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a b s t r a c t

Data informativity is a crucial property to ensure the consistency of the prediction error estimate.
This property has thus been extensively studied in the open-loop and in the closed-loop cases,
but has only been briefly touched upon in the dynamic network case. In this paper, we consider
the prediction error identification of the modules in a row of a dynamic network using the full
input approach. Our main contribution is to propose a number of easily verifiable data informativity
conditions for this identification problem. Among these conditions, we distinguish a sufficient data
informativity condition that can be verified based on the topology of the network and a necessary
and sufficient data informativity condition that can be verified via a rank condition on a matrix of
coefficients that are related to a full-order model structure of the network. These data informativity
conditions allow to determine different situations (i.e., different excitation patterns) leading to data
informativity. In order to be able to distinguish between these different situations, we also propose an
optimal experiment design problem that allows to determine the excitation pattern yielding a certain
pre-specified accuracy with the least excitation power.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

In prediction error identification, it is crucial that the exci-
ation yields informative data. Indeed, provided that the model
tructure describes the true system with a unique true param-
ter vector θ0, data informativity is a necessary and sufficient
ondition for the prediction error estimate of θ0 to be consistent
i.e., to converge to θ0 with probability one when the number
f data tends to infinity) (Ljung, 1999). In a nutshell, data in-
ormativity is obtained when the excitation signal is sufficiently
ich for the prediction error to distinguish the different mod-
ls in the chosen model structure. Due to its crucial impor-
ance, the literature provides a large number of contributions
n data informativity. See e.g., Colin, Bombois, Bako, and Morelli
2020a, 2020b), Gevers, Bazanella, and Miskovic (2008) and Ljung
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(1999). In these papers, the identification of single-input single-
output (SISO) and multiple-input multiple-output (MIMO) sys-
tems is treated in both open-loop and closed-loop configurations.
This paper addresses data informativity in dynamic networks
(i.e., another important configuration).

We will here consider the dynamic network framework intro-
duced in Van den Hof, Dankers, Heuberger, and Bombois (2013).
In this framework, a dynamic network is represented by a number
Nmod of nodes and each of these nodes is characterized by a
measurable scalar signal wj (j = 1, . . . ,Nmod). The signal wj at
Node j is related to the signals wk at other nodes (k ̸= j) through
causal transfer functions G0,jk(z) (also called modules). If Node
l is not connected to Node j, the corresponding module G0,jl(z)
s then equal to zero. The signal wj is also possibly a function
f exogenous signals: an unknown process noise vj and/or a
nown external excitation signal rj added for identification pur-
ose. These exogenous signals vj and rj are not necessarily present
t all nodes j. The dynamic network is thus entirely determined
y the matrix Ḡ0(z) gathering the transfer functions G0,jk(z) and
ts noise and excitation pattern i.e., the description of the nodes at
hich a process noise vj is present (which is not an user choice)
nd of the nodes at which an external excitation rj is present
which is at least partly an user choice). In the literature, different
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pproaches have been developed to derive an (accurate) model
f (part of) the matrix Ḡ0(z). Like in closed-loop identification,
e can distinguish, on the one hand, direct approaches where
he node signals wk are used as data for the identification of the
elements of Ḡ0(z) (Van den Hof et al., 2013) and, on the other
hand, indirect approaches where the model(s) of the module(s) of
Ḡ0(z) are back-computed from an identified model of the closed-
oop transfer matrix between the external excitation signals and
he node signals (Hendrickx, Gevers, & Bazanella, 2019).

Data informativity is as crucial for (prediction error) dynamic
etwork identification as it is for SISO and MIMO identification.
ndeed, in order to derive consistent models in dynamic net-
ork identification, the noise and excitation pattern must lead
o sufficiently rich data for the prediction error to distinguish
he different models in the chosen model structure. However,
ntil now, even though some preliminary results can be found
n e.g., Gevers and Bazanella (2015), Van den Hof et al. (2013)
nd Van den Hof and Ramaswamy (2020), data informativity for
ynamic network identification has only been briefly touched
pon in the literature. As opposed to data informativity, the con-
ept of network identifiability has been extensively explored (see
.g., Hendrickx et al., 2019 and Weerts, Van den Hof, & Dankers,
018). In a nutshell, a network is said identifiable if we can
niquely retrieve (part of) the open-loop representation of the
etwork (i.e., Ḡ0(z)) from closed-loop representations of the net-

work (i.e., representations of the transfer between the exogenous
signals and (some of) the node signals). Network identifiability
and data informativity are thus clearly different concepts and a
deep analysis of data informativity conditions for dynamic net-
work identification is thus absent in the literature. In this paper,
we will address the data informativity issue for one particular
dynamic network identification method: the so-called full input
approach. The full input approach pertains to the identification
of all the unknown modules of a row of the matrix Ḡ0(z) via the
node signalswk (it is thus a direct dynamic network method) (Van
den Hof et al., 2013). The full input approach may be a way to
identify one single module in this row (see Van den Hof et al.
(2013) for more details).

In Van den Hof et al. (2013) (where the full input approach
was introduced), the issue of data informativity was tackled via a
condition on the power spectrum matrix of the data used for the
identification. However, it is difficult to determine if a given noise
and excitation pattern yields data informativity (or not) using
this condition. Moreover, as pointed out in Gevers and Bazanella
(2015), it is also difficult to interpret this condition in order to
determine at which node(s) excitation signals rk have to be added
if the current noise and excitation pattern does not lead to data
informativity. In the present paper, our first contribution is to
reformulate the data informativity condition proposed in Van den
Hof et al. (2013). With this reformulation, data informativity can
be inferred, in some cases, with the sole excitation of the process
noises vj present in the network and, in other cases, by the
addition of filtered white noise excitations rj at some nodes. The
data informativity condition requires that a part of the transfer
matrix S̄0(z) = (I − Ḡ0(z))−1 is full row rank. Using the results
in Hendrickx et al. (2019), this rank condition can be verified via
the analysis of the graph of the network (i.e., the interconnection
structure of the network). Using this graph interpretation, we will
see that it is then straightforward to verify if a given noise and
excitation pattern yields data informativity and that we can also
easily determine at which node(s) excitation signals rk have to
be added if the current noise and excitation pattern does not
lead to data informativity. We will also observe that one noise
and excitation pattern leading to data informativity is the one
proposed in Van den Hof and Ramaswamy (2020), but many other

excitation patterns are also possible.

2

The main characteristic of the data informativity condition
proposed in Van den Hof et al. (2013) and of its reformulation
derived in this paper is that they ensure data informativity for
any model structure. This means that, if a noise and excitation
pattern respects this condition, it will ensure consistent estimates
of modules that can have infinite complexity. While this could be
seen as an advantage in some cases, this also means that, when
the to-be-identified modules are of restricted complexity, many
noise and excitation patterns that would lead to data informativ-
ity will not be detected by these conditions. In particular, we will
see that multisine excitation signals yielding data informativity
will never be detected by these conditions.

In order to be able to more finely detect when data informativ-
ity is obtained, a second and important contribution of this paper
is to derive a data informativity condition that takes into account
the complexity of the to-be-identified modules. This condition is a
necessary and sufficient condition to verify whether, for a given
noise and excitation pattern and for given multisine or filtered
white noise excitation signals, the obtained data are informative
for a full-order model structure of the to-be-identified modules.
This necessary and sufficient condition has a rather complex form.
However, using the framework introduced in Colin et al. (2020a),
we show that its verification boils down to a rank condition
on a matrix of coefficients. When the data are not informative
for a given choice of external excitations, the insights developed
in Colin et al. (2020a) on this rank condition can be used to
determine the necessary measures to increase the informativity
of the data.

Using these data informativity conditions, we can determine
a set of situations in which the addition at certain nodes of
excitation signals with given power spectra leads to consistent
estimates of the to-be-identified modules, i.e. to models that
converge to the true value of the module when the number of
data tends to infinity. All these situations are thus equivalent
when the number of data tends to infinity. However, for a finite
data set, the respective accuracy can be much different. Another
contribution of the paper is to propose to use optimal experiment
design to distinguish between these situations,. In particular, we
will determine the particular excitation pattern that leads to
the desired accuracy of the to-be-identified modules with the
smallest excitation power. The use of optimal experiment design
for this purpose was first introduced in our paper (Bombois,
Korniienko, Hjalmarsson, & Scorletti, 2018) where a very specific
type of network is considered, namely the interconnection of
simple closed-loop systems. We here extend this work towards
the generic network description in Van den Hof et al. (2013). It
is to be noted that, in Mapurunga and Bazanella (2020), a simi-
lar problem is also considered, but for an indirect identification
approach.

The sequel of the paper will be organized as follows. In Sec-
tion 2, we will describe in more detail the considered dynamic
network. In Section 3, the full input approach will be presented
and we will show that data informativity is indeed crucial to
derive consistent estimates of the to-be-identified modules. In
Section 4, we will then present the more conservative data in-
formativity conditions while, in Section 5, we will present our
necessary and sufficient data informativity condition. Section 6
will pertain to the optimal experiment design approach to detect
an optimal excitation pattern.

Notations: In this paper, vectors of discrete-time signals and ma-
trices/vectors of discrete-time transfer functions will be denoted
with a bar: x̄(t) and X̄(z) (t represents the sample number and z
denotes both the Z-transform variable and the shift operator). We
denote by xi(t) (resp. Xik(z)) the ith entry of the vector of signals
x̄(t) (resp. the (i, k)-entry of the matrix of transfer functions X̄(z)).

¯ ¯
To define parts of x(t) and X(z), we will use calligraphic symbols
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uch as X , Y to denote set of indexes corresponding to the entries
of x̄(t) or corresponding to the rows and columns of X̄(z). The
cardinality of a set of indexes X will be denoted by nX . For a
vector of signals x̄(t), x̄X (t) is the vector of dimension nX obtained
by only conserving the entries in X (x̄X (t) = (x1(t), x2(t)) for
X = {1, 2}). For a matrix of transfer functions X̄(z), we will
denote by X̄X ,Y (z) the part of X̄(z) obtained by only conserving
the rows in X and the columns in Y . As an example, if X = {1, 2}
and Y = {2, 3}, we have:

X̄X ,Y (z) =

(
X12(z) X13(z)
X22(z) X23(z)

)
When X or Y are singletons, we use the following shorthand
notation for X̄X ,Y (z): X̄i,Y (z) when X = {i} and X̄X ,k(z) when
Y = {k}. Note also that, when the matrix X̄(z) pertains to the true
dynamic network, we will use the notation X̄0(z). Consequently,
entries of this matrix will then be logically denoted X0,ik(z) and
parts of this matrix X̄0,X ,Y (z). In addition, the matrix In denotes
the identity matrix of dimension n and diag(a1, . . . , an) denotes
the matrix of dimension n × n:⎛⎜⎝a1 0 0

0
. . . 0

0 0 an

⎞⎟⎠
For a matrix A, AT denotes the transpose of A and A∗ its conjugate
transpose. Finally, for a quasi-stationary signal x(t) (Ljung, 1999),
Ēx(t) ≜ limN→∞

1
N

∑N
t=1 Ex(t) (E is the expectation operator).

