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Summary  Several  results  concerning  the  properties of 
least  squares  models  for  linear,  time-invariant, 
discrete-time SISO systems  are  derived.  The  model  set 
used is the set of all autoregressive  moving-average 
(ARMA) models of order ( p , v )  or  less.  This  paper  is 
concerned  with the properties  of  least  squares 
(equation  error)  models  of  systems  which  are  not in the 
model  set. In particular, we characterize  the 
difference  between  the  actual  and  model  impulse 
responses. It is  shown  that  although  asymptotically 
the first p+l impulse  response  elements  are  matched 
exactly  (where @ is  the  numerator  order  of  the  model 
transfer  function)  the rest of  the  fit  can  be  quite 
poor.  Several  theorems are presented  which  describe 
the  properties  of  this  fit. 

1. Setting  of  the  problem 
We  study  the  discrete  time  description of single  input/ 
single output, linear,  time-invariant,  causal  systems, 
as outlined  and  defined in Fig. 1. 
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Fig. 1 Outline  of  the  system  and  equation  error 
model.  A,B,G,H are  polynomials in the  delay 
operator z-l of the  respective  order v , p , m , m .  

u(.) and E ( . )  are  independent  white  noise 
sequences of variances u: and 0:. 

The  input  signal 
will  be  assumed  very  rich so that  it  can  be  conceived 
of as white  noise.  Furthermore  we only consider  large 
data  sets, i.e. the  number  of  samples  tends to infin- 
ity.  An equation  error  model is obtained  by  minimizing 
the sum of  squared  equation  errors eE(k). For a  large 
number  of  samples  this is asymptotically  equivalent  to 
minimizing  the  expectation  of  the  squared  equation 
error: 

B(z-l) while a. = 1. 
From now on g and  represent  the  values of the  para- 
meters  for  which VE takes  the  minimum 6,. Of  course 6, 
= 0 if  and only if  the  system is in the  model  set (see 
Mullis  and Roberts3) and u$ = 0.  Conversely,  the 2 and 
parameters  define  the  equation  error  model  with  im- 

pulse  response h(.) and  covariance 

Correspondingly,  for  the  output  covariance  sequence  We 
get:Jl(k) = . E  h(i1  h(i-k) + u$ , E  g(i)g(i-k)  (1.3) 
where h(.) and g ( . )  are  the  inverse  z-transforms of H 
and G and  where  we  have put U: = 1 without lOSS Of 
generality. 

2. Some  theorems 
The  proof  of  the  following  theorems can be  found in 
Damen  and Moses’. The  first  theorem is already  known 
( see  Mullis  and  Roberts3)  though  in  our  opinion  it  is 
not  yet  sufficiently  emphasized  in the literature: 
Theorem 1: Given  a  stable  linear  system  represented 
by its impulse  response {h(i)}i,o ..,-. Let the  input 
be  white  noise. A ( p ,  v )  order eq;Ation error  model 
fits  the  first p+l samples of-this impulse  response 
asymptotically  exactly, i.e. h(i)=h(i)  for  i=O,1 ...p. 
Remark:  Deeper  analysis  of  the  proof  reveals  that  for 
accomplishing  this,  all  degrees  of  freedom in the 
parameters  are  used  for  this  purpose so that only the 
freedom in the  E-parameters is left  for  the  fit of the 
tail  of  the  impulse  response. 
For the  next  theorems  we  need  the  following lema and 
corollary: 

1=0 1=0 

Lemma 1 
- Let a define  a  matrix 0 as in (2.2)  and  the - 

1 stai5e’ polynomial 
zv  + alzV-’ + ... + a, (roots inside  unit disc). 

e.g. Sijderstrijm and  Stoica4)  be  given  by & = 
[kl k2 ... k,IT. 

- Let -& (i.e. the  negative  refl.  coef.)  define  the 
‘stable’ polynomial 
zv + ylzV-’ +...+ y and  a  corresponding  vector 

- Let the  corresponding  reflection  coefficients (see 

1 = [Y1 Y2 * ’  YVIT.V 
Then: 1 is the  unique  solution  of QT 

Corollary 1: p,+(O) = 6, + 6, (2.3) 

Subtraction of the equaiiions in  corollary 1 immedi- 
ately  yields: 
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Theorem 2 :  + ( a )  - $(GI = 2 ( 2 . 7 )  

or in  words:  The  power  in  the  output  equals  the  power 
of the  simulated  output  plus  the  least  squares  error 
divided by pv. 
Remarks;  Since  both > 0 and p, > 0 it  is  clear  that 
+ (  0 ) > $( 0 ) .  If the  system  is  in  the  model set, this 
was  to be expected  because  the  real  output  also  con- 
tains  the  noise  influence.  If  on  the  other  hand  there 
is no noise  at  all (a: = 0 )  and  the  system  is  not  in 
the  model set, the  relation  still  holds,  which  is  quite 
remarkable.  It  says  that  even in the  absence  of  noise 
the  equation  error  model  produces  a  simulated  output 
which  is  less in power than the  actual  output.  This 
difference in power  bE/pV  can  be  quite  substantial 
because bE (squared  one-step-ahead  prediction  error) 
may  be  very  small  but so can pv = ( 1-kf) . If the 
estimated  poles  are  close  to  the  unlt  circle,  the  re- 
flection  coefficients  will  be  close  to 1 and  conse- 
quently p, will  become  very  small too, 
Similar  remarks  can  be  made  when  we  consider  the  ratio 
of the  powers  obtained by division  of ( 2 . 4 )  by ( 2 . 3 ) :  

Theorem 3:  & = < 1 

The  inequality  is now caused  by  the  fact  that 6, > 0 
and 6, > 0 (follows from ( 2 . 4 ) .  The  ratio  of  powers 
will  be  very  much  less  than 1 as soon as 6, < 6,. 
Further  study of this 6, will  be  done in the  next  sec- 
tion. 

