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A Necessary Condition for Network Identifiability With
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Abstract—This article considers dynamic networks where ver-
tices and edges represent manifest signals and causal dependen-
cies among the signals, respectively. We address the problem of
how to determine if the dynamics of a network can be identified
when only partial vertices are measured and excited. A neces-
sary condition for network identifiability is presented, where the
analysis is performed based on identifying the dependency of a
set of rational functions from excited vertices to measured ones.
This condition is further characterized by using an edge-removal
procedure on the associated bipartite graph. Moreover, on the
basis of necessity analysis, we provide a necessary and sufficient
condition for identifiability in circular networks.

Index Terms—Bipartite graph, data-driven modeling, directed
graphs, graph theory, network systems, system identification.

I. INTRODUCTION

The study of complex dynamic networks has flourished recently
in the systems and control community, along with a wide range of
applications in, e.g., robotic coordination, biochemical reactions, and
smart power grids. Developing mathematical models for these intercon-
nected systems is a fundamental step in understanding their behavior
and eventually devising efficient techniques for prediction and control.

In this article, we consider identification of a class of dynamic
networks consisting of vertex signals that are interconnected by causal
rational transfer functions (modules) and possibly driven by external
excitation signals [1]. A central concept here is identifiability, which
essentially reflects if a unique model can be distinguished on the basis of
measurement data. Different from identifiability defined in the classical
system identification literature for fixed open-loop and closed-loop
configurations [2], identifiability analysis in a network setting largely
relies on the interconnection structure of networks [3], [4], [5], [6],
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[7], [8], [9], [10]. Based on the structural information, a set of models
for a dynamic network is obtained, and then the core problem of this
article is to explore the conditions under which the network model set
is identifiable.

The identifiability problem can be formulated in the scale of a full
network, see, e.g., [8], [9], [10], [11], [12], [13], and it can also focus
on a single module or a subset of modules in a network [14], [15], [16],
[17]. In this article, the latter is of particular interest. The majority of
existing studies on the full network identifiability mainly consider two
settings. For example in [8], [9], [10], all vertices are assumed to be
excited by external excitation signals, and only partial vertex signals
are measured, while the works, [12], [13], [18] follow a dual setting,
where all internal variables are measured, and only a subset of vertices
are driven by measured external excitation signals or unmeasured
noises. Within these two settings, necessary and sufficient conditions
for network identifiability have been derived. In [12], identifiability
was interpreted as the full rank property of certain transfer matrix from
external signals to measured internal signals. In contrast, a generic
notion of identifiability was proposed in [8] and [9], which leads to
attractive graph-theoretical conditions based on vertex-disjoint paths
for checking network identifiability. These works have inspired [10],
which extends the path-based condition to address global identifiabil-
ity. Furthermore, [13] reformulates a new graphical characterisation
for generic identifiability by means of disjoint pseudotree covering,
which further leads to a scalable graph-based algorithm for allocating
actuators.

While the abovementioned works require that all vertices are either
measured or excited by sufficiently rich external signals, [11] provided
identifiability results in the scenario where not all vertices are measured
and not all vertices are excited. Sufficient conditions are discussed for
the generic identifiability of a subset of modules. Yet these conditions
require certain prior knowledge on network dynamics, and they are not
entirely graph-based except for special networks with cycle and tree
topologies. A generic local notion of network identifiability was con-
sidered in [19] that is weaker than generic identifiability. A necessary
and sufficient condition for local identifiability could be obtained in
terms of transfer matrix ranks, but a graph-theoretical analysis for local
identifiability remained an open question. In contrast, we presented
in [17] a sufficient condition for generic identifiability of a single
module in a network.

In line with the network setting of [11], [17], this article studies
identifiability of full dynamic networks, where only partial excitation
and measurement signals are available. We develop a new necessary
condition for the identifiability of general networks by recasting the
identifiability problem into determining the dependency of a system
of rational functions with the parametrized modules as indeterminate
variables, where the functions represent individual mappings from the
excitation signals to the measured vertices. The condition can be refor-
mulated in terms of an edge-removal process for a bipartite graph, thus
it only relies on the topology of networks. Furthermore, the necessity
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analysis is then applied to circular networks, leading to a necessary
and sufficient condition for identifiability that goes beyond the results
in [11], where only a sufficient condition is given. Meanwhile, a
parallel development in [24] presented alternative conditions for the
identifiability of circular networks that do not rely on vertex disjoint
paths.

The rest of this article is organized as follows. In Section II, we
recap some basic notations used in graph theory and introduce the
dynamic network model. Existing necessary conditions for network
identifiability are introduced in Section II, and Section IV presents a
necessary condition for the identifiability of dynamic networks and
further zooms into the analysis of circular networks in Section V,
where a necessary and sufficient condition for identifiability is provided.
Finally, Section VI concludes the article.