2. Network description

In this paper, we consider the problem of identifying particular
modules of a stable dynamic network. This dynamic network is
made up of Nmod nodes that are each characterized by a scalar val-
ued measurable signal wk(t) (k = 1, . . . ,Nmod). The vector w̄(t) =

w1(t), w2(t), . . . , wNmod (t))
T obeys the following equation (Van

en Hof et al., 2013):

¯ (t) = Ḡ0(z) w̄(t) + r̄(t) + H̄0(z)ē(t)  
=v̄(t)

(1)

Ḡ0(z) =

⎛⎜⎝ 0 G0,12(z) ... G0,1Nmod (z)
G0,21(z) 0 ... G0,2Nmod (z)
... ... ... ...

G0,Nmod1(z) G0,Nmod2(z) ... 0

⎞⎟⎠ (2)

¯ 0(z) = diag
(
H0,1(z), H0,2(z), ...,H0,Nmod (z)

)
(3)

here all the non-zero entries in (2) are proper transfer func-
ions and where r̄(t) = (r1(t), r2(t), . . . , rNmod (t))

T is a vector of
xternal excitation signals that can be freely chosen by the user,
.g., for identification purposes (r̄(t) = 0 in normal operations).
n (1), the vector v̄(t) = (v1(t), v2(t), . . . , vNmod (t))

T represents
he process noise acting on the network. This process noise is
odeled as v̄(t) = H̄0(z)ē(t) where H̄0(z) is a diagonal transfer
atrix with diagonal elements H0,k(z) (k = 1, . . . ,Nmod) that
re all stable, inversely stable and monic and where ē(t) =

e1(t), e2(t), . . . , eNmod (t))
T with ek(t) (k = 1, . . . ,Nmod) being

ero-mean white noise signals of variance σ 2
ek (k = 1, . . . ,Nmod).

The covariance matrix Eē(t)ēT (t) of ē(t) will be denoted by1 Σ0.
We will not impose any constraint on Σ0 i.e., Σ0 is neither
required to be diagonal nor strictly positive definite.

Let us also make the following additional standard assump-
tions on the network:

1 The variance σ 2
ek (k = 1, . . . ,Nmod) of the white noise entries ek of ē(t) are

the diagonal elements of Σ .
0

3

Assumption 1. Consider the network described by (1)–(2)–(3).
We assume that ē(t) is independent of r̄(t) and is also such
that Eē(t)ēT (t − τ ) = 0 for all τ ̸= 0. We also assume that
the network is well-posed with a stable closed-loop description
S̄0(z) = (INmod − Ḡ0(z))−1, so that the network can also be
expressed as

w̄(t) = S̄0(z) (r̄(t) + v̄(t)) . (4)

The above description of the network allows for some ele-
ments vk(t) of v̄(t) to be identically zero. We indeed just have
to choose σ 2

ek = 0 and H0,k(z) = 1 in this case. In this paper,
we will suppose that we know which vk(t) are equal to zero and
which vk(t) are not equal to zero. For the sequel, let us denote by
V the set of indexes k corresponding to nodes such that σ 2

ek ̸= 0
i.e., the set of nodes where ek(t) ̸= 0 and vk(t) ̸= 0. Using the
notations introduced at the end of Section 1, v̄V (t) (resp. ēV (t))
corresponds to the non-zero elements of v̄(t) (resp. ē(t)) and we
have that v̄V (t) = H0,V,V (z)ēV (t). In the sequel, the covariance
matrix EēV (t)ēTV (t) of ēV (t) will be denoted by Σ0,V ≥ 0. For
the sequel, it is important to note that this covariance matrix (as
any other positive semi-definite matrix) can be decomposed as
Σ0,V = Ξ0,VΞ

T
0,V where Ξ0,V is a matrix with nV rows and a

number of columns equal to the rank of Σ0,V .
Note also that, similarly to v̄(t), the excitation vector r̄(t) that

we use for identification purpose can also contain zero elements.
Let us thus denote R the set of indexes k corresponding to nodes
such that rk ̸= 0.

3. Full input identification approach

As already mentioned, our objective is to use prediction error
identification to accurately identify the (unknown) modules in a
row of the matrix Ḡ0(z), say Row j. We will use for this purpose
the Multiple Input Single Output (MISO) approach introduced
in Van den Hof et al. (2013) i.e., the so-called full input approach.
Before presenting this identification approach in more detail, let
us introduce some concepts related to the jth row of Ḡ0. This row
can contain entries G0,jk that are known to be identically zero,
entries that are both known and not equal to zero and, finally,
entries that are unknown. For the sequel, we need to define two
additional sets of indexes related to these types of elements: K
is the set of indexes k corresponding to entries G0,jk(z) that are
both known and not equal to zero, while D is the set of indexes
k corresponding to unknown entries G0,jk(z).

Let us now present the MISO identification problem consid-
ered in this paper. For this purpose, let us define, using the
notations introduced at the end of Section 1, the signal yj(t) as
follows:

yj(t) ≜ wj(t) − rj(t) − Ḡ0,j,K(z) w̄K(t). (5)

Since Ḡ0,j,K(z) is a row vector containing the known non-zero
elements of the jth row of Ḡ0(z), the signal yj(t) is a computable
quantity that obeys (see (1)):

yj(t) = Ḡ0,j,D(z) w̄D(t) + H0,j(z) ej(t) (6)

where Ḡ0,j,D(z) is a row vector of dimension nD containing the
unknown elements of the jth row of Ḡ0(z). As already mentioned,
the identification approach will pertain to the identification of
a model of Ḡ0,j,D(z) and a model of H0,j(z) and, as evidenced
by (6), this identification will be performed using a data set ZN

=

{yj(t), w̄D(t) | t = 1...N}. Note that (6) has the classical form of a
data-generating system in MISO (prediction error) identification
since the measurable output yj(t) is made up of the combination
of an unknown stochastic disturbance H0,j(z)ej(t) and of a contri-
bution of the known input w̄ (t) through an unknown vector of
D
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ransfer functions Ḡ0,j,D(z). Since w̄D(t) may be correlated with
ej(t), we are moreover in a situation that is very similar to direct
closed-loop identification (Ljung, 1999). As in direct closed-loop
identification, we will here also need in many cases to require
that Ḡ0,j,D(z) is stable (Ljung, 1999). We will for simplicity make
that assumption in the sequel.

Let us thus suppose that we have collected on the network (1),
the data set ZN and that we have defined a model structure M =

Ḡj,D(z, θ ), Hj(z, θ ) | θ ∈ Θ} where Ḡj,D(z, θ ) (resp. Hj(z, θ )) is a
model for Ḡ0,j,D(z) (resp. H0,j(z)) and Θ is the set of all parameter
vectors θ leading to a stable Ḡj,D(z, θ ) and to a monic, stable and
inversely stable Hj(z, θ ). In the sequel, M is also assumed to have
the following property:

Assumption 2. The model structure M = {Ḡj,D(z, θ ), Hj(z, θ ) | θ
∈ Θ} has the property that there exists a unique parameter vector
θ0 ∈ Θ such that Ḡj,D(z, θ0) = Ḡ0,j,D(z) and Hj(z, θ0) = H0,j(z).

Using the data set ZN and the model structure M, we can then
obtain an estimate θ̂N of θ0 using the following prediction error
criterion (Ljung, 1999):

θ̂N = argmin
θ∈Θ

1
N

N∑
t=1

ϵ2j (t, θ ) (7)

ϵj(t, θ ) = H−1
j (z, θ )

(
yj(t) − Ḡj,D(z, θ )w̄D(t)

)
. (8)

Using this estimate θ̂N , we obtain a model Ḡj,D(z, θ̂N ) of Ḡ0,j,D(z)
and a model Hj(z, θ̂N ) of H0,j(z).

Remark. The MISO approach presented above can also be used
if we are only interested in models of part of Ḡ0,j,D(z) (Van den
Hof et al., 2013). Moreover, this approach can also be repeated
for each row in order to get a model of the full matrices Ḡ0(z)
and H̄0(z). The data informativity conditions that we will develop
in the sequel are thus also relevant for these two particular
situations. ■

In the sequel, we will determine the conditions under which
θ̂N is a consistent estimate of θ0 which means that θ̂N converges
to θ0 with probability one when N → ∞. The consistency of
the estimate (7) can also equivalently be established by proving
that θ0 is the unique minimum of Ēϵ2j (t, θ ) (Ljung, 1999). We will
prove this in two steps, i.e. we will first prove that θ0 minimizes
Ēϵ2j (t, θ ) and then we will determine the conditions under which
this minimum is unique. The results will depend on whether
there is noise present in Node j. Let us thus suppose that this is
indeed the case. The simpler case vj(t) = ej(t) = 0 is treated
in Appendix A of Bombois, Colin, Van den Hof, and Hjalmarsson
(2022).

Assumption 3. In the network (1), the variance σ 2
ej of the noise

ej at Node j is such that σ 2
ej ̸= 0 (j ∈ V).

As shown in the following proposition, θ0 is a minimum of
Ēϵ2j (t, θ ) under Assumptions 1, 2 and 3 if we add a delay con-
dition similar to the one required for the direct closed-loop iden-
tification method (Ljung, 1999) (see also Van den Hof et al., 2013).

