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Abstract— In high speed AFMs the vertical axis of the
sample positioning stage requires high bandwidth feedback
control. In these systems the dynamics of the piezoelectric
actuator, its support structure and load play a dominant role
in the design of the feedback loop. System performance can be
increased by avoiding the excitation of resonant modes of the
piezoelectric actuator by modal actuation. In this approach,
the piezoelectric actuator is modified to render modes close
to the controller bandwidth uncontrollable. Due to its static
hardware implementation robustness issues may emerge due to
varying loads used for AFM imaging. This paper focusses on
performance robustness of modal filters due to load variation.

I. INTRODUCTION

Piezoelectric actuators are used in applications where high
precision position is required over a relatively short range.
A typical example of such an application is the atomic
force microscope (AFM) [1]. In an AFM the topography
of a sample is imaged on a nanometer scale by measuring
the deflection of a cantilever which is in contact with the
sample surface through a sharp protruding tip (see [2] for an
overview). To avoid damage to sample or tip, the cantilever
deflection is regulated by tracking the sample topography
using a feedback control system.

In high speed AFMs, the bandwidth of the vertical axis
positioning system is a limiting factor. In recent develop-
ments, improvements to this system have been proposed.
The mechanical design has been improved by making the
scanner smaller and more rigid [3],[4] and by balancing
of the vertical stage by using two counteracting actuators
[5]. Model-based controllers for the lateral and vertical axis
have been implemented [4],[6]-[10] and have been shown to
improve performance.

A common problem in the design of such control systems
is the excitation of resonant modes which are close to the
controller bandwidth [11],[12]. A possible solution to this
problem is the application of a modal actuation [13]. A modal
pre-filter can be used to drive only a subset of modes while
rendering others uncontrollable. Modal filtering has been
applied in piezoelectric actuated systems successfully by
shaping the driving electrode by etching [14] by application
of a porous distributed electrode using a electrode with a
honeycomb motif [15], [16]. Modal filters based on arrays

This work is part of a project on Model-based subnano-positioning control
systems for high-end professional equipment and microsystems manipula-
tion sponsored by the Delft Center for Mechatronics and Microsystems.

J.R. van Hulzen, P.M.J. Van den Hof are with the Delft Center for
Systems and Control, Delft University of Technology, Mekelweg 2, 2628
CD Delft, The Netherlands, J.R. van Hulzen, G. Schitter and J. van Eijk
are with the Precision and Microsystems Engineering Department, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands,
j.r.vanhulzen@tudelft.nl

of individual piezoelectric transducers have been reported in
[17], [18]. A drawback of the hardware implementation of
a modal actuator is its inflexibility. In applications where
the system dynamics are subject to change due to the
introduction of additional loads this may lead to unwanted
oscillations or instability.

This paper focusses on the application of modal actuation
on piezoelectric tube scanners used in AFMs. The goal is to
shape the dynamics of the piezoelectric actuator by shifting
the anti-resonant modes towards resonant modes that are
close to the system bandwidth.

The paper is organized as follows. In Section II, the
dynamics of the piezoelectric tube actuator are derived. In
Section III the design of a modal actuator is discussed.
In Section IV, the modal actuation approach is verified
experimentally. Finally, conclusions are given in Section V.

II. MODAL ACTUATION

A piezoelectric actuator consists of a stiff ceramic material
which expands due to forces generated by the piezoelectric
effect. In [19] and [20] dynamical models of piezoelectric
actuators are proposed. In these models, axial vibration in
the piezo material is modeled using a partial differential
equation. The load is assumed to be a rigid mass which is
mounted on the free end of the actuator.

To show that a piezoelectric actuator can be transformed
into a modal actuator, where specific modes of the axial dy-
namics are excited while other are suppressed, it is necessary
to solve the differential eigenvalue problem and show that
the spatial solutions or natural modes are orthogonal to each
other. If this is the case the natural modes can be excited
independently and a solution can be decomposed into a linear
combination of modes.

