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Abstract— Studies on dynamic real-time optimization (D-
RTO) of waterflooding strategies in petroleum reservoirs have
demonstrated that there exists a large potential to improve
economic performance in oil recovery. Unfortunately, the used
large-scale, nonlinear, physics-based reservoir models suffer
from vast parametric uncertainty and generally poor short-term
predictions. This seriously limits the industrial and economic
feasibility of a production strategy based at long-term economic
objectives alone. In this work, a two level optimization and
control strategy is investigated, consisting of a D-RTO and
model predictive control (MPC) level. In this structure, long-
term economic performance is addressed by the design of
optimal reference trajectories, while reliability of reaching these
long-term goals is managed through a short-term tracking
control problem, based on locally identified linear models.

I. INTRODUCTION

The production of oil from petroleum reservoirs is a

typical example of a large-scale dynamical system where

complex physics governs the nonlinear dynamics of the

underlying models. Operations are classically driven by deci-

sions based on operator experience and supported by scenario

studies. Recent improvements in dynamic reservoir modeling

as well as the introduction of more enhanced subsurface

measurement and control devices have created a foundation

for field-wide control and optimization of oil production [1],

[2], [3].

Oil is produced from subsurface reservoirs. In these reser-

voirs the oil is contained in the interconnected pores of

the reservoir rock under high pressure and temperature. The

depletion process of a reservoir generally consists of two

production stages. In the primary production stage the reser-

voir pressure is the driving mechanism for the production.

In the secondary production stage liquid (or gas) is injected

into the reservoir using injection wells. The most common

secondary recovery mechanism involves the injection of

water and is referred to as waterflooding. It serves two

purposes: sustaining reservoir pressure and sweeping the oil

out of pores of the reservoir rock and replacing it by water.
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Fig. 1. Schematic representation of waterflooding at different moments in

time using a (horizontal) injection and production well. Due to heterogeneity

of the rock, water does not move uniformly towards the production well.

In Figure 1 a (schematic) representation of the waterflooding

process is presented.

The waterflooding process is nonlinear, due to the different

fluid properties of oil and water [4]. This nonlinear behavior

strongly influences how the oil-water front moves through

the reservoir. When the oil-water front reaches a certain

well, it start producing water (water-breakthrough). The time

between start of water injection and water-breakthrough may

take several years. A reactive flooding strategy, based on

measuring the oil-water ratio in each well and applying

a shut-in threshold, is most frequently used in practice.

However, such a reactive strategy often gives poor ’sweep

efficiency’, i.e. in certain regions the oil is not properly

drained because the water passes the oil by, as can be

observed in Figure 1.

Moving from a reactive production strategy to a more

proactive one is difficult. First of all, feedback control is not

feasible due to the long time constants of the process from

start injection to water-breakthrough. Secondly, the process is

essentially a (unique) batch process, ruling out any learning

control. Therefore, in most oil companies, physics-based

reservoir models are used, of which an example is shown

Fig. 2. Example of a large-scale, physics-based, numerical reservoir model

with a large number of wells.
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Fig. 3. Management structure of an oil field consisting of different control

layers. In [2] control of the wells is directly manipulated by the D-RTO

layer resulting in 3 control layers (a). In this work, an additional MPC

layer is introduced between D-RTO and well control (b) as is common in

continuous process control.

in Figure 2, that provide long-term predictions of the fluid

flows through a reservoir. Based on these models, a proactive

(open-loop) control strategy can be designed.

Introduction of a dynamic real-time optimization (D-RTO)

into reservoir management using such a numerical reservoir

model, can potentially increase (economic) performance by

more than 15% [5], [6], [7]. This approach corresponds to the

field management control structure, as is depicted in Figure

3.a, where the bottom layer deals with the basic control

(stability) of wells, operational decisions of the wells are

prescribed by the results of the D-RTO layer and at the

top a field development (FD) layer determines the design

of the field in terms of the number, location and type of

wells. However, when an optimized production strategy is

(open-loop) applied to an oil reservoir the expected increase

in economic performance is generally not realized, since

reservoir models usually suffer from vast uncertainty in their

predictions.