Proposition 1. Consider the stable MISO system (6) that is an
element of a network (1) satisfying Assumptions 1 and 3 as well as
the sets V and D defined in Sections 2 and 3, respectively. Consider
the prediction error (8) computed based on data collected on this
network and a model structure M satisfying Assumption 2. Then, θ0
s a minimum of Ēϵ2j (t, θ ) if, for all θ , all the entries of the vector of
ransfer functions (Ḡ0,j,D(z)− Ḡj,D(z, θ ))S̄0,D,V (z) are either zero or
ontain at least one delay. Moreover, all (eventual) other minimizers
∗ ¯ 2 ∗
of Eϵj (t, θ ) are such that ϵj(t, θ ) = ϵj(t, θ0) = ej(t). ■

4

Proof. The proof is relatively straightforward and can be found
in Bombois et al. (2022). ■

Let us now consider the conditions under which θ0 is the
unique minimum of Ēϵ2j (t, θ ). Due to the property stated at the
end of Proposition 1, this will be the case if, for each θ ∈ Θ

such that Ē(ϵj(t, θ ) − ϵj(t, θ0))2 = 0, we have θ = θ0. Due
o Assumption 2, this condition will be respected if, for each
Ḡj,D(z, θ ), Hj(z, θ )) ∈ M such that Ē(ϵj(t, θ ) − ϵj(t, θ0))2 = 0,
e have

¯ 0,j,D(z) − Ḡj,D(z, θ ) = 0 and H0,j(z) − Hj(z, θ ) = 0 (9)

his property is generally called data informativity in the liter-
ture (Ljung, 1999). Let us formally define this notion. For this
urpose, let us introduce the following notation using (8):

j(t, θ ) = W̄ (z, θ )x̄(t) =
(
Wy(z, θ ), W̄w(z, θ )

) ( yj(t)
w̄D(t)

)
(10)

y(z, θ ) = H−1
j (z, θ ) and W̄w(z, θ ) = −H−1

j (z, θ )Ḡj,D(z, θ ) (11)

efinition 1. Consider the data x̄(t) = (yj, w̄T
D(t))T collected on

network (1) satisfying Assumptions 1 and 3 and the condition
n the statement of Proposition 1. Consider also a model structure

satisfying Assumption 2. Define the set:

W̄ = { ¯∆W (z) = W̄ (z, θ ) − W̄ (z, θ0) | θ ∈ Θ} (12)

Then, the data x̄(t) = (yj, w̄T
D(t))T are said to be informative

rt. M when, for all ¯∆W (z) ∈ ∆W̄, we have:

¯
(

¯∆W (z)x̄(t)
)2

= 0 H⇒ ¯∆W (z) = 0 (13)

We can summarize the above discussion in the following
roposition whose proof is straightforward.

roposition 2. Consider the stable MISO system (6) that is an ele-
ent of a network (1) satisfying Assumptions 1 and 3. Consider the
rediction error (10) computed based on data x̄(t) = (yj, w̄T

D(t))T
ollected on this network and a model structure M satisfying As-
umption 2. Then, θ0 is the unique minimum of Ēϵ2j (t, θ ) if, in
ddition to the delay condition in the statement of Proposition 1, the
ata x̄(t) = (yj, w̄T

D(t))T are informative wrt. M (see Definition 1).
■

We have now all the elements to derive conditions for data
nformativity. We will see that data informativity can be obtained
y adding a quasi-stationary excitation signal rk(t) at a number of
odes, but also in certain situations, using the sole excitation of
he process noises vk(t) i.e., r̄(t) = 0 (the so-called costless iden-
ification Bombois, Scorletti, Gevers, Van den Hof, & Hildebrand,
006; Colin et al., 2020a).

. Simple (but only sufficient) data informativity conditions

.1. Results

We will start by deriving simple, but only sufficient data in-
ormativity conditions. For this purpose, let us first recall the data
nformativity condition proposed in the paper (Van den Hof et al.,
013) where the identification method presented in Section 3 has
een introduced.

roposition 3 (Van den Hof et al., 2013). Consider the data x̄(t) =

yj, w̄T
D(t))T collected on a network (1) satisfying Assumptions 1

nd 3. Consider also the following condition on the power spectrum
atrix Φx̄(ω) of x̄(t):

(ω) > 0 at almost all ω. (14)
x̄
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hen, we have that, irrespectively of the complexity of Ḡ0,j,D(z) and
0,j(z), the condition (14) ensures data informativity with respect to
model structure M satisfying Assumption 2. ■

roof. This result is a direct consequence of Definition 1. Indeed,
he left-hand side of (13) can be rewritten as 1

2π

∫ π
−π

¯∆W (ejω)
Φx̄(ω) ¯∆W

∗
(ejω)dω = 0 and it is clear that, if (14) holds, this

relation implies that ¯∆W (z) = 0 and this is true whatever the
complexity of the vector ¯∆W (z) and thus whatever M. ■

Proposition 3 means that, if a noise and excitation pattern
yields (14), this noise and excitation pattern will ensure con-
sistent estimates of modules that can have infinite complexity.
While this could be seen as an advantage in some cases, this
also means that, when the to-be-identified modules are of re-
stricted complexity, many excitation patterns that would lead to
data informativity will not be detected by this condition. This
also means that to ensure (14) will require a larger number of
excitations vk and/or rk than what is strictly necessary to ensure
data informativity for a specific model structure M of restricted
complexity.

In other words, (14) is not a necessary condition for (13)
to hold and is thus conservative. Moreover, based on (14), it is
difficult to determine if a given noise and excitation pattern yields
data informativity or not. Moreover, as pointed out in Gevers
and Bazanella (2015), it is also difficult to use (14) in order to
determine at which node(s) excitation signals rk have to be added
if the current noise and excitation pattern does not lead to data
informativity.

In this section, we will reformulate (14) in such a way that the
objectives presented in the previous paragraph can be achieved.
Let us first start with the case where we can assume that the
network satisfiesΣ0,V > 0 i.e, the case of networks where ēV (t) is
a full rank vector of signals. With this additional assumption on
the network, we can derive Propositions 4 and 5. Proposition 4
pertains to the case where r̄(t) = 0 (costless identification) and
Proposition 5 to the case where, besides the costless excitation of
vk(t) (k ∈ V), we also add, at the nodes k ∈ R, external excitations
k.

roposition 4. Consider the framework of Proposition 3 for a
network (1) with Σ0,V > 0. Consider also the set V defined at the
end of Section 2. Then, in the case where the excitation vector r̄(t)
is equal to zero, (14) holds if the following condition is satisfied

(i) the set V describing the nodes where a disturbance vk is
present is such that, at (almost) all frequencies ω, S̄0,D,V\{j}(ejω

is full row rank i.e., rank(S̄0,D,V\{j}
(ejω)) = nD ■

Proof. See Appendix A. ■

In the next subsection, we will show how Condition (i) of
Proposition 4 can be verified in practice. Since the matrix S̄0,D,V\{j}
has dimension nD × (nV − 1), we can nevertheless right away
note that a necessary condition for Condition (i) of Proposition 4
to hold is that nV − 1 ≥ nD . Since j ∈ V , this necessary condition
will be satisfied if, in addition to the noise vj, there are at least as
many other noise sources vk (k ̸= j) as modules to be identified
in Ḡ0,j,D (i.e., nD).

If Condition (i) of Proposition 4 is not satisfied, the next
proposition shows that we can obtain data x̄(t) satisfying (14) by
adding external excitation signals rk at a certain number of nodes.

Proposition 5. Consider the framework of Proposition 3 for a
network (1) with Σ0,V > 0. Consider also the sets V and R defined
at the end of Section 2. Then, (14) holds if the following conditions
are both satisfied:
5

(i) the set R describing the nodes where an excitation signal rk
is present is chosen in such a way that the set of indexes Q =

R ∪ (V\{j}) has the property that, at (almost) all frequencies
ω, rank(S̄0,D,Q(ejω)) = nD

(ii) the power spectrum matrix Φr̄R (ω) of the excitation vector
r̄R(t) is such that Φr̄R (ω) > 0 at almost all ω ■

Proof. See Appendix B. ■

As already mentioned, the next subsection will give a simple
method to check Condition (i) of Proposition 5. Note here also
that a necessary condition for Condition (i) of Proposition 5 to
hold is that nQ ≥ nD . Consequently, the sum of the number nR of
external excitation noises and of the number of noise processes vk
(with k ∈ V\{j} and k ̸∈ R) must at least be equal to the number
nD of modules to be identified in Ḡ0,j,D . It is also important to
note that Condition (ii) in Proposition 5 shows that, if external
excitation signals rk are necessary to ensure data informativity via
Proposition 5, these excitation signals rk must be (filtered) white
noises.

If we cannot assume Σ0,V > 0, then we cannot rely, as
in Propositions 4 and 5, on the noises vk with k ∈ V\{j} to
ensure (14) (and thus data informativity). This is summarized in
the following proposition.

Proposition 6. Consider the framework of Proposition 5, but for a
network with Σ0,V ≥ 0. Then, (14) holds if the following conditions
are both satisfied:

(i) the set R describing the nodes where an excitation signal
rk is present is chosen in such a way that, at (almost) all
frequencies ω, rank(S̄0,D,R(ejω)) = nD

(ii) the excitation vector r̄R(t) satisfies Condition (ii) of Propo-
sition 5 i.e., its power spectrum matrix Φr̄R (ω) is such that
Φr̄R (ω) > 0 at almost all ω. ■

Proof. See Appendix C. ■

In order to satisfy the conditions of Proposition 6, we will
thus require at least nD external excitations rk under the form
of (filtered) white noises.

4.2. Verification of the data informativity conditions and determina-
tion of an excitation pattern

In order to use the results in the previous subsection to infer
data informativity for a certain noise and excitation pattern, the
main difficulty is the verification of Condition (i) in Propositions 4,
5 and 6. The submatrices of S̄0(ejω) involved in these rank condi-
tions are indeed functions of the unknown matrix Ḡ0(ejω). This
is however not a crucial problem since Hendrickx et al. (2019)
propose a simple approach based on the graph of the network to
verify rank conditions of this type.

This result of Hendrickx et al. (2019) is given in Lemma 1
below. Before presenting this lemma, let us first recall some
notions of graph theory (Hendrickx et al., 2019). The graph of the
network can be obtained by drawing a directed edge from Node
k to Node l if G0,lk(z) ̸= 0. The graph is therefore a representation
of the topology of the network (i.e., its interconnection structure).
A path from Node k to Node l ̸= k is a series of adjacent edges
that starts in Node k and ends in Node l. Vertex-disjoint paths are
paths that do not pass through the same nodes/vertexes. Finally,
in the framework of this paper (see (1)), there is always a path
from Node k to Node k since rk and vk have a direct influence on
w .
k
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Fig. 1. Graph representation of (15). Each circle represents a node and the edges
represent the structure of Ḡ0(z).

