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Abstract

Classical indirect methods of closed-loop identification
can be applied on the basis of different closed-loop
transfer functions. Here the multivariable sit uat ion is
considered and conditions are formulated under which
identified approximative plant models are guaranteed
to be stabilized by the present controller. Additionally
it is shown in which sense the classical indirect methods
are generalized by the recently introduced identifica-
tion method based on the dual-Youla parametrization.
For stable controllers the two methods are shown to be
basically equivalent to each other.

1 Introduction

The classical method of indirect identification for han-
dling a closed-loop identification problem is based on
the idea of first identifying a closed-loop transfer func-
tion, and then calculating the related plant model by
using knowledge of the present controller in the loop
(see [2, 7]). Attractive properties of this identification
scheme are that the method does not suffer from bias
effects due to a noise correlation with the input sig-
nal, as the input signal for identification is taken to be
an external reference signal. The critical part of the
indirect identification is the construction of the (open-
loop) plant model in the second step, based on the es-
timated closed-loop transfer. However, if the resulting

plant model is not limited in model order, this construc-
tion can be done exactly provided that the controller is
known and the appropriate closed-loop transfer func-
tion has been identified. In this sense the question

which transfer is “appropriate” is determined - among
other things - by the input/output dimensions of the
plant, and the location of the external excitation signal.

In recent years several new ideas concerning closed-
100P identification of approximate models have been
presented, most of them directed towards the ability
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to identify approximate models of the open-loop plant
on the basis of closed-loop data, while the asymptotic
bias distribution is not dependent on the noise and thus
explicitly tunable by the designer, see e.g. [3, 4, 8, 9]
as summarized in the survey paper [10]. Most of these
schemes have been developed in view of the ability to
tune the asymptotic bias distribution in order for the
identified models to particularly reflect those dynamic
aspects of the plant that are most relevant for con-
secutive model-based cent rol design. One of the newly
handled methods is based on a dual-Youla parametriza-
tion of the open-loop plant ([3, 6, 4]), and this method
is suggested to be particularly attractive because of its
guarantee that identified (approximate) plant models
are guaranteed to be stabilized by the present con-
troller.

In this paper we start by summarizing some aspects
and results related to the classical indirect identifica-
tion scheme, particular y addressing the question un-
der which conditions multivariable plant models can
be identified. Next it will be shown under which con-
ditions identified plant models are guaranteed to be
stabilized by the present controller, and in which sense
this classical scheme can be considered as a special -
simple- case of the recently used identification in the
dual-Youla parametrization.
2 System configuration

The system configuration that will be considered in this
paper is sketched in figure 1. P. and C are linear time-
invariant finite-dimensional but not necessarily stable
multivariable transfer functions. The input and out-
put dimensions are determined by u(t),rI(t)E IRm,

y(t),rz (t) E IRp. v is a noise disturbance signal, while
rl, r2 are external signals that can be either reference
(tracking) signals or external disturbances, being un-
correlated to eachother and to v.

A particular combination of external signals will be de-



3.2 Indirect identification from closed-loop
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Fig. 1: Closed-loop configuration.

noted by
?-(t) := ?’1(t) + C(q)rz(t). (1)

The relevant closed-loop transfer functions in the sys-
tem configuration are reflected by

[1
‘0 [1+ CP,]-’ [ c I ]T(PO, C) = ~ (2)

being the mapping from the signals
[:1+[:1

For notational purposes the following notation for the
elements of T(Po, C) will be employed:

[1

To Go
T(pO’ c) = Q. So “

(3)

wit h

To = Po[.f+ CPO]-lC

Go = PoII+ CPo]-l

Qo = [1+ CPO]-lC

so = [1+ CPO]-1.

It is a standard result from stability theory that the

considered closed-loop system is internally stable if and
only if T(Po, C) E lRH~, with lRH~ the space of real
rational transfer functions that are analytic in z z 1.
As additional notation, Im will refer to the m x m iden-

tity matrix, and det~(z) ( ) is the determinant over the

field of rational functions in z.
3 Indirect Identification

3.1 Standard approach - scalar situation
The classical method of indirect identification is com-
posed of two steps. For this moment we will just sketch
a particular situation in the scalar case.