Notation: Denote R as the set of real numbers, and R(q) is the
rational function field over R with the variable q. The cardinality of a
set V is represented by |V|. Aij denotes the (i, j)th entry of a matrix A,
and more generally, AU,V denotes the submatrix of A that consists of
the rows and columns of A indexed by two positive integer sets U and
V , respectively. The normal rank of a transfer matrix A(q) is denoted
by Rank(A(q)), and Rank(A(q)) = r if the rank of A(q) is equal to r
for almost all values of q.

II. PRELIMINARIES AND PROBLEM SETTING

A. Graph Theory

A graph G consists of a finite and nonempty vertex set V :=
{1, 2, . . . , L} and an edge set E ⊆ V × V . A directed graph is such that
each element in E is an ordered pair of elements of V . If (i, j) ∈ E , we
say that the vertex i is an in-neighbour of j, and j is an out-neighbour of
i. We useN−j andN+

j to denote the sets that collect all the in-neighbours
and out-neighbours of vertex j, respectively.

A graph G is called simple, if G does not contain self-loops (i.e., E
does not contain any edge of the form (i, i), ∀ i ∈ V), and there exists
only one directed edge from one vertex to each of its out-neighbours.
In a simple graph, a directed path connecting vertices i0 and in is
a sequence of edges of the form (ik−1, ik), k = 1, . . . , n, and every
vertex appears at most once on the path. Particularly, a single vertex
can also be regarded as a special path of length 0. Two directed paths
are vertex-disjoint if they do not share any common vertex, including
the start and the end vertices.

B. Dynamic Network Model

Consider a dynamic network whose topology is captured by a simple
directed graph G = (V, E) with vertex set V = {1, 2, . . . , L} and edge
set E ⊆ V × V . Following the basic setup in [1], [11], each vertex is
described by an internal variable wj(t) ∈ R, and a compact form of the
overall network dynamics is

w(t) = G(q)w(t) +Rr(t) + ve(t),

y(t) = Cw(t) + vm(t) (1)

where q−1 is the delay operator, and w(t) := [w1(t) w2(t)
· · · wL(t)]

� collects all the internal signals. G(q) is a hollow transfer
matrix, in which the (i, j)th entry, denoted byGij(q) ∈ R(q), indicates
the transfer operator from vertex j to vertex i.

LetR ⊆ V and C ⊆ V be the vertices that are excited and measured,
respectively, and K = |R| and N = |C|. The signals r(t) ∈ RK and
y(t) ∈ RN are the external excitation and measurement signals with
R ∈ RL×K , C ∈ RN×L binary matrices indicating which vertices are
excited or measured. Specifically, R and C consist of the columns and

rows of the identity matrix indexed by the set R and C, respectively.
The excitation and measurement noises are represented by ve(t) ∈ RL,
vm(t) ∈ RL, respectively.

Assumption 1: Throughout the article, we consider the following
standard assumptions for dynamic networks (see also [12], [15]).
1) The network (1) is well-posed and stable, i.e., (I −G(q))−1 is

proper and stable.
2) The function Gji(q) is nonzero if and only if (i, j) ∈ E .
3) All the entries of G(q) are proper and stable transfer operators.

In the context of network identification, we considerM = (G,R,C)
to be a network model of (1), where all the nonzero entries in G are
parametrized independently. Therefore, we obtain a network model set

M := {M(q, θ) = (G(q, θ), R,C), θ ∈ Θ}. (2)

Denote the transfer matrix

T (q, θ) := (I −G(q, θ))−1 (3)

and TC,R is the submatrix of T containing the rows and columns of T
indexed by C andR, respectively. The network identifiability is thereby
defined as follows.

Definition 1 (Network identifiability): The network model set M
in (2) is identifiable from the submatrix TC,R at M0 := M(θ0) with
θ0 ∈ Θ if the implication

CT (q, θ1)R = CT (q, θ0)R⇒M(q, θ1) = M(q, θ0) (4)

holds for all θ1 ∈ Θ. Furthermore, the network model setM is identi-
fiable from TC,R if (4) holds for all θ0 ∈ Θ.

As a relevant concept, generic identifiability of the network model
setM is defined when the implication (4) holds for almost all θ0 ∈ Θ,1

see more details in [8], [9], [15].
Remark 1: It is worth noting that while this article considers only

excitation input r in (1), disturbances can also be taken into account as
in [13]. Under some mild assumptions, disturbance inputs play a similar
role as the excitation inputs, and thereby the results in this article can
be directly generalized to the disturbance case.

In an identification setting, we can consistently identify the transfer
matrix TC,R from the measured signals y(t) and r(t), provided that
the network is fed with sufficiently exciting inputs r(t). Therefore,
identifiability reflects the ability to distinguish between models in the set
M from measurement data, or more precisely, from the transfer matrix
TC,R as described in Definition 1. In this sense, network identifiability
essentially depends on the presence and location of external excitation
signals r and the selection of measured vertex signals y.

III. EXISTING NECESSARY CONDITIONS

A preliminary necessary condition has been given in [11] as follows.
Lemma 1: Any network model setM is identifiable only if |R| ≥ 1,

|C| ≥ 1, and V = R∪ C.[11]
This condition means that to identify all the parametrized entries in

G, each vertex in G must be either excited or measured.
In other studies including [9], [12], [20], necessary conditions for

network identifiability have been provided in the setting of either full
excitation or full measurement. Combining these works in the two
settings, we immediately obtain a necessary condition for identifiability
in the case of partial excitation and measurement.

