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Abstract: When first principles models are used for model-based operations as monitoring,
control and optimization, the estimation of accurate physical parameters is important in
particular when the underlying dynamical model is nonlinear. If the models are the result
of partial differential equations being discretized, they are often large-scale in terms of number
of states and possibly also number of parameters. Estimating a large number of parameters
from measurement data leads to problems of identifiability, and consequently to inaccurate
identification results. The question whether a physical model structure is identifiable, is usually
considered in a qualitative way, i.e. it is answered with a yes/no answer. However since also nearly
unidentifiable model structures lead to poor parameter estimates, the questions is addressed how
the model structure can be approximated so as to achieve local identifiability, while retaining
the interpretation of the physical parameters. Appropriate attention is also given to the relevant
scaling of parameters. The problem is addressed in a prediction error setting, and is illustrated
with an example taken from oil reservoir engineering.

Keywords: identifiability; structural identifiability; physical model structures; model structure

approximation.

1. INTRODUCTION

Complex dynamical physical processes raise many chal-
lenges for model-based monitoring, control and optimiza-
tion. On-line reconstruction of non-measurable variables,
design of appropriate feedforward and feedback control
strategies, as well as economic optimization of processes
under appropriate operational constraints, generally re-
quire the availability of a reliable process model, preferably
accompanied by a quantification of its reliability (uncer-
tainty). If the dynamics of the considered process is linear,
then a process model can be obtained by applying black-
box system identification, which provides a well-studied
set of tools for identifying linear models on the basis of
experimental data Ljung [1999]. If there is a particular
interest in the identification of physical parameters, this
often does not raise any additional problems: one has
to choose the right (physics-based) model structure and
identify the parameters through one of the available (pos-
sibly non-convex) optimization methods. The only issue
that has to be taken care of is that the physical model
structure is identifiable, implying that the several physical
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parameters can be distinguished from each other on the
basis of the model’s input-output behavior.

In the situation that the process dynamics is nonlin-
ear, it can often be linearized around an operating point
(as e.g. in continuous-type industrial/chemical production
processes) and the above mentioned linear approach can
be followed leading to a linear (approximate) model. How-
ever when essential nonlinear dynamical phenomena are
involved and the user needs to capture this dynamics in
the model, it is much harder to come up with generic
black-box techniques for identification. Although there are
interesting attempts to capture the nonlinear phenom-
ena in (black-box) model structures as Wiener and/or
Hammerstein models, Bai [1998], Zhu [2002], and linear
parameter-varying (LPV) models Verdult and Verhaegen
[2002], Toth et al. [2007], Toth [2008], van Wingerden and
Verhaegen [2009], information on the underlying physical
structure of the nonlinearities is very often required for
selection of an appropriate model structure.

In some processes it is desirable to capture the real under-
lying nonlinear dynamic structure of the process in order
to make reliable long-term predictions. First-principles
model then provide the structure of the model, while incor-
porated (physical) parameters have to be estimated on the
basis of experimental data. Especially in situations where
the first principles models are given by partial differential



equations (pde’s), the required step of discretizing the
equations in space and time generally leads to complex
models with a large number of states and possibly also a
large number of unknown (physical) parameters. For an
interesting example of this situation in a problem of (oil)
reservoir engineering, the reader is referred to Jansen et al.
[2008], where a model is handled with a number of states
and parameters exceeding the order of 10°.

Identifying extremely large number of parameters from
measurement data leads to serious problems, and at least
it leads to the question which model properties can be
reliably estimated from the available measurement data.
From a model-based operations point of view (monitoring,
control, optimization) it makes sense to limit the com-
plexity of an identified model to a level where the model
can be reliably validated from data. If not, the parameter
estimates might be highly determined by the -random- ex-
periment that is done (overfit) leading to unreliable model
predictions. In identification this problem is addressed by
the notion of identifiability.

In this paper the notion of identifiability will be evaluated
in the scope of the high-complexity type of processes
discussed above. Our argument will be that having an (lo-
cally) identifiable model structure will not be sufficient to
provide reliable parameter estimates in large scale physical
model structures. Methods will be presented that allow to
reduce the parameter space to limited dimension, while
being able to reliably estimate the reduced parameters and
maintaining their physical interpretation. To this end the
qualitative notion of (local) identifiability (with a yes/no
answer) is generalized to a quantitative notion, removing
that parameter subspace from the parametrization that
can only be estimated with excessively large variance.

2. IDENTIFIABILITY - THE STARTING POINT

The notion of identifiability refers -roughly speaking- to
the question whether parameter changes in the model can
be observed in the model output signal (output identifi-
ability) or in the model’s input-output map or transfer
function (structural identifiability).

The notion of output identifiability has been studied in e.g.
Grewal and Glover [1976] and Ljung [1999]. The notion of
structural identifiability was first stated by Bellman and
Astrom [1970] and has been extensively studied in the field
of compartmental modeling (Godfrey [1983]. In its essence,
identifiability properties are global properties, i.e. holding
for the full parameter space. However restricting attention
to a local analysis is often the only situation that is feasible
in terms of computational complexity. As a result we will
focus on local properties of (output) identifiability only.

