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CONTROL-RELEVANT UNCERTAINTY MODELLING DIRECTED
TOWARDS PERFORMANCE ROBUSTNESS
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and Raymond A. de Callafon*
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Abstract. In line with recently introduced methods for iterative identification and
control design, a method is proposed to identify uncertainty models from data with
an uncertainty structure that is motivated by the (closed loop) control performance
cost function. This allows the assessment of achieved plant performance on the ba-
sis of measured time series, as well as the evaluation of robust stability and robust
performance for a newly designed controller prior to implementation. For the spe-
cific control performance measure considered, (Ho-norm on a closed-loop transfer
matrix), this naturally leads to the identification of upper bounds on either coprime
factor model uncertainty or uncertainty on the (dual) Youla-parameter. Theoretical
results are supported by experimental results of an application to the radial control

loop in a compact disc servo mechanism.

Keywords. System identification, model uncertainty, coprime factorization,
closed-loop identification, control-oriented models, robust performance.

1. INTRODUCTION

In the development of identification methods that pro-
vide models that are specifically suitable for model-based
control design, one approach is in the area called itera-
tive identification and control. Here (approximate) mod-
els are identified on the basis of closed-loop data while
the plant is controlled by the latest controller, and next
an improved controller is designed on the basis of the es-
timated model. One of the important phenomena in this
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approach, is that the identification of an (approximate)
nominal model is performed through an identification
criterion that is induced by the control performance cri-
terion. Examples of iterative schemes are provided by
Zang et al. (1995), Lee et al. (1993) and Schrama (1992),
see also the survey papers by Gevers (1993) and Van den
Hof and Schrama (1995).

The basic line of reasoning is as follows. A control per-
formance cost function is considered for a linear time-
invariant plant P, and a controller C to be determined
by a function .J(FP,,C) in a normed space; the con-
trol performance cost is then determined by its norm
19(P, C)I-

In the iterative procedures considered one distinguishes
two steps:

e For a present controller C, identify a model P that



minimizes the performance degradation term
17(P,.C) = J(P,C)I;

e For a given model P design a controller C' by min-
imizing the designed performance cost | J(P,C)|.

In Van den Hof and Schrama (1995) it is illustrated how
the several iterative schemes fit into this framework, by
employing different performance cost functions. One of
the important points in the iterative mechanism sketched
is that when designing a new controller one has to be
sure that the nominal design achieves sufficient perfor-
mance robustness.

An intermediate question that plays a role in this re-
spect, is the question, “What is the achieved plant per-
formance for a given controller?” In other words: given
a controller that is applied to the plant, can we mon-
itor the achieved plant performance from general in-
put/output time series” The answers to these questions
require uncertainty modelling.

In this paper we will investigate the possibilities to use
identified model uncertainty sets to robustify the con-
trol design in the iterative schemes, by choosing model
uncertainty structures that are motivated by a general
control performance cost function; this cost function is
based on the closed-loop transfer function

P,

T(P,,C) = { .

] r+cr)t(cI], ()

which reflects the transfer function from the external
signals (r9,71)7 to the loop signals (y,u)T as indicated
in figure 1.

T1

Fig. 1. Configuration of closed loop system T(P,,C).

The matrix T(P,,C) incorporates all relevant feedback
properties of the closed loop system composed of P, and
C. In this paper we will consider the control performance
cost function :

1T(Po, O = IV - T(F,,C) - Wlloo (2)

where V,W are user defined (stable) weighting func-
tions, that for simplicity of notation and without loss
of generality will be fixed to identity in this paper.
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For this performance function, we will consider how iden-
tified uncertainty sets can be used in three problems:

¢ performance assessment, i.e. the evaluation of con-
trol performance for the present controller;

e robust stability test, i.e. the prior assessment of
closed loop stability for a future controller;

o robust performance test, i.e. the prediction of worst-
case performance for a future controller.

In sections 2 and 3 we will present two uncertainty struc-
tures that we will consider, and it will be indicated how
corresponding uncertainty sets can be identified from in-
put/output data. The three tests mentioned above will
be addressed in sections 4, 5 and 6, while experimen-
tal results on the radial loop of a compact disc servo
mechanism are shown in section 7.

