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Abstract 
A procedure is developed to identify probabilistic frequency re- 
sponse system uncertainty regions. The procedure utilizes time- 
domain measurement data and prior informationabout the sys- 
tem and the noise. There are no restrictions on the input signal, 
it may even be generated in closed loop. The system is assumed 
to be linear, time invariant, and a bound is assumed on the sys- 
tem’s (generalised) pulse response parameters. The noise is as- 
sumed to be a realization of a stationary stochastic process, and 
independent of the input signal (in open loop operation) or an 
external reference signal (in cloned loop operation). Frequency 
response confidence regions are constructed by explicitly eval- 
uating the bias and variance errors of an instrumental variable 
estimate. 

1 Introduction 

For robust controller analysis and synthesis it is necessary 
to have available a bound on the model error, the difference 
between plant and nominal model. For example robust sta- 
bility can be established if frequency response uncertainty 
regions are available. Many authors have considered the 
problem of deriving frequency response system uncertainty 
regions on the basis of measurement data and prior as- 
sumptions about system and noise. The two main different 
uncertainty bounding approaches are the deterministic and 
the stochastic approach. 

Procedures to derive frequency response uncertainty re- 
gions based on deterministic prior assumptions are pre- 
sented in for example [2, 4, 5, 7, 12, 18). In particular 
the noise is assumed to behave worst-case deterministic. 
The resulting uncertainty regions are correct provided the 
prior information that is used is correct. Unfortunately 
in practice it is often rather difficult, if not impossible, to 
guarantee that the priors, such as assumed noise bounds, 
are correct. 

The stochastic approach is represented by e.g. [l, 3, 161. 
In this approach the noise is assumed to behave noisy, i.e. 
random and uncorrelated to the input signal. Besides that 
also prior assumptions about the system are made, which 
vary from deterministic, [3], to stochastic, [16]. Typically 
these procedures yield uncertainty regions which are cor- 
rect with a certain specified probability, provided the prior 
assumptions that are made are correct. 

In this paper a new procedure is presented to identify 
probabilistic frequency response uncertainty regions. The 
procedure involves the explicit calculation of the bias and 
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variance errors of an IV (Instrumental Variable) estimate. 
A linear model parametrization in terms of general basis 
functions is used, see [9] and [15, Ch. 21. In this way ap- 
proximate knowledge about pole locations of the unknown 
system can be incorporated by the choice of proper basis 
functions. In fact the present procedure is the statistical 
counterpart of the deterministic uncertainty bounding pro- 
cedure described in [5]. There are no restrictions on the 
input signal, it need for example not be sinusoidal. The 
basic assumption about the noise process is that it is sta- 
tionary and independent of the input signal in open loop, 
or an external reference signal in closed loop. The proba- 
bility density function of the noise process is arbitrary and 
not assumed to be known. Instead asymptotic results are 
derived with a central limit theorem. 

The present approach is different from the one in [I], 
where B multisinusoidal input signal is needed, and the 
noise is assumed gaussian with known noise generating a- 
ter. Unlike in [16] no stochastic assumptions are made 
about the undermodelling part. In the approach of [3] a 
frequency domain approach is taken, and also a periodic 
input signal is needed. 

The outline of the paper is as follows. In the next 
section the identification setting is described. Section 3 
presents the instrumental variable estimate. In Section 4 
the frequency response error of the IV model is evaluated, 
which leads to probabilistic frequency response system un- 
certainty regions. In Section 5 the results are discussed. 

Because of space limitations all proofs have been omit- 
ted. These can be found in [6]. In this reference also sim- 
ulations and an application of the identification procedure 
to a multivariable industrial process can be found. 

2 Identification Setting 
Consider the linear, time-invariant, discrete time, causal 
and !,-stable SISO system Go(z) represented by 

m 

Go(z) = c g o ( k ) W ) ,  
k=O 

where {%(Z)}k=O, ..., m, is some specified set of basis func- 
tions given by 

m 

P~(z) = pk(k’)z-‘’, k = 0,. . . ,m, 
k‘=O 

for given and known scalar pulse response parameters 
pk(k’). These basis functions can for example chosen to 
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be the pulse functions, or the Laguerre functions, or gen- 
eral orthonormal basis functions, see [9] and [15, Ch. 21. 
The (unknown) coefficients go(k)  can be considered as gen- 
eralized pulse response parameters of the system Go(z). 