In [8] this problem is addressed through a robust opti-

mization (RO) approach which uses an ensemble of reservoir

models that reflects modeling uncertainty. In [2], a procedure

is introduced that involves a sequential execution of param-

eter and state estimation, and dynamic real-time optimiza-

tion (D-RTO). However, in this structure, feedback is only

implicitly present in through (possible) state estimation at

certain moments in time. In between these moments control

is applied in open-loop.

In this work, we investigate the value of introducing

feedback into the control structure through the use of locally

identified, linear models. These models are assumed to have

better short-term prediction accuracy than the physics-based

reservoir models, because the model structure of the large-

scale models is aimed at capturing the slow, reservoir-wide

dynamics. Also, adapting the parameter estimation problem

such that the quality of short-term predictions is improved

(at the expense of long-term accuracy) is difficult: they may

still be dominated by the prior information incorporated in

the reservoir model to improve long-term predictions. A

predictive control (MPC) layer is introduced in the field

management structure as shown in Figure 3.b, which is

analogous to the current industrial state-of-the-art approach

for process operation [9], [10]. Based on a large-scale,

physics-based nonlinear reservoir model long-term reference

trajectories are defined through D-RTO using an economic
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Fig. 4. Block diagram of an open-loop waterflooding procedure, where J

represents an economic performance measure.

cost function [7], [11], [12]. Tracking of these reference

trajectories is subsequently done through MPC, using the

locally identified linear models as prediction model. It should

be noted that since the optimal reference trajectories are

based on an uncertain model, they will be sub-optimal for

the real system.

The approach as described in the previous paragraph is

closely related to the two-level optimization and control

strategy as described by [13], [14] and [15]. However, a

distinction can be made in the purpose of the low-order

models in the MPC loop. Instead of serving as a locally valid,

short-term proxy, the low-order models are a supplement to

the large-scale model. As a result, consistency of the models

is not guaranteed, nor required.

II. RESERVOIR MODELING USING LOCAL LINEAR

MODELS

Figure 4 shows a block diagram of an open-loop water-

flooding procedure, where P represents the oil reservoir. The

controls u represent the flow rates of the water injection wells

qi and bottom-hole pressures of production wells pbh. The Ny

outputs - denoted by y - involve the production flow rates of

both oil (qo) and water (qw). Block K1 is a linear mapping

of y in R
Ny to economic revenues in R

1 and contains oil

price and water production costs. As a result, J represents

cumulative economic revenues, where economic life-cycle

performance of a reservoir is evaluated at a specific time T ,

relating to the end of the life of the reservoir.

Reservoir P prescribes the dynamic relationship between

inputs qi and pbh and outputs qo and qw. Ideally, an identified

model P̄ would - on the basis of input/output data - describe

the same input/outpus mapping. However, the ratio between

qo and qw (watercut) depends strongly non-linear on the

inputs. Besides this, past data does not contain information

about this non-linear relationship. To that end, combined oil

and water flow rates ql (liquid rates) are used as outputs in the

identification of a data-driven linear model of the reservoir. In

Figure 5, this is represented through block K2, which involves

a linear mapping from dimension R
Ny to R

1
2 Ny . It should be

noted, that due to K2, perfect tracking of a reference r does

not guarantee a zero error between the real and predicted

outputs y and ŷ, which may consequently lead to a poorer

economic performance than expected. Besides this, K2 causes

the number of outputs Ny to always be smaller than the

number of inputs Nu.

To capture all relevant dynamics in an identified model,
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input u must be persistently exciting during the length of the

experiment. Design of such an experiment can be done on the

basis of a physics-based large-scale model of the reservoir, if

available. This approach was also adopted in the simulation

study presented in this paper. System identification of MIMO

systems can be carried out through several methods, e.g.

prediction error identification (PEI) or subspace identification

(SubID). In this work, SubID was chosen to identify a

prediction model for the model predictive controller.

III. MODEL PREDICTIVE CONTROL IN WATERFLOODING

The model predictive controller, as presented in Figure 5,

acts as a tracking controller for the reference trajectories,

denoted by r. In this application, r corresponds to desired

liquid flow rates of the production wells.