A. Axial vibration of a piezoelectric tube scanner

The vertical axis of a tube scanner is modeled under the
assumptions that there is neither bending nor shear and that
the tube retains its shape during extension (see [21] for an
overview of beam and shell theory). The axial displacement
u(x, t) in the piezo material is modeled using a second order
partial differential equation

EA
∂2u(x, t)

∂x2
= Aρ

∂2u(x, t)

∂t2
; 0 < x < L (1)

in which L is the length of the material, E is the modulus
of elasticity, A the effective area of the lateral cross section
and ρ the density. The actuator is connected to mechanical
ground at x = 0 by a spring k which models the compliance
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of the support and loaded by a rigid mass ml at x = L. The
boundary conditions are

EA
∂u(x, t)

∂x
= kU(x), x = 0, (2)

−EA∂u(x, t)
∂x

= ml
∂2u(x, t)

∂t2
, x = L. (3)

Under the assumption that the system executes synchronous
motion [22] the solutions of (1)-(3) can be separated into a
function of the spatial variable x and function of time t and
can be described as

ui(x, t) = Ui(x) cos (ωit− αi) (4)

where ui(x, t) are the natural motions with Ui(x) as the
mode shapes of the natural modes and ωi as the natural
frequencies which are obtained by solving the differential
eigenvalue problem. Using (4), Equations (1)-(3) transform
into

−EAd
2Ui(x)

dx2
= ω2ρAUi(x), 0 < x < L, (5)

EA
dUi(x)

dx
= kUi(x), x = 0, (6)

EA
dUi(x)

dx
= ω2mlUi(x), x = L. (7)

Assuming natural modes in the form

Ui(x) = cos

(
λi
L
x− βi

)
, (8)

with parameters λi and βi given by

tan (λi) + tan (λi)
kL

EA

ml

ρAL
=

kL

EA

1

λi
− ml

ρAL
λi (9)

and
tan (βi) =

kL

EA

1

λi
, (10)

the natural frequencies ωi can be derived using

ω =
λ

L

√
E

ρ
. (11)

To show that the separate modes can be excited independent-
ly it is necessary to derive the orthogonality conditions.

B. Orthogonality

To derive the orthogonality conditions, two solutions
Ua(x) and Ub(x) satisfying

−EAd
2Ua(x)

dx2
= ω2

aAρUa(x), 0 < x < L, (12)

−EAd
2Ub(x)

dx2
= ω2

bAρUb(x), 0 < x < L (13)

are compared. Multiplication of (12) with Ub(x) and inte-
gration over x yields

−EA
∫ L

0

Ub(x)
d2Ua(x)

dx2
dx = ω2

aρA

∫ L

0

Ub(x)Ua(x)dx

(14)

Integrating the left hand side by parts yields

EA

∫ L

0

Ub(x)
d2Ua(x)

dx2
dx =

EA Ub(x)
dUa(x)

dx

∣∣∣∣L
0

− EA

∫ L

0

dUb(x)

dx

dUa(x)

dx
dx. (15)

Using the boundary conditions (6) and (7) it follows that

EA Ub(x)
dUa(x)

dx

∣∣∣∣L
0

= ω2
amlUb(L)Ua(L)− kUb(0)Ua(0).

(16)
Inserting (15) and (16) into (14) yields

EA

∫ L

0

dUb(x)

dx

dUa(x)

dx
dx+ kUb(0)Ua(0) =

ω2
a

{
ρA

∫ L

0

Ub(x)Ua(x)dx+mlUb(L)Ua(L)

}
. (17)

Multiplication of (13) with Ua(x), integrating over x and
repeating the same steps yields

EA

∫ L

0

dUa(x)

dx

dUb(x)

dx
dx+ kUa(0)Ub(0) =

ω2
b

{
ρA

∫ L

0

Ua(x)Ub(x)dx+mlUa(L)Ub(L)

}
(18)

then, subtracting (17) from (18) we have

(ω2
b−ω2

a)

{
ρA

∫ L

0

Ua(x)Ub(x)dx+mlUa(L)Ub(L)

}
= 0,

which leads to the orthogonality relations

ρA

∫ L

0

Ua(x)Ub(x)dx+mlUa(L)Ub(L) = µaδab (19)

EA

∫ L

0

dUa(x)

dx

dUb(x)

dx
dx+ kUa(0)Ub(0) = ω2

aµaδab

(20)

in which a, b = 1, 2, ... and δab is the Kronecker delta
function. The parameter µa is a scaling factor often referred
to as the modal mass and is given by

µa = Aρ

∫ L

0

U2
a (x)dx+mlU

2
a (L).

Inserting (8) yields the expression

µa = ρA

∫ L

0

cos2
(
λa
x

L
− βa

)
dx+ml cos

2 (λa − β)

then, using (9),(10) and (11) it follows that

µa = 1
2ρAL+ 1

2ml cos
2(λa − βa) +

1
2

EA

kL
ρAL sin2 βa.

