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Abstract these methods assume the signals to be quasi stationary. 
To deal with the large dynamic range of the system 

Multivariable system identification of a model IV flu- and the transients in the measured output, an approach 
idized catalytic cracking unit is performed using a lin- is applied which utilizes system-based orthonormal ba- 
ear time invariant model parametrization based on or- sis functions (Heuberger e t  al. (1995 , Van den Hof et  
thonormal basis functions. This model structure is a lin- al. (1995), Ninness and Gustafson 1 1994), Ninness e t  
ear regression structure which results in a simple convex aL(1995)). In this approach system poles are chosen on 
optimization problem for least squares prediction error the basis of prior knowledge or prior identification re- 
identification. Unknown initial conditions are estimated sults. With these poles a complete orthonormal basis 
simultaneously with the system dynamics to  account for for stable dynamical systems is generated. The model is 
the slow drift of the measured output from the given ini- parametrized in terms of these basis functions, resulting 
tial condition to  a stationary working point. The model in a model structure which is linear in the parameters. 
accuracy for low frequencies is improved by a steady-state A least squares identification criterion is used to  obtain 
constraint on the estimated model and incorporation of optimal parameter values which can be calculated effi- 
prior knowledge of the large time constants in the model ciently using linear regression techniques. 
structure. The model accuracy is furthermore improved The static gain of the model is fixed to improve the static 
by an iteration over identification of a high order model behaviour of the model. This can be incorporated as 
and model reduction. First a high order model is esti- both a hard or a soft constraint without losing the con- 
mated using an orthonormal basis. This model is reduced vexity of the optimization problem. The techniques are 
and used to generate a new orthonormal basis which is extended to  simultaneous estimate the initial conditions 
used in the following iteration step for high order estima- to account for the slow drift in the data due to  the in- 
tion. With the approach followed accurate models over a stationary working condition. The estimation is further 
large frequency range are estimated with only a limited improved by iterating over high order identification with 
amount of data. orthonormal basis functions and model reduction. The 

reduced order model is used to generate a basis for the 
1. I N T R O D U C T I O N  high order identification in the next iteration steD. 

The fluidized catalytic cracking (FCC) process is used to  
crack a blend of oil products with a high boiling point 
into lighter and more valuable components. The overall 
economic performance of a refinery largely depends on 
the economic operation of the FCC unit (Tatrai et al., 
1994). Therefore accurate modelling and control of this 
process is of large importance. 
In this report multivariable system identification of a 
Model IV fluidized catalytic cracking unit is described. 
The nonlinear simulation model described in McFarlane 
et al. (1993) is used as the process to be identified. 
The system is multivariable with large interaction be- 
tween the several input/output-channels. Characteristic 
for this system is the combination of fast and slow phys- 
ical p h e n o m e n a .  B o t h  f r equency  ranges need to be es- 
timated accurately for high performance control design. 
This means, however, that long data sequences a t  a high 
sampling rate should be used to  capture both slow and 
fast phenomena in the data. 
Also the working point in which open-loop identification 
is performed is generally not a stationary point. This 
causes the measured variables to drift from the work- 
ing point to the nearest stationary point. These drifts 
can cause a problem for prediction error identification as 
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TKe outline of this report is as follows. First, in-section 
2 the process under consideration is discussed. Next, in 
section 3 both the preliminary experiments and the ex- 
periments for parametric identification are described. In 
section 4 the parametric identification procedure is de- 
scribed and also the validation results are given. Section 
5 concludes this paper. 

2. THE PROCESS 

The system to be identified is the nonlinear FCCU model 
described in McFarlane et aZ. (1993). Details about the 
system can be found there. An important feature of the 
system is that it shows both fast and slow dynamic be- 
haviour. The fast behaviour comes from flow and pres- 
sure phenomena while the slow behaviour stems from the 
fact that it takes a long time to reach a thermal equilib- 
rium. The subsystem that is regarded in this paper has 
4 inputs that can be manipulated for identification pur- 
poses and 4 outputs that can be measured. These are 
denoted as u(t)  = [Fs(t) Tz(t) Fg(t) p 4 ( t )  Ap( t ) lT  and 
y(t) = [Zsp(t) TTeg(t) TT &,(t) vIl(t)lT respectively. 
The explanation of these variables can be found in the 
paper mentioned above. There is large interaction be- 
tween the input-ouput channels. The disturbances act- 
ing on the system are the following. A measurable dis- 
turbance is the ambient temperature Tatm(t) and a dis- 
turbance that is not measurable is the changing coking 
factor @ , ~ ( t )  of the incoming fresh feed. The minimum 
sample time is AT = 10 sec., which is the sample time 
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of the measurement devices. 