Consider given input data {u(t)}t=I, ...,N and measured 
output data (Y(t)}t=1,..,N and the following input-output 
relation of the data generating system, 

y(t) = Go(q)u(t) + eo(t) ,  t = 1 , .  . . ,N, (1) 

where N denotes the measurement time and {eo(t)}  is an 
unknown additive output noise. There are no restrictions 
on the input signal, basically it may be determined in open 
loop as well as in closed loop. 

It is assumed that a signal { ~ ( t ) } t = I ,  ...J is available, 
which is highly correlated with the input signal {u(t )} ,  but 
independent of the noise process { e o ( t ) } .  Let by defini- 
tion T ( t )  = 0 for t 5 0. Typically in open loop operation 
the signal { ~ ( t ) }  is equal to the input {u(t)}. In a closed 
loop environment an external reference signal {+ ( t ) }  can be 
used, or a filtered version of this signal, ~ ( t )  = F(q)$( t ) .  

The following assumptions are made about the noise pro- 
cess {eo(t)} .  

Assumption 2.1 The noise process { eo ( t ) }  is stationary 
with auto-covariance function K0(7) = Eeo(t+r)eo(t) ,  and 
it satisfies eo(t) = HO(q)wo(t) for some &-stable Ho(q),  
and where {wo(t)} is a sequence of independent random 
variables with zero mean values, variances Xo, and bounded 
fourth moments. 

Note that the distribution of the noise process is arbitrary, 
and not assumed to be known. The following assumptions 
about {.(t)} are made. 

Assumption 2.2 The signal { ~ ( t ) }  is a bounded deter- 
ministic quasi-stationary signal, hence ita auto-covariance 
junction 

l N  
N-+m N t=l 

&(T) = Iim - CT(t + T ) T ( t )  

ezis ts  V T .  

In order to cope with unknown initial conditions the in- 
put signal in the past is assumed to be bounded by 

for some given ii. This bound may result from actuator 
constraints and need not be very tight as its influence on 
the identification result is restricted. 

The coefficients go(k)  are assumed to be bounded by 

Igo(k)l I P(k) ,  k = 0, * * * , 00, (3) 

for given g ( k ) .  Moreover it is assumed that the bound g ( k )  
shows exponential decay rate for k larger than some k', i.e. 

p(k) 5 M p k ,  V k  > k', 

for some given M _> 0 and p < 1. In [9] it is discussed that 
such a bound exists when an arbitrary !,-stable system is 
expanded in a general orthonormal basis. 

The identification objective is to derive probabilistic un- 
certainty regions for the system's frequency response, 

m 

Go(eiw) = go(k )q (e '" ) .  

The identification problem is tackled by splitting the trans- 
fer function Go(z)  into two parts, 

k-0 

Go(z) = Go(z) + Go(z) ,  (4) 
n m 

Eo(z) = gO(k)pk(z) ,  Go(z )  = go(k)Pk(z) ,  
k=O k=n+l 

for some user-defined truncation value n. 
Next deterministic uncertainty bounds will be deter- 

mined for the tail Go(eiu),  using the deterministic prior 
bounds g ( k )  given in ( 3 ) .  And probabilistic uncertainty 
bounds will be derived for Go(e"'), using variance expres- 
sions of an instrumental variable estimate. These vari- 
ance expressions are based on the stochastic noise as- 
sumption 2.1. In the variance expressions the influence of 
the undermodelling part Go(.) is properly taken into ac- 
count. The sum of the deterministic uncertainty bounds 
for Go(,'") and the probabilistic uncertainty bounds for 
Eo( eiw) provides probabilistic uncertainty regions for the 
system Go(eiy). 