Proposition 1: Consider the network model setM in (2) withR ⊆
V and C ⊆ V the excited and measured vertices. IfM is identifiable,

1“Almost all” refers to the exclusion of parameters that are in a subset of Θ
with Lebesgue measure zero.
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Fig. 1. Dynamic network that satisfies the necessary conditions in
Lemma 1 and Proposition 1 but is not identifiable.

then

Rank
(
TN−

i
,R(q, θ)

)
= |N−i |, (5a)

and Rank
(
TC,N+

i
(q, θ)

)
= |N+

i | (5b)

hold for each i ∈ V and for all θ ∈ Θ.
Proof: The necessity of (5a) can be proved following a reasoning

similar to [12, Th. 2] for the full measurement case. Then, the necessity
of (5b) is also validated, following from a dual analysis. �

Generally, the study of the necessary condition for network iden-
tifiability in the partial excitation and measurement setting is rarely
addressed. The available necessary conditions can be rather loose in
determining identifiability of general networks. For instance, these
conditions are not sufficient for the identifiability of the four-vertex
dynamic network in Fig. 1.

Example 1: In the network shown in Fig. 1, R = {1, 2} and C =
{3, 4}. The matrix T defined in (3) is computed as

T =

⎡
⎢⎢⎢⎣

1 0 0 0

G21 1 0 0

G31 0 1 0

G21G42 +G31G43 G42 G43 1

⎤
⎥⎥⎥⎦ .

It is not hard to verify that all the necessary conditions in Lemma 1
and Proposition 1 are fulfilled. However, the model set of this net-
work M is not identifiable, which can simply be seen from the
submatrix

TC,R =

[
G31 0

G21G42 +G31G43 G42

]
.

Note that identifiability of M essentially requires to obtain a unique
solution of the four unknown modules G12, G24, G31, and G43 from
the entries of TC,R. However, TC,R has a zero entry, thus it is impossible
to identify four modules from it.

IV. MAIN RESULTS

In this section, we present a novel necessary condition for network
identifiability and further develop a graph-based condition to check the
necessary condition.

A. Necessary Condition for Network Identifiability

In this section, we derive a necessary condition for network iden-
tifiability, motivated by Example 1, that is based on the number of
the nonzero transfer functions as the entries in TC,R. In the transfer
matrix T , we have three categories of entries, namely, “0,” “1,” and
nonconstant elements that are represented as functions of modules Gji,

Fig. 2. Network that satisfies the necessary conditions in Lemma 1,
Proposition 1 and (6) but is not identifiable.

e.g., the element T41 in Example 1 is a function of the modules as
T41 = G21G42 +G31G43. For any i 	= j, the entry Tji is nonzero if
there is at least a directed path from i to j, and Tji = 0 otherwise.
Furthermore, a diagonal entry of T , Tii 	= 1 if there exists a directed
cycle that starts and ends at vertex i, and Tii = 1 otherwise.

Identifiability essentially reflects whether we can uniquely solve all
the modules in G from the entries of TC,R. Note that the 0 or 1 entries
in T do not contain any information of the modules, and thus are not
useful for identifiability. Let ξ be the number of nonconstant elements
in TC,R. An immediate necessary condition for identifiability of the
network model is

ξ ≥ |E| (6)

where E is the edge set of the network. This simple condition shows
why the network in Fig. 1 is not identifiable. It is found that ξ = 3,
while there are four edges, and therefore this does not conform with
(6). However, the condition in (6) is obviously not sufficient to verify
the identifiability of a dynamic network in a more general setting. For
instance, it is incapable to handle the network in Fig. 2. This network
example will also be used as a lead-in to our new necessary condition
to be developed later in this section.

Example 2: We consider a simple network in Fig. 2, where R =
{1, 2, 3, 4} and C = {5, 6, 7, 8}. To the best of our knowledge, there
is currently no available condition in the literature that can determine
identifiability of the model set. It is clear that this network satisfies
all the available necessary conditions in Lemma 1 and Proposition 1.
Furthermore, there are ten nonconstant elements in TC,R that is equal
to the number of unknown modules, i.e., |E| = 10. Thus, (6) is also
satisfied.

Here, we need a further analysis to determine whether this network
model set is identifiable or not. Note that we can identify the submatrix
of T := (I −G)−1 from measurement data (r, y) as

TC,R =

⎡
⎢⎢⎢⎣
T51 0 0 0

T61 T62 0 0

T71 T72 T73 0

T81 T82 T83 T84

⎤
⎥⎥⎥⎦

where T51 = G51, T62 = G62, T73 = G73, T84 = G84, T61 =
G62G21 +G65G51, T72 = G73G32 +G76G62, T83 = G84G43 +
G87G73, T71 = G73G32G21 +G76G62G21 +G76G65G51, T82 =
G84G43G32 +G87G73G32 +G87G76G62, T81 = G84G43G32G21

+G87G73G32G21 +G87G76G62G21 +G87G76G65G51.
It can be verified that

T83 = T73(T61T82 − T62T81)(T61T72 − T62T71)
−1 (7)

which implies that the information of T83 is redundant in identifying
the unknown modules in the network, since it can be represented by
the other nonzero elements in TC,R. Thus we have ten equations that
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are not independent, from which it is impossible to solve ten unknown
modules. As a result, the network model set is not identifiable.