2. COPRIME FACTOR UNCERTAINTY SETS

An identification with the performance degradation cri-
terion can be performed in the framework of coprime
factor identification, where the possible unstable plant
P, is expressed as the ratio of two stable transfer func-
tions N, D i.e. P, = ND~'. To gain access to specific
coprime factorizations of the plant from closed loop mea-
surements of ry,r2,u,y (figure 1) one can apply a fil-
tering of the excitation signal r(t) := r1(¢t) + C(q)r2(t)
according to:

z(t) = Fr(t) (3)

with F a stable filter. Employing this (instrumental)
signal z the system relations can now be formulated as:

y(t) = N, pz(t) + Sov,(t)
u(t) = Do, rx(t) — CSouo(t)

(4)
(8)

with S, the plant sensitivity function S, = [1 + CP,]},
and the (coprime) factors N, g, D, r given by

Nop=P,(I+CP,) 'F™!
D,p={I+CP,)'F,

(6)
(7)

The freedom that is present in the choice of the stable
filter F' such that stable factors N, g, D, p result, is
characterized in Van den Hof et al.(1995).

Note that the signal z(¢) is uncorrelated with the noise
v(t), and can therefore be used as input signal in identi-
fication in an open loop way. The coprime factors N, r,
D, r can be estimated by using z as input signal and
[v )T as output signals. With the choice of a factoriza-
tion (i.e. through the choice of F'), the coprime factor-
ization to be estimated can be influenced. In Van den



Hof et al.(1995) this freedom is used to estimate pos-
sibly low order normalized factorizations of the plant.
In de Callafon and Van den Hof (1995) the choice of
additionally is based on the demand for a model which
is specifically suitable for application in the degradation
criterion |[T(P,,C) — T(P,C)||«- A related uncertainty
set is defined by considering additive uncertainty on es-
timated coprime factors. To this end we denote the un-
certainty set

Por(N, D, by, 6p) = {P|P = (N+AND+ADp)Y,
|An(e™)] < n(w), |Ap(e™)] < ép(w)}  (8)

where (N, D) is a right coprime factorization (rcf) of
the estimated model P. Identification of such an uncer-
tainty set can be performed by using one of the meth-
ods for coprime factor identification mentioned above,
together with one of the available uncertainty identifi-
cation procedures for open loop plants, either based on a
worst-case deterministic approach or based on stochas-
tic representations (Ninness and Goodwin, 1995). The
considered uncertainty structure used in Pcop will be
shown to be specifically suitable for use in conjunction
with the control performance function (2).

3. ADDITIVE DUAL-YOULA PARAMETER
UNCERTAINTY

An alternative to the coprime factor uncertainty set
will also be shown to be directed towards the perfor-
mance function (2). It is induced by the dual-Youla
parametrization, which parametrizes all systems that
are stabilized by a given controller.

Proposition 3.1 Let C have a rc¢f (Ne, D.) and let Py
with ref (N, D) be any system such that T(P;,C) s
stable. Then a plant P, is stabilized by C if and only if
there exists an R, € IRH o, such that

P, = (N, + D.R,)(D. — N.R,)"". (9)

T2

j:TuC ” ps Nz |

Fig. 2. Dual Youla-representation of the data generating
system with noise.
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The Dual-Youla parametrization is depicted in figure 2.
Identification of the dual-Youla parameter R, can be
done in a way that closely relates to the coprime factor
framework discussed previously. This is visualised by the
fact that when choosing a filter F = (D, +CN,)™!, the
systems equations can be rewritten into the form

2(t) = Rp(q)x(t) + Sp(q)vo(?) (10)
with  2(t)= (D, + P.N.) " [y(t) — Peu(t)] (11)
Sp(q) = D7MI + P,C ' W,,. (12)

Based on expression (10) and using the fact that z(t)
and z(t) can be obtained from filtering measured signals,
while z is uncorrelated with vy, we can now identify R,
in an open-loop way, using any uncertainty identification
procedure mentioned in the previous section.

The dual-Youla parametrization leads to the following
uncertainty set:

,PR(NIaD:r:NC;DtHRPv"Y) =
{P | P=(N;+ D.R,)(D, — NcRp)—1>

Rp=Ry+Ar, |Ap(e) S2@)}.  (13)
For given coprime factorizations of P, and C the Youla-
parameter uniquely relates to a plant P, according to:

R, = (D.+ PN.)"Y(P - P,)D,. (14)

For evaluating robustness properties we have to consider
the situation that a new controller C,.,, is going to be
implemented on the plant. This new controller can be
written in the form of a Youla-parametrization

Cnew = [Nc + DIR<][DC - NCRC]_l' (15)

In this way the stable Youla-parameter R. uniquely re-
lates to the new controller according to

R. = (Dy + CnewNz) ™ (Crew — C)D.. (16)

These expressions will be utilized when assessing robust
stability and robust performance properties of the con-
sidered uncertainty sets.