Note that there generally is an optimal d u e  for n. If it 
is chosen too small, the resulting bounds will be completely 
determined by the prior information (3), which is generally 
conservative. If it is chosen too large, the confidence regions 
for Go(z)  will be large as the variance increases with the 
number of parameters to be estimated. More will be said 
about this later. 

3 The Instrumental Variable Estimate 
Consider the parametrized model 

n 

G ( z )  = g(k)pk(z ) ,  
k=O 

where { g ( k ) } k = O ,  ...,,, are the model parameters. Define the 
model input signal Z ( t )  as 

The model input-output relation is given by 
n 

~ ( t )  = G(q)G(t) + e ( t )  = g(k)Pk(q)i i ( t )  + e ( t )  = 
k=O 

" 
= g ( k ) W k ( t )  + e ( t ) ,  

k=O 

where e ( t )  is the output error, and 

t-1 

(5) W k ( t )  := C pk(k')u(t  - k'), k = 0,. . . ,n. 
k'=O 

Next define the instrumental signals 

t-1 

v k ( t )  := p k ( q ) T ( t )  = p k ( k ' ) T ( t  - k'), k = 0,. . . ,n, 
k'=O 
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and the matrices 

W ( t )  := [I;:;] , V(t) := 

- Also denote 
N = N - t ,  + 1, 

for some integer t. E [ l , N ) ,  which is user-defined. The 
integer t ,  represents the starting sample used in the IV 
estimate, and can be used to reduce the influence of the 
unknown initial conditions, as will become clear later. 

Consider the basic IV estimate ([17, p. 2621, [13, 
p. 192/193]), 

which is given by 

G(0) -' 1 N [ i ] = [f 5 V(t)WT(t)] = V(t)y(t). (6) 
N t=t. N t=t. a ( 4  

Notice that in case of open loop operation, ~ ( t )  = u(t) ,  
this is just a FIR least squares estimate for general basis 
functions. The estimated IV model is given by 

n 

d ( z )  = x a ( k ) p k ( z ) .  
k=O 

This identified model is used to construct frequency re- 
sponse uncertainty regions. This is done by explicitly cal- 
culating the bias and variance errors of the IV estimate. 

4 Frequency Response Uncertainty Re- 
gions 

An analysis is made of the frequency response identifica- 
tion error of the instrumental variable estimate. This then 
leads to frequency response confidence regions for the sys- 
tem Go(z). 

4.1 The Frequency Response Error of the N 
Model 

Consider some frequency wj chosen arbitrarily in the inter- 
val [O,r]. Substitution of the parameter estimate (6) yields 
the frequency response of the IV estimate, 

n 
G(e'uj) = Ci(k)pk(e'uj) = [po(e'uj) ... pn(e'wj)] . 

k=O 

Define for t = t,, . . . , N the signals rI ( t )  and rz(t)  as 

r l ( t )  := [Re (Po(eiwj)) . . - R e  (P,,(eiuj))] 
-1 

These signals Tp(t ) ,  p = 1,2, are filtered versions of the sig- 
nal r ( t ) ,  and they can be computed, as they only depend on 
known quantities. They play an essential role throughout 
the following derivation of IV model error bounds. Note 
that they depend on the frequency wj that has been cho- 
sen, but for notational convenience this dependency is not 
explicitly mentioned a l l  the time. 

Using (1) and (4) the output y(t) can be written as 

y(t) = Go(rl)u(t) + eo(t) = &(q)u(t) + Go(q)u(t) + eo( t )  
W 

= 2 g O ( k ) P k ( ' ? ) u ( t )  + g O ( k ) p k ( ' ? ) u ( t )  + ' d t )  
k=O k=n+l 

n 

= !JO(k)wk( t )  + a(t)  + b( t )  + eO(t)i 
k=O 

where W k ( t )  is defined in (5) and 

a( t )  := B(k) 2 p k ( k ' ) u ( t -  k'), (10) 
k=n+l k'=O 
m OD 

b( t )  := c a(&) p k ( k ' ) U ( t  - k'). (11) 
k=O k'=t 

The signal a( t )  represents the response of the tail G o ( q ) .  
The signal b( t )  represents the response due to past input 
signals, the initial conditions. Using :his the following d- 
ternative expression can be given for G(eiuj) given by (7), 

