the network, but at the same
time it is less fit for representing the physical diffusive type
of couplings that would need to be included. As a result,
an identification framework that can effectively exploit the
physical structure of diffusive couplings, while identifying
the dynamics on the basis of selected measurements, is still
missing.

C. Research Objective and Contribution

The overall objective of this research is to develop a compre-
hensive theory for the identification of the physical component
in diffusively coupled linear networks, where the order of the
dynamics is not restricted and possibly correlated disturbances
can be present. The objective includes questions like which
nodes to measure (sense) and which nodes to excite (actuate)
in order to identify particular local dynamics in the network
or to identify the full dynamics and topology of the network.
In addition, consistency and minimum variance properties of
estimates have to be specified. In this article, we focus on
the problem of identifying the full dynamics and topology of
diffusively coupled linear networks.

We will develop a prediction error framework for identify-
ing the components in a diffusively coupled network of lin-
ear time-invariant systems, by fully adhering to the structure
of the underlying constitutive model equations. We develop a
polynomial representation of diffusively coupled networks that
is special due to its nonmonicity and its symmetric structure.
For this representation, the standard (prediction error) iden-
tification algorithms cannot be applied directly. A dedicated
prediction error identification method is developed that exploits
the structured polynomial representation of the network and
allows for handling dynamics of any finite-order representing the
interconnections and, therefore, also allows for identifying the
topology of the network. New conditions for identifiability and
consistent estimation of the network components are derived.
While the developed prediction error method in general relies
on nonconvex optimization, which is poorly scalable to large
dimensions, an alternative multistep algorithm is presented, fol-
lowing the recent developments in so-called weighted null-space
fitting (WNSF) algorithm [19]. This algorithm is adapted to
accommodate the particular structured models that are con-
sidered, by involving constrained optimizations rather than
unconstrained ones.

This article builds further on the preliminary work presented
in [20], in which the first results on the polynomial representa-
tion are presented in the scope of particular linear regression
schemes. These results are extended to the general situation
of rational noise models, including detailed identifiability and
consistency results as well as the implementation into an adapted
WNSF algorithm.

After specifying the notation of our networks in continuous-
and discrete-time in Section II, the set-up for identification of the
full network dynamics is described in Section III. In order to be
able to consistently identify the network dynamics, data informa-
tivity and network identifiability conditions need to be satisfied.
These conditions are formulated in Section IV as well as the
results for consistent identification of the networks. Section V
contains the multistep algorithm for consistently identifying
the network dynamics and Section VI consists of a simulation
example that illustrates and supports these results. Section VII
contains some extensions. Finally, Section VIII concludes this
article.

We consider the following notation throughout this arti-
cle. A polynomial matrix A(z−1) in complex indeterminate
z−1, consists of matrices A� and (j, k)th polynomial elements
ajk(z

−1) such that A(z−1) =
∑na

�=0 A�z
−� and ajk(z

−1) =∑na

�=0 ajk,�z
−�. Hence, the (j, k)th element of the matrix A�

is denoted by ajk,�. Physical components are indicated in sans
serif font: A or a. A p×m rational function matrix F (z)
is proper if limz→∞ F (z) = c ∈ Rp×m; it is strictly proper if
c = 0, and monic if p = m and c is the identity matrix. F (z)
is stable if all its poles are within the unit circle |z| < 1. As
a signal framework we adopt the prediction error framework
of [4], where quasi-stationary signals are defined as summations
of a stationary stochastic process and a bounded deterministic
signal, and Ē := limN→∞

1
N

∑N
t=1 E, with E the expectation

operator.
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Fig. 2. Physical network as defined in Definition 1, with nodes wj ,
inputs uj , and dynamics between the nodes (yjk) and to the ground
node (xjj ).

II. PHYSICAL NETWORK

A. Higher Order Network

A physical network as described in the previous section is
typically of second order, where all node signals are collected in
w(t). Network models that explain only a selection of the node
signals can be constructed by removing nodes from the network
through a Gaussian elimination procedure that is referred to as
Kron reduction [2], [3] or immersion [21], which will generally
lead to higher order dynamics between the remaining node
signals. In order to accommodate this, we will include higher
order terms in our model.

Definition 1 (Physical network): A physical network is a
network consisting of L node signals w1(t), . . . , wL(t) inter-
connected through diffusive couplings and with at least one
connection of a node to the ground node. The behavior of the
node signals wj(t), j = 1, . . . , L, is described by

nx∑
�=0

xjj,�w
(�)
j (t) +

∑
k∈Nj

ny∑
�=0

yjk,�
[
w

(�)
j (t)− w

(�)
k (t)

]
= uj(t)

(2)
with nx and ny the order of the dynamics in the network,
with real-valued coefficients xjj,� ≥ 0, yjk,� ≥ 0, yjk,� = ykj,�,
wherew(�)

j (t) is the �th derivative ofwj(t) and whereuj(t) is the
external signal entering the jth node. The network is assumed
to be connected, which means that there is a path between every
pair of nodes.2 �

The graphical interpretation of the coefficients is as follows:
xjj,n represent the buffer, i.e. the components intrinsically re-
lated to the nodeswj ; xjj,� with � �= n represent the components
connecting the node wj to the ground node; and yjk,� represent
the components in the diffusive couplings between the nodes
wj and wk. The ground node is characterized by wground(t) = 0
and, therefore, can be seen as a node with an infinite buffer, see
also [2].

A graphical representation of a physical network is shown in
Fig. 2. The network dynamics is represented by the blue boxes
containing the polynomials xjj =

∑nx

�=0 xjj,�p� and yjk =∑ny

�=0 yjk,�p�, with p the differential operator d/dt, and the
node signals are represented by the blue circles, which sum

2The network is connected if its Laplacian matrix (i.e., the degree matrix
minus the adjacency matrix) has a positive second smallest eigenvalue [2].

the diffusive couplings and the external signals. For example,
w5(t) = x55(w5(t)− 0) + y45(w5(t)− w4(t)) + u5(t).

Furthermore, every matrixX� composed of elements xjj,� :=
xjj,� is diagonal and every matrix Y� composed of ele-
ments yjj,� :=

∑
k∈Nj

yjk,� and yjk,� := −yjk,� for k �= j is

Laplacian3 representing an undirected graph of a specific phys-
ical component, i.e., the diffusive couplings of a specific order.

B. Discretization

In order to fully exploit the results of network identification
that typically have been developed for discrete-time systems,
the continuous-time network is converted into an equivalent
discrete-time form. Out of the group of discretization methods
that commute with series, parallel, and feedback connections of
systems [23], we select the backward difference method. This
method is relatively simple, results in a causal network repre-
sentation, and describes a unique bijective mapping between the
continuous-time and the discrete-time model, by substituting

dw(t)

dt

∣∣∣∣
t=td

=
w(td)− w(td−1)

Ts
(3)

with discrete-time sequence td = dTs, d = 0, 1, . . . and time
interval Ts. Using (3), the continuous-time diffusively coupled
network (2) can be approximated in discrete time by

nx∑
�=0

x̄jj,�q−�wj(td) +
∑
k∈Nj

ny∑
�=0

ȳjk,�q
−� [wj(td)− wk(td)]

= uj(td) (4)

with q−1 the shift operator meaning q−1wj(td) = wj(td−1) and
with

x̄jj,� = (−1)�
nx∑
i=�

(
i
�

)
T−i
s xjj,i (5)

ȳjk,� = (−1)�
ny∑
i=�

(
i
�

)
T−i
s yjk,i (6)

where
(
i
�

)
is a binomial coefficient. In the sequel, (t− i) is used

for td−i = td − iTs. The expressions for the node signals (4)
can be combined in a matrix equation describing the network as

X̄(q−1)w(t) + Ȳ (q−1)w(t) = u(t) (7)

with X̄(q−1) and Ȳ (q−1) polynomial matrices in the shift oper-
ator q−1 and composed of elements

X̄jk(q
−1) =

{∑nx

�=0 x̄jj,�q−�, if k = j

0, otherwise
(8)

Ȳjk(q
−1) =

⎧⎪⎨
⎪⎩
∑

m∈Nj

∑ny

�=0 ȳjm,�q
−�, if k = j

−
∑ny

�=0 ȳjk,�q
−�, if k ∈ Nj

0, otherwise

. (9)

3A Laplacian matrix is a symmetric matrix with nonpositive off-diagonal
elements and with nonnegative diagonal elements that are equal to the negative
sum of all other elements in the same row (or column) [22].
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Observe that X̄(q−1) is diagonal and Ȳ (q−1) is Laplacian, im-
plying that the structural properties of (2) are maintained in (7)–
(9). In the sequel, we will use the notation A(q−1) = X̄(q−1) +
Ȳ (q−1) while X̄(q−1) and Ȳ (q−1) can always be uniquely
recovered from A(q−1), because of their particular structure.