Motivated by Example 2, we aim to find a tighter necessary condition
for network identifiability, of which the necessity is featured by the
independence of a set of rational functions. To this end, we define two
sets associated with a dynamic network (1). The unknown modulesGij

in the network are viewed as indeterminate variables, leading to a set
of unknown modules

X := {Gji(q) | (i, j) ∈ E}
with E the edge set of the network. Then, the nonconstant elements of
TC,R form a set of rational functions on X , denoted by

F = {T�k | T�k 	= 0 and T�k 	= 1, � ∈ C, k ∈ R} (8)

where |F | = ξ with ξ in (6). The rational functions in F are dependent,
if there is a function in F that can be represented by the other functions
in F with elementary arithmetic operations (i.e., addition, subtraction,
multiplication, and division).

For instance, the ten functions in Example 2 are dependent due to (7).
In order to analyse identifiability of the network, we can first remove
dependent functions in F , e.g., T83 in Example 2, to obtain a reduced
set F̂ , and then compare the cardinality of F̂ with the number of edges
in the network. A key question therefore arises, i.e., how to identify the
dependency of the functions in F ?

To address this question, we adopt the concept of structural rank
from [21] that considers the nonzero pattern of T .

Definition 2 (Structural rank): The structural rank of T , denoted by
Sprank(T ), is the highest rank of all matrices with the same nonzero
pattern as T .

To verify the dependency of the functions in F defined in (8), we
consider TC,R and check each submatrix of TC,R that has full structural
rank.

Lemma 2: Consider any transfer matrix T and the function set F
in (8). The nonconstant rational functions in F are dependent, if there
are two subsets C̄ ⊆ C and R̄ ⊆ R with |C̄| = |R̄| such that

Rank(TC̄,R̄) < Sprank(TC̄,R̄) = |C̄|. (9)

Proof: The two equalities in (9) mean that TC̄,R̄ is a square matrix
that has full structural rank. Therefore, the determinant det(TC̄,R̄) is a
function that can be written as combination of the functions in the set
F . While the inequality holds, i.e.,TC̄,R̄ is not full rank, the determinant
function det(TC̄,R̄) = 0, from which a dependency of the functions as
components of det(TC̄,R̄) is obtained. �

We illustrate this lemma by using Example 2. Consider a 3× 3 ma-
trixTC̄,R̄ as the submatrix ofTC,Rwith R̄ = {1, 2, 3} and C̄ = {6, 7, 8}.
From the nonzero pattern of TC,R, we see that Sprank(TC̄,R̄) = 3. How-
ever, it follows from (7) that det(TC̄,R̄) = T83(T61T72 − T62T71)−
T73(T61T82 − T62T81) = 0, i.e., Rank(TC̄,R̄) < 3. Therefore, the non-
constant elements in TC̄,R̄ are dependent.

Remark 2: To identify dependent functions in F , we need to check
the rank of each square submatrix in TC,R, since the full rank of TC,R
does not guarantee the full rank of its submatrices. One example is
TC,R in Example 2 that has full rank, while the submatrix TC̄,R̄ is rank
deficient.

To derive a tighter necessary condition for network identifiability
than (6), we proceed to an iterative elimination of the entries in TC,R,
when dependency of a nonconstant element ofTC,R is found. A detailed
scheme is described as follows.

We use Example 2 to show how Algorithm 1 works. Initially, F
contains 10 elements. In the first iteration, we can select R̄ = R and
C̄ = C with |C̄| = |R̄|. Due to (7), TC̄,R̄ is not full rank, i.e.,

Algorithm 1: Iterative Elimination of Dependent Functions.

1: initialize T̂ = TC,R, and the set F as defined in (8).
2: repeat
3: Find C̄ ⊆ C and R̄ ⊆ R with |C̄| = |R̄| such that

Rank(T̂C̄,R̄) < Sprank(T̂C̄,R̄) = |C̄|. (10)

4: Select any pair of i ∈ R̄, j ∈ C̄ and remove the element Tji

in F , and let the element in T̂ corresponding to Tji be zero.
5: until There are no C̄ ⊆ C and R̄ ⊆ R satisfying (10).
6: returnThe reduced set F̂ associated with T̂ .

Rank(TC̄,R̄) < 4 = Sprank(TC̄,R̄). Hence, we can remove an arbitrary

element, e.g., T84, yielding a reduced set F̂ = F \ T84. Meanwhile,
we obtain a new transfer matrix

T̂ =

⎡
⎢⎢⎢⎣
T51 0 0 0

T61 T62 0 0

T71 T72 T73 0

T81 T82 T83 0

⎤
⎥⎥⎥⎦ .