The first term of this expression can be worked out as fol- 
lows, 

l N  n 

5 c ( T l ( t )  + i T 2 ( t ) )  
N t=t, k=O 

g O ( k ) W k ( t )  = 
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which depend on the frequency wj &s rp(t ) ,  p = 1,2, de- 
pends on the frequency w j .  Again using (4) this finally 
gives the following expression for the identification error, 

G(eiwj) - Go(eauj) = 
= z ( e i w j )  - eo(e 'wj )  - Go(eiuj) = 

1 
N 

+ c ( r l ( t )  + i r z ( t ) )eo( t ) )  - Go(eiuj). 

= = ( d ( l )  t i d (2 )  + f(1) t if(2) t 
N 

(14) 

Basically all terms at  the right-hand side of this expres- 
sion are unknown. However, it appears possible to  derive 
a probabilistic distribution for the term containing eo( t ) ,  
using assumption 2.1. And the terms with d(p ) ,  f ( p )  and 
Go(eiYj) can be bounded using the prior information (2) 
and (3). 

t=t. 

4.2 Auxiliary Results 

In this subsection the various terms appearing in (14) are 
evaluated. Consider any bounded signal { r p ( t ) )  and con- 
sider d(p) ,  f ( p )  defined by (E), (13) respectively, with a( t ) ,  
6( t )  defined by (lo), (11) respectively. Making use of (2) 
and (3), the following bounds can be derived, 

t-1 

Id(P)l 5 cs(P) := 5 B(k) 15 .dt) ?'k(k')u(t - k')l > 

which represents a computable bound for the tail contribu- 
tion. And, 

k=n+l i=t. k'=O 
(15) 

which represents a computable bound for the contribution 
of the unknown initial conditions. The actual computation 
of the expressions involve the evaluation of infinite sums. 
Due to the fact that g(k) shows exponential decay rate 
in k, and pk(k') shows exponential decay rate in k' the 
outcomes are finite. Computational aspects are considered 
in [6]. Clearly d(p)  will be small if n is chosen large, and 
f ( p )  will be small if t ,  is chosen large. 

The real and imaginary part of the frequency response 
of the tail, GO(eiuj), can be bounded as follows, 

m 

IRe (Go(ei'+)) I = Re go(k)f 'k(eiuJ) I ( k = n t l  
m 

5 g ( k )  IRe (Pk(eiwj))l := 6(1), 
k=n+l 

W 

IIm (Go(eiuj)) I 5 g(k) IIm (%(e"')) I := 6(2). (18) 

Note that 6(1) and 6(2) are finite due to the exponential 
decay rate of g ( k ) .  Computational aspects of the evaluation 
of these infinite sums are considered in [6]. 

Next a key lemma is established with respect to the 
asymptotic distribution of E:,, rp( t )eo( t ) .  

k=n+l 

Lemma 4.1 Suppose that {eo( t )}  and { r ( t ) }  ure indepen- 
dent and that they satisfy the assumptions 2.1 and 2.2 re- 
spectively. Consider the signals { r l ( t ) }  and {rz( t )} ,  given 
b y  rl(t) = Fl(q)r ( t ) ,  rz(t)  = FZ(q)r(t) for any f,-stable 
linear filters Fl (q)  und F,(q). Denote 

1 E =  
N 

and 

Ah0 denote fori, j = 1,2, 

:= lim 
N-m 

1 N-r 

RErj(7) := - ri(t  + T ) T j ( t ) ,  T = 1,. . . , N - t,, N - i=t. 

and RE(7) := RKri(7), i = 1,2. Then 

where M(0 ,  A,,,,) denotes the Multivariate Normal distrt  
bution with mean 0 and covariance mat& A,,,, . Moreover, 
if A:rz is invertible, 

where ~ ' ( 2 )  denotes the Chi-square distribution with 2 de- 
grees of freedom. 

