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tion, PO Box 60, 2280AB Rijswijk, The NetherlandsAbstra
t: When �rst prin
iples models are used for model-based operations as monitoring,
ontrol and optimization, the estimation of a

urate physi
al parameters is important inparti
ular when the underlying dynami
al model is nonlinear. If the models are the resultof partial di�erential equations being dis
retized, they are often large-s
ale in terms of numberof states and possibly also number of parameters. Estimating a large number of parametersfrom measurement data leads to problems of identi�ability, and 
onsequently to ina

urateidenti�
ation results. The question whether a physi
al model stru
ture is identi�able, is usually
onsidered in a qualitative way, i.e. it is answered with a yes/no answer. However sin
e also nearlyunidenti�able model stru
tures lead to poor parameter estimates, the questions is addressed howthe model stru
ture 
an be approximated so as to a
hieve lo
al identi�ability, while retainingthe interpretation of the physi
al parameters. Appropriate attention is also given to the relevants
aling of parameters. The problem is addressed in a predi
tion error setting, and is illustratedwith an example taken from oil reservoir engineering.Keywords: identi�ability; stru
tural identi�ability; physi
al model stru
tures; model stru
tureapproximation.1. INTRODUCTIONComplex dynami
al physi
al pro
esses raise many 
hal-lenges for model-based monitoring, 
ontrol and optimiza-tion. On-line re
onstru
tion of non-measurable variables,design of appropriate feedforward and feedba
k 
ontrolstrategies, as well as e
onomi
 optimization of pro
essesunder appropriate operational 
onstraints, generally re-quire the availability of a reliable pro
ess model, preferablya

ompanied by a quanti�
ation of its reliability (un
er-tainty). If the dynami
s of the 
onsidered pro
ess is linear,then a pro
ess model 
an be obtained by applying bla
k-box system identi�
ation, whi
h provides a well-studiedset of tools for identifying linear models on the basis ofexperimental data Ljung [1999℄. If there is a parti
ularinterest in the identi�
ation of physi
al parameters, thisoften does not raise any additional problems: one hasto 
hoose the right (physi
s-based) model stru
ture andidentify the parameters through one of the available (pos-sibly non-
onvex) optimization methods. The only issuethat has to be taken 
are of is that the physi
al modelstru
ture is identi�able, implying that the several physi
al
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parameters 
an be distinguished from ea
h other on thebasis of the model's input-output behavior.In the situation that the pro
ess dynami
s is nonlin-ear, it 
an often be linearized around an operating point(as e.g. in 
ontinuous-type industrial/
hemi
al produ
tionpro
esses) and the above mentioned linear approa
h 
anbe followed leading to a linear (approximate) model. How-ever when essential nonlinear dynami
al phenomena areinvolved and the user needs to 
apture this dynami
s inthe model, it is mu
h harder to 
ome up with generi
bla
k-box te
hniques for identi�
ation. Although there areinteresting attempts to 
apture the nonlinear phenom-ena in (bla
k-box) model stru
tures as Wiener and/orHammerstein models, Bai [1998℄, Zhu [2002℄, and linearparameter-varying (LPV) models Verdult and Verhaegen[2002℄, Tóth et al. [2007℄, Tóth [2008℄, van Wingerden andVerhaegen [2009℄, information on the underlying physi
alstru
ture of the nonlinearities is very often required forsele
tion of an appropriate model stru
ture.In some pro
esses it is desirable to 
apture the real under-lying nonlinear dynami
 stru
ture of the pro
ess in orderto make reliable long-term predi
tions. First-prin
iplesmodel then provide the stru
ture of the model, while in
or-porated (physi
al) parameters have to be estimated on thebasis of experimental data. Espe
ially in situations wherethe �rst prin
iples models are given by partial di�erential