As we cannot find any more subsets C̄ and R̄ such that the resulting
submatrix T̂C̄,R̄ satisfies (10), then the algorithm terminates.

With the element elimination procedure in Algorithm 1, TC,R is
sparsified as T̂ , in which nonconstant elements form a reduced set F̂
after removing the dependent rational functions in F . Thereby, it then
yields a new necessary condition for network identifiability as follows.

Theorem 1: Consider the network model setM with R and C the
sets of excited and measured vertices, respectively. Let F̂ be the set
generated by Algorithm 1.M is identifiable only if |F̂ | ≥ |E|, where
E is the edge set of the network.

Proof: If M is identifiable, then it is clear that the number of
independent functions in F should be greater than or equal to |E|.
Otherwise, there will be a smaller number of equations than the number
of unknown modules as indeterminate variables, such that the system of
equations becomes underdetermined and cannot yield a unique solution.

From Algorithm 1, the returned function set F̂ is generated by
removing a subset of elements in F defined as in (8), and these removed
elements are nonconstant rational functions that are dependent on the
rest of functions in F̂ . Then, it is necessary to have |F̂ | ≥ |E| ifM is
identifiable. �

A special case is discussed, where there is a single excited vertex or
only one measured vertex. In this case, we do not need to implement
the elimination procedure in Algorithm 1.

Corollary 1: Consider the network model set M with R and C
the sets of excited and measured vertices, respectively. Let |R| = 1 or
|C| = 1. If M is identifiable, then |F | ≥ |E|, where F is the set of
nonconstant elements in TC,R.

Proof: If |R| = 1, TC,R is a matrix with only one column, and
thus Rank(TC̄,R) = Sprank(TC̄,R) = 1, for any C̄ ⊆ C. Consequently,
no dependent rational functions can be found in F , and the result is
immediate from Theorem 1. For the case that |C| = 1, we can prove the
statement in a similar way. �

Example 3: Consider a circular network in Fig. 3 with six vertices,
whereR = {1, 2, 3} and C = {4, 5, 6}. It was shown in [11] that such
circular network is identifiable if one node is both excited and measured,
which however is not the case in this example. Here, we illustrate how
to use Algorithm 1 and Theorem 1 to check network identifiability.
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Fig. 3. Six-vertex dynamic network with R = {1, 2, 3} and C =
{4, 5, 6}. The network model set is not identifiable by applying Theo-
rem 1.

Initially, we have

T̂ = TC,R =

⎡
⎢⎣
T41 T42 T43

T51 T52 T53

T61 T62 T63

⎤
⎥⎦

which gives F = {T41, T42, T43, T51, T52, T53, T61, T62, T63}. Note
that

T51 = (1− φc)
−1G54G43G32G21,

T41 = (1− φc)
−1G43G32G21,

T52 = (1− φc)
−1G54G43G32,

T42 = (1− φc)
−1G43G32

where φc := G16G65G54G43G23G21. The four equations satisfy
T51T

−1
41 = T52T

−1
42 = G54, meaning that T{4,5},{1,2} is rank deficient

while T{4,5},{1,2} has full structural rank and thus fulfils (10). We select
T41 and remove this element from F and let

T̂ =

⎡
⎢⎣

0 T42 T43

T51 T52 T53

T61 T62 T63

⎤
⎥⎦ . (11)

Further, we observe that T52T
−1
42 = T53T

−1
43 = G54, such that

T{4,5},{2,3} satisfies (10). We can further eliminate an element T42 in
F and let T42 = 0. We can repeat this process and eventually obtain a
reduced set F̂ = {T43, T53, T61, T62, T63} associated with the matrix

T̂ =

⎡
⎢⎣

0 0 T43

0 0 T53

T61 T62 T63

⎤
⎥⎦ .

Since there are only five elements, which is less than the unknown
modules in the original network in Fig. 3, it follows from Theorem 1
that the model set is not identifiable.

Although Algorithm 1 and Theorem 1 provide a necessary condition
for network identifiability in the partial excitation and partial mea-
surement setting, this condition is limited since it is difficult to check
the relevant ranks in (10) when encountering a large-scale network.
Therefore, one of the main contributions of this article will be to
provide a graphical characterization for dependent functions in F , and
a graph-based condition will be given in the next section.

B. Graph-Based Condition

In this section, we provide a graph-based version for the condition in
Theorem 1. The basic idea is to use graphical alternatives to characterize
the rank and the structural rank appearing in (10).