(1) Identify the transfer function GO from rl to y;
this can e.g. be done by applying any of the
standard prediction error methods ([5] ). Note
that this identification problem is principally an
‘open-loop’ type of problem provided that the ex-
ternal signal ~1 is uncorrelated to the noise dis-
turbance terAm v. The identified model of GO is
denoted as G
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(2) Reconstruct an open loop plant model from the

estimated closed-loop transfer function G, using
knowledge of the controller C.

The second step of this procedure involves the construc-
tion of P from an available estimate G, by solving the
equation:

G=z.
I+CP

(4)

An exact solution for P follows by taking

G
P=-

I–CG
(5)

which can be calculated when the controller C is
known.
When the model G is identified using a least-squares
outpur error criterion, i.e.

&(t, (9) := y(t) – G(q, e)~l (t)

and G = G(q, e) with 6 := arg mine ~&(t,19)2,the
asymptotic bias-distribution ([5] ) in the plant model
estimate is characterized by:

/
e=argm~~ _“

Po P(e) 2+ ~

= 1 + CPO – 1 + CP(0) “

(6)
provided that the exact relation (5) is used to construct

P on the basis of G.

One of the problems that is known to occur in an in-
direct identification approach, is that the order of the
identified plant model is not under control. This means
that when calculating (5), the order of P will be de-

termined by the order nG of G and the order nc of
C, and will generically equal nG + nc. Limiting the
model order to a prespecified value, requires either an
additional model reduction step, or the construction
of an approximate solution to the equation (4) where

the model order of P is fixed. However in this latter
situation it is not clear how to “solve” this equation
properly.
transfer functions - multivariable case
Actually all four different transfer functions that are
present in T(PO, C) can be used for identification in
the first step of an indirect identification scheme. De-
pendent on the particular experimental situation, an
identifier may have preferences of identifying a partic-
ular transfer. This can e.g. be essentially influenced by
the possibility of adding external excitation signals at
particular locations in the loop (either on the setpoint
or on the output of the controller).

We will now summarize the possibilities of using any of
the four transfer functions, while considering the mul-
tivariable situation.
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tained from indirect identification the following results
are direct.
Proposition 3.1 Consider any one of the four tmns-
fer functions To, Go, Qo, or So to be identified in the
first stage of an indim~t ~d~ntijic@ion scheme, provid-
ing identified models T, G, Q, or S. Then

(a)

(b)

(c)

(d)

T = PII~ + CP]–l C’ implies

P = ?(IP – ~)-lCt (7)

under the condition that p z m and C’ has a right
inverse Ct.

G = PII~ + CP]–l implies

P = GIIm – CG]-l. (8)

o = [1~ + CP]-lC implies that

P = C-l[(QC-1)-1 – Im] (9)

under the condition that p = m and det~(Z)C #
o.

~ = [1~ + C~]’1 implies that

p = Ct[j-1 – q (lo)

under the condition that p 5 m and C has a left
inverse Ci.

In the above expressions it is presumed that T(P, C) is

well defined.

Proofi Follows by straightforward manipulations of
the expressions. ■

It has to be noted that there is only one transfer func-
tion (G) that provides a unique solution for the related
open loop plant model without any conditions on in-
put /output dimensions and controller. For the other
transfer functions restrictions apply. Note also that in
the scalar case m = p = 1, all four transfers can be
used without any restrictions.

When taking a look at the relation with available ex-

ternal excitation signals the following can be stated:

● When rl is available from measurements (addi-

tional to u and y) then one can use S (rl + u)
or G (rl ~ y) and by choosing G no restrictions
apply.

● When rz is available from measurements, then
one can use ~ (rz A y) or Q (r2 ~ u) and one
has to face the restrictions p 2 m or p = m.

In the second situation considered it can be an alterna-
tive to first construct the signal r(t) = C(q)r2 (t) and
then using r(t) as if it were added to the loop at the lo-
cation of rl. In this way, one can avoid the dimensional
restrictions as mentioned above.