A cost minimizing control u is calculated over a relatively

short time horizon, using an observer to estimate the initial

conditions of the identified model. It should be noted that

due to Ny < Nu, the minimization problem may become ill-

posed. Only part of the control input will be implemented

after which the process from state estimation to application of

u is repeated. For the tracking problem of liquid production

from reservoirs, the (discrete) quadratic cost function V that

is evaluated over the receding prediction horizon is expressed

by:

V (u) =
N

∑
k=1

(q̂l,k+1 − rk+1)
T R (q̂l,k+1 − rk+1)+

(uk − ūk)
T Q (uk − ūk) (1)

where k is the time step index, N the number of time

steps of the prediction horizon, q̂l are the predicted liquid

production rates, r the desired (reference) liquid rates, u the

control input and ūk a preferred control input. Matrices Q ∈

R
Ny×Ny and R ∈ R

Nu×Nu are positive semi-definite weighting

matrices. The error between uk and ūk is incorporated in

the objective function to find the minimizing tracking error

control closest to preferred input ūk, thus realizing a unique

solution.

As the system moves away from the working point around

which the LTI model was identified, its prediction accuracy

will decrease and re-identification is required. In doing so,

the benefit of improved prediction must be evaluated against
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Fig. 5. Block diagram of an closed-loop waterflooding approach, using

MPC for tracking control of the liquid flow rates of each production well.

the drop in tracking performance during the experiment.

However, how to determine the best instant to initiate another

identification experiment is not explored any further in this

work, but will be the subject of future research.

IV. SIMULATION STUDY

Evaluation of the MPC scheme described in the previous

section is restricted to numerical experiments, because of the

long time constants and life-cycle of reservoirs, the inability

to repeat the process for evaluation, and the high stakes

involved in oil production. To that end, a numerical model

must be used to represent reality. A detailed description of

the underlying equations of such a numerical model can be

found in [4].

In the example presented here, an oil reservoir is consid-

ered with 8 water injection and 4 production wells, as shown

in Figure 6. Its geological structure involves a network of

fossilized meandering channels in which the flowing fluids

experience less resistance. The life-cycle of the reservoir

covers a period of 11.5 years. Of this reservoir a large-

scale model P was created to serve as an (unknown) real

reservoir ’behind the curtain’. A validation of method against

an (unknown) synthetic ’truth’ is often used in reservoir

engineering because of the very long time constants of the

process and the economic stakes involved [16]. In order to let

P provide more realistic predictions of short-term dynamic

behavior of the reservoir, a very fine spatial discretization

around the wells was adopted and a (relatively) very short

time step size was chosen of 0.25 days. However, no artificial

measurement noise, nor disturbances were applied to P or its

(synthetic) input/output data.

A second reservoir model M was created of the oil reser-

voir, which serves as available (known) model to provide

long-term predictions, to be used for D-RTO and design

of an identification experiment. No grid refinement around

the wells was used and a time step size of 30 days was

adopted. This (coarse) spatial and time discretization is of the

same order as most reservoir models used by oil companies.

Besides the more coarse discretization, reservoir model M

deviates from P in its geological structure, which has its

channels in a different flow direction, as can be observed in

Figure 7

A. Economic Life-Cycle Optimization

In the control structure presented in Section I, reference

trajectories r are determined by the D-RTO layer. In ref-

erence to the waterflooding procedure presented in [2] an

economic objective function was adopted in terms of net

present value (NPV), which is defined in discrete form as:

J =
kT

∑
k=1

[

ro ·qo,k − rw ·qw,k

(1+b)
tk
τt

·∆tk

]

, (2)

where ro is the oil price, equal to 56.6 $
m3 and rw the water

production costs, equal to 6.3 $
m3 , which are both assumed
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Fig. 6. Oil reservoir containing 8 injection wells and 4 production wells.

Channels in the reservoir have larger permeability (in Darcy), which is a

measure inversely proportional to the flowing resistance.

constant. kT is the time step index relating to final time T

and ∆tk the time interval of time step k in [day]. The term b

represents the discount rate for a certain reference time τt .