The orthogonality conditions and the modal mass enable
modal decomposition of the system.
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C. Response to external excitation

To derive the response to external excitation (1) is exten-
ded to

EA
∂2u(x, t)

∂x2
+ f(x, t) = Aρ

∂2u(x, t)

∂t2
; 0 < x < L. (21)

in which f(x, t) is the net-force generated by the piezoelec-
tric effect per unit length. To derive the transfer function of
the system in modal form, a solution in the form

u(x, t) =

∞∑
i=1

Ui(x)qi(t) (22)

is used. Inserting (22) into (21), multiplying both sides
with Ua(x), integrating over x and using the orthogonality
relations (19), (20) it follows that

q̈i(t) + ω2
i qi(t) = µ−1i

∫ L

0

Ui(x)f(x, t)dx

Without any restriction we can assume f(x, t) = F (x)cosωt
to obtain

u(x, t) =

∞∑
i=1

∫ L
0
Ui(x)F (x)dx

µi(ω2
i − ω2)

Ui(x) cosωt

and the transfer function from force to extension is

P (x, ω) =

∞∑
i=1

gi
µi(ω2

i − ω2)
Ui(x)

with the modal gain gi defined as

gi =

∫ L

0

Ui(x)F (x)dx

D. Modal actuation using sectioned electrodes

In a standard piezoelectric tube actuator the inner and
outer electrodes are continuous. To discretize the actuator for
spatially distributed excitation, the live electrode is divided
into sections leaving the ground electrode unaltered, see
Fig. 5b. The number of sections depends on the width of
the separation between the sections which influences the
efficiency of the piezo. Each section has an uniform electrode
which means that the force generated over a section can be
modeled as as set of two equal forces acting on the section
boundaries. With this assumption F (x) can be written as

F (x) =

n+1∑
j=1

gj
(
δ(x− xj)− δ(x− xj+1)

)
where δ is the dirac function, n is the number of sections, gj
is the section gain and xj the coordinate of the lower boun-
dary of a section. The expression for modal gain changes
into

gi =

∫ L

0

Ui(x)F (x)dx =

n∑
j=1

gj
(
Ui(xj+1)− Ui(xj)

)
with Ui(x) = cos (λix/L− βi) we have

gi =

n∑
j=1

gj

(
cos
(
λi
xj+1

L
− βi

)
− cos

(
λi
xj
L

− βi

))

If n modes are selected by choosing a set of modal gains
gi we can solve this set of equations to obtain the required
section gains gj . This gives the designer the freedom to shift
the anti-resonances of the actuator dynamics towards a speci-
fied set of resonant modes which enables selective excitation
of individual modes while rendering others uncontrollable.

E. Design of modal actuator

The design a modal actuator can be based on modeling as
well as on experimental data. Once the frequency response
functions of the system are derived, modal actuation can be
based least squares optimization using a selected set of peak
gains, on hand tuning by combining sections into larger sets
or on the mode shape of a simple configuration. A good
starting point in the latter approach is gj = cos(λxj/L) with
λ = π

2 as an initial guess. The optimal λ is found shifting the
anti resonance between the first and second mode towards
the second mode.

A model of the system shown in Fig. 5 based on material
constants is shown in Fig. 1. In this model the connection
between actuator and mount is assumed to be rigid. The
dynamics of the sections 1− 5 shown in Fig. 1 indicate that
the individual sections are non-collocated while the sections
driven together act as a collocated system. A prerequisite
for this is that the separation between the electrodes is very
small and that all sections are driven using the same voltage.
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Fig. 1. Model of axial dynamics (Fi → z) of a sectioned piezoelectric
tube with a stiff connection between tube and mechanical ground.

The influence of a compliant actuator support (k = 1×107

N/m) is shown in Fig. 2. In this case the first resonant mode
has shifted from 17 kHz to 7.5 kHz. From Fig. 2 it is
clear that the order of resonance and anti resonant modes has
changed. Also, in contrast with the rigid-mount case shown
in Fig. 1, the system with all sections driven with the same
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Fig. 2. Model of axial dynamics (Fi → z) of a sectioned piezoelectric
tube with a compliant connection between tube and mechanical ground.

voltage is no longer collocated. This is due to the fact that
the force acting on the lower boundary is taken into account.