3. EXPERIMENTS 

First, freeruns and step response experiments are per- 
formed as preliminary experiments. Next, experiments 
for identification and validation are conducted. 

Preliminary experiments 
First several freerun experiments are conducted to as- 
sess disturbance dynamics. n o m  these experiments the 
following observations were made. An initial condition 
disturbance is present which is approximately equal for 
all freeruns that are performed. Also substantial unmea- 
surable changes of the coking factor occur once every 5-7 
hours which have a large influence on the measured out- 
put. If parametric identification is performed on data 
with this disturbance, a considerable bias can be ex- 
pected. For this reason only the first part of the data 
will be used in parametric identification. 
Next, step response experiments are performed to assess 
nonlinearity and obtain a first indication of system dy- 
namics. This knowledge is needed to choose an appro- 
priate sampling time, experiment length and input spec- 
trum for the experiments for parametric identification. 
The inputs are successively excited with a step function 
and the five outputs are measured. The experiments are 
performed with the amplitudes to  test nonlinearity. The 
measured step responses are detrended for the initial con- 
dition disturbance with the mean of several freeruns. By 
comparison of the results with different step sizes, it can 
be concluded that the system behaves fairly linearly apart 
from possible activation of valve constraints. It becomes 
clear that the system has very fast phenomena, therefore 
decimation is not possible. 

Experiment for identification 
Formerly, a pseudo random binary sequence (PRBS) ex- 
periment is performed. With this input signal the high 
frequent behaviour of the system is dominantly present 
in the data because the data length is approximately 5 
hours, while the slowest settling time is approximately 
2.5 hour (in the transfer to  the temperature of the regen- 
erator and the reactor). To emphasize the low frequent 
behaviour more, a random binary noise sequence (RBS) 
is used with a low switching probability. The input sig- 
nals can be made approximately uncorrelated by taking 
different realizations of the (P)RBS for the different in- 
put channels. This is important for a well-conditioned 
identification problem. 

4. IDENTIFICATION AND VALIDATION 

The aim of the identification approach is to  identify a 
model which accurately describes all the data that is 
present: the response to  the PRBS signal which contains 
the high frequent behaviour more than the low frequent, 
the response to the RBS signal which emphasizes the low 
frequent behaviour more and the step response data with 
a major emphasis on low frequent dynamics. Nonlinear 
optimization techniques are avoided because these get 
stuck in bad local minima and are time-consuming for 
the given data sets. 
The approach followed here involves basically three steps: 

1. a realization algorithm based on step response data 
is used to obtain a rough parametric model of the 
system. 

2. an orthonormal basis function model is identified us- 
ing the parametric model obtained in the first step 
to generate an initial basis. The model is iteratively 
improved. 

19 

3. The previous steps are performed for five multi- 
input/single-output (MISO) problems. In the last 
step a full multivariable model is estimated with a 
basis generated by thle identification results of the 
previous step. 

These steps are described in the sequel of this section. 
First, the realization algorithm described in Van Helmont 
et al. (1990) is used to obtain a state-space description 
directly from the step response coefficients. The algo- 
rithm is similar to the algorithm of Kung (1978) but does 
not act on the Hankel matrix with pulse response coef- 
ficients but with step response coefficients. This has the 
advantage that no discrete differencing has to be applied 
to the step response data to obtain impulse response co- 
efficients, which increases the influence of disturbances. 
The emphasis of the obtained models is more on the low 
frequent behaviour than with the algorithm of Kung. 
The identification of the MIMO model is split into 5 sep- 
arate MISO identification problems to keep the problem 
computationally tractable. Also the input and output 
weighting and compensation for time delays can be per- 
formed on each transfer function separately. This flexi- 
bility is important to  obtain accurate models. 
The order of the estimated models are: from U to  y l ( t )  
10th order, 6th to y2, 9th tlo y3, 10th to  y4 and 6th order 
to y5. This makes a 41st order MIMO model. The MISO 
realization models describe the step response data accu- 
rately. However, the modeh are not capable of predicting 
the output of the PRBS anid RBS data well. 