This term is added to take into account the time value of

money. In (2), b = 0.1 and τt = 365.25 days.
The reference trajectories r are calculated based on

(known) reservoir model M. Using M, the following opti-

mization problem was solved:

u∗ = argmax
u

JkT
(3)

s.t. f (xk+1,xk,uk) = 0, x0 = x̂0, k = 1, . . . ,kT (4)

g(uk) ≤ 0 (5)

where f represents the model equations of reservoir model

M, x̂0 the initial conditions and g the constraints that act on

the inputs. These constraints involve a lower bound on qi and

pbh of 0 m3

day
and 375 bar respectively, and an upper bound

on qi of 1,590 m3

day
.

A number of methods are available for dynamic opti-

mization on large scale problems [17], [18], [19]. Although

the capacity of simultaneous methods to handle large-scale

problem has increased considerably over the recent years,

models of order 106 are still difficult to solve in this manner.

Although sequential methods generally require repeated nu-

merical integration of the model equations, only the control

vector is parameterized and as a result can deal with larger

problems. Therefore, a single shooting method was adopted

in this work to solve equations (3)-(5) using a system of

adjoint equations to efficiently calculate the gradients, as

described in [7]. Note that due to the absence of path

constraints, preserving feasibility of the solution is relatively

easy. Solving dynamic optimization problem (3)-(5) leads

to an expected maximum NPV of 596 M$. The reference

trajectories r used for MPC control are determined through:

rk = K2 · ŷ(u
∗)k, k = 1, . . . ,kT . (6)

where ŷ represents the outputs (oil and water flow rates)

predicted by M.

Fig. 7. Oil reservoir model containing 8 injection wells and 4 production

wells. The model differs from the model shown in Figure 6 in the direction

of the channels, the absence of grid refinement and the larger time step size

of 30 days.

B. System Identification

As described in Section II, the inputs involve the water

injection rates qi of the 8 injection wells and the bottom-

hole pressures pbh of the 4 production wells. The reference

trajectories r involve the liquid rates ql of the 4 production

wells. As such, an eight inputs/four outputs model needs to

be determined.

The waterflooding process is non-linear and as a result

the prediction accuracy of a linear model will decrease

when the prediction horizon increases. However, in this first

experiment to introduce MPC in Reservoir Engineering, a

linear model is only identified at the start of production

for simplicity reasons. The duration of the experiment was

chosen using the rule of thumb of minimal 5 times the largest

time constant. Through step response analysis on reservoir

model M, the largest time constant was estimated and the

minimal duration of the experiment was estimated at 75 days.

For qi and pbh, RBS excitation signals were generated.

From step responses on M for each input, it was found

that the response to changes in qi were much slower than

responses to changes of pbh. In order to amplify the low

frequency content of excitation signal of the injection rates,

the clock period of the RBS signal was set to 3 sample times

(of 0.25 days). The amplitudes the RBS signals were set at

1590 m3/day and 1 bar for qi and pbh respectively, using M

to determine that the effect on the outputs was significant

and proportional.

In order to maintain good economic performance, the

RBS signals with zero mean were superimposed upon the

preferred inputs ūk which are taken equal to u∗. However,

whenever addition of the RBS signal led to infeasibility with

respect to (5), the mean value was moved up or down until

feasibility was reached. In the identification experiment, the

first 25 days of data were omitted after which all initialization

effects had died out. Note that, due to the superposition of

the RBS signal on u∗, the spectrum of the excitation signal

of the producers is no longer flat, but has a larger weight

in the low frequency range. The sampling frequency of the
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measured outputs y is determined by the time step size of P,

which in this example was equal to 0.25 days.

The identification experiment was conducted in open-

loop, since the depletion process is inherently stable. Based

on these data, an 8th-order subspace identification (SubID)

model P̂ was identified. Subspace identification was used

because of its simple structure that is well suited for MIMO

systems, and more importantly that it is computationally

efficient. Figure 9 shows the simulation fit of the model with

respect to the measured output data for all four producers. It

can be observed that the output of the identified model has

satisfying accuracy.

C. Model Predictive Control

The MPC control involves minimization of a cost function

as described by (1). The desired input ū is chosen equal

to u∗ as a best guess to maximize economic life-cycle

performance. Weighting matrix R was taken equal to unity.