Example 1. Let us consider a network described by Nmod = 3
nodes and the following matrix Ḡ0(z):

Ḡ0(z) ≜

( 0 0 G0,13(z)
0 0 0

G0,31(z) G0,32(z) 0

)
(15)

The graph of this network is represented in Fig. 1. In this figure,
we see that there is no path from Node 1 to Node 2 and no path
from Node 3 to Node 2, but there exists, e.g., paths from Node 3
to Node 1 and from Node 2 to Node 1. Let us now e.g., choose
Y = {2, 3} and X = {1, 2} and let us observe that there are
two vertex-disjoint paths from the nodes in Y to the nodes in
X , namely the path 2 → 2 (since r2/v2 has a direct influence on
w2) and the path 3 → 1. If Y = {2, 3} and X = {1, 3}, there is
only one vertex-disjoint path from the nodes in Y to the nodes
in X : e.g., the path 3 → 3. The other paths from Y to X (i.e., the
path 2 → 3 → 1, the path 2 → 3 and the path 3 → 1) all contain
Node 3 and are thus not vertex disjoint with the path 3 → 3. ■

Lemma 1 (Hendrickx et al., 2019). Consider the graph of a network
and two arbitrary sets of indexes X and Y (of respective cardinality
nX and nY ). Suppose that, in the graph of the network, there are nX
vertex-disjoint paths from the nodes in Y to the nodes in X . Then,
for almost all Ḡ0(z) corresponding to the topology of the network,
the part S̄0,X ,Y (ejω) of S̄0(ejω) = (INmod − Ḡ0(ejω))−1 is full row rank
at almost all ω.

Lemma 1 gives a simple graphical method to check the rank
conditions in Propositions 4, 5 and 6. However, as mentioned in
this lemma, the verification will be done in a generic manner
i.e., for almost all Ḡ0(ejω). Indeed, it cannot be excluded that, even
if they have the correct topology, very specific values of Ḡ0(ejω)
can lead to situations where some submatrices of S̄0(ejω) have
a rank smaller than the generic rank given by Lemma 1 (see
Section 4.5 for an example).

Since, for any k, there is always a path from Node k to Node k,
we have also the following useful result:

Lemma 2. Consider the graph of a network and two arbitrary sets
of indexes X and Y (of respective cardinality nX and nY ). Then, if
X ⊆ Y , there is always nX vertex-disjoint paths from the nodes in
Y to the nodes in X . ■

Let us come back to our data informativity problem. Using
emma 1, Condition (i) of Proposition 4 is generically verified if
here are nD vertex-disjoint paths from the nodes in V\{j} to the
odes in D. If this is satisfied, then we have data informativity

with the sole excitation of the unknown process noises in the
network. If this is not satisfied, data informativity can be obtained
by adding external excitations rk at nodes k making the set Q =

R ∪ V\{j} such that there are nD vertex disjoint paths from the
nodes in Q to the nodes in D (Condition (i) of Proposition 5).

Using Lemma 2, we see that Condition (i) of Proposition 5
holds if an external excitation rk is applied at (at least) all the
nodes k such that k ∈ D and k ̸∈ (V\{j}). This particular choice
for R is equivalent to the data informativity condition proposed
in Theorem 2 in Van den Hof and Ramaswamy (2020) (when
6

this result is particularized to the case of a diagonal H̄0(z)). As
will be evidenced in the next subsection, note however that, in
general, many other choices for R can lead to the desired number
of vertex-disjoint paths.

Let us now briefly turn the attention to Proposition 6. When
we cannot make the assumption that Σ0,V > 0, data informativ-
ity can be verified by checking that there are nD vertex-disjoint
paths from the nodes in R to the nodes in D. When V\{j} ̸= ∅,
verifying this condition will require a larger number of external
excitation signals rk than in the case where we can make the
assumption that Σ0,V > 0.

Before giving a number of illustrations of these results, let us
finally note that the number of vertex-disjoint paths between two
sets of nodes in the graph of a network can also be determined
algorithmically (Hendrickx et al., 2019). This is an important
feature for networks with a large number of nodes.

4.3. First illustration

We consider first a network with Ḡ0(z) given by (15) (see
Fig. 1) for which we wish to identify the third row (i.e., j = 3).
Let us assume that K = ∅ and that V = {3}. This means that
we want to identify consistently the transfer functions G0,31(z),
G0,32(z) and H3,0(z) and that the only unknown process noise in
the network is v3(t) (Assumption 3 is thus respected). We thus
deduce that D = {1, 2} and that Σ0,V = σ 2

e3 > 0. We can thus
use Propositions 4 and 5 to check data informativity.

Since V\{j} = ∅, Condition (i) of Proposition 4 cannot hold.
Let us thus deduce an excitation pattern R yielding data informa-
tivity using Condition (i) of Proposition 5 (and Lemma 1). Since
nD = 2 and Q = R, the cardinality nR of R must be at least
equal to two to get two vertex-disjoint paths from the nodes
in Q to the nodes in D. Using Lemma 2, an obvious choice is
to choose D = {1, 2} ⊆ R. This leads to two possible choices
R = {1, 2} and R = {1, 2, 3}. However, this is not the only
choices and having other choices can be important in practice.
Indeed, it may be impossible to add an excitation at Node 1. In
this case, we could also chooseR = {2, 3} since there are also two
vertex-disjoint paths from the nodes in R = {2, 3} to the nodes
in D = {1, 2} (see Example 1 and Fig. 1). Finally, let us also note
that we cannot infer data informativity with Proposition 5 for the
choice R = {1, 3} since there is no path from the nodes in R to
Node 2 ∈ D (we have thus only one vertex-disjoint path from
the nodes in R to the nodes in D: the path 1 → 1). It is obvious
that this particular choice for R cannot lead to data informativity
since, in this situation where r2(t) = v2(t) = 0, we have that
w2(t) = 0 and thus it will be impossible to identify G0,32(z).

4.4. Second illustration

Let us now consider another example to stress even more the
importance of having enough vertex-disjoint paths between the
nodes in Q and the nodes in D. Consider for this purpose the
network with Nmod = 6 nodes described by the graph given in
Fig. 2. Let us assume that we wish to identify Row 1 (i.e., j = 1),
that K = ∅ and that V = {1}. Consequently, D = {2, 3} and
Σ0,V = σ 2

e1 > 0. Here also, Proposition 4 cannot be used since
V\{j} = ∅. Let us thus consider adding external excitations rk to
the network. According to Proposition 5, the locations R of these
external excitations must be chosen such that there are nD = 2
vertex-disjoint paths from the nodes in R to the nodes in D. It
is clear that R = {2, 3} satisfies this property since, in this case,
R = D (Lemma 2). The choice R = {2, 6} will also lead to two
vertex disjoint-paths (i.e., 2 → 2 and 6 → 4 → 3). The same
can be said of R = {2, 4}. However, when R = {5, 6}, if there
are paths between the nodes in R and the ones in D, we have
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Fig. 2. Graph representation of the network in Section 4.4.

Fig. 3. Graph representation of the network in Section 4.5.

nly one vertex-disjoint path since, to go from R to D, we must
lways pass through Node 4. To understand why this last choice
f R is problematic, let us notice that, for the identification of
he modules G0,12(z) and G0,13(z), these two excitations r5 and
6 can be equivalently replaced by a unique excitation r4(t) =

0,45(z)r5(t) + G0,46(z)r6(t) at Node 4.
Let us finally stress that, both in this subsection and in the pre-

ious one, the excitation vector rR(t) must of course also satisfy
ondition (ii) of Proposition 5 to effectively lead to data informa-
ivity. This can be e.g., achieved by choosing each excitations rk
k ∈ R) as independent white noises.

.5. Third illustration

Let us now illustrate the issue mentioned below Lemma 1
sing an example inspired by Hendrickx et al. (2019). Consider for
his purpose the network whose graph is represented in Fig. 3. We
uppose that j = 5, that K = ∅, that V = {1, 2, 5} and thatΣ0,V >

. In this network, we havew5(t) = G0,53(z)w3(t)+G0,54(z)w4(t)+
5(t). Consequently, D = {3, 4}. Let us use Proposition 4 to
ee whether data informativity can be obtained with the sole
xcitation of the process noises v1, v2 and v5. We observe that
\{j} = {1, 2} and that there are two vertex-disjoint paths from
\{j} to D (1 → 3 and 2 → 4). Consequently, using Proposition 4
nd Lemma 1, we can conclude that the noise pattern V =

1, 2, 5} yields data informativity for almost all Ḡ0(z) having the
opology described in Fig. 3. To verify this result, let us derive the
atrix S̄0,D,V\{j} involved in Condition (i) of Proposition 4:

¯0,D,V\{j}(z) =

(
G0,31(z) G0,32(z)
G0,41(z) G0,42(z)

)
his matrix has clearly a generic rank equal to two. However,
hen G0,31(z)G0,42(z) = G0,41(z)G0,32(z) (which is clearly a sin-
ular case), this rank reduces to one and Condition (i) of Proposi-

¯
ion 4 does not hold. Indeed, in this case w̄D(t) = S0,D,V\{j}(z)vV\{j}

7

(t) has a power spectrum matrix that is rank-deficient at all ω
and (14) can therefore not be respected.

Note that, even when G0,31(z)G0,42(z) = G0,41(z)G0,32(z), data
informativity can be inferred via Proposition 4 if, in addition, a
process noise v4 is also present at Node 4 i.e., V = {1, 2, 4, 5}.
Indeed, in this particular situation,

S̄0,D,V\{j}(z) =

(
G0,31(z) G0,32(z) 0
G0,41(z) G0,42(z) 1

)
and, in this case, S̄0,D,V\{j} is full row rank for all Ḡ0(z).

Remark. As shown in Section 4.6 of Bombois et al. (2022), the
data informativity conditions developed in this section can be
linked to the network identifiability condition of Weerts et al.
(2018).

5. Necessary and sufficient condition for data informativity

5.1. Results

As mentioned in the previous section, the data informativity
conditions derived in Section 4 are conservative when the model
structure M has a restricted complexity. In this section, we will
derive a necessary and sufficient condition for data informativity
for a given model structure (of restricted complexity).

For this purpose, we will need to distinguish the multisine
and filtered white noise contributions in the excitation vector
r̄(t) in more details. For this purpose, let us introduce the set of
indexesRs as the set of indexes k such that rk contains a multisine
contribution and the set of indexes Rn as the set of indexes k such
that rk contains a filtered white noise contribution. The vector
r̄Rs (t) corresponding to Rs is thus a vector for which each entry
is a multisine while the vector r̄Rn (t) corresponding to Rn can
always be expressed as:

r̄Rn (t) = F̄ (z)q̄(t) (16)

with F̄ (z) a known matrix of transfer functions of dimension
nRn × nq and a vector q̄(t) of dimension nq such that Φq̄(ω) = Inq
(i.e., q̄(t) is a vector of independent white noises of variance 1). As
an example, if Nmod = 3 and r̄(t) = (0, cos(0.1t), cos(0.2t)+m(t))T
with m(t) a filtered white noise, then R = {2, 3}, Rs = {2, 3}
and Rn = {3}. Moreover, r̄Rs (t) = (cos(0.1t), cos(0.2t))T and
r̄Rn (t) = m(t) and the filtered white noise m(t) can always be
expressed as in (16) (with nq = 1). Note that R = Rs ∪ Rn.