4.1 ORTFIR. identification 

In identification with orthoinormal basis functions the fol- 
lowing parametrization is used 

n 

~ ( z ,  8) = m e )  + LT(e)fi(z) (1) 
i=l  

This is a finite sum of functions fi(z) E RH:bXn" which 
are chosen a priori and the direct feedthrough D(6)  and 
the expansion coefficients Li(8) E l R n v x n b  are to  be es- 
timated. The functions fi(:z) are chosen such that they 
form a basis for all stable rational transfer functions func- 
tions in RH2nUXnv. The simplest choice for the basis 
functions is given by fi(z) = 2-2. In this case the model 
structure (1) is equivalent to the well known finite im- 
pulse response model structure (Ljung,1987). Also more 
specific choices for the orthonormal basis functions can 
be made, where prior knowledge of the system dynamics 
can be incorporated; see e.g. Van den Hof et al. (1995) 
and Ninness and Gustafson (1994). In this article the 
approach presented in Van den Hof et al. (1995) will be 
followed. 
In Van den Hof et al. (1!395) orthonormal basis func- 
tions are generated using prior knowledge of the system 
in terms of rough pole locations or an identified model, 
of which only the state space matrices { A ,  C} or { A ,  B} 
are used. From this prior knowledge an inner system 
Gb(z) is constructed with balanced state space realiza- 
tion { A b ,  Bb, Cb , Db} . Now, an orthonormal basis is con- 
structed as follows 

With this choice, the parametrization (1) coincides with 
the series connection of filters given in 1. Here zi(t) de- 
notes the balanced state of the filter. From (2) it can be 
seen that if the {Ab, B b }  is chosen correctly, only the state 
space matrices {C, D} need to be estimated. Hence, if the 
prior knowledge of the system dynamics is accurate, only 
a limited number of coefficients needs to be estimated. 
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This results in models with limited bias and variance. 

Fig. 1: Model parametrization with generalized orthogo- 
nal basis functions 

The output prediction with this model structure can be 
conveniently expressed with 

g( t ,  e )  = o(e) + c(e)(zr - A)-%(t) 

where { A , B )  is a state-space realization of the series 
connection given in figure 1. This is a model structure 
that is linear in the parameter. This can be made clear 
by writing the prediction of a single output as 

where izz(t) = f , ( q )u ( t )  are filtered versions of the input 
and 8 E IRnnbxnv is the parameter that is to  identified 
from the data. 
The optimal parameter vector is obtained by minimiza- 
tion of the least squares prediction error criterion 6 = 
arg mine E,”=, c 2 ( t ,  e) with the prediction error defined 
by &(t ,e )  = y ( t )  - $ ( t , 8 ) .  The optimal parameter es- 
timate is equal to  the least-squares optimal solution of 
the overdetermined set of equations Y = 46, where 
Y T  = [y*(l) .  . .yT(N)]  and the rows of 4 are given by 
[uT(t) i iT(t) .  . .iiT(t - n)].  The analytic solution of this 
optimization problem is given by 6 = (q5Tq5)-1dTY. 
Hence, because the model structure is linear in the pa- 
rameter, the optimal parameter vector is unique and can 
be calculated analytically. 

Estimation of initial conditions 
In the measured data of the FCCU a transient is present 
due to an initial condition that is not a stationary work- 
ing point. To account for this, the initial condition is es- 
timated simultaneously with the system dynamics. This 
can be done without losing the linear regression struc- 
ture. Estimation of initial conditions can be used to  re- 
duce the bias due to unknown initial conditions at the 
expense of an increased variance. 

Fig. 2: Measured data TT(t)  with RBS experiment (dot- 
ted) and the estimated initial condition contribu- 
t ion (solid). 

The estimated transient of the initial condition and the 
measured output for the reactor temperature are given in 
figure 2. The transient due to  the nonstationary initial 
condition is fitted accurately. 

Enforcement of the static gain 
The static gain of the estimated models is inaccurate be- 
cause the low frequent and static behaviour of the system 
is barely present in the RBS data due to the relatively 
short data length compared to the slowest time constant. 
To remedy this, the static gain is enforced on the model 
by means of a constraint, given by 

K,, = D(e)  + C ( 1 -  A)-lB(e) := &e (3) 

where K,, is the steady-state gain obtained from the 
step response data. Due to  linearity of this expression 
any static gain can be enforced on the estimated model 
by solving a linearly constrained quadratic optimization 
problem. This is convex and hence the global optimal 
solution is found. 
However, the steady-state gain K,, taken from the step 
response data is not accurate; therefore possibly unnat- 
ural behaviour is enforced on the model. To alleviate 
this, soft constraints are used, which are constraints that 
can be violated. A soft constraint can be implemented 
by adding one or more equations of the type (3) to the 
overdetermined set of equations that has to  be solved for 
the unconstrained problem. 

lime (hour) 

Fig. 3: Measured step response fo r  the input u(t) and 
the output Tr(t)  (dotted). Step responses of the 
estimated models with n o  static gain constraint 
(dashed), and a with a soft constraint (solid). 