equations (pde's), the required step of dis
retizing theequations in spa
e and time generally leads to 
omplexmodels with a large number of states and possibly also alarge number of unknown (physi
al) parameters. For aninteresting example of this situation in a problem of (oil)reservoir engineering, the reader is referred to Jansen et al.[2008℄, where a model is handled with a number of statesand parameters ex
eeding the order of 105.Identifying extremely large number of parameters frommeasurement data leads to serious problems, and at leastit leads to the question whi
h model properties 
an bereliably estimated from the available measurement data.From a model-based operations point of view (monitoring,
ontrol, optimization) it makes sense to limit the 
om-plexity of an identi�ed model to a level where the model
an be reliably validated from data. If not, the parameterestimates might be highly determined by the -random- ex-periment that is done (over�t) leading to unreliable modelpredi
tions. In identi�
ation this problem is addressed bythe notion of identi�ability.In this paper the notion of identi�ability will be evaluatedin the s
ope of the high-
omplexity type of pro
essesdis
ussed above. Our argument will be that having an (lo-
ally) identi�able model stru
ture will not be su�
ient toprovide reliable parameter estimates in large s
ale physi
almodel stru
tures. Methods will be presented that allow toredu
e the parameter spa
e to limited dimension, whilebeing able to reliably estimate the redu
ed parameters andmaintaining their physi
al interpretation. To this end thequalitative notion of (lo
al) identi�ability (with a yes/noanswer) is generalized to a quantitative notion, removingthat parameter subspa
e from the parametrization that
an only be estimated with ex
essively large varian
e.2. IDENTIFIABILITY - THE STARTING POINTThe notion of identi�ability refers -roughly speaking- tothe question whether parameter 
hanges in the model 
anbe observed in the model output signal (output identi�-ability) or in the model's input-output map or transferfun
tion (stru
tural identi�ability).The notion of output identi�ability has been studied in e.g.Grewal and Glover [1976℄ and Ljung [1999℄. The notion ofstru
tural identi�ability was �rst stated by Bellman andÅström [1970℄ and has been extensively studied in the �eldof 
ompartmental modeling (Godfrey [1983℄. In its essen
e,identi�ability properties are global properties, i.e. holdingfor the full parameter spa
e. However restri
ting attentionto a lo
al analysis is often the only situation that is feasiblein terms of 
omputational 
omplexity. As a result we willfo
us on lo
al properties of (output) identi�ability only.Consider a nonlinear dynami
al model that generatesoutput predi
tions a

ording to 1 :
ŷ = h(u, θ; x0), (1)where ŷ is a predi
tion of y :=

[

yT
1 . . . yT

N

]T denotingoutput signal measurements yk ∈ R
p sta
ked over time,

θ ∈ Θ ⊂ R
q the parameter ve
tor, u :=

[

uT
1 . . . uT

N

]T

1 Without loss of generality we restri
t attention to predi
tors thatare not dependent on output measurements y, wh
h in an LTI-settingis referred to as Output Error predi
tors.

the input ve
tor uk ∈ R
m sta
ked over time, and x0 theinitial state ve
tor. Sin
e the model (1) is parameterizedit represents an input/output model stru
ture.The de�nition of lo
al identi�ability now is given asfollows(Grewal and Glover [1976℄):De�nition 1. An input/output model stru
ture h(θ,u; x0) :

Θ → H is 
alled lo
ally identi�able in θm ∈ Θ for a given
u and x0, if for all θ1, θ2 in the neighborhood of θm holdsthat

{h(u, θ1; x0) = h(u, θ2; x0)} ⇒ θ1 = θ2.If we linearize the nonlinear pro
ess dynami
s around a
hosen operating point or traje
tory, a linear dynami
alsystem results. This system 
an be modelled by an LTIinput-output model, represented by the transfer fun
tion
G, leading to an output predi
tor