III. IDENTIFICATION SET-UP

As mentioned before, the objective of this article is to iden-
tify the full dynamics and the topology of diffusively coupled
networks. In this section, the identification setting is described,
which includes the network model, the network predictor, the
model set, and the identification criterion.

The node signals in the network might be affected by a user-
applied excitation signal and subject to a disturbance signal.
This needs to be included in the network description, which is
achieved by splitting the external signal as

u(t) := B(q−1)r(t) + F (q)e(t) (10)

where the known excitation signals r(t) enter the network
through dynamics described by polynomial matrix B(q−1) and
where the unknown disturbance signals acting on the network
are modeled as a filtered white noise, i.e., F (q) is a rational
matrix and e(t) is a vector-valued wide-sense stationary white
noise process, i.e., E[e(t)eT (t− τ)] = 0 for τ �= 0.

Definition 2 (Network model): The network that will be con-
sidered during identification is assumed to be connected, with
at least one connection to the ground node; it consists of L node
signals w(t) and K excitation signals r(t); and is defined as

A(q−1)w(t) = B(q−1)r(t) + F (q)e(t) (11)

with
1) A(q−1) =

∑na

k=0 Akq
−k ∈ RL×L[q−1], with ajk(q

−1)=
akj(q

−1), ∀k, j and A−1(q−1) stable.
2) B(q−1) ∈ RL×K [q−1].
3) F (q) ∈ H := {F ∈ RL×L(q) | F monic, stable, and

stably invertible}.
4) Λ � 0 the covariance matrix of the noise e(t).
5) r(t) is a deterministic and bounded sequence.
6) e(t) is a zero-mean white noise process with bounded

moments of an order larger than 4 (see[4]). �
Lemma 1: In (11), it holds that rank(A0) = L.
Proof: A0 = X̄0 + Ȳ0, with diagonal X̄0 =

∑na

i=1 T
−i
s Xi

and Laplacian Ȳ0 =
∑na

i=1 T
−i
s Yi, following from (5) withnx =

na and (6) with ny = na, respectively. Since Ȳ0 is Laplacian,
the sum of each row is equal to 0, that is Ȳ01 = 0, with

1 =
[
1 1 . . . 1

]	
∈ RL [22]. Because the network is con-

nected, Ȳ0 has one-dimensional kernel ker(Ȳ0) = span(1) [2].
Since the network has at least one connection to the ground
node, ∃j, � such that xjj,� > 0, implying that x̄jj,0 > 0, and
thus, X̄0 � 0. The vectors that span the kernel of X̄0 will have
at least one zero element, implying that ker(Ȳ0) �⊂ ker(X̄0).
Because both Ȳ0 � 0 and X̄0 � 0, ker(A0) = ker(Ȳ0 + X̄0) =
ker(Ȳ0) ∩ ker(X̄0) = ∅ and hence, rank(A0) = L. �

Rank(A0) = L also implies that A−1(q−1) exists and is
proper, which means that the network is well-posed. The network
is also stable as A−1(q−1) is stable.

Often, B(q−1) is chosen to be binary, diagonal and known,
which represents the assumption that each external excitation
signal directly enters the network at a distinct node.

As a result, the considered networks lead to polynomial
models4 with the particular properties that A(q−1) is symmetric
and nonmonic. Moreover, ifF (q) is polynomial or even stronger
if F (q) = I , the network (11) leads to an ARMAX-like or
ARX-like5 model structure, respectively.

Now the network representation and its properties have been
defined, the next step is to formulate the identification setting.

A. Network Predictor

The objective is to identify the dynamics of the complete
network. This estimation is performed using a prediction er-
ror method, which is the most common system identification
method and it is applicable to networks [18]. In order to identify
the network dynamics, all node signals w(t) are predicted based
on the measured signals that are available in the network. This
leads to the following predictor.

Definition 3 (Network predictor): In line with [25], the net-
work predictor is defined as the conditional expectation

ŵ(t|t− 1) = E
{
w(t)|wt−1, rt

}
(12)

where wt−1 represents the past of w(t), that is w(t− 1),
w(t− 2), . . . and rt represents r(t), r(t− 1), . . . �

Proposition 1 (Network predictor): For a network model (11),
the one-step-ahead network predictor (12) is given by (omitting
arguments q)

ŵ(t|t− 1) :=
[
I −A−1

0 F−1A
]
w(t) +A−1

0 F−1Br(t). (13)

Proof: The network (11) can be described by

Aw(t) = Br(t) + Fe(t) = Br(t) + FA0A
−1
0 e(t).

Premultiplying with A−1
0 F−1 gives

A−1
0 F−1Aw(t) = A−1

0 F−1Br(t) +A−1
0 e(t).

Adding w(t) to both sides of the equality and rewriting gives

w(t) =
[
I−A−1

0 F−1A
]
w(t)+A−1

0 F−1Br(t)+A−1
0 e(t)

(14)
where the factor A−1

0 makes the filter [I −A−1
0 F−1A] strictly

proper and where A−1
0 F−1B is proper. The one-step-ahead

network predictor (13) follows directly by applying its definition
(12) to (14). �

Proposition 2 (Innovation): The innovation corresponding to
the network predictor (13) is

ē(t) := w(t)− ŵ(t|t− 1) = A−1
0 e(t) (15)

which has covariance matrix Λ̄ = A−1
0 ΛA−1

0 .
Proof: This follows directly from subsequently substituting

ŵ(t|t− 1) (13) and w(t) (11) into (15). �

4Polynomial models are linear time-invariant dynamic models of the
formA(q−1)y(t) = E−1(q−1)B(q−1)u(t) +D−1(q−1)C(q−1)e(t), where
A(q−1), B(q−1), C(q−1), D(q−1), and E(q−1) are polynomials in q−1 that
are all monic except for B(q−1) [4], [24].

5The structure is formally only an ARMAX (autoregressive-moving average
with exogenous variables) or ARX (autoregressive with exogenous variables)
structure if the A(q−1) polynomial is monic [24].
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The innovation is a scaled version of the driving noise process.
As A0 is not necessarily diagonal, the scaling possibly causes
correlations among the noise channels, but the innovation signal
ē(t) remains a white noise process.

B. Model Set and Prediction Error

The network models that will be considered during identifi-
cation are gathered in the network model set.

Definition 4 (Network model set): The model set is defined
as a set of parametrized functions as

M := {M(θ), θ ∈ Θ ⊂ Rd} (16)

with d ∈ N, with all particular models

M(θ) :=
(
A(q−1, θ), B(q−1, θ), F (q, θ),Λ(θ)

)
(17)

satisfying the properties in Definition 2. �
In this setting, θ contains all the unknown coefficients that

appear in the entries of the model matrices A,B, F , and Λ.
The experimental data that are available for identification are

generated by the true system.
Definition 5 (Data generating system): The data generating

system S is denoted by the model

M0 := (A0, B0, F 0,Λ0). (18)

�
The true system is in the model set (S ∈ M) if ∃θ0 ∈ Θ such

that M(θ0) = M0, where θ0 indicate the true parameters.
Using the parametrized network model set, the parametrized

one-step-ahead network predictor is defined.
Definition 6 (Parametrized predictor): The parametrized net-

work predictor is defined in accordance with (13) as

ŵ(t|t− 1; θ) = W (q, θ)z(t) (19)

with data z(t) :=

[
w(t)

r(t)

]
, and predictor filter

W (q, θ) :=
[
I −Ww(q, θ) Wr(q, θ)

]
(20)

where

Ww(q, θ) = A−1
0 (θ)F−1(q, θ)A(q−1, θ) (21)

Wr(q, θ) = A−1
0 (θ)F−1(q, θ)B(q−1, θ). (22)

�
The parametrized predictor leads to the prediction error.
Proposition 3 (Prediction error): The prediction error corre-

sponding to the parametrized predictor (19) is defined as

ε̄(t, θ) := w(t)− ŵ(t|t− 1; θ) (23)

which is obtained as (omitting argument q)

ε̄(t, θ) = A−1
0 (θ)F−1(θ) [A(θ)w(t)−B(θ)r(t)] (24)

= Ww(q, θ)w(t)−Wr(q, θ)r(t) (25)

which equals the innovation ē(t) (15) for θ = θ0.
Proof: The expression for the parametrized prediction error

(24) directly follows from its definition (23) and the network

predictor (19). Expressing the parametrized prediction error (24)
in terms of r(t) and e(t) yields

ε̄(t, θ) = Wε̄r(q, θ)r(t) +Wε̄e(q, θ)e(t) + (A0
0)

−1e(t) (26)

with (omitting argument q)

Wε̄r(q, θ) = A−1
0 (θ)F−1(θ)

[
A(θ)(A0)−1B0 −B(θ)

]
Wε̄e(q, θ) = A−1

0 (θ)F−1(θ)A(θ)(A0)−1F 0 − (A0
0)

−1.