4. PERFORMANCE ASSESSMENT

For the two uncertainty sets considered we can find ex-
pressions that are instrumental in assessing the perfor-
mance of a given closed-loop configuration. With respect
to the coprime factor uncertainty set, defined in section



2, simple mampulatxon of the equations shows that
P e PCF(NO r,D o, F76N,5D) if and only if 5

o[ Jrie = 3

for all w

This non-conservative representation of P¢r has direct
connection with the control performance cost function
considered. Using the fact that the H norm of a matrix
with rank 1 is equal to the supremum over frequency of
its Frobenius norm, it follows that

E:;]F[C 1]’

(17)

”T(P"’C)“oo < sup |:|N0,F‘| + 6y (w)

pheay ,)] Fl[IC] 1)

F
(18)

For the dual-Youla uncertainty set the results are quite
similar. Considering a left coprime factorization (lef)
D., oszuchthatDD + N.N, =1, then

Py 6 'PR(NI,D,,NC, DC,R,,, ) if and only if

N.+D.R,] ;o =
— N ] <
’T(P"’C) [DI - NCR,,] [Ne De]| <
|DC|] - ~
w) [ |Ne| |De 19
[l e Dt 101 (19)
for all w, and consequently ||T(P,, C)||ce £
|N1.+DCR,,|+|DC|7(w)] N
< sup [ N N,| |D. (20
w LDz = NeRp|+|Nely(w) [INe] 1Dl P (20)

Expressions (17) and (19) show that the two uncertainty
sets considered can directly be characterized (non-con-
servatively) in a way that closely relates to the per-
formance function considered. Equations (18) and (20)
provide direct expressions for assessing achieved perfor-
mance.

5. ROBUST STABILITY TEST

Using either of the two uncertainty sets Pcr or Pgr a
robust stability test can be performed for a designed
(but not yet implemented) controller Cpe..

Proposition 5.1 Consider the uncertainty set Pcr (8).
Then a stabilizing controller Cpe for ND™1 stabilizes
all plants P, € Pcr if

[165()+ Crewbiv(@)] [D+Cocu BT <1 (21)

5 The matrix inequality {4| < |B| will be used to indicate that
the inequality holds for all scalar matrix elements separately.
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Proof: See De Vries (1994). u]

This result is a direct consequence of the small gain the-
orem. When the coprime factors of the plant are tuned
to be normalized, a robust stability test based on the
gap metric can also be used (see Van den Hof et al,,
1995). For the dual-Youla uncertainty the following re-
sult holds.

Proposition 5.2 Consider the uncertainty set Pr (13).
Then Cpey stabilizes all plants in the set Pg if

|R(e™)|[|Rp(e™)| + y(w)] < 1 for allw. (22)
Proof: Follows from Tay et al. (1989) and in Schrama
(1992). O

This test can be applied using expression (16) for R..
Note that when the new controller C,,.., is equal to the
old controller, then R, = 0 and the latter stability test
is non-conservative. In that case stability is guaranteed
for any stable R, because of the dual-Youla parametriza-
tion.

Both robust stability tests (21) and (22) can directly be
performed based on one of the two uncertainty sets.

6. ROBUST PERFORMANCE TEST

For testing robust performance, we need to find an ex-
pression for ||T(P,, Cnewlloo before having implemented
the new controller on the plant. Using a coprime factor
uncertainty set, this problem is quite hard to tackle for
the general performance function that we consider here.

One option is to use the uncertainty that is estimated
on the filtered sensitivity function S,F~! = D, r for de-
riving an additive uncertainty region around the open
loop plant Py. Once this is available, expressions for
T(P,,Cpew) can be generated; however these latter ex-
pressions will necessarily involve conservatism since we
have to deal with the problem of bounding the uncer-
tainty in expressions like Po[I + CrewPo]”! where the
uncertain element P, appears in both the numerator
and the denominator of the expression.

The procedure suggested is based on the following result
that is valid for scalar plants only.

Proposition 6.1 Consider ’PD(ﬁO,F,ép) =

{D|D = Doy + Ap.|Ap(e™)]| < 6D(w)} ,

and denote S{e*
bz(w) =

) := D(e*)F(e*) and
|F(e™)|ép(w). Then D, r € Pp if and only if

|Po(eiu) _ p(eiw)i < 6p(w) (23)



for all w, with

. 1 5*
Wim = | -1 24
1 b3
p(w) 1= 25
Proof: See Van Donkelaar et al.(1995). ]

With the additive uncertainty description on the open-
loop transfer function an uncertainty description can
be derived for the sensitivity function of the plant in
feedback with a newly designed controller, i.e. Sy new =
[+ ChrewP,] 1. This can be done in a non-conservative
way (Van Donkelaar et al., 1995), leading to the result
that D, r € Pp if and only if

S ( 1+ Cpo P )
' I]- + Cvne'uvljl2 - ICnew'26?3 -
|Cnew|dp

(26)

|1 + C1new-P|2 - |Cnew|26?‘3

for all w, and where C.,, is any newly designed con-
troller.