Figure 3 shows the measured step responses, together 
with the step response of the model resulting from ap- 
plying no static state constraint as well as from using a 
soft constraint. The model with the soft constraint fits 
the measured step response well, while the model with 
no constraint has a considerable deviation in the steady 
state gain. 

Iterative model enhancement 
For further improvement of the model, an iterative 
scheme of ORTFIR identification and balanced model re- 
duction (Moore, 1981) is applied. In this iteration the 
following steps are applied: 
Step 1. generate basis functions, 
Step 2. estimate a high order model with the ORTFIR 

model structure (l), 
Step 3. reduce the high order model with e.g. balanced 

reduction, and use the reduced order model to  gen- 
erate a basis in the first step. 

With this the optimal criterion value can be improved 
considerably. For the transfer between the input and the 
temperature of the reactor Tr(t) e.g. an improvement is 
obtained from cost level 0.24 to  0.12 in 9 iterations. The 
high order is chosen such that all dynamical phenomena 
are incorporated in the model. This can be assessed by 
inspection of the estimated expansion coefficients L,(B). 
Equivalent to  the impulse response coefficients, these co- 
efficients go to zero for stable systems for high enough 
model order n (Van den Hof et al., 1995). Therefore 
estimated expansion coefficients are denoted as the gen- 
eralized impulse response coefficients. The aim of the 
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Fig. 4: Measured output (solid) and output prediction 
(dashed) for the 33rd order MIMO model. 

Fig. 5: Step responses of the 33th order multivariable 
model (solid), dashed) and the measured step re- 
sponse (dottedl. 

iteration is to concentrate the energy of the estimated 
model in the first few expansion coefficients such that a 
low order model can be derived. This trend is indeed 
observed during the iterations but can in general not be 
guaranteed. 

4.2 The full MIMO model 

The five identified MISO models, of order 5, 7, 7, 6 and 
8 respectively, are combined into one MIMO model. The 
dynamics of this model is used to  generate a basis for the 
full MIMO system. The optimal value of the identifica- 
tion cost function could be improved from V,,, = 0.11 for 
the combination of the five MISO models to  V,,t = 0.099 
for the MIMO model. For this an RBS data set is used 
as identification data and a PRBS data set is used for 
validation. The step responses of this model are given 
in figure 5 together with the measured step responses. 
The output prediction of the MIMO model is given in 
figure 4. This is based on a PRBS validation set. The 
output prediction of the second output seems inaccurate, 
however this is mainly due to the initial condition distur- 
bance in the validation set. This is only accounted for by 
the mean of five freeruns which is rather inaccurate. The 
other outputs are predicted accurately. Consequently, 
the identified model with the described approach is con- 
sistent with the step response data, the RBS data set and 
the PRBS data set. 

5. CONCLUSIONS 

In this paper the identification of a nonlinear simula- 
tion model for the Model IV catalytic cracking unit is 

~ 
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described. The model structure is based on orthonor- 
mal basis functions where the basis functions are chosen 
using prior knowledge of the system dynamics obtained 
from identification based on the step response data. This 
results in a linear regression model structure. To obtain 
an optimal parameter estimate, a least squares identifi- 
cation criterion is used. Therefore the optimal para,meter 
vector is unique and can be calculated analytically. 
The experimental conditions: are such that data sets can 
be obtained that have limited length with respect to the 
slowest dynamical phenomena of the system. Also the 
time domain amplitude of the input signal is limited due 
to possible activation of sys6em constraints. 
To account for a slow drift of the measured data  due 
to an initial condition which is not a stationary work- 
ing point, initial conditions etre estimated simultaneously 
with the system dynamics. The static and low frequent 
behaviour of the model is ha.rdly present in the data due 
to the limited data length. ‘To accuracy of the model in 
this frequency range hard, soft or mixed steady-state con- 
straints are incorporated in the identification procedure. 
This can be implemented while preserving the linear re- 
gression structure. 
The resulting model is consistent with both the step re- 
sponse data and the input-output data. Hence, both fast 
and slow dynamics are estimated accurately. This is ob- 
tained with only a limited amount of data by making 
fruitful use of prior knowledge of the system. 
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