ŷk = G(q, θ)uk,with q the shift operator quk = uk+1.In general identi�ability questions are 
onsidered qualita-tively, i.e. de
iding whether a model stru
ture is eitheridenti�able or not. The tests required for this evaluationare typi
ally rank evaluations of matri
es, as e.g. Fisher'sinformation matrix, around a parti
ular lo
al operatingpoint in the parameter spa
e, see e.g. Döts
h and Van denHof [1996℄. However, when 
onsidering parameters in larges
ale (nonlinear) physi
al models it is relevant to raise thequestion how the notion of identi�ability 
an be quanti�ed.This implies addressing the question whi
h part of theparameter spa
e is best identi�able, and whi
h part ofthe model stru
ture 
an be approximated so as to a
hievelo
al identi�ability, while retaining the interpretation ofthe physi
al parameters. For stru
tural identi�ability thisquestion was preliminary addressed in Van Doren et al.[2008℄. In Vajda et al. [1989℄ prin
ipal 
omponent analysiswas applied to determine whi
h parameters 
an be identi-�ed. Assessing identi�ability 
an also be done a posteriori,after the identi�
ation of all parameters, by evaluating theparameter varian
e, see e.g. Hjalmarsson [2005℄.3. TESTING LOCAL IDENTIFIABILITY INIDENTIFICATION3.1 Introdu
tionIn a model identi�
ation framework we 
onsider parameterestimation methods that are 
hara
terized by minimizinga 
ost fun
tion V (θ):
V (θ) :=

1

2
ǫ(θ)T P−1

v ǫ(θ), (2)where the predi
tion error sequen
e ǫ is de�ned as
ǫ(θ) = y − ŷ = y − h(θ,u; x0), (3)where y denotes the measured output sequen
e and ŷ thepredi
tor sequen
e, and Pv is a weighting matrix that
ould represent (an estimate of) the 
ovarian
e matrixof the noise sequen
e v that is supposed to a
t on themeasured output. In the rest of the 
hapter the shorthandnotation ŷ(θ) is used to indi
ate h(u, θ; x0).The Ja
obian of V (θ) with respe
t to the parameters is

∂V (θ)

∂θ
=

∂ǫ(θ)T

∂θ
P−1

v ǫ(θ) = −
∂ŷ(θ)T

∂θ
P−1

v (y − ŷ(θ)) .(4)



The Hessian of V (θ) with respe
t to the parameters is
∂2V (θ)

∂θ2
=

∂ǫ(θ)T

∂θ
P−1

v

(

∂ǫ(θ)T

∂θ

)T

+ S

=
∂ŷ(θ)T

∂θ
P−1

v

(

∂ŷ(θ)T

∂θ

)T

+ S, (5)where S denotes the se
ond-order information in ∂2V (θ)
∂θ2 .The Ja
obian and Hessian are for a given θ and a givenoperating point (given by u and x0). Parameter estima-tion now 
onsists in �nding the parameter estimate as aminimizing argument of the 
ost fun
tion V (θ)

θ̂ := argmin
θ

V (θ). (6)At θ̂ the 
ost fun
tion V (θ) is minimized and the Ja
obian(4) at θ̂ is zero, i.e. ∂V (θ)
∂θ

= 0 at θ̂.3.2 Analyzing lo
al identi�ability in θ̂Lo
al identi�ability in θ̂ is generally evaluated by thetest whether the optimization problem (6) has a uniquesolution in the parameter spa
e. By lo
ally approximatingthe 
ost fun
tion V (θ) by a quadrati
 fun
tion 2 (and thusnegle
ting the se
ond order term S in (5)), uniqueness of
θ̂ is guaranteed if the Hessian at θ̂ is positive de�nite,i.e. ∂2V (θ)

∂θ2 > 0 at θ̂, whi
h in this 
ase is equivalentto rank ∂2V
∂θ2 = q. This is a su�
ient 
ondition for lo
alidenti�ability in θ̂.The 
onsidered rank test is naturally performed by apply-ing a singular value de
omposition (SVD):

∂2V (θ)

∂θ2
= UΣV T = [ U1 U2 ]

[

Σ1 0
0 0

] [

V T
1

V T
2

]