We will also need to rewrite the data x̄(t) = (yj, w̄T
D(t))T (see

Definition 1) in an appropriate manner. Recall that yj(t) = wj(t)−
rj(t)−Ḡ0,j,K(z)w̄K(t) (see (5)). Using (16) and the fact that, for any
set of indexes X , wX (t) = S̄0,X ,Rs (z)r̄Rs (t) + S̄0,X ,Rn (z)r̄Rn (t) +

S̄0,X ,V (z)v̄V (t), it is clear that we have that:

x̄(t) = T̄0,V (z) v̄V (t) + X̄0,Rn (z) F̄ (z) q̄(t) + d̄(t) (17)

X̄0,Rn (z) = (T̄0,Rn (z) − Mn)

d̄(t) = (T̄0,Rs (z) − Ms)r̄Rs (t)

where Mn and Ms depend on the excitation signal rj at Node j.
When j ∈ Rs, Ms is a matrix of dimension (1+nD)×nRs such that
Ms r̄Rs (t) = (r sj (t), 0, . . . , 0)

T with r sj (t) the multisine contribution
in rj(t). When j ∈ Rn, Mn is a matrix of dimension (1+nD)×nRn
such that Mn r̄Rn (t) = (rnj (t), 0, . . . , 0)

T with rnj (t) the filtered
white noise contribution in rj(t). When j ̸∈ Rs (resp. j ̸∈ Rn),
we have Ms = 0 (resp. Mn = 0). In (17), we have also that, for
any set X , T̄0,X (z) is a matrix of transfer functions of dimension
(1 + nD) × nX given by

T̄0,X (z) =

(
S̄0,j,X (z) − Ḡ0,j,K(z)S̄0,K,X (z)

¯

)
(18)
S0,D,X (z)
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et us also finally observe that, in (17), d̄(t) is a vector of dimen-
ion 1 + nD for which each entry is a multisine.
The notations introduced in (17) seem complex. However, for

he very classical case where K = ∅ and rj = 0, they are much
implified.2 since Ms = Mn = 0 and (18) reduces to the following
submatrix of S̄0(z):

T̄0,X (ejω) =

(
S̄0,j,X (ejω)
S̄0,D,X (ejω)

)
(19)

We have now all the elements to derive the following propo-
ition that gives a necessary and sufficient condition for data
nformativity. Like in Section 4, we will have different results in
he cases where we can assume Σ0,V > 0 and the cases where
e cannot. Proposition 7 gives the result for the case Σ0,V > 0.

n this proposition, we observe that data informativity can be
btained by adding a quasi-stationary excitation signal rk(t) at
number of nodes, but also in certain situations, using the sole
xcitation of the process noises vk(t) i.e., r̄(t) = 0.

roposition 7. Consider the network (1) described in Section 2 and
atisfying Assumptions 1 and 3 and for which we can also assume
hat Σ0,V > 0. Consider also the sets V and R defined at the end
f Section 2. Consider finally Definition 1 and observe that we have
xpression (17) for x̄(t). Then, in the case where the excitation vector

¯(t) is equal to zero, the data x̄(t) = (yj, w̄T
D(t))T are informative

rt. M if and only if, for all ¯∆W (z) ∈ ∆W̄,

W̄ (z) T̄0,V (z) H⇒ ¯∆W (z) = 0 (20)

In the case where r̄(t) ̸= 0, the data x̄(t) = (yj, w̄D(t))T are
nformative wrt. M if and only if, for all ¯∆W (z) ∈ ∆W̄,⎧⎨⎩

¯∆W (z) T̄0,V (z) = 0
¯∆W (z) X̄0,Rn (z) F̄ (z) = 0

Ē
(

¯∆W (z) d̄(t)
)2

= 0
H⇒ ¯∆W (z) = 0 (21)

f F̄ (ejω) is full row rank at almost all ω, the second line of the left
and side of (21) can be equivalently replaced by ¯∆W (z) X̄0,Rn (z) =

. ■

roof. See Appendix D. ■

In Proposition 7, we suppose, for the sake of generality, that
oth Rs ̸= ∅ and Rn ̸= ∅. In the classical case where one of these
wo sets is empty (i.e., r̄R contains only multisines or only filtered
hite noises), we have to remove the corresponding term in the

eft-hand side of (21) (e.g., we have to remove the second line of
he left-hand side of (21) when Rn = ∅).

Let us now consider the case of networks where we cannot
uppose that Σ0,V > 0.

roposition 8. Consider the framework of Proposition 7, but with
0,V ≥ 0. In this case, when r̄(t) = 0, the data x̄(t) = (yj, w̄T

D(t))T

re informative wrt. M if and only if, for all ¯∆W (z) ∈ ∆W̄,

W̄ (z) T̄0,V (z) H̄0,V,V (z) Ξ0,V = 0 H⇒ ¯∆W (z) = 0

whereΞ0,V is such thatΣ0,V = Ξ0,VΞ
T
0,V (see the end of Section 2).

n the case where r̄(t) ̸= 0, the data x̄(t) = (yj, w̄T
D(t))T are

nformative wrt. M if and only if, for all ¯∆W (z) ∈ ∆W̄,

¯∆W (z) T̄0,V (z) H̄0,V,V (z) Ξ0,V = 0
¯∆W (z) X̄0,Rn (z) F̄ (z) = 0

Ē
(

¯∆W (z) d̄(t)
)2

= 0
H⇒ ¯∆W (z) = 0 ■

roof. See Appendix E. ■

2 This is the main reason why (5) is used to derive (17) instead of (6).
8

As we will see in the next subsection, the framework that
we recently developed in Colin et al. (2020a) allows to verify
whether the data informativity conditions of Proposition 7 (and of
Proposition 8) are satisfied in a given situation. By given situation,
e mean a given network configuration, a given M satisfying

Assumption 2, a given V and given r̄Rs (t) and r̄Rn (t). Like in the
previous section, the data informativity conditions derived in this
section for dynamic network identification are a function of the
unknown true transfer matrix Ḡ0(z) (and also of H̄0(z) and Σ0,V
n the case where we cannot assume that Σ0,V > 0). This is an
mportant difference with the previous results on data informa-
ivity developed for open-loop and closed-loop identification (see
.g., Colin et al., 2020b; Gevers et al., 2008; Ljung, 1999 and Colin
t al., 2020a). Similarly as in Section 4.2, this drawback will be
ircumvented by verifying that the conditions of Propositions 7
nd 8 are satisfied in a generic manner. In this case, by replacing

¯ 0(z), H̄0(z) and Σ0,V by any full-order models of these unknown
uantities (see later).

emark. In the case where we cannot assume that eV is a full
ank vector of signals (Proposition 8), assuming to know a model
fΣ0,V ≥ 0 can be seen as a strong assumption. If such a model is
nknown, we can then decide to disregard the contribution of the
rocess noises vk (k ∈ V) in the informativity of the data (like in
roposition 6) and use the following data informativity condition
nstead of the one given in Proposition 8:{

¯∆W (z) X̄0,Rn (z) F̄ (z) = 0
Ē
(

¯∆W (z) d̄(t)
)2

= 0
H⇒ ¯∆W (z) = 0

In this case, the verification of the data informativity condition
only requires a full-order model of Ḡ0(z) (such as in the case of
condition (21)) ■

5.2. Using the necessary and sufficient conditions of Propositions 7
and 8

As mentioned above, we can verify the rather complex neces-
sary and sufficient conditions in Propositions 7 and 8 by following
an approach similar to the one in Colin et al. (2020a). We will first
present the procedure to verify the conditions in Proposition 7.

Let us first recall two straightforward technical results that
are used in Colin et al. (2020a). The first technical result is the
fact that any polynomial matrix N(z) (i.e., a matrix whose entries
are polynomials in z−1) can be factorized as N(z) = ANZN (z)
with AN a matrix of coefficients and ZN (z) a matrix having the
following properties. If each entry of Column k of N(z) is equal to
ero, then each entry of Column k of ZN (z) is also equal to zero.
he remaining columns of ZN (z) form a block-diagonal matrix for
hich each diagonal block is a column vector whose entries are
qual to z−m with a different integer m ≥ 0 for each entry of the
ame column vector. Let us give an example of this first technical
esult for a N(z) of dimension 2 × 3:

2z−2 0 5 + 3z−2

0 0 4z−2

)
  

=N(z)

=

(
2 5 3
0 0 4

)
  

=AN

⎛⎝z−2 0 0
0 0 1
0 0 z−2

⎞⎠
  

=ZN (z)

he second technical result uses Euler formula i.e., Λ cos(ω1t +

) =
1
2

(
ΛejΨ ejω1t +Λe−jΨ e−jω1t

)
. Using this formula, any mul-

tisine vector s̄(t) whose kth element sk(t) can be expressed as
sk(t) =

∑n
l=1Λkl cos(ωlt + Ψkl) can be factorized as s̄(t) =

B φ̄(t) with B a time-independent and complex matrix (that is
a function of the amplitudes Λkl and the phase shifts Ψkl) and
φ̄(t) =

1 (ejω1t , e−jω1t , ejω2t , . . . , e−jωnt )T .
2
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As shown in Lemma 6 in Colin et al. (2020a), for the classical
model structures M that are used in prediction error identifica-
tion, we can always find a left factorization of ¯∆W (z) i.e., ¯∆W (z)
= Q−1(z)Υ (z) with Υ (z) a row polynomial vector and Q (z) a
onic polynomial. Let us apply the first technical result on the

ow polynomial vector Υ (z):

(z) = δTZΥ (z) (22)

with δ a vector of coefficients that are functions of θ and θ0
see Definition 1). Let us illustrate this in the case where the
odel structure M satisfying Assumption 2 is given by Hj(z, θ ) =

/(1 + az−1) and:

¯ j,D(z, θ ) =

(
b1z−1

1 + az−1

b2z−1

1 + az−1

)
e have thus θ = (a, b1, b2)T . Using (11), the left factorization
−1(z)Υ (z) of ¯∆W (z) is here given by Q (z) = 1 and Υ (z) =

δaz−1, δb1z−1, δb2z−1
)
with δa = a − a0, δb1 = b1,0 − b1

nd δb2 = b2,0 − b2 (θ0 = (a0, b1,0, b2,0)T ). Defining δ =

δa, δb1, δb2)T , we have thus:

(z) = δT

⎛⎝z−1 0 0
0 z−1 0
0 0 z−1

⎞⎠
  

=ZΥ (z)

(23)

Let us now consider Conditions (20) and (21) in Proposition 7.
sing the matrix ZΥ (z) derived from the expression of ¯∆W (z), we
erive a right factorization N1(z)V−1