The results given in (iii) and (iv) are asymptotic results, 
established using a central limit theorem. For finite N 
the given distributions are approximations of the true ones. 
However, extensive monte car10 simulations show that this 
approximation can be very good for small N already, see 
[6]. Note that the expression for the covariance matrix in 
part (i) is a non-asymptotic result, it is correct for any N .  
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' 4.3 Frequency Response Confidence Regions 

Using the results of the previous subsection a computable 
bound for the IV model error G(e'"j) - Go(eiwj) is straight- 
forwardly obtained. And aa such a confidence region for 
the system's frequency response Go(ei"j) is obtained. The 
bound is given in the following main theorem. 

Theorem-4.2 Consider the ZV estimate (6) with frequency 
response G(e'"j) given by (7). Suppose that {eo( t )}  and 
{ T ( t ) }  are independent and that they satisfy the assump- 
tions 2.1 and 2.2 respectively. Let a(p),  p = 1,2, and 
f ( p ) ,  p = 1,2, be given by (15) and (16) respectively, with 
q ( t )  and T ? ( t )  given by (8) and (9) respectively. Moreover, 
let 6 (p) ,  p = 1,2, be given by (17) and (18). 

Let c ~ , ~  correspond to a probability a in the stan- 
dard Normal distribution, such that, if z E N ( 0 , l )  + 
prob(lz1 5 C N , ~ )  = a. Let correspond to a probability 
a in the Chi-square distribution with 2 degrees of freedom, 
such that, i f  z E ~ ' ( 2 )  + prob(z 5 c ~ , ~ )  = a. 

Denote matriz-element ( i ,  j )  of A:,, as given in part ( i)  
of Lemma 4.1 by A&j. Moreover introduce I' = [ :: ;i ] 
as the square-root of the inverae of provided this ma- 

triz w invertible, i.e. rTr = (A&)-'. Then, if N -+ bo, 

(i> IRe (&(e'"j) - GO(eiwj))l 5 

5 + + + &(I), w.p. 2 a, 

IIm (6(e'">) - Go(eiwj))I 5 (5) 

5 + 9 + 9 + 6(2), w.p. 2 a. 

And, if A:,, is invertible, 

(6) 

The parts (i) and (ii) of this theorem provide probabilistic 
bounds for the real and imaginary parts of the IV model 
error, and as such for the frequency response of the system 
Go(z).  These may be combined into rectangular system 
confidence regions in the complex plane using Bonferroni's 
inequality, [14, p. 491. In particular, if any complex-valued 
random variable z has the property that Re(z) 5 a ,  w.p. 2 
a, and Im(z) 5 b, w.p. 2 p, then Re(=) 5 a A Im(z) 5 
b, w.p. 2 1 - (1 - a) - (1 - 0). 

Ellipsoidal system confidence regions are obtained with 
part (E) of the above theorem, provided the matrix A:rz 
is invertible. Note that this is generally the case, except 
for frequencies wj = 0 , ~ .  For these frequencies the signal 
{rz(t)}  is identically zero, as Im (Ph(eiuj)) appearing in (9) 

is zero. This very naturally means that for frequencies 0 
and A there is no imaginary system uncertainty. 

The first contribution to the frequency response uncer- 
tainty regions as specified in Theorem 4.2, corresponds to 
the variance of the IV model, due to the noise (eo(t)}.  The 
second contribution, with d(p ) ,  is due to the response of 
the tail G o ( q ) ,  and represents a bias contribution. The 
third contribution, with f ( p ) ,  is due to the unknown initial 
conditions. Finally, the fourth contribution, with 6(p) ,  cor- 
responds to the frequency response of the tail Go(q ) ,  and 
also represents a bias contribution. 

The different error sources in the IV estimate can be 
clearly distinguished and traded-off. In particular the trun- 
cation value n can be used to make a trade-off between bias 
and variance. A larger value n means a smaller bias, but a 
larger variance. By trying different values an optimal value 
can be determined. Similarly the integer t. offers the pos- 
sibility to trade-off the influence of initial conditions to the 
variance. A larger value t, means a decrease of the error 
contributioLf(p), but an increase of the variance, due to a 
decreasing N = N - t. + 1. 