The latter two terms in (26) are uncorrelated since e(t) is white
noise and Wε̄e(q, θ) is strictly proper. If the true system is in the
model set, the prediction error for the true system is equal to the
innovation (15)

ε̄(t, θ0) = (A0
0)

−1e(t) = ē(t). (27)

�

C. Identification Criterion

In order to estimate the parameters, a weighted least squares
identification criterion is applied

θ̂N = argmin
θ

VN (θ) (28)

VN (θ) :=
1

N

N∑
t=1

ε̄	(t, θ)Sε̄(t, θ) (29)

Λ̄(θ̂N ) :=
1

N

N∑
t=1

ε̄(t, θ̂N )ε̄	(t, θ̂N ) (30)

with weight S � 0 that has to be chosen by the user. It is a
standard result in prediction error identification (see [4, Th.
8.2]) that under uniform stability conditions on the parametrized
model set, (28) converges with probability 1 to

θ∗ := argmin
θ

V̄ (θ) (31)

with V̄ (θ) := Ē
{
ε̄	(t, θ)Sε̄(t, θ)

}
. (32)

IV. CONSISTENT IDENTIFICATION

In order to consistently identify the network, the experimental
data need to satisfy certain conditions. These conditions are
referred to as data informativity conditions. In addition, the
network itself needs to satisfy certain conditions, such that
it can be uniquely recovered. These conditions are referred
to as network identifiability conditions. This section describes
these conditions, after which the results for consistent network
identification can be formulated.

The network (11) can be represented as

w(t) = Twr(q)r(t) + v̄(t), v̄(t) = Twē(q)ē(t) (33)

where ē(t) is the innovation (15) and

Twr(q) = A−1(q−1)B(q−1) (34)

Twē(q) = A−1(q−1)F (q)A0. (35)

For estimating a network model, prediction error identification
methods typically use the second-order statistical properties
of the measured data, which are represented by the spectral
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densities of w(t) and r(t). As r(t) is measured, but ē(t) is not,
the second-order properties of w(t) are generated by transfer
function Twr(q) and spectral density

Φv̄(ω) : = F{E[v̄(t)v̄	(t− τ)]} (36)

= Twē(e
iω)Λ̄T ∗

wē(e
iω) (37)

withF is the discrete-time Fourier transform and (·)∗ is the com-
plex conjugate transpose. Observe that the spectral factorization
in (37) is unique, as Twē(q) ∈ H and Λ̄ � 0 [26].

A. Data Informativity

The data are called informative if they contain sufficient
information to uniquely recover the predictor filterW (q, θ) from
second-order statistical properties of the data z(t). This can be
formalized in line with [4] as follows.

Definition 7 (Data informativity): A quasi-stationary data
sequence {z(t)} is called informative with respect to the model
set M (16) if for any two θ1, θ2 ∈ Θ

Ē
{
‖[W (q, θ1)−W (q, θ2)]z(t)‖2

}
= 0

⇒ {W (eiω, θ1) = W (eiω, θ2)} (38)

for almost all ω. �
Applying this definition to physical networks, leads to the

following conditions for data informativity.
Proposition 4 (Data informativity): The quasi-stationary data

sequence z(t) is informative with respect to the model set M
if Φz(ω) � 0 for a sufficiently high number of frequencies.6

In the situation K ≥ 1, this is guaranteed by Φr(ω) � 0 for a
sufficiently high number of frequencies.

Proof: The premise of implication (38) is satisfied if and only
ifΔW (q, θ) := W (q, θ1)−W (q, θ2) = 0. Applying Parseval’s
theorem gives

1

2π

∫ π

−π

ΔW (eiω, θ)Φz(ω)Δ
	
W (e−iω, θ)dω = 0.

This implies ΔW (q, θ) = 0 only if Φz(ω) � 0 for a sufficiently
high number of frequencies. In the situation K ≥ 1, w(t) de-
pends on r(t) and substituting the open-loop response (11) for
w(t) gives

z(t) = J(q)κ(t)

with

J(q) =

[
A−1F A−1B

0 I

]
, κ(t) =

[
e(t)

r(t)

]
.

As J(q) has always full rank, Φz(ω) � 0 if and only if
Φκ(ω) � 0. As e(t) and r(t) are assumed to be uncorrelated
and E{e(t)} = 0, we have that Φre = Φer = 0 and

Φκ =

[
Φr Φre

Φer Φe

]
=

[
Φr 0

0 Λ

]
.

6The number of frequencies for which Φz(ω) � 0 is required, is dependent
on the number of parameters in M.

Then, Φκ(ω) � 0 if and only if Λ � 0 (which is assumed) and
Φr(ω) � 0. The condition Φz(ω) � 0 reduces to Φr(ω) � 0.�

The condition that Φr(ω) � 0 for a sufficiently high number
of frequencies seems to be a general condition. However, observe
that the dimensions ofΦr(ω) depend on the number of excitation
signals r(t), denoted by K, which is specified in the model
set. Thus all excitation signals r(t) that are present (according
to the model set), need to be persistently exciting. This is
because each additional excitation signal rj(t) also introduces
new polynomials bkj(q−1) that need to be identified.

Informativity of z(t) implies that W (q) can uniquely be
recovered from data, which by (21) and (22) and (33)–(35)
implies that the pair (Twr(q),Φv̄(ω)) can uniquely be recovered
from data.

B. Network Identifiability

The concept of network identifiability has been defined for
general linear dynamic networks in [27] as follows.

Definition 8 (Network identifiability): The network model
set M (16) is globally network identifiable from z(t) if the
parametrized model M(θ) can uniquely be recovered from
Twr(q, θ) andΦv̄(ω, θ), that is if for all modelsM(θ1),M(θ2) ∈
M

Twr(q, θ1) = Twr(q, θ2)
Φv̄(ω, θ1) = Φv̄(ω, θ2)

}
⇒ M(θ1) = M(θ2). (39)

�
Whereas the original definition has been applied to network

models with all transfer function elements, here we apply it
to our choice of models (17), where through the particular
parametrization of the polynomialsA(q, θ) andB(q, θ), equality
of models implies equality of the physical parameters in these
polynomial matrices. Before formulating the conditions for
identifiability of our particular networks, a result on left matrix
fraction descriptions (LMFDs) is presented.

Lemma 2 (LMFD): Consider a network as defined in Defi-
nition 2. The LMFD A(q−1)−1B(q−1) is unique up to a scalar
factor if the following conditions are satisfied.

1) The polynomials A(q−1) and B(q−1) are left coprime.
2) At least one of the matrices in the set {Ak, k =

0, . . . , na;B�, � = 0, . . . nb} is diagonal and full rank.
Proof: According to [28], the LMFD of any two polynomial

and left coprime matrices is unique up to a premultiplication
with a unimodular matrix. To preserve diagonality of Ak or B�,
the unimodular matrix is restricted to be diagonal. To preserve
symmetry of A(q−1), this diagonal matrix is further restricted
to have equal elements. �

In general polynomial models, like ARMAX [29], A(q−1)
is monic, and therefore, A0 = I is diagonal. Then, the LMFD
A(q−1)−1B(q−1) is unique, as the conditions of Lemma 2 are
satisfied and scaling with a scalar factor is not possible anymore,
since the diagonal elements of A0 are equal to 1. Hence, both
Condition 2 in Lemma 2 and the scaling factor freedom are a
result of the fact that A(q−1) is not necessarily monic.

Now the conditions for global network identifiability can be
formulated.
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Proposition 5 (Network identifiability): A network model
set M (16) is globally network identifiable from z(t) if the
following conditions are satisfied.

1) The polynomials A(q−1) and B(q−1) are left coprime.
2) At least one of the matrices in the set {Ak, k =

0, . . . , na;B�, � = 0, . . . , nb} is diagonal and full rank.
3) At least one excitation signal rj(t) is present: K ≥ 1.
4) There is at least one constraint on the parameters of

A(q−1, θa) and B(q−1, θa) of the form Γ̃θ̃ = γ �= 0, with

θ̃ :=
[
θ	a θ	b

]	
.

Proof: Condition 3 implies that Twr(q, θ) is nonzero. Ac-
cording to Lemma 2, Condition 1 and 2 imply that A(q−1, θ)
and B(q−1, θ) are found up to a scalar factor α. Twē(q, θ) and
Λ̄(θ) are uniquely recovered from Φv̄(ω, θ) as Twē(q) ∈ H and
Λ̄ � 0 [26]. Together with the fact that A(q−1, θ) is found up
to a scalar factor α, Twē(q, θ) gives a unique F (q, θ), and Λ̄(θ)
gives Λ(θ) up to a scalar factor α2. Finally, Condition 4 implies
that the parameters cannot be scaled anymore, and therefore, α
is fixed. �

The coprimeness of A(q−1) and B(q−1) ensures that A(q−1)
and B(q−1) have no common factors. This condition is also
necessary for global identifiability of typical polynomial model
structures (see [4, Th. 4.1]). The parameter α is a scaling factor
that is introduced by the nonmonicity of A(q−1). The scaling
factor needs to be fixed by additional constraints induced by
Conditions 2 and 4 in Proposition 5. The parameter constraint
in Condition 4 of Proposition 5 can, for example, be defined as
follows.