The fact that a unique plant model P can be con-
structed from either of the equations (7)-(10) does not
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imply that this plant model will be guaranteed to be
proper. This will depend on the properties of the
estimated closed-loop transfer and of the controller.
Properness of P is e.g. guaranteed for (8) whenever G

is proper and limlzl+~ CG = O, being the commonly
considered situation in indirect identification.

4 Stability of controlled models

In this section the question wil~ be addressed under
which conditions a plant model P that is identified by
an indirect identification as described before, will be - a
priori - guaranteed to be stabilized by the controller C.
To this end the following standard results from stability
theory will be exploited.

Proposition 4.1 Consider any linear, time-invariant,
finite-dimensional plant P and controller C.

(a)

(b)

(c)

Let C ~ IRHm. Then T(P, C) 6 lRHm if and
only if P(I + CP)’1 E IRH~.

Let m = p and let C be invertible and satisfy
C-l c IRH~. Then T(P, C) E IRHm if and only
if (1 + CP)–lC ~ IRHm.

Let rank~(z) (P) = min(m, p), and the Moore-

Penrose inverse Pt E IRHm. Then T(P, C) E
IR& if and only if P(I + CP)-l E Etl&.

Proofi Part (a) is proven in e.g. [11]. For
parts (b) and (c) necessity is obvious. To prove
sufficiency for (b), consider (1 + CP)–l C c lRHm,
so (1 + CP)–l CC–l = (1 + CP)–l c IRHm. As
P(1 + CP)-l C + (1 + CP)-l = I it follows that
P(1 + CP)-lC c IRH ~ and by postmultiplication of
C-l also that P(I + CP)-l E IRHm. Sufficiency for
(c) can be shown along similar lines, distinguishing be-
tween the situations p z m, where Pt is a left inverse,
and p 5 m when Pt is a right inverse. ■

When applying these results to identified models ob-
Corollary 4.2 Consider identified models G and Q of
the related closed-loop transfer functions Go and Qo.

(a) If C is stable then the plant model estimate (8) is

stabilized by C if and only if G is stable.

(b) If m = p and C-l is stable then the plant model
estimate (9) is stabilized by C if and only if Q is
stable.

Particularly, a plant model obtained by indirect identi-
fication from estimating the closed-loop transfer func-
tion GO, will be guaranteed to be stabilized by C in

9



the case that C is stable. The only restriction that the
estimate G has to satisfy for this result to hold, is that
G should be stable. Since the closed-loop system is
stable, this condition wil be naturally satisfied by any
sensible identification method.
It would be tempting to formulate a result similar to
(a) without any condition on the stability of C or on in-
put /output dimensions. However this will lead to more

complex rest rictions on G as shown next.

Corollary 4.3 Consider a model G of the related
closed-loop transfer function Go, with rankm(z) (G) =

min(m, p), and satisfying

[Im - CG]Gi is stable (11)

where Gt is the Moore-Penrose inverse. Then the plant
model estimate (8) is stabilized by C’ if and only if G is
stable.

Proofi The result follows by manipulation of the

expressions in Proposition 4. l(c). ■

When the controller is not stable an additional restric~
tion (11) has to be considered. This constraint on G
can not simply be incorporated in a parametrization of
the closed-loop transfer GO to be used during identifi-

cation. A solution to this problem does exist, as shown
in the forthcoming sections.

The stability results shown above, suggest that there
is a relationship between these indirect identification
methods, and the approach of using a dual-Youla
parametrization of all plants that are stabilized by the
given controller. This relation is pursued in the next
sections.

5 Identification in the dual-Youla form

The Youla-parametrization parametrizes for a given
plant PO G IRH~ the set of all controllers C E lRH~

that stabilize 1’o. In the dual-Youla parametrization, a
similar mechanism is used, but now the set of all plants
is considered that is stabilized by a given controller.
In order to formulate this parametrization, the concept
of coprime factorization over lRH~ is required.
A pair of stable transfer functions IV, D E lRHm is a
right coprime factorization (rcf) of l’. if PO = IVD-l
and there exist stable transfer functions X, Y E lRH~

such that XN + YD = I. This implies that two factors
are coprime if there are no unstable canceling zeros in
the factorization.