It is emphasized that the identification of the IV model 
is not a purpose in itself, but serves as a basis for the con- 
struction of system uncertainty regions. The design vari- 
ables in the IV identification, such as the IV model order n, 
should not be used to obtain a tractable (low-order) nom- 
inal model, but should be tuned in such a way that the 
uncertainty regions are as small as possible. The identifi- 
cation of a good nominal model, suited for use in control 
design, is not the issue here. 

Remark  4.3 The probabilistic uncertainty regions given in 
Theorem 4.2 correspond to  an  ezplicit h q u e n c y  domain 
variance and bias ezpression for  an  instrumental variable 
estimate 6(eiwj).  I n  case of open loop identification, zf 
T ( t )  = u(t), the I V  estimate i s  identical t o  a FIR least 
squares estimate. The ezpresaions have been derived for  
any set of basis functions, {P&)}k=O,...,m. Also the con- 
tribution of the initial conditions and undermodelling are 
properly taken into account. 

I n  literature variance ezpressions are given for I V  and 
FIR estimates, however mainly with respect to  the parame- 
ter variance, assuming that the system is in the model set, 
and neglecting the influence of the initial conditions, see for  
ezample [13, Ch. 91 and [17, Ch. 81. Some progress has been 
made in [lo, 111, where f o r  a diferent identification setting 
a procedure is presented to  incorporate the influence of the 
bias when computing the variance. 

Theorem 4.2 provides frequency response confidence re- 
gions for the unknown system G&). However, it appears 
that these can only be calculated if the auto-covariance 
function of the noise process is known, as A:- given in 
part (i) of Lemma 4.1 contains &(T), T = -N+t., . . . , N -  
t,. In [a] a procedure is described to estimate the auto- 
covariance function &(T) from measurement data. In [6] 
it is shown, by means of monte carlo simulations, that this 
estimate is quite accurate, even if it is based on a small 
amount of data. 
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5 Discussion 

In this paper an identification procedure has been devel- 
oped which yields confidence regions for the frequency re- 
sponse of some stable LTI system. The procedure involves 
the explicit calculation of bias and variance errors of an IV 
or FIR least squares estimate. Important features of the 
identification procedure are: 

0 Essentially the procedure is stochastic. Probabilistic 
uncertainty regions are calculated based on data, de- 
terministic system priors, and stochastic noise priors. 

0 The actual computations can be performed quite ef- 
ficiently. No nonlinear optimizations are involved, as 
use is made of a linear system parametrieation, and 
consequently there is no problem with local optima. 

0 The required prior information can be reliably esti- 
mated from data. 

0 There are no restrictions on the input signal, it need 
for example not be periodic. It is even not necessary 
that the input is generated in open loop. 

0 No order assumption about the system is made. 

0 The procedure is easily extendable to  MIMO systems. 

Rough prior knowledge about the system, or more 
specifically pole-locations, can be incorporated by us- 
ing generalized orthonormal basis functions. 

0 Unknown initial conditions are properly taken into ac- 
count. 

0 The identification procedure is robust for noise out- 
liers, and small errors in the prior information. This 
means for example that if the system has a small non- 
linearity (measured in terms of its &induced norm), 
the resulting uncertainty regions are just slightly er- 
ratic, and hence are still (approximately) valid. 

On the other hand some drawbacks of the probabilistic un- 
certainty bounding identificiation procedure developed in 
this paper, are: 

Although all computations can be carried out effi- 
ciently and accurately, the identification procedure re- 
quires a lot of computations. This means that on-line 
application of the procedure seems infeasible. 

The procedure makes use of results which are asymp- 
totic in the number of data. As in applications there 
are always finite-data records, the results might not be 
valid in practice. On the other hand, monte car10 sim- 
ulations ([61) show that the error caused by the finite- 
ness of the number of data can be very small, even for 
small values of N. The acccuracy of the finite-data 
approximation depends on several factors, such as the 
length of the pulse response of the noise generating 
filter, and the actual distribution of the noise process. 
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