1) One nonzero element in B(q−1, θ) is known, i.e., one
excitation signal enters a node through known dynamics.

2) One nonzero parameter is known.
3) The fraction of two nonzero parameters is known.
4) The sum of some nonzero parameters is known.

Remark 1: In general dynamic networks conditions for global
network identifiability typically include algebraic conditions
verifying the rank of particular transfer functions from external
signals to internal node signals [27]. For the generic version of
network identifiability, this entails a related graph-based check
on vertex disjoint paths in the network model [30], [31]. In
contrast to these conditions, the current conditions in Proposition
5 are very simple and require only a single excitation signal r(t)
to be present in the network. This is induced by the structural
properties of the diffusive couplings between the nodes, reflected
by the fact that the polynomial matrix A(q−1) is restricted to be
symmetric. �

C. Consistency

Now, we can formulate the consistency result as follows.
Theorem 1 (Consistency): Consider a data generating system

S as defined in Definition 5 and a model set M in which
the predictor filter (20) is uniformly stable. Then, M(θ̂N ) is
a consistent estimate of M0 if the following conditions hold.

1) The true system is in the model set (S ∈ M).
2) The data are informative with respect to the model set.
3) The model set is globally network identifiable.

Proof: The proof consists of the following three steps. First,
convergence of VN (θ) to V̄ (θ) for N → ∞ follows directly
from applying [4, Th. 2B.1] and the fact that S � 0 as the
conditions for convergence are satisfied by the network model
set. Second, by Condition 1, θ0 is a minimum of V̄ (θ), which
can be seen as follows. As r(t) and e(t) are uncorrelated and
Wε̄e(q, θ) is strictly proper, the power of any cross term between
the three terms in the prediction error (26) is zero, so the
power of each term can be minimized individually. As a result,
Wε̄r(q, θ

0) = 0 and Wε̄e(q, θ
0) = 0, and thus, the cost function

reaches its minimum value when the prediction error is equal to
the innovation as in (27). Third, following the result of [4, Th.
8.3], under Condition 2, this minimum of V̄ (θ) at θ0 provides
a unique predictor filter W (q, θ) and, therefore, also a unique
pair (Twr(q),Φv̄(ω)). With Condition 3, this implies that the
resulting model M(θ) = M(θ0) is unique. Therefore, M(θ̂N )
converges to M(θ0) with probability 1. �

Observe that any weight S � 0 leads to consistent estimates,
but that minimum variance is only achieved for S = Λ̄−1.

Now it has been proved that diffusively coupled networks can
be identified consistently, the next step is to formulate algorithms
for obtaining these estimates.

V. MULTISTEP ALGORITHM

The parametrized prediction error (24) is not affine in the pa-
rameters θ. Only in the very special situation where F (q, θ) = I
and A0(θ) = I , the structure of (24) is affine. This situation
causes the optimization problem (28) to be nonconvex. Es-
pecially for networks with many nodes, this results in high
computational complexity and occurrences of local optima. One
approach to reduce the problem is to solve multiple multi-input
single-output (MISO) problems instead of one large multi-input
multi-output (MIMO) problem [18], [21], [32]. However, since
the dynamics are coupled (that is, A(q−1) is symmetric, and
therefore, its elements are not independently parametrized), a
decomposition into MISO problems cannot be made without
loss of accuracy.

In this section, as an alternative, a multistep algorithm is
developed, where in each step a quadratic problem is solved
using a linear regression scheme. With that, the developed
method contains steps that are similar to sequential least squares
(SLS) [33], WNSF [19], and the multistep least squares method
in [34], but particularly tuned to the network model structure of
this article.

In Step 1, an unstructured nonparametric ARX model is
estimated from data. This ARX model is reduced to a struc-
tured parametric ARMAX network model in Step 2, which is
improved in Step 3. Once the network dynamics have been esti-
mated, the noise model is found in Step 4 and the discrete-time
components are extracted in Step 5. Finally, the components
are mapped back to the continuous-time domain in Step 6. The
particular difference of our method with the aforementioned
methods is that the structure in the parametrized objects in Steps
2 and 3 is different and that the optimization problem in Step 2
is a constrained optimization problem. Furthermore, Steps 4–6
have been added.
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As only quadratic problems are solved, the optimizations are
convex and have unique solutions. In this way, the formulated
algorithm achieves a consistent parameter estimation with mini-
mum variance and limited computation complexity. This makes
the algorithm also applicable to networks with many nodes.

For the development of the algorithm, we will restrict attention
to the situation of an ARMAX-like model structure, where we
consider a data generating system S = (A0, B0, F 0,Λ0) with
F 0(q) := C0(q−1) being a monic polynomial, leading to the
network equation

A0(q−1)w(t) = B0(q−1)r(t) + C0(q−1)e(t) (40)

which would have an ARMAX structure if A0(q−1) would be
monic. Multiplying both sides of (40) with [C0(q−1)A0

0]
−1 leads

to

Ă0(q−1)w(t) = B̆0(q−1)r(t) + ē(t) (41)

where Ă0(q−1) is monic, ē(t) is the innovation (15), and

Ă0(q−1) = [C̄0(q−1)]−1A0(q−1) (42)

B̆0(q−1) = [C̄0(q−1)]−1B0(q−1) (43)

C̄0(q−1) = C0(q−1)A0
0. (44)

Now consider the model structure A(q−1, θa), B(q−1, θb), and
C̄(q−1, ηc, θa), as models of A0(q−1), B0(q−1), and C̄0(q−1),
respectively, with C̄(q−1, ηc, θa) = C(q−1, θc)A0(θa), and with

ϑ :=
[
θ	a θ	b η	c

]	
. As C(q−1) is monic and A0 is constant,

C̄0 = A0 and, therefore, parametrized as such. All other matri-
ces C̄� are independently parametrized with parameters ηc. The
exact parametrization is given in Appendix A.

Step 1: Estimating the Nonparametric ARX Model

As a first step, we are going to estimate a nonparametric ARX
model for (41), by parametrizing the infinite series expansions
Ă0(q−1) and B̆0(q−1) by high-order polynomial (finite) expan-
sions Ă(q−1, ζn) and B̆(q−1, ζn), according to

ε̄A(t, ζ
n) = Ă(q−1, ζn)w(t)− B̆(q−1, ζn)r(t) (45)

= w(t)− [ϕn(t)]	ζn (46)

with n the finite order of the polynomials, which is typically
chosen to be high. The parameter vector ζn and the matrix
[ϕn(t)]	 are given in Appendix B. The nonparametric ARX
model (41) is then estimated through estimating its parameters
ζn. As this step serves to make an initial estimate of the network,
the network structure is not taken into account. Furthermore,
consistency of this step is only achieved if the order n tends
to infinity as function of the data length N at an appropriate
rate, according to [35]. However, the bias will be negligibly
small if the ordern is chosen sufficiently large. The least-squares
estimate of ζn is found by

ζ̂nN =

[
1

N

N∑
t=n+1

ϕn(t)[ϕn(t)]	

]−1 [
1

N

N∑
t=n+1

ϕn(t)w(t)

]
.

(47)
Under conditions of consistent estimation, and so if n and N
approach infinity, ε̄A(t, ζ̂nN ) will be an accurate estimate of the

innovation ē(t). The covariance of the innovation is estimated
as the covariance of the residual as

Λ̄(ζ̂nN ) =
1

N

N∑
t=n+1

ε̄A(t, ζ̂
n
N )ε̄	A(t, ζ̂

n
N ) (48)

with residual (45) evaluated at ζ̂nN . The covariance of the param-
eter estimation error ε(t, ζ̂nN ) := ζ̂nN − ζn0 with ζn0 the actual
coefficients of the expansions in (41), is estimated by

P (ζ̂nN ) =

[
1

N

N∑
t=n+1

ϕn(t)Λ̄−1(ζ̂nN )[ϕn(t)]	

]−1

. (49)

Remark 2: As each row in (46) is independently
parametrized, the parameters ζn can be estimated for each
row independently, resulting in L MISO problems instead of
one MIMO problem. This is attractive for networks with many
nodes. �

Step 2: Reducing to the Structured Network Model

The high-order ARX model is used to identify the structured
network model through the relations (42) and (43). In this step,
the structural properties of A0(q−1) are incorporated and the
parameter constraint is taken into account to fix the scaling
parameter and obtain a unique solution.

The relations (42) and (43) are equivalently written as

A0(q−1)− C̄0(q−1)Ă0(q−1) = 0 (50)

B0(q−1)− C̄0(q−1)B̆0(q−1) = 0. (51)

Then, from (50) and (51), we can extract

−Q(ζn0)ϑ0 = 0 (52)

where ϑ0 represents the coefficients of the actual underlying
system described by A0(q−1), B0(q−1), and C̄0(q−1) (40)
and where the nonparametric ARX representation Ă0(q−1) and
B̆0(q−1) of the system is incorporated in Q(ζn0). The specific
structure of Q(ζn0) is provided in Appendix C. The polynomial
terms in (50) and (51) are considered up to time lag n, and the
row dimension of Q(ζn0) is equal to dim(ζn0).