In Fig. 3, designs for modal actuators fitting three load
condition are shown: unloaded (set 1-2), loaded by a rigid
mass (set 3-4) and a combination of a rigid mass load and
a compliant actuator mount (set 5-6). In all three cases a
design for cancelation of the second and higher modes (set
1,3 and 5) is compared to a design canceling the first, third
and higher modes (set 2,4 and 6). The gain sets listed in
Table I are derived by curve fitting a cosine function in the
form cos(λxj/L − β) to the modal data obtained from the
models of each specific load condition.

In the unloaded case using gain set 1, the cancelation up
to the tenth mode is very good. Above the tenth mode there
is some spill over due to spatial aliasing. Gain set 2 cancels
the first, third and higher order modes but also reduces the
static gain to 23% of its original value. Comparing gain set
3 with gain set 5 in Table I and Fig. 3 it follows that the
optimal gain set in the compliant mount case yields a lower
static gain due to the fact that gain set 5 has negative values.

The effect of modal actuation on the static gain of an
actuator with varying load conditions is shown in Fig. 4. In
all cases the application of modal actuation reduces the static

TABLE I
MODAL ACTUATOR GAIN SETS

set g1 g2 g3 g4 g5 ml k
1 1.00 0.90 0.72 0.46 0.16 0 ∞
2 -0.90 -0.16 0.72 1.00 0.46 0 ∞
3 1.00 0.93 0.79 0.59 0.36 .64 g ∞
4 -0.96 -0.37 0.46 1.00 0.92 .64 g ∞
5 1.00 0.73 0.25 -0.29 -0.75 .64 g 107 N/m
6 -0.90 -0.19 0.66 1.00 0.55 .64 g 107 N/m
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Fig. 3. FRF of piezoelectric tube with section gains set to 1 (blue) and
section gains set to modal gains of first, second and third mode (red).

gain of the actuator. However, comparing the static gain of
a system with a rigid mass with the case where the actuator
is unloaded it follows that an introduced load increases the
static gain. The reason for this is that the modes used for
cancelation in case of an actuator with load has a smaller
slope than the case without load. In contrast a compliant
actuator support reduces static gain.
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Fig. 4. Reduction in static gain due to the application of modal filtering
as a function of load conditions with changes due to different rigid masses
(left) and changes due to a compliant (107N/m = 100%) actuator mount
(right).

III. EXPERIMENTAL VERIFICATION

To verify the modal actuation approach, the outer electro-
de of a commercially available piezoelectric tube actuator
(PT130.20, Physik Instrumente, Karlsruhe, Germany) was
segmented into five sections of equal length using a lathe.
The sectioned tube was excited using a set of five custom
piezo amplifiers with a configurable gain.

In Fig. 5 an overview of the experimental setup is presen-
ted. The actuator has a length L = 30mm, an inner diameter
of di = 9 mm, an outer diameter do = 10 mm and a lateral
cross section A = 15mm2. The ceramic material of the tube
is PIC 151, which has a density ρ = 7.76× 103 kg/m3 and
a modulus of elasticity cD13 = 44 GPa and cE13 = 64 GPa
depending on the electrical boundary conditions.
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Fig. 5. Overview of the experimental setup of the sectioned piezoelectric
tube with a vertical cross section (a) and an overview of the sections (b).

Loads in the form of standard AFM sample carriers
(usually a thin steel disk) are held into place using a small
magnet bonded to a M4 bolt which is connected to the base.
The magnet and the load are in close proximity of each other
but not in contact. The tube rests on an aluminum block
under a pre-load force generated by the magnet and is not
bonded to allow radial expansion.

The actuator is loaded by a standard steel (ρ = 7.8× 103

kg/m3, E = 200 GPa) sample carrier with radius r = 6
mm, thickness h = 0.72 mm and a mass ml = 0.64 g. The
lowest resonant mode of the sample carrier can be derived
using [21]

f = λ2ij
h

2πr2

√
E

12ρ(1− ν2)

which with λ201 = 4.977 results in 24 kHz. Therefore it can
be concluded that the lowest resonant mode of the sample
carrier is in the same range as the low order modes of the
piezoelectric actuator and will influence the dynamics of the
low order modes.

A. Experimental derivation of dynamics

To investigate the dynamics of the loaded piezoelectric
tube, a laser vibrometer (OFV-5000 with OFV-511 sensor
and VD-02 decoder, Polytec, Waldbronn, Germany) was used
to measure the velocity at the center of the sample disk. The
piezoelectric tube was excited using a set of five independent
piezo amplifiers.