Weighting matrix Q was used to weigh only deviations of the

injection rates qi from optimal inputs u∗, such that tracking is

mainly realized through changes in the bottom-hole pressures

pbh of the production wells. The nonzero elements of Q were

chosen equal to unity. In this experiment, prediction horizon

N was chosen equal to 28, which is approximately equal to

the rise time of the slowest step response of M. Each time

step, the minimization problem is solved for the (moving)

prediction horizon, which involves two sequential steps: State

estimation and Quadratic Programming (QP).

1) State Estimation: In this simulation study, no artificial

noise was added to the measurements. As a result, the state

estimation problem can be attacked quite straightforwardly

using a Luenberger observer. The observer gain was chosen

such that the poles of the observer were converge approx-
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Fig. 8. Control of each well as determined by the MPC controller. It

is applied and re-calculated at every time step of 0.25 days of the ’real’

reservoir P.
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Fig. 9. Simulation fit of the 8th-order SubID model with respect to the

measured output data.

imately 10 times faster than the poles of the system. Note

however that alternative choices for state estimation may be

considered, e.g. Kalman filtering.

2) Quadratic Programming: To solve the minimization

of (1) subject to the inequality constraints on the inputs (5),

a QP problem needs to be solved. In this QP problem, the

state estimation serves as initial condition for the predictions

of P̂. In this experiment, a custom made QP solver is used,

implemented in the used reservoir simulator.

The control of each well - determined by the MPC

controller - is applied and re-calculated at every time step

of 0.25 days of the ’real’ reservoir P and can be observed in

Figure 8.

D. Results

The results of adding a MPC layer to control production of

P are compared to direct, open-loop application of optimal

inputs u∗ to P. Performance is both evaluated in terms of

tracking performance and NPV. Tracking performance can

be observed in Figure 10. In Table I, the NPV’s of the

open-loop application of u∗ on P and the MPC controlled

reservoir are shown and compared to the expected maximum

NPV determined by the D-RTO layer. Figure 10 shows

the reference and output trajectories for both the open-loop

and MPC controlled case for each of the four production

wells over the life of the field. In each of the four plots,

4 different stages can be identified using MPC. In the

first 75 days of production, the identification experiment

is conducted where the optimal inputs u∗ serve as mean

values. During this period the error is large because of the

TABLE I

ECONOMIC PERFORMANCE

NPV % change

Maximum predicted by M 596 M$ -

Open-loop application u∗ to P 558 M$ -6.4 %

MPC control of P tracking r 594 M$ -0.5 %
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Fig. 10. Reference and output trajectories for both the open-loop

application and MPC controlled case for each of the four production wells

over the life of the field.

model error between the reservoir model M and ’reality’ P,

while the MPC controller is not active yet. From 75 days to

approximately 500 days tracking performance is good due

to activation of the MPC controller. After 500 days tracking

performance decreases, however still outperforming open-

loop control. This drop is the result of water breakthrough

in the production wells, which has a strong nonlinear effect

of the dynamics. After approximately 3000 days tracking

improves, due to the fact that mainly water is produced

resulting in a more linear response to the inputs.

V. CONCLUSION

The introduction of an output tracking controller in oil

production is aimed at attenuation of uncertainty effects

on the predictions. As a result, the system is assumed to

give better economic performance than open-loop control.

This approach is supported by the work presented in [14].

Although as of yet only the groundwork for MPC tracking

control in oil production has been laid out in this paper,

from the results of the numerical example the following

observations can be made:

• It is possible to obtain a predictive reservoir model

through system identification, which gives accurate pre-

dictions for a time horizon that is relatively short, but

long enough to realize MPC receding horizon control.

• The results of reference tracking through MPC are

promising. However, even better results are expected

when frequent re-identification of the local linear model

is conducted over the length of the field’s life-cycle.

It should be noted that the presented integrated D-RTO and

MPC approach can quite easily be combined with alternative

methods that are aimed at counteracting the negative effects

of uncertainty on economic performance, such as the robust

optimization procedure presented in [8] and the sequential

D-RTO and data-assimilation approach presented in [2].
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