On the basis of the estimated nonparametric ARX model pa-
rameters ζ̂nN , an initial least-squares7 estimate of ϑ0 is obtained
by the linear constrained optimization problem

ϑ̂
(0)
N = min

ϑ
ϑ	Q	(ζ̂nN )Q(ζ̂nN )ϑ (53)

subject to Γϑ = γ (54)

where the constraint (54) results from Condition 4 in Proposition
5. The optimization problem can be solved using the Lagrangian
and the Karush–Kuhn–Tucker conditions [37], giving[

ϑ̂
(0)
N

λ̂
(0)
N

]
=

[
Q	(ζ̂nN )Q(ζ̂nN ) Γ	

Γ 0

]−1 [
0

γ

]
(55)

7Weighted least-squares can be used as well (see Step 3) with weighting
matrix W (ζ̂nN ) = P−1(ζ̂nN ) [36].
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where λ̂
(0)
N are the estimated Lagrange multipliers. The covari-

ance of the residuals is updated according to (initially for k = 0)

Λ̄
(
ϑ̂
(k)
N

)
=

1

N

N∑
t=n+1

ε̄
(
t, ϑ̂

(k)
N

)
ε̄	
(
t, ϑ̂

(k)
N

)
(56)

with residual

ε̄
(
t, ϑ̂

(k)
N

)
= C̄−1

(
q−1, ϑ̂

(k)
N

)
·[

A
(
q−1, ϑ̂

(k)
N

)
w(t)−B

(
q−1, ϑ̂

(k)
N

)
r(t)

]
. (57)

Step 3: Improving the Structured Network Model

This step aims to correct for the residuals in (52) that are
not accounted for in (55), due to the fact that only a high-order
approximation of the nonparametric ARX model is used.

Substituting Ă(q−1, ζ̂nN ) and B̆(q−1, ζ̂nN ) for Ă0(q−1) and
B̆0(q−1), respectively, into (50) and (51) gives

A0(q−1)− C̄0(q−1)Ă0(q−1)

= C̄0(q−1)
[
Ă(q−1, ζ̂nN )− Ă0(q−1)

]
(58)

B0(q−1)− C̄0(q−1)B̆0(q−1)

= C̄0(q−1)
[
B̆(q−1, ζ̂nN )− B̆0(q−1)

]
(59)

which are equivalently written as [by using (52)]

−Q(ζ̂nN )ϑ0 = T (ϑ0)(ζ̂nN − ζno) (60)

where the matrix T (ϑ0) is given in Appendix C. The estimate
of ϑ0 with minimum variance is obtained by solving a weighted
least-squares problem, where the weighting matrix is given by
the inverse covariance matrix of the right-hand side expression
in (60). As this term depends on ϑ, this problem is solved
iteratively by

ϑ̂
(k)
N = min

ϑ
ϑ	Q	(ζ̂nN )W (ϑ̂

(k−1)
N )Q(ζ̂nN )ϑ (61)

subject to Γϑ = γ (62)

where the weighting matrix W (ϑ̂
(k−1)
N ) is iteratively updated

for k = 1, 2, . . . according to

W
(
ϑ̂
(k−1)
N

)
= T−	

(
ϑ̂
(k−1)
N

)
P−1

(
ϑ̂
(k−1)
N

)
T−1

(
ϑ̂
(k−1)
N

)
(63)

where P (ϑ̂
(k−1)
N ) is updated according to

P−1
(
ϑ̂
(k−1)
N

)
=

1

N

N∑
t=n+1

ϕn(t)Λ̄−1
(
ϑ̂
(k−1)
N

)
[ϕn(t)]	.

(64)

Similar to Step 2, this optimization problem can be solved
through[

ϑ̂
(k)
N

λ̂
(k)
N

]
=

[
Q	(ζ̂nN )W

(
ϑ̂
(k−1)
N

)
Q(ζ̂nN ) Γ	

Γ 0

]−1 [
0

γ

]
(65)

where λ̂
(k)
N are the estimated Lagrange multipliers. Finally, the

covariance of the residuals is updated according to (56).

Remark 3: Although this step is asymptotically efficient,
iterating may improve the estimate for finite data length N . The
cost

VN

(
ϑ̂
(k)
N

)
=

1

N
det

N∑
t=1

ε̄
(
t, ϑ̂

(k)
N

)
ε̄	
(
t, ϑ̂

(k)
N

)
(66)

is evaluated at each iteration to decide whether the parameter
estimation has improved. However, as (66) is not affine in the
parameters, an improved cost may still result in deteriorated
parameter estimates. The cost (66) is used as it is independent of
Λ(θ) and under Gaussian assumptions, minimizing (66) results
in minimum variance of the estimates if Λ(θ) is independently
parametrized from A(q−1, θ), B(q−1, θ), and C(q−1, θ). In this
situation, the asymptotic (minimum) variance resulting from
(32) is equal to the asymptotic variance of the maximum likeli-
hood estimator [4]. �

Step 4: Obtaining the Noise Model

Having estimated A0(q−1), B0(q−1), and C̄0(q−1), the noise
model represented by C0(q−1) and Λ0 can be recovered. On the
basis of (44), the estimate of C0(q−1) is constructed as

C
(
q−1, θ̂

(k)
N

)
= C̄

(
q−1, ϑ̂k

N

)
A−1

0

(
ϑ̂k
N

)
. (67)

Furthermore, as Λ0 = A0
0Λ̄

0A0
0, the estimate of Λ0 is given by

Λ
(
θ̂
(k)
N

)
= A0

(
ϑ̂
(k)
N

)
Λ̄
(
ϑ̂
(k)
N

)
A0

(
ϑ̂
(k)
N

)
. (68)

Step 5: Estimating the Discrete-Time Components

With the estimate ofA0(q−1) from Step 3, the dynamics of the
discrete-time network have been estimated. The components,
represented by X̄(q−1) and Ȳ (q−1), are obtained through the
inverse mapping of A(q−1) = X̄(q−1) + Ȳ (q−1), with X̄(q−1)
diagonal and Ȳ (q−1) Laplacian, given by

x̄jk,� =

{
0 if j �= k

ajj,� +
∑

i �=j aij,�, if j = k
(69)

ȳjk,� =

{
ajk,�, if j �= k

−
∑

i�=j aij,�, if j = k
. (70)

Step 6: Estimating the Continuous-Time Components

The continuous-time representationX(p), Y (p), B̄(p) can be
obtained from the estimated discrete-time model from Steps 5
and 3 through the inverse mapping of (5) and (6), given by

xjk,� = (−Ts)
�

na∑
i=�

(
i
�

)
x̄jk,i (71)

yjk,� = (−Ts)
�

na∑
i=�

(
i
�

)
ȳjk,i (72)

b̄jj,� = (−Ts)
�

nb∑
i=�

(
i
�

)
bjj,i. (73)

A. Complete Algorithm

The abovementioned steps describe the procedure for iden-
tifying the physical components of a diffusively coupled linear
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network with an ARMAX-like model structure. This procedure
leads to the following algorithm.

Algorithm 1 (ARMAX-Like Model Structure): Consider a data
generating system S with F 0(q) := C0(q−1), a monic polyno-
mial and a network model setM (16) withF (q, θ) := C(q−1, θ)

a monic polynomial. Then,M(θ̂N ), a consistent estimate ofM0,
is obtained through the following steps.

1) Estimate the nonparametric ARX model (41) by least
squares (47) to obtain ζ̂nN .

2) Reduce the nonparametric ARX model to a parametric
model (11) by weighted least-squares (55) to obtain ϑ̂

(0)
N .

3) Improve the parametric model (11) by weighted least-
squares (55) to obtain ϑ̂

(k)
N for k = 1, 2, . . ..

4) Obtain the noise model by calculating (67) and (68) to
obtain C(q−1, θ̂

(k)
N ) and Λ(θ̂

(k)
N ).

5) Obtain the discrete-time component values through (69)
and (70) to estimate X̄(q−1) and Ȳ (q−1).

6) Obtain the continuous-time parametric model through
(71)–(73) to estimate X(p), Y (p), and B̄(p). �

Consistency and minimum variance of the estimates obtained
with Algorithm 1 follows from the similarity with WNSF and its
proof, under technical conditions on the rates with which n and
N tend to infinity [19]. The main difference is that A(q−1, θ)
is nonmonic and symmetrically parametrized, resulting in a dif-
ferent structure in (52). In particular, the structure in Q(ζn) and
T (ϑ0) is different and the optimization problem (53) and (54) is
constrained. For consistency, Q(ζ̂nN ) needs to have full column
rank, which can be shown to be satisfied if the identifiability
conditions in Proposition 5 are satisfied. Consistency of Step 4–6
follows naturally.