1) Dynamics of full tube: The frequency response of
the full tube was measured before and after cutting of the
electrode. The results, shown in Fig. 6 indicate that the
dynamical behavior of the tube after cutting is different from
the one before cutting. The first two modes shift down by
17% and the third mode by 30% possibly due to damage
caused to the piezoelectric material during electrode removal.
More importantly, the second mode is now close to the first
and second anti-resonance and is therefore less pronounced.

Comparing the results to the model shown in Fig. 1 it is
clear that the modes occur at a much lower frequency than
expected. The first mode shown the model is 16.7 KHz,
while the first measured mode shown in Fig. 6 occurs at 7.5
kHz. The difference in the result can in part be attributed to
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Fig. 6. FRF of loaded piezoelectric actuator, before (left) and after
sectioning of the electrodes (right).

the dynamics of the load. Also the contact stiffness between
mount and actuator and between the actuator and load will
not be infinite because the top and bottom of the piezoelectric
tube is not perfectly flat. As a result, the first resonant mode
will shift to a lower frequency.

2) Dynamics of sectioned tube: The dynamics of the
section tube when the sections are driven independently are
shown in Fig. 7. To verify if the model can be used to derive
the modal gains, the results of the separate sections were
added up and compared to a response measured while driving
all tube sections in parallel using the same gain. In Fig. 7
it is shown that results match very well for the first three
resonant modes but show a deviation between the third and
higher order modes.

For the purpose of modal actuation the second mode has
already a small contribution to the dynamics and can in this
case be ignored. Focusing on the dynamics of the first and
the third mode it is clear that with exception of the first
channel, all sections have an anti resonance between the first
and third mode. As a result, the mode shapes of the first and
second mode of channel 2-5 have the same sign which allows
the application of a gain set with 4 positive gains allowing
optimization of the static gain.
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Fig. 7. Measured FRF of sectioned actuator.
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FRF reference gain set (red), gain set B (blue)
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Fig. 8. FRF of piezoelectric tube with section gains set to 1 (red) and
section gains set to modal gains of first, second and third mode (blue).

B. Application of modal actuation

Using a set of pre-amplifiers, a modal actuator was con-
structed using three gain sets (A,B and C in Fig. 8). The
results indicate that modal actuation can be used to suppress
the first or the third mode. Using the first gain set (A) shown
in Fig. 8, the third mode is suppressed significantly but the
phase drops at the location of the peak. This effect may
be caused by phase differences in the separate amplifier
channels which could be improved by further tuning.

The gain set for the second mode (B) reduces the first
mode but leaves some gain peaking and does not affect the
fourth mode. Using the third order mode shape (C) a better
result is obtained. The gain set for the second and third
mode have the disadvantage of a reduced static range when
compared to the gain set based on the first mode (A).

In summary Fig. 7 & 8 demonstrate experimentally, the
ability to apply modal actuation using a set of tuned gains
which is in agreement with the theoretical results.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper it is shown that modal actuation can be used
to shape the dynamics of a loaded piezoelectric tube scanner
by shifting the anti resonances towards the resonant modes.

Varying boundary conditions in the form of changing load
conditions affect the mode shapes and the frequency where
the resonant modes occur. As a result, a modal actuator based
on a gain set optimized for a specific load requires re-tuning.

The use of a sectioned electrode in combination with a
set of amplifiers with selectable gains enable the tuning of
the modal actuator. The section gains can be tuned using a

function resembling the first mode of the axial dynamics,
which allows tuning with a limited set of parameters. Fur-
thermore, tuning with a function resembling the first mode
enables modal actuation with a minimum loss of static gain.

Future work will focus on increasing the accuracy of the
model by using shell theory or finite element modeling and
on utilizing modal actuation to optimize the controllability
of the system by avoiding excitation of resonant modes at
frequencies close to the controller bandwidth.
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[4] G. Schitter, K.J. Åström, B.E. DeMartini, P.J. Thurner, K.L. Turner
and P.K. Hansma, Design and modeling of a high-speed AFM-scanner,
IEEE Trans. Control Syst. Technol., 15(5), pp. 906-15, 2007.

[5] T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito and A.
Toda, A high-speed atomic force microscope for studying biological
macromolecules, PNAS 98(22),pp 12468-72, 2001
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