,where matri
es U and V are unitary matri
es, Σ1 =
diag(σ1, . . . , σp) with σ1 ≥ · · · ≥ σp.If p = q then identi�ability is 
on�rmed. If p < q thenthe 
olumn spa
e of U1 represents the subspa
e of theparameter spa
e that is identi�able, and the 
olumn spa
eof U2 is its orthogonal 
omplement, 
hara
terizing thesubspa
e that is not identi�able.As a result, the SVD of the Hessian 
an be used to extendthe qualitative treatment of the question whether or not aparti
ular model stru
ture is identi�able, to a quantitativeproperty of spe
ifying the identi�able parameter spa
e.The 
olumns of U1 basi
ally a
t as basis fun
tions in theparameter spa
e, determining the linear 
ombinations ofthe original parameters that will be identi�able from themeasurements. Di�erently formulated, this would point toa reparametrization of the model stru
ture by de�ning aredu
ed order parameter ρ ∈ R

p de�ned by
θ = U1ρ (7)leading to an identi�able model stru
ture in the parameter

ρ. The attra
tive feature of this mapping is that it allowsto identify ρ while the estimated result ρ̂ 
an be uniquelyinterpreted in terms of the original physi
al parameters θthrough the mapping (7). The limitation of the approa
his of 
ourse that only linear parameter transformations are
onsidered.
2 This is a
hieved by approximating ŷ(θ) with a �rst-order Taylorexpansion around θ̂.

3.3 Approximating the identi�able parameter spa
eWhen in the SVD of the Hessian singular values arefound that are (very) small, this points to dire
tions inthe parameter spa
e that have very limited (but nonzero)in�uen
e on the 
ost fun
tion V . In identi�
ation termsthis 
orrespond to dire
tions in the parameter spa
e inwhi
h the varian
e is (very) large. The Hessian evaluatedat θ̂ is 
onne
ted to the varian
e of θ̂, sin
e for the Gaussian
ase (and provided that θ̂ is a 
onsistent estimate) itfollows that
cov (θ̂) = J−1with J the Fisher information matrix

J = E

[

∂2V (θ)

∂θ2

∣

∣

∣

∣

θ̂

]

, (8)where E denotes expe
tation (Ljung [1999℄).We are interested in spe
ifying that part of the parameterspa
e that is best identi�able by removing the subspa
ethat has only a very small in�uen
e on the 
ost fun
tion V .This reasoning would point to removing those parameter(
ombinations) from the model stru
ture for whi
h thevarian
e is very large, as was also addressed in Vajda et al.[1989℄ for nonlinear parameter mappings, and in Lund andFoss [2008℄ for single parameters.The essential information on the SVD of the Hessian isnow obtained from:
∂ŷ(θ)T

∂θ
P

−
1

2

v = [ U1 U2 ]

[

Σ1 0
0 Σ2

] [

V T
1

V T
2

] (9)where the separation between Σ1 and Σ2 is 
hosen in su
h away that the singular values in Σ2 are 
onsiderably smallerthan those in Σ1.If we now reparametrize the model stru
ture by employingthe redu
ed parameter ρ determined by θ = U1ρ, wehave realized a model stru
ture approximation, in whi
hthe parameters to be identi�ed are well identi�able witha limited varian
e and the physi
al interpretation of theparameters remains untou
hed. The singular ve
tors thato

ur as the 
olumns in U1 a
tually 
an be seen as basisfun
tions in the parameter spa
e.With the SVD (9) it follows that the sample estimate ofthe 
ovarian
e matrix of θ̂ be
omes:
cov(θ̂) =







[ U1 U2 ]

[

Σ−2
1 0
0 Σ−2

2

] [

UT
1

UT
2

] for tra
e(Σ2) > 0

∞ for Σ2 = 0 (10)while the sample estimate of the 
ovarian
e matrix of thereparametrized parameter estimate U1ρ̂ is given by
cov(U1ρ̂) = U1Σ

−2
1 UT

1 . (11)This shows that if Σ2 = 0 there is no bene�t of thereparametrization in terms of varian
e of the estimatedparameter θ̂. However if nonzero singular values are dis-
arded in Σ2, i.e. if tra
e(Σ2) > 0 then
cov(θ̂) > cov(U1ρ̂)showing a 
ovarian
e that is redu
ed by the reparametriza-tion. This redu
tion is parti
ularly interesting if Σ2 
on-tains a (very) large number of small singular values.