3 .  Bounds 
The  quantity 6H = ( 1  1') HTH 14 depends on the  first 
p+l  impulse  response  samples  h  and  the  estimated 
auto-regressive  parameters a. It has  been  shown (see 
Damen  and Moses') that  for  all a corresponding  to 
stable  models  this  quantity 6, is  less  than  a  value 
depending  on h =  (h(O),h(l), ... h(p)IT.  The  more  know- 
ledge  available  of 4 (and possibly a) the  tighter  this 
bound  will be.  If we  have  some  a  priori  knowledge 
about 4 such  as  the (maximum) energy,  we  can  use  the 
followins  bound: 

PV 

i= 1 

H 'E 
( 2 . 8 )  

(see DGen and Moses' ) where  the  norm is the  standard 
norm  on L a .  Combination  of ( 2 . 8 )  and ( 3 . 1 )  puts  an 
upper  limit on the  ratio of output  powers: 

n 
The  interpretation  of ( 3 . 2 )  becomes  particularly  in- 
teresting if we  apply  it  for  the  ideal  situation  when 
there is no noise  (i.e. a i  = 0 ) but  all  deviations  are 
due  to  the  fact  that  the  system  is  not  representable by, 
a (p,v) AFMA  model.  Under  that  condition $ ( O )  repres- 
ents  the  power  of  the  noise-free  system  output. We  are 
interested  in bo,  the  expected  power of the  output 
error  if  we  use  the  equation  error  model  for  a simu- 

lation, so 5 ,  = (h(i)-i(i))z.  We  can  use  Schwartz 

Ciearly 6, is  the  expected  pbwer  of  the  one  step  ahead 
prediction  error. 6, max is  the  maximal  energy  in  the 
first p+1 impulse  response  samples  times  min ( p + l , v + l ) .  
Finally, + ( a )  is  the  energy  in  the  actual  impulse re- 
sponse  or  the  expected  power of the  output. 
AS expected,  we  immediately  observe  that  the  worse  the 
relative  prediction is (greater 6E/$(0)) the worse  the 
relative  simulation  (greater b o / + ( 0 ) )  will be. But  we 
also  note  that  if  the  energy in the  first p+l impulse 
response  samples  become  small  with  respect  to  the  total 
impulse  response  energy (i.e. small 6, max/$(0)) a 
good  simulation  performance  is  impossible.  Of  course, 
in  practice  noise  will  disturb  this  ideal  picture - 
but  only  slightly.  If  we  allow a i  # 0 and  mark  the 

resulting  powers of output  and  equation  error  with  an 
asterisk ( $ * ( a )  and 6;) and  preserve $(O) for  the 
noise-free  output  power,  reconsideration  of ( 3 . 2 )  and 
( 3,. 3 yjelds :- 
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gate that 62 max exclusively  depends on the  maximum 
energy  of  the  first p+l  impulse  response  samples.  The 
smaller  this  energy  the  worse  the  simulation  Will be. 

4 .  Example 
As a  system  we  used  the  impulse  response  of  an  experi- 
ment  which  concerned  a  retina  phenomenon  and  which is 
shown  in  Fig. 2 .  No output  noise  has  been  applied. A 
5th  order  model ( p  = v = 5 )  has  been  used  in  an  equa- 
tion  error  estimation  and  we  indeed  observe  that  the 
first p+l estimates  of  the  impulse  response  fit  per- 
fectly.  The  tail  of  the  impulse-response  h(k)  for  k > 
p + l  is  much  too  small  (remember + ( O )  < + ( a ) ) .  We have 
observed  this  phenomenon  again  and  again  in  many  simu- 
lations  and  industrial  data. One should  consider  that 
continuous  processes  always  need  some time previous  to 
response so that  a  sufficiently  high  sampling  rate  will 
always  cause ll&ll2 to  be  small  compared  to $ ( a ) .  It is 
certainly  not  true  that  the  modelset  is  too  tight  be- 
cause  results  of an output  error  estimation  are  also 
given in Fig. 2 and  these  give  a  satisfactory  fit. 
More  examples  can  be  found in Damen, Tomita,  Van  den 
Hof . 
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Fig. 2 Original  impulse  response  of  a  retina 

phenomenon  and  the  impulse  responses  of 
its  5-th order equation  error  and  output 
error  models 

5 .  Conclusions We summarise  the  main  results: 
An  eauation  error  model  sives  a  perfect  fit (asymp- 
totically)  for  the  first p+l impulse  response 
samples  if  the  input is sufficiently  rich. 
The  later  impulse  response  samples  are  generally 
(far) too  small. 
This  phenomenon  is  increasingly  pronounced  when  the 
energy  of  the  first p+1 impulse  response  samples of 
the  actual  system  is  small  compared to the  energy 
of  the  complete  response. 
The  simulation  performance  of  an  equation  error 
model  is  always  worse  than  the  prediction  error. 

_ _  
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