Proposition 5.1 ([1]) Let Pz with rcf (NZ, D.) be
any auxiliary model that is stabilized by the controller
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C with rcf (NC, DC). Then a plant P. is stabilized by C
if and only if there exists an R E lRHm such that

P. = [N. + DCR][DZ – NCR]-l. (12)

For a given plant P., the related dual-Youla parameter
R = R. is given by

R. = D;l[l+ POC]-l(PO – Pz)Dz. (13)

With this parametrization the original system config-
uration can be resketched into the alternative form as
presented in figure 2. In this dual-Youla form the sig-

1 I

I
l-.--——— —- ———-———--—-- -1

I

Fig. 2: Dual Youla-representation of the data generat-
ing system.

nals z(t)and z(t) are determined by

z(t) = (Dc + PzNJ-l[y(t) – P=(q)u(t)] (14)

z(t) = (DZ + CNX)-l [rl (t) + C(q)~z(t)] (15)

while K. is given by

K. = D:l(l + PoC)-l (16)

see e.g. [10]. In view of the identification problem, one
is dealing with the relation

z(t) = Ro(q)z(t) + Ko(q)v(t) (17)

where the important mechanism is that both signals z

and x can be reconstructed from available data y, u, r
and by using knowledge of the controller C and of just
any auxiliary model Pz that is stabilized by C. More-
over as it appears from (15) the signal z is uncorre-

lated with the noise v, and so relation (17) points to
an “open-loop” identification problem of identifying R.
on the basis of measurement data z, x.

One of the properties of this ident~fication approach is
that any identified stable model R of RO will yield an
open-loop plant model

P = [N. + D,~][Dz – Nc~]-l (18)

that is guaranteed to be stabilized by C’, because of the
dual-Youla parametrization.
A property of this dual-Youla identification method is
- similar to the situation of the indirect approach - that
the model order of the identified open-loop plant model
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is not under control. Because of the relation (18), an

identified transfer R with a specific model order, will
lead to an open-loop plant model that has an increased
model order, that incorporates the order of the con-
troller and the order of the auxiliary model Px.

6 Indirect identification as a special case of the
dual-Youla method

The question occurs whether the identification of RO
in the dual-Youla situation is equivalent to the iden-
tification of a closed-loop transfer function as present
in the first step of an indirect identification scheme. A
number of special cases will be pointed out.

Proposition 6.1 If C is stable then there exists a
choice for Pz and m“ghtcoprime facton”zations of C and
P. such that in the dual- Youia form:

RO = co

z(t) = y(t)

z(t) = ?-(t)

and consequently identification of the dual- Youla pa-
rameter is identical to identification? according to the
indirect method (8) on the basis of G.

Proofi Since C is stable, one may choose N. = C,
D. = I, N. = O and Dm = I, taking into account that

the model Px = O is stabilized by a stable controller.
The result follows by substitution in the appropriate
expressions. ■

It appears that for stable controllers, the dual-Youla
identification method is actually equivalent to an indi-
rect identification on the basis of the transfer rl d y
(GO). A similar result can be formulated for the indi-
rect identification through the transfer rz + y (To).

Proposition 6.2 If C is stable then there exists a

choice for P= and right copn”me factorization of C and
Pz such that in the dual- Youla form:

R. = To

z(t) = y(t)

z(t) = r(t)

and consequently identification of the dual- Youla pa-
rameter is identical to identificatio~ according to the
indirect method (7) on the basis of T.

Proofi The result follows by
DC= I, N,= Oand Dz=C, and
in the appropriate expressions.

choosing NC = C,
by substituting this

■
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The closed-loop transfer functions considered in the

two propositions above are transfers towards the
closed-loop output signal y(t). The question now oc-
curs whether the two other transfer function (Qo and
So) can be considered in a similar way. This appears
to be less trivial than expected, most importantly be-
cause they are transfers towards the closed-loop input
signal u(t).As a consequence, the choices of particular
factorization should be made in such a way that this
results in z(t) = u(t). Considering the general expres-
sion for z(t) in (14) this seems not possible. A solution
for this problem appears to be in considering a dual-
Youla parametrization based on the controllers inverse,
which is discussed in the next section.