1 (z) of ZΥ (z)T̄0,V (z) with N1(z)
and V1(z) polynomial matrices. Using the first technical result
presented in the beginning of this subsection, we subsequently
derive the following factorization of N1(z):

N1(z) = AN1ZN1 (z) (24)

If Rn ̸= ∅, we then consider a similar right factorization N2(z)
V−1
2 (z) of ZΥ (z)X̄0,Rn (z)F̄ (z) and we apply the first technical result

on the polynomial matrix N2(z):

N2(z) = AN2ZN2 (z) (25)

Finally, if Rs ̸= ∅, we apply the second technical result (pre-
sented in the beginning of this subsection) on the multisine
vector ZΥ (z)d̄(t):

ZΥ (z)d̄(t) = Bd̄ φ̄(t) (26)

Using (22) and (24), Condition (20) can be equivalently rewrit-
ten as δTAN1ZN1 (z) = 0 H⇒ δTZΥ (z) = 0 which, due to the
characteristic of ZN1 (z) and ZΥ (z), is also equivalent to (Colin et al.,
2020a, 2020b):

δTAN1 = 0 H⇒ δ = 0 (27)

Using (22), (24), (25) and (26), Condition (21) can be equivalently
rewritten as⎧⎨⎩
δTAN1ZN1 (z) = 0
δTAN2ZN2 (z) = 0
Ē
(
δT Bd̄ φ̄(t)

)2
= 0

H⇒ δTZΥ (z) = 0 (28)

which, due to the characteristic of ZΥ (z), ZN1 (z), ZN2 (z) and φ̄(t),
is also equivalent to Colin et al. (2020a, 2020b):⎧⎨⎩δ

TAN1 = 0
δTAN2 = 0
δT Bd̄ = 0

H⇒ δ = 0 (29)

To sum up, if we define ∆δ = {δ | Q−1(z)
(
δTZΥ (z)

)
∈ ∆W̄},

we can reformulate Proposition 7 as follows. When r̄(t) = 0, x̄(t)
is informative wrt. M if and only if (27) holds for all δ ∈ ∆ .
δ i

9

When r̄(t) ̸= 0, x̄(t) is informative wrt. M if and only if (29)
holds for all δ ∈ ∆δ . This leads to the following proposition that
allows one to verify if data informativity is obtained in a certain
situation (i.e., a given network configuration, a given M, a given
V and given r̄Rs (t) and r̄Rn (t)).

Proposition 9. Consider the framework of Proposition 7. Then,
in the case where r̄(t) = 0, we can construct the matrix AN1 as
indicated above this proposition and we can verify whether the data
x̄(t) are informative wrt. M by checking that the matrix AN1 is a
full row rank matrix. In the case where r̄(t) ̸= 0, besides AN1 , we
also construct, as indicated above this proposition, the matrices AN2
(if Rn ̸= ∅) and Bd̄ (if Rs ̸= ∅) and we can verify that the data
x̄(t) are informative wrt. M by checking that the matrix C is a full
row rank matrix. The matrix C =

(
AN1 AN2 Bd̄

)
if both Rn ̸= ∅

and Rs ̸= ∅ while C =
(
AN1 AN2

)
if Rs = ∅ and C =

(
AN1 Bd̄

)
if

Rn = ∅. ■

Proof. This proposition is a straightforward consequence of the
paragraph preceding the proposition.3 ■

Note that the number of columns in Bd̄ is related to the
number of entries in r̄Rs and, more particularly, to the number
of sinusoids at different frequencies in r̄Rs , while the number of
columns in AN2 is related to the complexity of F̄ (z) and to how
large nq is in (16). Consequently, if we face a situation where we
do not have data informativity, we can easily determine what
measures have to be taken in order to increase the informativity
of the data (see Section 8 of Colin et al. (2020a) for more details).

Since the data informativity condition of Proposition 7 is a
function of the unknown matrix Ḡ0(z), the same can be said for
the matrices AN1 and C in Proposition 9. As mentioned in the pre-
vious section, we can nevertheless check the data informativity
in a generic manner by replacing Ḡ0(z) by any full-order model of
this matrix. The models of the entries of Ḡ0(z) do not need to be
accurate, but they should be of the correct order. Consequently,
to verify the data informativity using Proposition 9, we need to
know the orders of all the entries of Ḡ0(z) and not only the entries
in its jth row (see Assumption 2).

If we cannot assume that Σ0,V > 0, we can use Proposition 8
instead of Proposition 7 (see Section 5.1). Proposition 9 remains
valid in this case if we define AN1 based on a right factorization
N1(z)V−1

1 (z) of ZΥ (z)T̄0,V (z)H̄0,V,V (z)Ξ0,V . As proposed in the re-
mark at the end of Section 5.1, if a model of Σ0,V is not available,
we can neglect the contribution of the process noises to data
informativity and define C uniquely based on AN2 (if Rn ̸= ∅)
and Bd̄ (if Rs ̸= ∅).

Let us now give two illustrations of the advantages of the
results in this section with respect to the results in Section 4.

5.3. First illustration

We consider the same network as in Section 4.3 i.e., a network
with Ḡ0(z) given by (15) and whose graph is given in Fig. 1. How-
ever, let us now define more precisely the non-zero transfer func-
tions in Ḡ0(z). We have G0,31(z) =

0.173z−1

A0(z)
and G0,32(z) =

0.259z−1

A0(z)
,

0,13(z) = 0.3 G0,32(z) (A0(z) = 1 − 0.741z−1). Moreover, let us
also assume that v̄(t) = diag(A−1

0 (z), A−1
0 (z), A−1

0 (z))ē(t) with ē(t)
a white noise vector of covariance matrix Σ0 = diag(0, 0, 0.1).
Since V = {3}, we have that Σ0,V = 0.1 > 0 and we are thus in
the framework of Proposition 7.

3 The conditions in Proposition 9 are (generally) only sufficient conditions
or (27) and (29) to hold since ∆δ is (generally) not equal to the whole vectorial
pace (Colin et al., 2020a). However, the introduced conservatism is generally
uch lower than with the sufficient conditions of Section 4 as will be shown

n the examples of Sections 5.3 and 5.4 (Colin et al., 2020a).
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Like in Section 4.3, we take j = 3 and K = ∅ i.e., we want to
identify consistently the transfer functions G0,31(z), G0,32(z) and

3,0(z) (D = {1, 2}).
Let us first verify whether the sole excitation of v3(t) could

ead to data informativity (enabling costless identification). For
his purpose, we must construct the matrix AN1 and verify
hether it is full row rank.
We observe that the model structure M taken as example

n Section 5.2 is a full-order model structure M for the to-be-
dentified transfer functions G0,31(z), G0,32(z) and H3,0(z). For this
odel structure M, we have thus that ZΥ (z) is the one defined

in (23).
Since K = ∅, we have, using (19), that T̄0,V (z) = (S0,33(z),

S0,13(z), S0,23(z))T i.e. a permutation of the third column of S̄0(z).
The matrix ZΥ (z)T̄0,V (z) can be factorized as N1(z)V−1

1 (z) with:

N1(z) =

⎛⎝z−1
− 1.482 z−2

+ 0.5488 z−3

0.0778 z−2
− 0.0576 z−3

0

⎞⎠
and V1(z) = 1 − 1.482 z−1

+ 0.5354 z−2. The polynomial matrix
N1(z) can be factorized as:

N1(z) = AN1ZN1 (z) =

(1 −1.482 0.5488
0 0.0778 −0.0576
0 0 0

)
  

=AN1

⎛⎝z−1

z−2

z−3

⎞⎠ (30)

Since the matrix AN1 is not full row rank, we cannot infer data
informativity with the sole excitation of v3(t) (see Proposition 9).
This is an expected result since w2(t) is equal to zero when
r2(t) = v2(t) = 0, and it will therefore be impossible to identify
G0,32(z). It makes thus sense to improve the data informativity by
adding an external excitation r2 to Node 2.

Let us try this with a very simple excitation signal r2(t)
i.e., r2(t) = cos(ω0t) with an arbitrary frequency ω0, say ω0 = 0.1.
This means that R = Rs = {2}. In order to verify whether
we have data informativity with this excitation pattern, we need
to construct the matrix Bd̄ using the multisine vector ZΥ (z)d̄(t).
For this purpose, we observe that d̄(t) = T̄0,{2}(z) r2(t) (Ms =

in (17) since rj=3(t) = 0) and that, using (19), T̄0,{2}(z) =

(S0,32(z), S0,12(z), S0,22(z))T . Using the fact that ZΥ (ejω0 )T̄0,{2}(ejω0 )
= (0.88 − 0.62 j, 0.17 − 0.26 j, 0.995 − 0.099 j )T for ω0 = 0.1,
we obtain the following factorization (26) of ZΥ (z)d̄(t)

ZΥ (z)d̄(t) =

( 0.88 − 0.62j 0.88 + 0.62j
0.17 − 0.26j 0.17 + 0.26j

0.995 − 0.099j 0.995 + 0.099j

)
  

=Bd̄

(
0.5 ejω0t

0.5 e−jω0t

)

ince Rn = ∅, the matrix C in Proposition 9 is given by C =

AN1 Bd̄). Since the rank of this matrix C is equal to three, C
s full row rank and we can thus conclude that we will get
consistent estimate of G0,31(z), G0,32(z) and H3,0(z) using an

xcitation r2(t) = cos(0.1t) and the noise disturbance v3(t). The
ata informativity property can be confirmed by performing an
dentification with a large N in these conditions (i.e. r̄(t) =

0, cos(0.1t), 0)T and V = {3}) and by observing that θ̂N is indeed
very close estimate of θ0. It is also clear that, due to the above
esult, data informativity will also be obtained if r2 is made up
f more than one sinusoid and if r1 and r3 are also multisines
at other frequencies than the sinusoids in r2). This indeed only
dd more columns to Bd̄. Using the procedure of Section 5.2, we
an also prove that we have data informativity when r2 is filtered
hite noise.
The above results show the important advantage of Propo-

ition 9 upon the conservative results of Section 4. Indeed, as
10
Fig. 4. Graph representation of (31).

shown in Section 4.3, with these conservative results, we could
only prove data informativity if the cardinality of R is larger or
qual to two and if the excitations are filtered white noises.
In the analysis above, we have used the true Ḡ0(z) to deduce

. We have nevertheless also applied the above procedure for
ifferent full-order models of Ḡ0(z) and the rank of the matrix C
emained equal to three for all these models. The tested models
ave all the following form G31(z) =

b31z−1

1+az−1 , G32(z) =
b32z−1

1+az−1 ,

G13(z) =
b13z−1

1+az−1 with a parameter vector (b31, b32, b13, a)T ∈ R4

generated randomly.