First, a graph-based characterisation of a transfer matrix is revisited.
Consider the transfer matrix TC,R in which each nonconstant element

Fig. 4. (a) Four-vertex dynamic network with R = {1, 2, 4} and C =
{2, 3, 4}. (b) The associated bipartite graph B with a maximum matching
{(1, 2), (2, 3), (4, 4)}.

is a function of θ ∈ Θ. It then follows from [22] that

max
θ∈Θ

Rank(TC,R(q, θ)) = bR→C (12)

where bR→C denotes the maximal number of vertex-disjoint paths from
R to C. The expression on the left-hand side of (12) is referred to as
the generic rank of the matrix TC,R. From (12), we further have

Rank(TC,R(q, θ)) ≤ bR→C (13)

in which the equality generically holds, i.e., holds for almost all θ ∈ Θ.
Next, the structural rank of TC,R is interpreted graphically. The

nonzero pattern of TC,R is associated with a so-called bipartite graph
defined by a triplet B := (R, C, Eb), where Eb is the edge set of B,
and every edge (i, j) ∈ Eb links a vertex i ∈ R and j ∈ C, if Tji 	= 0
(see [23]). Note that we allow a vertex i to be excited and measured
simultaneously, thus an edge (i, i) ∈ Eb may exist.

Definition 3: In a bipartite graph B = (R, C, Eb), a matching be-
tween two sets R̄ ⊆ R and C̄ ⊆ C is a set of edges between R̄ and C̄
that do not share any common vertices. Furthermore, a maximum(-
cardinality) matching between R̄ and C̄, denoted by M (R̄, C̄), is a
matching between R̄ and C̄ with the largest possible number of edges.

This concept then leads to the following result.
Lemma 3: Consider the matrix T in (3), and any R̄ ⊆ R, C̄ ⊆

C. It holds that Sprank(TC̄,R̄) = |M (R̄, C̄)|, where M (R̄, C̄) is any
maximum matching between R̄, C̄ in the associated bipartite graph.[23]

The following example is used to demonstrate how to determine
the structural rank of a matrix through the maximum matching in its
associated bipartite graph.

Example 4: A four-vertex dynamic network is shown in Fig. 4(a), in
whichR = {1, 2, 4}, and C = {2, 3, 4}. The associated bipartite graph
B of TC,R is constructed as in Fig. 4(b). A maximum matching of this
bipartite graph is given as {(1, 2), (2, 3), (4, 4)}, which has cardinal-
ity 3. Thus, Sprank(TC,R) = 3. Note that the maximum matchings of
a bipartite graph may not be unique. An alternative in this case can be
{(1, 2), (2, 4), (4, 3)}.

By means of Lemma 3 and the relation (13), the result in Lemma 2
can be reformulated on the basis of graphs.

Corollary 2: Consider the network model in (1) with the underlying
graph G. Let R and C be the sets of vertices that are excited and
measured, respectively. The nonconstant rational functions in the set
F defined in (8) are dependent, if there exist two subsets C̄ ⊆ C and
R̄ ⊆ R with |C̄| = |R̄| such that

bR̄→C̄ < |M (R̄, C̄)| (14)

where M (R̄, C̄) is a maximum matching between R̄ and C̄ in the
bipartite graph B := {R, C, Eb}, and bR̄→C̄ is the maximum number
of vertex-disjoint paths from R̄ to C̄ in G.
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Algorithm 2: Edge-Removal in Bipartite Graph.

1: initialize Êt = ∅
2: for k = 2 : min{|R|, |C|} do
3: For all C̄ ⊆ C and R̄ ⊆ R with |C̄| = |R̄| = k,
4: if bR̄→C̄ < |M (R̄, C̄)| = k and Eb(R̄, C̄) � Êt then
5: Remove an arbitrary edge (i, j) in the bipartite graph

with i ∈ R̄, j ∈ C̄;
6: Êt ← Eb(R̄, C̄) ∪ Êt.
7: end if

if Êt = Eb then Stop the iteration. end if
8: end for
9: return A simplified bipartite graph B̂.

Corollary 2 is an immediate result of Lemmas 2 and 3, and (13),
and hence, its proof is omitted here. We show how to apply Corol-
lary 2 to check if the nonconstant elements in F are dependent in
Example 4. Consider two subsets R̄ = {1, 2} and C̄ = {3, 4}. Observe
that {(1, 3), (2, 4)} is a maximum matching between the two subsets
with |M (R̄, C̄)| = 2, while the maximum number of vertex disjoint
paths from R̄ to C̄ is only 1. Therefore, the elements in F are not
independent.

Now we derive a necessary condition for network identifiability
based on a more comprehensive procedure that iteratively removes
edges in the bipartite graph B of TC,R. Note that each edge in B is
associated with an nonconstant entry in TC,R, or an element in F .
This simplification process corresponds to the element removal steps
in Algorithm 1. Consider a network model as in (1) with R and C
the excited and measured vertices, where |R| ≥ 2 and |C| ≥ 2. In the
case where |R| = 1 or |C| = 1, we can simply apply Corollary 1. Let
B := (R, C, Eb) be the bipartite graph associated with TC,R. A graph
simplification process is performed on B, see Algorithm 2, in which
the set Eb(R̄, C̄) ⊆ Eb(R, C) collects all the edges between R̄ ⊆ R
and C̄ ⊆ C.