Remark 4: In order to perform Algorithm 1, the measured
data {z(t)} is needed; the order n of the ARX model needs to
be chosen; and the true ordersna,nb, andnc ofA(q−1),B(q−1),
and C(q−1), respectively, need to be known. �

Remark 5 (Simplification to an ARX-like model structure):
If the noise is not filtered, that is F (q) := C(q−1) = I , the
network has an ARX-like model structure and the ARX model
(41) can exactly describe the diffusively coupled network, where
Ă(q−1) and B̆(q−1) are of the same order asA(q−1) andB(q−1),
respectively. Algorithm 1 improves in the sense that Step 1 is
consistent for sufficiently large data length N and therefore, no
additional estimation error is made in Step 2, which makes Step
3 superfluous. �

Remark 6 (Simplification to an ARX model structure): If
A0 = I in addition to unfiltered noise (F (q) := C(q−1) =
I), the network has an ARX model structure. In this
case, the network can consistently be identified in a sin-
gle step, by incorporating the symmetric structure in Step 1
of Algorithm 1 and by choosing the order of Ă(q−1) and
B̆(q−1) equivalent to the order of A(q−1) and B(q−1), re-
spectively. The resulting identification procedure has been
described in [20]. �

VI. SIMULATION EXAMPLE

This section contains a simulation example that serves to
illustrate the theory and to show that indeed the topology and

Fig. 3. Continuous-time network model with interconnection dynamics
described by the polynomials yjk(p), dynamics to the ground described
by the polynomial xjj(p), and static excitation filter b11.

the physical components of a network can be identified using
a single excitation signal only. The identification is performed
with the algorithm presented earlier.

A. Experimental Set-Up

Consider the continuous-time diffusively coupled network (2)
consisting of four one-dimensional nodes, with external signal
u(t) = B0r(t) + v(t), described by

(X0 + Y0)w(t) + (X1 + Y1)
d

dt
w(t) +X2

d2

dt2
w(t)

= B0r(t) + v(t) (74)

where r(t) is one-dimensional and known, andB0 has dimension
4× 1 and has only the first element nonzero. Fig. 3 shows the
structure of this network, where it can be seen that the excitation
signal r(t) = r1(t) enters the network only at node w1. One
can think of this network as a mechanical mass-spring-damper
network as explained in Section II, where X0 and Y0 contain
the spring constants, X1 and Y1 contain the damper coefficients,
X2 contains the masses, the node signals w(t) represent the
positions of the masses, and the excitation signal r(t) is a force.
One can also think of this network as an electrical circuit with
nodes that are interconnected through capacitors, resistors, and
inductors (in parallel). The matrices X0 and Y0 contain the
capacitances, X1 and Y1 contain the conductance values of the
resistors, X2 contain the inverses of the inductances, the node
signals w(t) represent the electric potentials of the interconnec-
tion points, and the excitation signal r(t) is the derivative of a
current flow.

The discrete-time representation is obtained by applying the
discretization method described in Section II-B with sampling
frequency fs = 100 Hz. In addition, the disturbance v(t) acting
on the network is modeled in discrete time as a white noise
filtered by a first-order filter. This results in the discrete-time
network model (11)

[A0 +A1q
−1 +A2q

−2]w(t) = B0r(t) + [I + C1q
−1]e(t)

(75)
with Ai = X̄i + Ȳi and Ai, Ȳi symmetric and X̄i diagonal for
i = 0, 1, 2. The network topology is assumed to be unknown
reflected by the situation that in the model there are parametrized
second-order connections between all pairs of nodes. As A2 =
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TABLE I
ORDER n OF THE ARX FIT, THE DATA LENGTH N , AND THE RATE n4/N

FOR EACH SET OF EXPERIMENT 1

X̄2 is diagonal, identifiability Condition 2 in Proposition 5 is
satisfied. The location where r(t) enters and the first nonzero
parameter of B0 is assumed to be known, which induces that B0

is fixed and not parametrized. This guarantees that identifiability
Condition 4 in Proposition 5 is satisfied.

The symmetric structure of Y (p) is taken into account in the
parametrization of the continuous-time model. The continuous-
time model matrices (74) are parametrized as

X0 =

⎡
⎢⎢⎢⎣
θc1 0 0 0

0 θc4 0 0

0 0 θc7 0

0 0 0 θc10

⎤
⎥⎥⎥⎦ , X1 =

⎡
⎢⎢⎢⎣
θc2 0 0 0

0 θc5 0 0

0 0 θc8 0

0 0 0 θc11

⎤
⎥⎥⎥⎦

(76)

X2 =

⎡
⎢⎢⎢⎣
θc3 0 0 0

0 θc6 0 0

0 0 θc9 0

0 0 0 θc12

⎤
⎥⎥⎥⎦ (77)

Y0 =

⎡
⎢⎢⎢⎣

� θc13 θc15 θc17
θc13 � θc19 θc21
θc15 θc19 � θc23
θc17 θc21 θc23 �

⎤
⎥⎥⎥⎦ , Y1 =

⎡
⎢⎢⎢⎣

� θc14 θc16 θc18
θc14 � θc20 θc22
θc16 θc20 � θc24
θc18 θc22 θc24 �

⎤
⎥⎥⎥⎦

(78)

where the elements � follow from the Laplacian structure.
Observe that θci ≥ 0 for i = 1, . . . , 12 and θci ≤ 0 for i =
13, . . . , 24 as all components have positive values (see Sec-
tion II-A). The exact true parameter values, represented by θc0

are given in Table II.
The external excitation signal r1(t) is an independent white

noise process with mean 0 and variance σ2
r = 1. All nodes are

subject to disturbances ei(t), which are independent white noise
processes (uncorrelated with r1(t)) with mean 0 and variance
σ2
e = 10−4. In Step 2 of the algorithm, the possibility to apply

the weighting W (ζ̂nN ) = P−1(ζ̂nN ) is exploited. In Step 3 of the
algorithm, at most 50 iterations are allowed us to improve the
result of Step 2.

Experiment 1 serves to show that the parameters can con-
sistently be identified with a single excitation signal only. In
order to do so, the identification is performed for different
orders n of the ARX model in Step 1 and different data lengths
N , such that they increase at an appropriate rate, guaranteeing
that n4/N decreases for increasing n and N [19]. The chosen
values n, N and the rate n4/N are given in Table I. For
each experimental set, 20 Monte Carlo simulations are per-
formed, where in each run new excitation and noise signals are
generated.

Fig. 4. Boxplot of the relative mean squared error (RMSE) (79) of the
parameters of X(p) and Y (p) for each experimental set.

Experiment 2 serves to identify the parameters and topology
with a single excitation signal only and to show that using more
excitation signals at different nodes improves the results. In
order to show this, two sets of experiments are performed, one
set with a single excitation signal (K = 1) entering at node w1

and one set with three excitation signals (K = 3) entering the
network at node w1, w2, and w3. In the former case, B0 is a
4× 1 unit vector that is fully known and in the latter case, B0

is a 4× 3 selection matrix with b11,0 = 1; with parametrized
elements b22,0 = θc24 and b33,0 = θc25 with true values θc024 = 1
and θc025 = 1; and with all other elements equal to 0. The order
of the ARX model in Step 1 of the algorithm is n = 5 and the
number of samples generated for each dataset is N = 10 000.
Both experimental sets consists of 100 Monte Carlo simula-
tions, where in each run new excitation and noise signals are
generated.

B. Simulation Results

The simulation results of Experiment 1 are shown in Fig. 4.
This figure shows a Boxplot of the relative mean squared error
(RMSE) of the continuous-time model parameters, where the
RMSE is determined as

RMSE =
‖θc0 − θ̂cN‖22

‖θc0‖22
(79)

where θc contains the parameters ofX(p) andY (p). From Fig. 4,
it can be seen that the RMSE decreases if both n and N increase
such that the rate n4/N decreases. This observation supports the
statement that consistent identification is achieved if the order of
the ARX model n tends to infinity as function of the data length
N at an appropriate rate [19].

The simulation results of Experiment 2 are shown in Figs. 5–8,
and Table II.

Fig. 5 and 6 show a Boxplot of the relative parameter estima-
tion errors for K = 1 and K = 3, respectively, for parameters
for which their underlying true value is unequal to 0. For the
other parameters, the mean values are provided in Figs. 7 and
8. From Figs. 5 and 6, it can be seen that the median of the
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TABLE II
TRUE PARAMETER VALUES OF X(p) AND Y (p) AND THE MEAN AND STANDARD DEVIATION (SD) OF THEIR ESTIMATES FOR BOTH SETS (K = 1 AND

K = 3) OF EXPERIMENT 2

Fig. 5. Boxplot of the relative estimation errors of the parameters of
X(p) and Y (p) for the experimental set with a single excitation signal
(K = 1), for parameters with a nonzero true value.

relative errors is around 0 for all parameters, which means that
the median of the estimated parameters values are close to the
true values. This supports the statement that the parameters can
be identified with a single excitation signal only. However, Fig. 5
also shows that for the experiment with a single excitation signal
(K = 1), 50% of the relative parameter errors are within a range
of 10% deviation. This is quite a large deviation. From Fig. 6, it
can be seen that this range reduces to 2% deviation if the number
of excitation signals is increased to three (K = 3). Increasing
the number of excitation signals improves the signal-to-noise
ratio, which has a clear effect on the variance of the estimated
parameters.