5.4. Second illustration

Let us consider a network (1) with Nmod = 3 nodes where Ḡ0(z)
s given by:

¯ 0(z) ≜

⎛⎝ 0 0 0.5z−1

0.5z−1 0 0.5z−1

0.5z−1 0.5z−1 0

⎞⎠ (31)

and where H̄0(z) = I3 and Σ0 = diag(0, 0.1, 0). Since V = {2},
we have that Σ0,V = 0.1 > 0 and we are thus here also in the
framework of Proposition 7. The graph of this network is given
in Fig. 4. We here wish to identify Row 2 of Ḡ0(z) (i.e., j = 2)
and we suppose here also that there is no known element in the
second row of Ḡ0(z) (K = ∅). This means that the identification
procedure of Section 3 pertains to the consistent identification of
G0,21(z) and G0,23(z) (since H0,j = 1). We have thus D = {1, 3}.
Observe also that Assumption 3 is respected in this setup.

For this network, we will prove, via Proposition 9, that a con-
sistent estimate of the transfer functions G0,21(z), G0,23(z) can be
obtained via the (costless) excitation of the noise v2(t) = e2(t). As
said in Proposition 9, we must thus construct the matrix AN1 and
verify whether it is full row rank. For this purpose, following the
procedure in Section 5.2, we first factorize ¯∆W (z). Using (31), a
model structure M satisfying Assumption 2 is M = {Ḡ2,D(z, θ ) =(
θ1z−1 θ2z−1

)
, H2(z, θ ) = 1} (θ = (θ1, θ2)T ). Using (11), the

left factorization Q−1(z)Υ (z) of ¯∆W (z) is Q (z) = 1 and Υ (z) =(
0, δθ1z−1, δθ2z−1

)
(with δθ1 = θ1,0 − θ1 and δθ2 = θ2,0 − θ2).

Defining δ = (δθ1, δθ2)T , we can write Υ (z) = δTZΥ (z) with

ZΥ (z) =

(
0 z−1 0
0 0 z−1

)
Since we are here in the conditions of Proposition 7, the

matrix AN1 will be based on a right factorization of ZΥ (z)T̄0,V (z).
The matrix T̄0,V (z) is here equal to (S0,22(z), S0,12(z), S0,32(z))T
i.e., a permutation of the second column of S̄0(z). The matrix
Z (z)T̄ (z) can be here factorized as N (z)V−1(z) with: N (z) =
Υ 0,V 1 1 1
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0.25z−3 0.5z−2
)T and V1(z) = 1 − 0.5z−2

− 0.125z−3. The
olynomial matrix N1(z) can subsequently be factorized as:

1(z) = AN1ZN1 (z) =

(
0 0.25
0.5 0

)
  

=AN1

(
z−2

z−3

)

Since AN1 is full row rank, we have thus data informativity
under the sole excitation of the unknown process noise v2(t).
The data informativity property is confirmed by performing an
identification with a large N in these conditions (i.e. r̄(t) = 0
nd V = {2}) and by observing that θ̂N is indeed a very close
stimate of θ0. We can thus prove the data informativity using

Proposition 9 while it is not possible to do so using Proposition 4
since V\{j} = ∅. This confirms the usefulness of Proposition 9 to
check data informativity.

In the analysis above, we have used the true Ḡ0(z) to deduce
N1 . We have nevertheless also applied the above procedure for
ifferent full-order models of Ḡ0(z) and the rank of the matrix
N1 remained equal to two for all these models. The tested
odels have all the topology of the network in Fig. 4 and the

ive non-zero transfer functions have all the form Gkl(z) = bklz−1

with a parameter vector (b13, b21, b23, b31, b32)T ∈ R5 generated
randomly.

6. Optimal experiment design

6.1. Results

Using the data informativity conditions of Proposition 9, we
can show that consistent estimates of (Ḡ0,j,D(z),H0,j(z)) can be
btained for different sets R and different types of excitation
ectors r̄R(t) (i.e., r̄Rs (t) and r̄Rn (t)). This defines different iden-
ification options. Since consistency is an asymptotic property,
hese results do not say anything about the accuracy of the iden-
ified parameter vector θ̂N (which defines the model of (Ḡ0,j,D(z),
0,j(z))) under these different options. In this section, we will
nalyze the accuracy of θ̂N and determine the signal vector r̄R(t)
eading to the desired accuracy for θ̂N with the smallest excitation
ower.
Since θ̂N is a consistent estimate of θ0 and ϵj(t, θ0) = ej(t),

he estimate θ̂N is also (asymptotically) normally distributed
round θ0 with a covariance matrix Pθ that is given by Pθ =
σ2
ej
N

(
Ēψj(t, θ0)ψT

j (t, θ0)
)−1

with ψj(t, θ ) =
dϵj(t,θ )

dθ . When we are
more particularly interested in a subvector ρ0 of θ0, we use the
fact that the subvector ρ0 can always be written as ρ0 = S θ0
for some matrix S and we define Pρ as the covariance matrix of
S θ̂N . We have then Pρ = SPθST . Since Pθ = Pρ when S is chosen
as S = Inθ (nθ denotes the dimension of θ ), let us for the sake of
generality continue our analysis for Pρ = SPθST .

We want to determine the excitation vector r̄R(t) that, for
an identification experiment of duration N , yields an accept-
able covariance matrix Pρ = SPθST with the least excitation
power. For this purpose, we will first assume that nR = Nmod
i.e., R = {1, 2, . . . ,Nmod} and we will determine the power
spectrum matrixΦr̄ of the excitation vector r̄(t) having the small-
est power while guaranteeing that the estimate θ̂N obtained via
an identification experiment of duration N with this excitation
has a covariance matrix Pθ that satisfies the following constraint
SPθST ≤ Radm where Radm specifies the desired accuracy (a
diagonal Radm e.g., allows to constrain the standard deviations
of each entries of S θ̂N (Ghosh, Bombois, Huillery, Scorletti, &
Mercère, 2018)). We thus require Radm − SPθST ≥ 0 and, using
Schur complement, this gives the following optimal experiment
11
design problem:

min
Φr̄ (ω)

trace
(

1
2π

∫ π

−π

Φr̄ (ω) dω
)

subject to
(
Radm S
ST P−1

θ

)
≥ 0 (32)

This optimization problem is convex since, as will be shown in
the sequel, P−1

θ is an affine function of Φr̄ (ω). As indicated above,
in this optimal experiment design problem, the main objective
is to determine the least powerful excitation vector r̄(t) such
that SPθST ≤ Radm. Note nevertheless that the objective function
of the optimization problem (32) has a l1-norm structure. Since
it is frequently observed that such objective functions, when
minimized under convex constraints, generate a sparse solution
(see e.g., Tropp, 2006), we can expect that the optimal excitation
vector r̄(t) will have some elements rk equal to zero. In other
ords, the set Ropt corresponding to the solution of (32) will gen-
rally have a cardinality nRopt that is smaller than Nmod (defining
n this way the optimal excitation pattern).

Let us now derive the affine relation between Φr̄ (ω) and
−1
θ . Using the philosophy introduced in Bombois et al. (2018)
nd Gevers and Bazanella (2015), we have that: ψj(t, θ0) =

1(z, θ0) w̄D(t) + Γ2(z, θ0) ej(t) where Γ1(z, θ ) is a matrix of
dimension nθ×nD whose lth row is given by H−1

0,j (z)
dḠj,D (z,θ )

dθl
(θl is

he lth entry of θ ∈ Rnθ ) and Γ2(z, θ ) is a vector of dimension nθ
hose lth entry is given by H−1

0,j (z)
dHj(z,θ )

dθl
. Using now the fact that,

for any set R, w̄D(t) = S̄0,D,R(z)r̄R(t) + S̄0,D,V (z)H0,V,V (z)ēV (t),
we can rewrite the previous equation as follows: ψj(t, θ0) =

Γr̄ (z, θ0)r̄R(t) + Γē(z, θ0)ēV (t) with Γr̄ (z, θ0) = Γ1(z, θ0)S̄0,D,R(z)
and with Γē(z, θ0) = Γ2(z, θ0) mT

j + Γ1(z, θ0)S̄0,D,V (z)H0,V,V (z)
where the column vector mj of dimension nV is a unit vector
such that mT

j ēV (t) = ej(t). As mentioned above, we here choose
R = {1, 2, . . . ,Nmod} for the experiment design and we have thus
r̄R(t) = r̄(t). Consequently,

P−1
θ =

N
σ2
ej

(
Ēψj(t, θ0)ψT

j (t, θ0)
)

= Rr̄ (Φr̄ (ω), θ0) + Rē(θ0)

r̄ (Φr̄ (ω), θ0) =
N
σ2
ej

1
2π

∫ π
−π
Γr̄ (ejω, θ0) Φr̄ (ω) Γ ∗

r̄ (e
jω, θ0) dω

ē(θ0) =
N
σ2
ej

1
2π

∫ π
−π
Γē(ejω, θ0) Σ0,V Γ

∗

ē (e
jω, θ0) dω

with Σ0,V the covariance matrix of ēV (t).
Since Φr̄ (ω) is a variable of infinite dimension, we need to

choose a linear parametrization for Φr̄ (ω) to solve the convex
optimization problem (32) (Barenthin, Bombois, Hjalmarsson, &
Scorletti, 2008; Bombois et al., 2006; Jansson & Hjalmarsson,
2005). We can e.g., choose the parametrization given in Barenthin
et al. (2008) and that corresponds to filtered white noise r̄(t).
However, in order to simplify this complex optimization problem,
we will here restrict attention to a parametrization corresponding
to an excitation vector r̄(t) made up of mutually independent
white noises: Φr̄ (ω) = diag(c1, c2, . . . , cNmod ) ∀ω where ck (k =

1, . . . ,Nmod) is the to-be-determined variance of rk.