The path-based characterisation (13) for the rank of the transfer
matrix TC,R does not hold for a matrix T̂ in Algorithm 1 that is a
sparsification of TC,R with certain entries in TC,R assigned to zero.
Therefore, in Algorithm 2, we identify the independent functions in
F based on the original TC,R matrix in order to utilize the path-based
characterisation (13). To this end, we define an edge set Êt, which
collects all the edges corresponding to the rational functions whose
dependency have been detected. If the subsets C̄ ⊆ C and R̄ ⊆ R have
been found to satisfy bR̄→C̄ < |M (R̄, C̄)|, meaning that the matrixTC̄,R̄
contains dependent elements, we then include all the edges between
R̄ and C̄ in B into the set Êt. For the latter iteration, it is required
that Eb(R̄, C̄) � Êt, namely, we avoid checking subsets C̄ and R̄ if
all the edges between the two subsets are in Êt, as the dependency of
the relevant functions associated with Êt has been examined. We will
illustrate the procedure of Algorithm 2 in Example 5.

Algorithm 2 starts with inspecting 2× 2 submatrices TC̄,R̄ in TC,R,
which are the smallest submatrices for detecting dependent elements
in F . Note that we do not start with the higher-dimensional subma-
trices in TC,R, since it may not be able to find dependent elements in
some lower-dimensional submatrices. Take the network in Fig. 3 as an
example, if we first check the submatrix TC̄,R̄ with R̄ = {1, 2, 3} and
R̄ = {4, 5, 6}, then all the edges of the associated bipartite graph will be
included in Êt. As a result, Algorithm 2 will stop checking dependent
elements in 2× 2 submatrices, which leads to a more conservative
result.

Fig. 5. Bipartite graph associated with the network in Fig. 3. The
dashed lines represent the edges can be removed.

With the simplified bipartite graph B̂ generated by Algorithm 2, we
obtain a graph-based necessary condition for network identifiability as
follows.

Corollary 3: Consider the network model setM with R and C the
sets of excited and measured vertices, respectively. Let Êb be the edge
set of the simplified bipartite graph B̂ generated by Algorithm 2. The
model setM is identifiable only if |Êb| ≥ |E|.

Example 5: We implement Corollary 3 to check identifiability of
the model set of the network in Fig. 3. The associated bipartite graph B
is shown in Fig. 5 . Consider the subsets R̄ = {1, 2}, C̄ = {4, 5} with
|M (R̄, C̄)| = 2. We find that the maximal number of disjoint paths
from R̄ to C̄ in Fig. 3 is less than 2, implying that the four entries
in TC̄,R̄ are dependent. Therefore, we remove an edge (1,4) in B and

meanwhile obtain the edge set Êt = {(1, 4), (2, 4), (1, 5), (2, 5)}.
We proceed to check the subsets R̄ = {1, 2}, C̄ = {5, 6}, which

allows to remove an edge (1, 5) in B, and the edge set Êt is enlarged
as Êt = {(1, 4), (2, 4), (1, 5), (2, 5), (1, 6), (2, 6)}. This process can
be continued by considering R̄ = {2, 3}, C̄ = {4, 5}, and then R̄ =
{2, 3}, C̄ = {5, 6}. Accordingly, we remove two more edges (2,4) and
(2,5) in B, yielding a reduced bipartite graph with five edges, see the
edges in Fig. 5 indicated by solid lines. Note that although there are more
pairs satisfying (14), e.g., R̄ = {1, 3}, C̄ = {4, 6}, and R̄ = {1, 2, 3},
C̄ = {4, 5, 6}, we no longer impose an edge removal step, since Êt now
has covered all the edges in B. Eventually, it follows from Corollary 3
that the model set of the network in Fig. 3 is not identifiable as |Êb| =
5 < |E| = 6.

V. IDENTIFIABILITY OF CIRCULAR NETWORKS

In this section, we zoom in network identifiability of directed circular
networks, which also includes isolated cycles in a larger network,
namely, the ones that do not share any common vertices with other
cycles. This article shows a necessary and sufficient condition for iden-
tifiability of circular graphs based on vertex disjoint paths. Alternative
conditions on the identifiability of circular graphs can also be found
in [24].

In the existing work [11], only sufficient conditions for identifiability
of circular networks are presented. They are as follows.
1) A directed circular network is identifiable if R∪ C = V and R∩
C 	= ∅.

2) In the special case that the vertex number L is even and larger
than 3, a circular network is identifiable if its nodes are alternately
measured and excited.

However, the above two conditions can be conservative in some
circumstances, see Example 6, in which the network does not satisfy
the two conditions. However this network is actually identifiable. We
will show this by exploring a new necessary and sufficient condition
for identifiability in circular networks.

Theorem 2: A directed circular network is identifiable if and only if
R∪ C = V and one of the following conditions holds.
1) R∩ C 	= ∅.
2) |R| ≥ 2, |C| ≥ 2, and there are at least two vertex disjoint paths

fromR to C in the cycle.
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Proof: Consider a circular network with L vertices, which also has
L unknown modules.