4. PARAMETER SCALING IN IDENTIFIABILITYThe notions of identi�ability are de�ned in su
h a waythat the result is independent of any parti
ular s
aling ofparameters. A s
aling happens when 
hoosing a parti
ularphysi
al unit for a parti
ular parameter, as e.g. using either[nm℄ or [m℄ as measure of distan
e. While the analysis andtest in se
tion (3.2) is independent of parameter s
aling,this s
aling does in�uen
e the analysis of of se
tion (3.3)where the numeri
al values that o

ur in Σ1, Σ2 vary withparameter s
aling.It appears that in the approa
h presented above theabsolute varian
e of parameters is used as a measure forsele
tion through the Fisher matrix. A s
aling invariantanalysis results if instead we 
onsider the relative varian
eof parameters, i.e.
cov (Γ−1

θ̂
θ̂)where Γ

θ̂
= diag

(

|θ̂1| . . . |θ̂q|
). This motivates the anal-ysis of a s
aled Hessian

Γ
θ̂

∂2V (θ)

∂θ2

∣

∣

∣

∣

θ̂

Γ
θ̂
, (12)related to the s
aled Fisher information matrix J̃ :

J̃ = E

[

Γ
θ̂

∂2V (θ)

∂θ2

∣

∣

∣

∣

θ̂

Γ
θ̂

]

. (13)Note that the evaluation of the relative varian
e of param-eter estimates for model stru
ture sele
tion is also done in
lassi
al methods when 
onsidering the standard devia-tion of an estimated parameter related to the parametervalue itself, see e.g. Ljung [1999℄ and Hjalmarsson [2005℄.However usually the analysis is performed for parametersseparately (e.g. is zero in
luded in the parameter 
on-�den
e interval?). In the analysis presented here linear
ombinations of parameters are evaluated, thus fo
ussingon the ratio between the lengths of the prin
iple axesof the un
ertainty ellipsoids representing the parameter
on�den
e bounds for θ̂.5. COST FUNCTION MINIMIZATION INIDENTIFICATIONIf we iteratively solve for a parameter estimate θ̂ byminimizing a 
ost fun
tion V (θ), the general update rulein step m of a Newton-type algorithm is given by
θ̂m+1 = θ̂m − γ

(

∂2V

∂θ2

)−1
∂V

∂θ
, (14)where γ denotes a s
alar damping fa
tor. Note that in thisexpression the partial derivatives are evaluated in the lo
alparameter θ̂m. In 
ontrast with the analysis in the previousse
tion this lo
al parameter does not ne
essarily re�e
t a(lo
al) minimum of the 
ost fun
tion V .If we 
onsider the predi
tion error 
ost fun
tion as usedbefore, then for the model stru
ture 
onsidered and afterlinearization of ŷ(θ) around parameter θm the update rulebe
omes

θ̂m+1 = θ̂m+γ

(

∂ŷ(θ)T

∂θ

(

∂ŷ(θ)T

∂θ

)T
)

−1
∂ŷ(θ)T

∂θ
(y − ŷ(θ)) .(15)

where Pv is 
onsidered identity for notational simpli
ity.The parameter update (15) is a
tually a Gauss-Newtonstep, employing a �rst order Taylor expansion of ŷ(θ)around θm, similar to the approximation in se
tion 3.3.If the model stru
ture is not identi�able in θ̂m the ma-trix inverse in (15) will not exist. Although this is oftenindi
ated as a serious problem for iterative optimizationalgorithms it 
an simply be over
ome by restri
ting theupdate rule to make steps only in that part of the param-eter spa
e that does in�uen
e the output predi
tor, seee.g. M
Kelvey et al. [2004℄. This a
tually 
omes down toutilizing the pseudo-inverse of the Ja
obian in (15), on thebasis of the SVD:
∂ŷ(θ)T