Remark. Like in all optimal experiment design problems, Pθ
depends on the unknown θ0 (i.e. the true parameter vector de-
scribing H0,j(z) and Ḡ0,j,D(z)) and also on the unknown matrices
S̄0(z) and H̄0(z). Initial estimates of these unknown quantities are
thus necessary to solve the optimization problem (32). ■

6.2. Numerical illustration

Let us consider the same network as in Section 5.4 where

we wish to identify G0,21(z) and G0,23(z) (i.e. j = 2). For that
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etwork, as proposed above, we will solve (32) using Φr̄ (ω) =

iag(c1, c2, c3) ∀ω where ck (k = 1, . . . , 3) is to-be-determined
ariance of rk. As shown in Section 5.4, the model structure

considered for this identification is M = {Ḡ2,D(z, θ )} with
Ḡ2,D(z, θ ) = (θ1z−1, θ2z−1) (θ = (θ1, θ2)T ). Let us first suppose
that we are interested in having an accurate estimate θ̂N of the
whole true parameter vector θ0 = (0.5, 0.5)T . This means that
we choose S = I2. Let us also define Radm as Radm = 10−5I2.
In Section 5.4, we have proven that we have data informativity
when r̄(t) = 0. Consequently, if we choose N sufficiently large,
the optimal spectrum Φ

opt
r̄ (ω) will be equal to zero (Ropt =

). This is possible because the matrix Rē(θ0) is strictly positive
efinite and proportional to N . However, for N = 1000, we obtain
Φ

opt
r̄ (ω) = diag(8.54, 0, 5.82) which corresponds to an excitation
ignal on Node 1 and on Node 3. In other words, Ropt = D =

1, 3}.
Let us now suppose that it is impossible to add an exci-

ation signal on Node 1. We can then solve the optimization
roblem (32) imposing c1 = 0. We then obtain Φ

opt
r̄ (ω) =

iag(0, 0, 29.35) which corresponds to a unique excitation signal
n Node 3. However, we observe that, when we cannot excite
ode 1, much more power has to be injected in the network to
btain the desired accuracy. Let us constrain (32) even more by
upposing that we can only add an excitation on Node 2 (not
n Nodes 1 and 3). We thus impose c1 = c3 = 0 in (32) and
e obtain Φopt

r̄ (ω) = diag(0, 117.41, 0) where we see that the
xcitation power (which is now on the only excitable node) is
ven larger.
Let us now come back to the case where we can add an

xcitation on each node, but let us now suppose that we are
nly interested in an accurate estimate of the transfer function
0,21(z). We therefore choose S = (1 0) and Radm = 10−5. The
ptimal solution of (32) is then Φopt

r̄ (ω) = diag(9.36, 0, 0) which
orresponds to a unique excitation signal on Node 1 (i.e., the input
ignal w1(t) of G0,21(z)). If we are only interested in an accurate
stimate of the transfer function G0,23(z) (S = (0 1)), we observe
he same phenomenon since the optimal spectrum is given by
opt
r̄ (ω) = diag(0, 0, 7.28).

. Conclusions

In this paper, we have addressed the data informativity prob-
em for the identification of a row of Ḡ0(z) using the full input
pproach. We have derived conditions that ensure data infor-
ativity for the identification of modules having an arbitrary
omplexity and that can be checked by inspecting the topology
f the network. We have also developed a necessary and suffi-
ient condition for data informativity that takes into account the
omplexity of the to-be-identified modules. This particular data
nformativity condition is verified if a matrix of coefficients is full
ow rank. The determination of this matrix of coefficients requires
full-order model of the network matrix Ḡ0(z). Consequently,

he verification of the necessary and sufficient data informativity
ondition requires more information on the network than the
ore conservative conditions (that can be verified by inspecting

he network topology).

ppendix A. Proof of Proposition 4

Using (6), we can rewrite x̄(t) = (yj, w̄T
D(t))T as:

¯(t) =

(
1 Ḡ0,j,D(z)
0 InD

)
  

(
vj(t)
w̄D(t)

)
   (A.1)
=J(z) =x̄bis(t)

12
As also shown in Van den Hof and Ramaswamy (2020), since
J(ejω) is a full-rank square matrix at all ω, we have that (14) is
equivalent to

Φx̄bis (ω) > 0 at almost all ω. (A.2)

In the sequel of the proof, we will show that (A.2) holds under
the conditions of Proposition 4. For this purpose, let us observe
that, when r̄(t) = 0, we have that w̄D(t) = S̄0,D,V (z)v̄V (t), which
can also be rewritten as: w̄D(t) = S̄0,D,j(z) vj(t) + S̄0,D,U (z) vU (t)
with U = V\{j}. The vector x̄bis(t) can thus be rewritten as:

¯bis(t) =

(
1 0

S̄0,D,j(z) S̄0,D,U (z)

)
  

=J̃(z)

(
vj(t)
vU (t)

)
  

=ξ̄ (t)

(A.3)

Observing that ξ̄ (t) = (vj(t), vTU (t))
T is just a permutation of

V (t) = H0,V,V (z)eV (t) and recalling that Proposition 4 assumes
hat Σ0,V > 0, it is clear that Φξ̄ (ω) > 0 at (almost) all ω. The
atter and the fact that, when Condition (i) holds, the matrix J̃(ejω)
n (A.3) is full row rank at almost all ω show that (A.2) is indeed
atisfied under the conditions in Proposition 4; concluding the
roof.

ppendix B. Proof of Proposition 5

In the proof of Proposition 4, we have shown that (14) is
quivalent to (A.2). In the sequel, we will show that x̄bis(t) =

vj(t), w̄D(t))T satisfies (A.2) under the conditions of Proposi-
ion 5. For this purpose, let us observe that w̄D(t) = S̄0,D,R(z)r̄R
t) + S̄0,D,V (z)v̄V (t) can here be rewritten as: w̄D(t) = S̄0,D,j(z)
j(t) + S̄0,D,Q(z) ρ̄(t) where Q = R ∪ (V\{j}) and where ρ̄(t)
s a vector of dimension nQ whose elements are equal to vk (if
∈ V\{j} and k ̸∈ R), to vk + rk (if k ∈ V\{j} and k ∈ R) or to rk
if k ̸∈ V\{j} and k ∈ R). The vector x̄bis(t) = (vj(t), w̄D(t))T can
hus be rewritten as:

¯bis(t) =

(
1 0

S̄0,D,j(z) S̄0,D,Q(z)

)
  

=L̄(z)

(
vj(t)
ρ̄(t)

)
  

=κ̄(t)

(B.1)

Observing that the noise vj does not appear in ρ̄(t) and recalling
that Proposition 5 assumes that Σ0,V > 0, that Condition (ii)
holds and that r̄(t) and ē(t) are uncorrelated (see Assumption 1),
it is clear that Φκ̄ (ω) > 0 at (almost) all ω. The latter and the fact
that, when Condition (i) holds, the matrix L̄(ejω) in (B.1) is full row
rank at almost all ω show that (A.2) is indeed satisfied under the
conditions in Proposition 5; concluding the proof.

Appendix C. Proof of Proposition 6

In the proof of Proposition 4, we have shown that (14) is
equivalent to (A.2). In the sequel, we will show that x̄bis(t) =

(vj(t), w̄D(t))T satisfies (A.2) under the conditions of Proposi-
tion 6. For this purpose, using w̄D(t) = S̄0,D,R(z)r̄R(t)+ S̄0,D,V (z)
v̄V (t), we have

¯bis(t) =

(
vj(t)

S̄0,D,R(z)r̄R(t) + S̄0,D,V (z)v̄V (t)

)
(C.1)

nder Conditions (i) and (ii) of Proposition 6, we have that the
ector ζ̄ (t) = S̄0,D,R(z)r̄R(t) has a strictly positive-definite power
pectrummatrixΦζ̄ (ω) at almost all frequencies. Since ζ̄ (t) is also
uncorrelated with vj(t) (Assumption 1), it is thus clear that (A.2) is
indeed satisfied under the conditions in Proposition 6; concluding
the proof.
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ppendix D. Proof of Proposition 7

We will first prove the result for the case r̄(t) ̸= 0. Let us
onsider Definition 1 for this purpose. Using (17), we can rewrite
W̄ (z)x̄(t) (see Definition 1) in the following way:

W̄ (z)x̄(t) = s̄e(t) + s̄q(t) + s̄d(t) (D.1)

s̄e(t) = ¯∆W (z) T̄0,V (z) H̄0,V,V (z) ēV (t) (D.2)

s̄q(t) = ¯∆W (z) X̄0,Rn (z) F̄ (z) q̄(t) (D.3)

s̄d(t) = ¯∆W (z) d̄(t) (D.4)

Since Assumption 1 states that ē(t) is independent of r̄(t) (and
thus of q̄(t) and d̄(t)) and since q̄(t) is also independent of d̄(t),
the left hand-side of (13) is equivalent to:⎧⎨⎩Ēs̄2e (t) = 0

Ēs̄2q(t) = 0
Ēs̄2d(t) = 0

(D.5)

WhenΣ0,V > 0, we have that the power spectrummatrixΦvV (ω)
of vV (t) = H0,V,V (z)eV (t) is strictly positive-definite at almost
all ω. Using this property, we see that Ēs̄2e (t) = 0 (see (D.2)) is
equivalent to ¯∆W (z) T̄0,V (z) = 0. Using the fact that Φq̄(ω) =

Inq > 0, we see also that Ēs̄2q(t) = 0 (see (D.3)) is equivalent to the
second equation of the left hand side of (21). Finally, Ēs̄2d(t) = 0
(see (D.4)) is equivalent to the third equation of the left hand side
of (21). Combining these facts, we conclude that the left hand side
of (13) is equivalent to the left hand side of (21). Consequently,
using Definition 1, (21) is indeed a necessary and sufficient data
informativity condition. The last statement of Proposition 7 can
be proven as follows. When F̄ (ejω) is full row rank at almost all
ω, the vector r̄Rn (t) in (16) has the property that Φr̄Rn (ω) > 0
at almost all ω. This in turn means that Ēs̄2q(t) = 0 is in this case
equivalent to ¯∆W (z) X̄0,Rn (z) = 0.

Let us now turn our attention to the costless case. For this
purpose, let us observe that, when r̄(t) = 0, (D.1) becomes

¯∆W (z)x̄(t) = s̄e(t). Consequently, the left hand side of (13) is
equivalent to Ēs̄2e (t) = 0 and thus to the left hand side of (20)
(as shown above). It is thus clear that (20) is the necessary and
sufficient data informativity condition in the costless case.

Appendix E. Proof of Proposition 8

Let us denote by p the rank of Σ0,V (p ≤ nV ). Since Σ0,V =

Ξ0,VΞ
T
0,V with Ξ0,V ∈ RnV×p, we can rewrite ēV (t) as ēV (t) =

Ξ0,V ēunit (t) where the power spectrum matrix Φēunit (ω) of ēunit (t)
is equal to the identity matrix Ip > 0 at all ω. Consequently, (D.2)
can be rewritten as

s̄e(t) = ¯∆W (z) T̄0,V (z) H̄0,V,V (z) Ξ0,V ēunit (t) (E.1)

SinceΦēunit (ω) = Ip > 0, Ēs̄2e (t) = 0 is equivalent to ¯∆W (z) T̄0,V (z)
H̄0,V,V (z) Ξ0,V = 0. Similar arguments as in the proof of Propo-
sition 7 then leads to the desired result.
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