Table II contains the mean and standard deviation of the
estimated model parameters. The experiment with three external
excitation signals has two additional parameters θc25 and θc26,
which have true values 1 and which are estimated with mean
1.000 and 9.9983× 10−1, respectively, and standard deviation
6.6505× 10−4 and 9.2690× 10−4, respectively. Although the

Fig. 6. Boxplot of the relative estimation errors of the parameters of
X(p), Y (p), and B(p) for the experimental set with three excitation
signals (K = 3), for parameters with a nonzero true value.

estimates are quite accurate, small biases can still occur because
of the finite values of n and N . For all parameters, this bias is
within a bound of 1 standard deviation.

Figs. 7 and 8 show the true values and the mean estimated
values of the parameters, focusing on those parameters whose
true value are equal to 0. For K = 1, it would be hard to
identify the correct topology of the network, i.e., estimate which
parameters are unequal to 0, on the basis of the estimated mean
values only. Note that for example, the zero parameter θc19 has
a mean value that is higher than the nonzero parameter θc3. For
K = 3, this situation improves drastically.

VII. DISCUSSION

In this section, three extensions of the presented theory are
discussed. First, the connection with dynamic networks is made.
Second, networks with unmeasured nodes are considered. Third,
parameter constraints are discussed.
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Fig. 7. True parameter values (blue) and the mean of the estimated
parameter values (red) of X(p) and Y (p) for the experimental set with
a single excitation signal (K = 1), focusing on parameters with a true
value of 0.

Fig. 8. True parameter values (blue) and the mean of the estimated
parameter values (red) of X(p), Y (p), and B(p) for the experimental
set with three excitation signals (K = 3), focusing on parameters with a
true value of 0.

A. Dynamic Networks

A commonly used description of dynamic networks is the
module representation [18], in which a network is considered to
be the interconnection of directed transfer functions (modules)
through measured node signals as

w(t) = G(q)w(t) +R(q)r(t) +H(q)ẽ(t) (80)

with white noise process ẽ(t) and with proper rational transfer
function matrices G(q), R(q), and H(q) ∈ H, where the matrix
entries Gjk(q), Rjk(q), and Hjk(q) describe the dynamics in
the paths from wk(t), rk(t), and ẽk(t) to wj(t), respectively. A
diffusively coupled network (11) can be described as a module
representation with the following particular symmetrical prop-
erties [20].

Fig. 9. Module representation of a diffusively coupled network with
three nodes.

1) The transfer functions Gjk(q) and Gkj(q) have the same
numerator for all j, k.

2) The transfer functions Gjk(q) and Rjm(q) have the same
denominator for all k,m.

3) The transfer functions Gjk(q) and Hjm(q) have the same
denominator for all k,m if F (q) is polynomial.

Moreover, conditions for a unique mapping between a module
representation and a diffusively coupled network are formulated
in [20].

The structure ofG(q) andR(q) corresponding to a diffusively
coupled network with three nodes is illustrated by Fig. 9. It shows
that the modules Gjk(q) = −a−1

jj (q
−1)ajk(q

−1) and Gkj(q) =

−a−1
kk (q

−1)ajk(q
−1)have the same numerator (ajk(q−1)) and all

transfer functions in the paths toward a specific nodewj have the
same denominator (ajj(q−1)). Since Gjk(q) and Gkj(q) have
the same numerator, they will either be both present or both
absent, which is in accordance with the fact that they represent
a single diffusively coupled interconnection. In addition, the
connections to the ground node are only present in the denom-
inators, because they are only present in ajj(q

−1). This means
that they do not have an effect on the topology in the module
representation, although they are part of the topology in the
diffusively coupled network.

B. Partial Measurements

Throughout this article, we assumed that all node signals are
measured, which is a situation to which the identification method
that we presented is particularly tuned. From the literature, it is
known [5], [6] that network identifiability can be achieved if
all nodes are measured and one node is excited, or all nodes
are excited and one node is measured. The former situation is
covered in this article, see Proposition 5, as the latter situation
seems less common and leading to higher experimental costs.
In this latter situation, a different identification method would
be required, further exploiting the role of the different excitation
signals, leading to a so-called indirect method of identification.

For the situation that only a subset of nodes is measured and/or
excited, general identifiability conditions are not yet known, but
some particular situations are considered in [38] for the case of
directed networks.

For estimating only a particular component or a particular
connection in the network, the identifiability conditions will
be less severe. In the partial measurement situation, unmea-
sured node signals can be removed from the representation by

Authorized licensed use limited to: Paul Van Den Hof. Downloaded on June 05,2023 at 07:18:18 UTC from IEEE Xplore.  Restrictions apply. 



3526 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 6, JUNE 2023

Gaussian elimination, which is equivalent to Kron reduction [2]
and immersion [21], which has been effectively applied in the
local module identification problem of directed networks, see,
e.g., [21]. Related results for the situation of undirected networks
will be reported in a follow-up paper.

C. Parameter Constraints

Physical networks that consist of interconnected physical
components, such as mass-spring-damper systems and RLC cir-
cuits, are known to have positive real-valued component values
in the continuous-time representation (2). This also leads to
coefficients with known signs in the corresponding discrete-time
representation. In both the consistency proof and the presented
algorithm, these sign constraints are not taken into account. They
can be taken into account in the algorithm by adding inequality
constraints of the form Γuϑ < 0 to the optimization problems
(53), (54) and (61), (62). A priori known parameter values can
easily be taken into account by the equality constraint Γϑ = γ
in the optimization problems (53), (54) and (61), (62). Known
(continuous-time) component values can be taken into account
as well, by splitting ϑ as ϑ = ϑu + ϑk, where ϑu and ϑk repre-
sent the unknown and known part of ϑ, respectively. Then, the
linear form −Q(ζn)ϑ = 0 leads to −Q(ζn)ϑu + γk(ζ

n, ϑk) =
0, where γk(ζ

n, ϑk) := −Q(ζn)ϑk is known.

VIII. CONCLUSION

Undirected networks of diffusively coupled systems can be
represented by polynomial representations with particular struc-
tural properties. This has enabled the development of an effective
prediction error identification method for identifying the phys-
ical components and the topology of the network. Conditions
for consistent parameter estimates have been formulated for
the situation that all network nodes are measured, showing that
only a single excitation signal is needed for consistency. The
identification is performed through a multistep algorithm that
relies on convex optimizations, being a reworked version of the
recently introduced WNSF method, adapted to the situation of
the structured network models. The results of identifying the
topology and parameters of a network are illustrated in a Monte
Carlo simulation example. It shows that, while consistency is
guaranteed for a single excitation signal, the variance of pa-
rameter estimates improves considerably when increasing the
number of excitations.

APPENDIX

A. Parameters of the Structured Network

Remember that a polynomial matrix A(q−1) as its (i, j)th
element has aij(q

−1) =
∑na

�=0 ajk,�q
−�. The model structure

A(q−1, θa), B(q−1, θb), C(q−1, θc) of the network model (40)
is parametrized in terms of the parameters θa, θb, and ηc, where
C̄(q−1, ηc, θa) = C(q−1, θc)A0(θa), having its constant term
parametrized by θa and its dynamic terms by parameters θc.
A(q−1) is parametrized symmetrically. The parameter vectors

θa, θb, θc, and ηc are given by

θa =

⎡
⎢⎢⎢⎢⎣
θa1

θa2

...

θaL

⎤
⎥⎥⎥⎥⎦ , θai

=

⎡
⎢⎢⎢⎢⎣

θaii

θai(i+1)

...

θaiL

⎤
⎥⎥⎥⎥⎦ , θaij

=

⎡
⎢⎢⎢⎢⎣
aij,0

aij,1
...

aij,na

⎤
⎥⎥⎥⎥⎦
(81)

θb =

⎡
⎢⎢⎢⎢⎣
θb1
θb2

...

θbL

⎤
⎥⎥⎥⎥⎦ , θbi =

⎡
⎢⎢⎢⎢⎣
θbi1
θbi2

...

θbiK

⎤
⎥⎥⎥⎥⎦ , θbij =

⎡
⎢⎢⎢⎢⎣
bij,0

bij,1
...

bij,nb

⎤
⎥⎥⎥⎥⎦
(82)

θc =

⎡
⎢⎢⎢⎢⎣
θc1
θc2

...

θcL

⎤
⎥⎥⎥⎥⎦ , θci =

⎡
⎢⎢⎢⎢⎣
θci1
θci2

...