∂θ
= [ U1 U2 ]

[

Σ1 0
0 Σ2

] [

V T
1

V T
2

] (16)with Σ1 ∈ R
p×p. If Σ2 = 0, the update rule for the Gauss-Newton iteration 
an then be repla
ed by

θ̂m+1 = θ̂m + γU1Σ
−1
1 V T

1 (y − ŷ(θ)).The algorithm updates the parameter only in the subspa
ethat is determined by the 
olumn spa
e of U1, being thelo
ally identi�able subspa
e of the parameter spa
e in thelo
al point θ̂m.Similar to the analysis in the previous se
tions the rankredu
tion of the Ja
obian, as represented in (16) 
an of
ourse be enfor
ed if the SVD shows a large number ofsmall singular values in Σ2, and the Ja
obian is approxi-mated by setting Σ2 = 0.A similar approa
h of Ja
obian redu
tion is employedin the fully parametrized state-spa
e model identi�
ationusing so-
alled data-driven lo
al 
oordinates of M
Kelveyet al. [2004℄ as well as in subspa
e identi�
ation Verdult[2002℄, where sear
h dire
tions are 
hosen to be orthog-onal to the tangent spa
e of the manifold representingequivalent models. See also Wills and Ninness [2008℄ fora further 
omparison of methods. If the main interestof the modelling pro
edure is to identify (linear) systemdynami
s, these approa
hes are attra
tive as they simplyuse the parameters as vehi
les to arrive at an appropriatesystem model. However, in this paper we aim at preservingthe physi
al interpretation of the parameters and thereforeare more fo
ussing on the uniqueness of the parametersestimates in order to obtain reliable long-term (non-linear)model predi
tions.6. A BAYESIAN APPROACHLa
k of identi�ability of a model stru
ture and the sub-sequent non-uniqueness of parameters that are estimatedon the basis of measurement data, 
an be dealt with indi�erent ways. One way is to redu
e the parameter spa
e inthe model stru
ture, as indi
ated in the previous se
tions.Alternatively additional prior information 
an be addedto the identi�
ation problem. In those situations wherea parameter estimate may not be uniquely identi�ablefrom the data, a regularization term 
an be added to the
ost fun
tion that takes a

ount of prior knowledge of theparameters to be estimated. In this setting an alternative(Bayesian) 
ost fun
tion is 
onsidered:
Vp(θ) := V (θ) +

1

2
(θ − θp)P

−1
θp

(θ − θp), (17)



where the se
ond term represents the weighted mismat
hbetween the parameter ve
tor and the prior parameterve
tor θp with 
ovarian
e Pθp
. When again the modeloutput ŷ(θ) is approximated using a �rst-order Taylorexpansion around θp, the Hessian of (17) be
omes:

∂2Vp(θ)

∂θ2
=

∂ŷ(θ)T

∂θ
P−1

v

(

∂ŷ(θ)T

∂θ

)T

+ P−1
θp

. (18)Sin
e P−1
θp

is positive de�nite by 
onstru
tion and the �rstterm is positive semi-de�nite, the Hessian has full rankand the parameter estimate
θ̂bayes = argmin

θ
Vp(θ)is unique. This uniqueness is guaranteed by the priorinformation that has been added to the problem. Formallythere 
an still be la
k of identi�ability, however it is notany more re�e
ted in a non-unique parameter estimate.A 
onsequen
e of this approa
h is that the obtainedparameter estimate may be highly in�uen
ed by the priorinformation, and less by the measurement data.The 
ovarian
e matrix of the Bayesian parameter estimate
an also be analyzed using the 
lassi
al predi
tion errortheory, see Ljung [1999℄. Under ideal 
ir
umstan
es (
on-sistent estimation and θp = θ0 (!)) it 
an be shown that

cov(θ̂bayes) =

[

E
∂2Vp(θ)