The above result shows that one can obtain non-con-
servative expressions for the uncertainty in the sensitiv-
ity function that is achieved for a newly designed con-
troller. Similar expressions can also be obtained for the
(2,1)-element of the matrix T'(F,, Crew ). Problems occur
when trying to handle the other elements in this matrix,
as in those situations one has to deal with expressions
for P, in both numerator and denominator.

For the dual-Youla uncertainty set tedious manipula-
tions reveal (Schrama, 1992) that - using similar nota-
tion as in (19) - we can write

N,+D.R
T(Paycnew) = [DI_N(‘]{Z

[NC+RCDI D(:—Rch]- (27)

] [[+R.Rp]™!

Note that in this expression all terms are known except
for R,. By bounding the amplitude of all transfers in
this expression we can write:

[|N1+Dc1?p|—|Dc|7(w)
|Dz ~NeRp|—|Ne|v(w)

) [lNc +RCDI| |Dc - RCNT” < |T(Poacnew)| <
. {|NI+DCRP|+|DC|v(w>

|D1_NCRPI+|Nc|7(w)
[IN. + R.D.| |D. - R.N.|]
leading directly to the result that ||T(P,, C)||w is upper
bounded by the supremum of the Frobenius norm of the
right hand side matrix.

] [1+R.Ry| + |Rely(w)]

][|1+ Refty) ~ 1Ry

(28)
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Note that for deriving expression (28) some conservatism
is added by bounding the denominator term [I+R.Rp] ™!
in amplitude by substituting y(w). However note that
the conservatism that is added here vanishes when R,
tends to 0, i.e. when the newly designed controller is
close to the present controller.

7. EXPERIMENTAL RESULTS

The identification methods described in this paper have
been applied to data of the (unstable) radial loop of a
CD pick-up mechanism controlled with a PID-controller.
Signal 7(t) was chosen as a multi sinusoid with 8 peri-
ods of length Ny = 1024. The frequencies are linearly
spaced between 100 Hz and 10 kHz. For coprime factor
identification the scheme is followed as proposed in de
Callafon and Van den Hof (1995). The method devel-
oped by de Vries (1994) is applied for identification of
model uncertainty bounds.

For the estimated Pcp the performance assessment ac-
cording to (17) is shown in figure 3. For the two trans-
fer functions PySy and Sy that are directly accessible
from data, the results of a spectral estimate are also
given. The spectral estimates are well captured within
the uncertainty bounds. PcF is also applied in the ro-

10°
frequency (Hz)

Fig. 3. Performance assessment; Bode amplitude plots
of T(P,,C) according to (17), with uncertainty
bounds (—-); spectral estimates of P,S, and S,

().

bust stability test (21), with respect to the original PID
controller C, and a PID controller with enlarged gain
of factor 1.6 (C;). For controller C; the robust stability
test is passed. This same holds for the test (22) applied
to Pr. Next the worst-case performance for the new con-
troller C is assessed, based on identified sets Pop and



0.5r

frequency (Hz)

Fig. 4. Robust stability test (21) for C (=), Cy (—-)
and test (22) for Cy (—.—).

Pr. For Pep this test leads to the sensitivity bounds

frequency (Hz)

Fig. 5. Bode amplitude plot of Sonew = (1 + C1P,)7!
with uncertainty bounds based on Pop, and a spec-
tral estimate obtained after implementation (---).

as shown in figure 5. For Pg this test can be performed
for all elements of the T'(P,, C1) matrix. Results for the
second column of T'(P,, C), i.e. the elements S, ne. and
P, S8, new are shown in figure 6.
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Fig. 6. Uncertainty bounds on Bode amplitude plots of
P,Sonew = Po(l + C1P,)7! (upper) and Sonew
(lower) based on Pgr, with spectral estimate of
Sonew (dotted).

CONCLUSIONS

It is shown that uncertainty sets based on additive co-
prime factor uncertainty and dual-Youla parameter un-
certainty can be fruitfully used in either a performance
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assessment test, a robust stability test and a robust per-
formance test for a controlled plant for a general type of
control performance criterion. The results can be used to
robustify the control design in iterative schemes of iden-
tification and control design, where the control design
is mostly restricted to a nominal design only. A further
extension of the results presented here, and involving
sub-optimal designs by employing p-tests, is provided
in de Callafon and Van den Hof (1996).
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