θciL

⎤
⎥⎥⎥⎥⎦ , θcij =

⎡
⎢⎢⎢⎢⎣
cij,1

cij,2
...

cij,nc

⎤
⎥⎥⎥⎥⎦
(83)

ηc =

⎡
⎢⎢⎢⎢⎣
ηc1
ηc2

...

ηcL

⎤
⎥⎥⎥⎥⎦ , ηci =

⎡
⎢⎢⎢⎢⎣
ηci1
ηci2

...

ηciL

⎤
⎥⎥⎥⎥⎦ , ηcij =

⎡
⎢⎢⎢⎢⎣
c̄ij,1

c̄ij,2
...

c̄ij,nc

⎤
⎥⎥⎥⎥⎦ .

(84)

B. ARX Parametrization and Regressor

The model structure Ă(q−1, ζna ) and B̆(q−1, ζnb ) of the non-
parametric ARX model (41) is parametrized in terms of the

parameters ζn. The parameter vector ζn :=
[
[ζna ]

	 [ζnb ]
	
]	

is given by

ζna =

⎡
⎢⎢⎢⎢⎣
ζna1

ζna2

...

ζnaL

⎤
⎥⎥⎥⎥⎦ , ζnai

=

⎡
⎢⎢⎢⎢⎣
ζnai1

ζnai2

...

ζnaiL

⎤
⎥⎥⎥⎥⎦ , ζnaij

=

⎡
⎢⎢⎢⎢⎣
ăij,1

ăij,2
...

ăij,n

⎤
⎥⎥⎥⎥⎦ (85)

ζnb =

⎡
⎢⎢⎢⎢⎣
ζnb1
ζnb2
...

ζnbL

⎤
⎥⎥⎥⎥⎦ , ζnbi =

⎡
⎢⎢⎢⎢⎣
ζnbi1
ζnbi2

...

ζnbiK

⎤
⎥⎥⎥⎥⎦ , ζnbij =

⎡
⎢⎢⎢⎢⎣
b̆ij,0

b̆ij,1
...

b̆ij,n

⎤
⎥⎥⎥⎥⎦ . (86)

The regressor [ϕn(t)]	 in (46) is given by [ϕn(t)]	 =[
−[ϕn

w(t)]
	 [ϕn

r (t)]
	
]

with

[ϕn
w(t)]

	 =
[
[ϕn

w1
(t)]	 [ϕn

w2
(t)]	 · · · [ϕn

wL
(t)]	

]
(87)

[ϕn
wi
(t)]	 =

[
wi(t− 1) wi(t− 2) · · · wi(t− n)

]
(88)

[ϕn
r (t)]

	 =
[
[ϕn

r1
(t)]	 [ϕn

r2
(t)]	 · · · [ϕn

rK
(t)]	

]
(89)
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[ϕn
ri
(t)]	 =

[
ri(t) ri(t−1) ri(t−2) · · · ri(t−n)

]
.

(90)

C. Matrices Q(ζn0) and T (ϑ0)

In order to construct Q(ζn0) and T (ϑ0), we first define some
other matrices.

1) Zero and Identity: Let 0i,j denote a matrix of dimension
i× j with all its elements equal to 0. Let Ii,j denote an identity

matrix of dimension i× j, where Ii,j =
[
Ii,i 0i,j−i

]
for i ≤ j

and Ii,j =
[
Ij,j 0j,i−j

]	
for i ≥ j. Let Ik(i,j) denote a block

diagonal matrix of k blocks of Ii,j and let I�(k(i,j)) denote a
block diagonal matrix of � blocks of Ik(i,j).

2) Π: Define the matrices

Πa
i :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζan
i1

0n,na

...
...

ζan
i(i−1)

0n,na

ζan
ii

−In,na

ζan
i(i+1)

0n,na

...
...

ζan
iL

0n,na

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Πb

i :=

⎡
⎢⎢⎢⎢⎣
ζbni1 0n+1,na

ζbni2 0n+1,na

...
...

ζbniK 0n+1,na

⎤
⎥⎥⎥⎥⎦ (91)

and observe that Πa
i has dimensions Ln× (na + 1) and that Πb

i

has dimensions K(n+ 1)× (na + 1).
For x ∈ {a, b}, define the block matrix

Π̄x
L :=

⎡
⎢⎣ Zx

0,L Zx
1,L−1 · · · Zx

L−1,1

R(Πx
1 ,Π

x
L) R(Πx

2 ,Π
x
L) · · · R(Πx

L,Π
x
L)

SL−1(Π
x
1) SL−2(Π

x
2) · · · SL−L(Π

x
L)

⎤
⎥⎦ (92)

with Za
i,j an i× j block matrix with blocks 0Ln,(na+1) and with

Zb
i,j an i× j block matrix with blocks 0K(n+1),(na+1) (that is

Za
i,j := 0iLn,j(na+1) and Zb

i,j := 0iK(n+1),j(na+1)), with

R(Πx
i ,Π

x
j ) :=

[
Πx

i Πx
i+1 · · · Πx

j

]
, for i ≤ j (93)

and with

Si(Π
x
j ) :=

[
Zx
i,1 Di(Π

x
j )
]

(94)

with Di(Π
x
j ) a block diagonal matrix consisting of i blocks of

Πx
j . Observe that Π̄a

L has dimensions L2n× 1
2L(L+ 1)(na +

1) and Π̄b
L has dimensions LK(n+ 1)× 1

2L(L+ 1)(na + 1).
3) Toeplitz: Let Ti,j(x) denote a Toeplitz matrix of dimen-

sion i× j (with i ≥ j) given by

Ti,j(x) := Ti,j
([

x0 x1 · · · xi−1

])
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0 0
...

. . .

xj−1 · · · x0

...
. . .

...

xi−1 · · · xi−j−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(95)

Define the following Toeplitz matrices of dimension k × �:

Tk,�(ăij) := Tk,�
([

ăij,0 ăij,1 · · · ăij,k

])
(96)

Tk,�(b̆ij) := Tk,�
([

0 b̆ij,0 b̆ij,1 · · · b̆ij,k

])
(97)

Tk,�(c̄ij) := Tk,�
([

aij,0 c̄ij,1 · · · c̄ij,k

])
(98)

Note that for ăij it is known that ăij,0 = 1 for i = j and ăij,0 = 0
for i �= j; and note that for c̄ij it is known that c̄ij,0 = aij,0 =
aji,0 and c̄ij,k = 0 for k > nc.

Define the following block matrices:

T̄k,�(Ă) :=

⎡
⎢⎢⎣
Tk,�(ă11) · · · Tk,�(ăL1)

...
...

Tk,�(ă1L) · · · Tk,�(ăLL)

⎤
⎥⎥⎦ (99)

T̄k,�(B̆) :=

⎡
⎢⎢⎣
Tk,�(b̆11) · · · Tk,�(b̆L1)

...
...

Tk,�(b̆1K) · · · Tk,�(b̆LK)

⎤
⎥⎥⎦ (100)

where T̄k,�(Ă) has dimensionsLk × L� and T̄k,�(B̆) has dimen-
sions Kk × L�.

Forx ∈ {a, b}, let T̄m(k,�)(X̆) denote a block diagonal matrix

consisting of m blocks of T̄k,�(X̆). Observe that T̄n,nc
(Ă)

has dimension Ln× Lnc and that T̄n+1,nc
(B̆) has dimension

K(n+ 1)× Lnc.
Let Tm(k,�)(c̄ij) denote a block diagonal matrix consisting of

m blocks of Tk,�(c̄ij). Observe that TL(n,n)(c̄ij) is an Ln× Ln
block diagonal matrix consisting of L blocks of Tn,n(c̄ij) and
that TK(n+1,n+1)(c̄ij) is an K(n+ 1)×K(n+ 1) block diag-
onal matrix consisting of K blocks of Tn+1,n+1(c̄ij). Finally,
define

Tm(k,�)(C̄) :=

⎡
⎢⎢⎣
Tm(k,�)(c̄11) · · · Tm(k,�)(c̄1L)

...
...

Tm(k,�)(c̄L1) · · · Tm(k,�)(c̄LL)

⎤
⎥⎥⎦ . (101)

4) Matrix Q(ζn0): With the matrices defined earlier, we can
now describe the matrix Q(ζn0) in (52) by

Q(ζn0) =

[
Π̄a

L 0 T̄L(n,nc)(Ă
0)

Π̄b
L −IL(K(n+1,nb)) T̄L(n+1,nc)(B̆

0)

]
(102)

which has row dimension L2n+ LK(n+ 1) and column di-
mension 1

2L(L+ 1)(na + 1) + LK(nb + 1) + L2nc.
5) Matrix T (ϑ0): With the matrices defined above, we can

now describe the matrix T (ϑ0) in (60) by

T (ϑ0) =

[
−TL(n,n)(C̄

0) 0

0 −TK(n+1,n+1)(C̄
0)

]
(103)

which has dimensions [L2n+LK(n+1)]×[L2n+LK(n+1)].
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