∂θ2

∣

∣

∣

∣

θ0

]

−1

. (19)In other words, the inverse of the Hessian of the iden-ti�
ation 
riterion remains to play the role of (sampleestimate of) the parameter 
ovarian
e matrix, and thesame 
onsiderations as dis
ussed in the earlier se
tions
an be applied to the SVD analysis of this Hessian. Byappropriately operating on the expression for the Hessian(18), it 
an be shown that a relevant SVD analysis fordimension redu
tion 
an now be applied to
P

T
2

θp

∂ŷ(θ)T

∂θ
P

−
1

2

v ,whi
h in Tavakoli and Reynolds [2009℄ is referred to as thedimensionless sensitivity matrix.It may be 
lear that the parameter estimate be
omeshighly dependent on the prior information, and that biaswill o

ur when the parameter prior θp is not 
orre
t.It has to be noted that this Bayesian approa
h is typi-
ally followed when using sequential estimation algorithmsfor joint parameter and state estimation, as in ExtendedKalman Filters and variations thereof, su
h as the Ensem-ble Kalman Filter, see e.g. Evensen [2007℄.7. EXAMPLE FROM RESERVOIR ENGINEERINGPetroleum reservoir engineering is 
on
erned with maxi-mizing the oil and gas produ
tion from subsurfa
e reser-voirs. A 
ommon way to in
rease the produ
tion is to inje
twater in the reservoir via inje
tion wells to drive the oilvia produ
tion wells towards the subsurfa
e. However, dueto strong heterogeneities in the porous reservoir ro
k theresulting oil-water front is not progressing uniformly anda large part of the oil is bypassed and not produ
ed. This
an be partly 
ountera
ted by manipulating the inje
tionand produ
tion settings in the wells. The dynami
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Fig. 1. Permeability distribution (top view) for mimoexample. Re
tangles indi
ate well positions.strategy that maximizes the produ
tion is 
al
ulated basedon a model of the reservoir.A reservoir model des
ribes the �uid �ow in a porousmedium in time and spa
e. The model basi
ally is de-termined by a non-linear pde, whi
h after dis
retizationin spa
e and time yield the following state-spa
e ordinarydi�erential equation in dis
rete time
p (k + 1) = A (θ)p (k) + Bu (k) , p (0) = p0 (20)

y (k) = Cp (k) , (21)A model typi
ally 
ontains 105 to 106 states in p, whi
hare 
omposed of the �uid pressure and �uid saturationsin ea
h grid blo
k. The input variables u ∈ R
m denote
ontrol settings su
h as inje
tion or produ
tion rates orpressures in grid blo
ks 
ontaining wells. The outputvariables y ∈ R

p denote �ow rates in grid blo
ks 
ontainingwells. In the most simple model, the parameters representthe permeability in ea
h grid blo
k whi
h determines howeasily �uids �ow through the porous medium. Be
ausethe permeability in ea
h grid blo
k dire
tly in�uen
es the�ow, it is vital to estimate this parameter ve
tor using theavailable measurements in order to obtain reliable modelpredi
tions and 
ontrol strategies.The simple example that we 
onsider here re�e
ts a2D reservoir with �ve wells in a 
hara
teristi
 �ve-spotpattern, indi
ated in Figure 1 by grey squares. There isone inje
tion well in the 
enter and four produ
tion wellsin the four 
orners. The reservoir model is dis
retized in
441 grid blo
ks and therefore also has 441 parameters.The permeability distribution 
onsists of three zones: theupper left 
orner has a high permeability, the lower right
orner a low permeability, and the intermediate zone anintermediate permeability. As inputs we use the inje
tion�ow rate in the inje
tion well and four bottom holepressures in the produ
tion wells. The input signals u aredepi
ted in Figure 2. As measurements we have used theoil and water �ow rates in the four produ
tion wells, wherewe note that water breakthrough has o