Necessity: It has been shown in [11] that R∪ C = V is a necessary
condition for identifiability of any directed network. In the following,
we prove the two conditions by contradiction. Suppose the two condi-
tions do not hold, i.e., there exist two vertex disjoint paths fromR to C
on a directed cycle when |R| = K ≥ 2, |C| = N ≥ 2, andR∩ C 	= ∅.
Let R = {j1, . . ., jK} and C = {i1, . . ., iN}. In this case, T̂ = TC,R
is an N ×K transfer matrix, where each entry is nonconstant (see
Example 3). Due to C ∩ R = ∅, it holds N +K = L. Furthermore,
each 2× 2 submatrix of T̂ , e.g.,

T{i1,i2},{j1,j2} =

[
Ti1,j1 Ti1,j2

Ti2,j1 Ti2,j2

]

is not full rank. Following the element removal process in Algorithm 1,
we can assign Ti1,j1 = 0 in T . Repeating the operation for each 2× 2
submatrix of T , it leads to

T̂ =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 Ti1,jK

...
. . .

...
...

0 · · · 0 TiN−1,jK
TiN ,j1 · · · TiN ,jK−1 TiN ,jK

⎤
⎥⎥⎥⎥⎦

whose bipartite graph contains only N +K − 1 edges. It follows from
Theorem 1 that the circular network is not identifiable. Therefore, the
two conditions are necessary.

Sufficiency: It directly follows from [11] that the condition 1) is
sufficient for network identifiability of the circular network. Now we
focus on the case that there are more than one excited and measured
vertices and assume there exist at least two vertex disjoint paths from
R to C. Without loss of generality, let vertices 1 and i be excited and
vertices j, k be measured, with 1 ≤ k < i ≤ j ≤ L, and the two paths
from vertices 1 to k and from vertices i to j are vertex disjoint. Denote
φc = G21G32 · · ·GL,L−1G1L as the transfer function for the cycle that
starts and ends at vertex 1. Note that

Tk1 = (1− φc)
−1G21 · · ·Gk,k−1,

Tj1 = (1− φc)
−1G21 · · ·Gk,k−1Gk+1,k · · ·Gj,j−1,

Tki = (1− φc)
−1Gi+1,i · · ·Gj,j−1Gj+1,i · · ·Gk,k−1,

Tji = (1− φc)
−1Gi+1,i · · ·Gj,j−1.

Therefore, we obtain

Tj1T
−1
k1 TkiT

−1
ji = Gk+1,k · · ·Gj,j−1Gj+1,j · · ·Gk,k−1 (15)

which is equivalent to the cycle transfer function φc.
For any vertex u on the cycle, identifiability of Gu+1,u can be

analysed as follows. If both vertices u and u+ 1 are measured, then
we can find an excited vertex s such that Gu+1,u = Tu+1,sT

−1
u,s; If

vertex u is excited while u+ 1 is measured, then we have Gu+1,u =
(1− φc)Tu+1,u, where φc is identified from (15). If u, u+ 1 ∈ R or
u ∈ C, u+ 1 ∈ R, we can prove identifiability of Gu+1,u in a similar
way. As the vertex u can be chosen arbitrarily in the cycle, we thus can
identify all the modules on the cycle. �

The first two conditions in Theorem 2 can be interpreted as that a
vertex has to be measured (excited) if it is the only excited (measured)
vertex in the cycle. The minimal number of signals, i.e., γ := |R|+ |C|,
required for identifiability of a circular network is now discussed. When
the number of vertices L ≤ 3 in the cycle, we have γ = L+ 1, since
at least one vertex has to be excited and measured simultaneously.
WhenL > 3, then identifiability is guaranteed if γ = Lwith two vertex

Fig. 6. Circular network with two vertex disjoint paths indicated by the
dashed edges. The model set is identifiable.

disjoint paths from the excited vertices to the measured ones. Note that
it is not necessary to impose the vertices to be alternately measured
and excited as in [11]. In the following example, identifiability of the
circular network model set cannot be determined by the conditions
in [11], while it can be checked by using Theorem 2.

Example 6: Recall the circular network Fig. 3, where R∩ C = ∅,
i.e., none of the vertices are excited and measured simultaneously.
Furthermore, there are no vertex disjoint paths fromR to C. Therefore,
this network model set is not identifiable, according to Theorem 2.
Now we apply a different excitation and measurement scheme to the
circular network as in Fig. 6 with R = {1, 3, 4} and C = {2, 5, 6}.
Observe that this network does not satisfy the identifiability conditions
proposed in [11]. However, there are two vertex disjoint paths fromR
to C, highlighted by the dashed edges. Therefore, the second condition
in Theorem 2 is fulfilled, showing identifiability of the model set of this
circular network.

VI. CONCLUSION

In this article, we have analyzed identifiability of a dynamic network
where only partial excitation and measurement signals are available. We
presented a necessary condition for identifiability of general networks,
where identifiability is determined by the dependency of a set of rational
functions with the parametrized modules as indeterminate variables.
The merit of this result is that the necessary condition can be rein-
terpreted as a graph-theoretical condition only dependent on network
topology. Moreover, we obtain a necessary and sufficient identifiability
condition for circular networks.
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