With respect to the asymptotic bias distribution, as in-
dicated in (6) for the indirect method, it is shown in
[4, 10] that for the dual-Youla method, the correspond-
ing expression is (for the SISO-case):

Jh=argm~~ _T
Po P(e) 2 +.,

= l+cPo– 1 + CP(9) [Dc12h

which is similar to (6), except for an additional weight-
ing with DC. In case C is stable, one can always choose
Dc = 1 leading to equal expressions for both methods.
Note that for unstable C the model sets in the two
approaches will be slightly different if in the indirect
method one does not take account of the parametriza-
tion constraint (11).

7 A dual-Youla parametrization on the basis
of c–l

In this section attention will be limited to the situation
that m = p and controller and plant can be inverted,
i.e. they have full rank over Ill.(z).

Lemma 7.1 Consider the situation m = p and PO and
C invertible. Then T(Po, C) E lRH~ if and only if
T(P:l, C-l) E IRHco.
Proofi By simple manipulations it can be shown
that T(PO–l, C–l ) is equalto a permuted version of the

original T(Po, C). ■

A dual-Youla parametrization can now be formulated
on the basis of the inverse controller C–l.

Proposition 7.2 Let Pz with rcf (N., Dz ) be any aux-
iliary model that is stabilized by the controller C–l with
rcf D,NC–1. Then a plant P. is stabilized by C if and
only if there exists an R ~ EU&, such that

P. = [Dz – DcR][Nz + NcR]-l. (19)

1



Proofi The proof follows by parametrizing E’~l in a
dual-Youla parametrization, and applying lemma 7.1.

Under the conditions of the proposition, it follows that
for a given plant P., the related R is given by

R = RO = D:l(I + F’oC)-l(Dm – PoNz) (20)

and the system’s equations become:

y(t) = (D. – DcRo)z(t) +(1 + P&)-iv(t)

u(t) = (N. + NcRo)z(t) – C(1 + Poe)–iv(t).

Based on these latter equations one can extract RO by:

z(t) = Ro(q)z(t) + Ko(q)v(t) (21)

with

z(t)= (Nc + PZDC)-l [u(t)– F’z(q)g(t)]. (22)

This alternative structure, will allow to choose par-
ticular factorization in the scheme in order to real-
ize z(t) = u(t). This is reflected in the following two
results.

Proposition 7.3 Let p = m and let C-l be stable.
Then there exist choices for Px and right coprime fac-
tori.zations of C and Pz such that in the dual- Youla
form of this section:

either RO = QO or RO = So

z(t) = ‘u(t)

z(t) = ?-(t)

and consequently identification of the dual- Youla pa-
rameter is identical to identification according to the
indirect method (9) on the basis of Q or (10) on the
basis of ~.

Proofi The result follows by choosing IV. = 1, D. =
C–l, N. = O and either D= = 1 (for the case of QO)
or D. = C–l (for the case of So), and by substituting

this in the appropriate expressions. ■
This shows that the two closed-loop transfer func-
tions that are related to the input signal u can also
be directly estimated in a dual-Youla framework, pro-
vided that we restrict attention to the square situation

(P= m) and to a stably invertible controller.

8 Conclusions

The classical indirect method for closed-loop identifi-
cation and the recently discussed approach based on
the dual-Youla parametrization appear to be closely
related to each other. In the situation of a stable con-
troller, the two methods are algebraically equivalent.
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In the situation of an unstable controller, the dual-
Youla method provides models that are guaranteed to
be stabilized by the controller, which goes beyond the
capabilities of a simple indirect method. Several re-
lations are given between the two approaches, showing
that the dual-Youla method is actually a generalization
of the classical indirect approach.
Both approaches share the problem that it is not sim-
ply possible to control the model order of the identified
plant model.
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