urred in all wells.In our identi�ability analysis we have 
hosen Γ

θ̂
=

diag(10log θ) and P
−

1

2

v = I in our SVD analysis of theexpression
Γ

θ̂

∂ŷ(θ)T

∂θ
P

−
1

2

v . (22)
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Fig. 2. Input signals as fun
tion of time that are used toex
ite the two-phase reservoir model. Liquid �ow rates(right) and bottom-hole pressures (left).
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Fig. 3. All singular values (left) and 30 largest singular val-ues (right) of (22) using the permeability distributiondepi
ted in Figure 1.
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eFig. 4. Measured and predi
ted water (blue) and oil (red)�ow rates.As 
an be 
learly seen the singular values in Figure3 drop steeply. Sin
e the identi�able parametrizationpartly depends on the parameter value we use an iterativepro
edure. Starting from an initial parameter ve
tor an(lo
ally) identi�able parametrization is determined. Withthis parametrization a new parameter ve
tor is estimated,and the pro
edure is repeated. The iteration is stoppedwhen no substantial improvement of the 
ost fun
tion isobtained.Perfe
t measurements y are generated by simulating thetwo-phase reservoir model for 200 days in the in-housereservoir simulator with the so-
alled real permeability

distribution (see left plot in Figure 5), initial pressure
p0 = 100 × 105Pa and initial oil saturation s0 = 0.2 inevery grid blo
k. As input we have used the pressures in theprodu
tion wells and the inje
tion �ow rate in the inje
tionwell (see Figure 2 for the signals). As measurementswe have used the oil and water �ow rates in the fourprodu
tion wells (see Figure 4 for the signals).As initial guess a homogeneous permeability distribution is
hosen with the value θinit = −13.3 whi
h is equivalent toa permeability value of 5×10−13m2. This permeability dis-tribution is depi
ted in the middle of Figure 5. The 
orre-sponding value of the obje
tive fun
tion is V (θinit) = 135.Based on θinit the model stru
ture is approximated usingthe SVD of (22) keeping only the �rst 15 singular values.To estimate the grid blo
k permeability we have used theGauss-Newton update rule. In this example the best resultis obtained in 
ase the model stru
ture is approximatedafter ea
h update. The estimate has 
onverged after 30iterations to the permeability distribution depi
ted in theright of Figure 5. The value of the obje
tive fun
tion hasde
reased to V = 5.93. From the estimated permeabilitydistribution we see that the largest 
hanges have o

urredin the grid blo
ks whi
h are penetrated by produ
tionwells. Although the real permeability distribution is notre
ognizable anymore, the �ow relevant features are appar-ently estimated sin
e the obje
tive fun
tion has de
reasedsigni�
antly, and the �uid �ow rates predi
ted by themodel a

ording to Figure 4 are very well mat
hing themeasurements.The example shows that the premeability is only identi�-able in the grid blo
ks that are in the dire
t neighborhoodof wells. 8. CONCLUSIONSThe question whether a large s
ale (nonlinear) physi
almodel stru
ture is identi�able, is usually 
onsidered in aqualitative way. In this 
hapter the notion of identi�abilityis quanti�ed and it is shown how the model stru
ture
an be approximated so as to a
hieve identi�ability, whileretaining the interpretation of the physi
al parameters.In this 
hapter this question has been addressed in apredi
tion error setting. The analysis has been relatedto Bayesian estimation, and has been illustrated for anexample from oil reservoir engineering, in whi
h la
k ofidenti�ability has been illustrated.REFERENCESE. W. Bai. An optimal two-stage identi�
ation algorithmfor hammerstein-wiener nonlinear systems. Automati
a,34(3):333�338, 1998.R. Bellman and K. J. Åström. On stru
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