Consider a nonlinear dynamical model that generates
output predictions according to® :

y = h(u,0; zo), (1)
where ¥ is a prediction of y := [yip YN ]T denoting
output signal measurements y, € RP stacked over time,
9 € © C R? the parameter vector, u := [u] ... u%]T

1 Without loss of generality we restrict attention to predictors that
are not dependent on output measurements y, whch in an LTT-setting
is referred to as Output Error predictors.

the input vector u; € R™ stacked over time, and zg the
initial state vector. Since the model (1) is parameterized
it represents an input/output model structure.

The definition of local identifiability now is given as
follows(Grewal and Glover [1976]):

Definition 1. Aninput/output model structure h(6, u; zg) :
© — 'H is called locally identifiable in 6,, € © for a given
u and xg, if for all 61,65 in the neighborhood of 6,, holds
that

{h(u, 91;$0) = h(u, 92; Io)} =6, = 0,.

If we linearize the nonlinear process dynamics around a
chosen operating point or trajectory, a linear dynamical
system results. This system can be modelled by an LTI
input-output model, represented by the transfer function
G, leading to an output predictor

ok = G(q, 0)ug,
with g the shift operator qug = ugt1.

In general identifiability questions are considered qualita-
tively, i.e. deciding whether a model structure is either
identifiable or not. The tests required for this evaluation
are typically rank evaluations of matrices, as e.g. Fisher’s
information matrix, around a particular local operating
point in the parameter space, see e.g. Dotsch and Van den
Hof [1996]. However, when considering parameters in large
scale (nonlinear) physical models it is relevant to raise the
question how the notion of identifiability can be quantified.
This implies addressing the question which part of the
parameter space is best identifiable, and which part of
the model structure can be approximated so as to achieve
local identifiability, while retaining the interpretation of
the physical parameters. For structural identifiability this
question was preliminary addressed in Van Doren et al.
[2008]. In Vajda et al. [1989] principal component analysis
was applied to determine which parameters can be identi-
fied. Assessing identifiability can also be done a posteriori,
after the identification of all parameters, by evaluating the
parameter variance, see e.g. Hjalmarsson [2005].

3. TESTING LOCAL IDENTIFIABILITY IN
IDENTIFICATION

3.1 Introduction
In a model identification framework we consider parameter

estimation methods that are characterized by minimizing
a cost function V' (6):

1
V(o) := 56(0)TPU’16(0), (2)
where the prediction error sequence € is defined as
6(0) :y_y:y_h(eauaIO)a (3)

where y denotes the measured output sequence and y the
predictor sequence, and P, is a weighting matrix that
could represent (an estimate of) the covariance matrix
of the noise sequence v that is supposed to act on the
measured output. In the rest of the chapter the shorthand
notation y(6) is used to indicate h(u,8;zo).

The Jacobian of V() with respect to the parameters is

e(O)T y(6)"
agé@) _ 9 ég) Ple(d) _8y52) Pl (y — 5(0)).

(4)




The Hessian of V() with respect to the parameters is

9 T
*V(6) _ 9e®) <ae(9)T) s

902 90 v 90
oy . (95(0)T\ "
-2 Pv1< 7 > 56

2
where S denotes the second-order information in 2 a‘gge).

The Jacobian and Hessian are for a given 6 and a given
operating point (given by u and zp). Parameter estima-
tion now consists in finding the parameter estimate as a
minimizing argument of the cost function V(6)

0 :=arg mein V(). (6)

At 6 the cost function V() is minimized and the Jacobian
(4) at 0 is zero, ie. a\gée) =0 at 6.

3.2 Analyzing local identifiability in 6

Local identifiability in 6 is generally evaluated by the
test whether the optimization problem (6) has a unique
solution in the parameter space. By locally approximating
the cost function V' (0) by a quadratic function? (and thus
neglecting the second order term S in (5)), uniqueness of

0 is guaranteed if the Hessian at 6 is positive definite,
. 9%V (9)
ie. 5 -
to rank 2% = ¢. This is a sufficient condition for local

identifiability in 6.

> 0 at é, which in this case is equivalent

The considered rank test is naturally performed by apply-
ing a singular value decomposition (SVD):

d*V () 0] [V
pgz ~ VXV =1 2] { 0 0] [V;T]

where matrices U and V are unitary matrices, ¥; =
diag(o1,...,0p) with 01 > -+ > 0y,
If p = ¢ then identifiability is confirmed. If p < ¢ then
the column space of U; represents the subspace of the
parameter space that is identifiable, and the column space
of Uj is its orthogonal complement, characterizing the
subspace that is not identifiable.
As a result, the SVD of the Hessian can be used to extend
the qualitative treatment of the question whether or not a
particular model structure is identifiable, to a quantitative
property of specifying the identifiable parameter space.
The columns of U; basically act as basis functions in the
parameter space, determining the linear combinations of
the original parameters that will be identifiable from the
measurements. Differently formulated, this would point to
a reparametrization of the model structure by defining a
reduced order parameter p € R? defined by

0 ="Uip (7)
leading to an identifiable model structure in the parameter
p- The attractive feature of this mapping is that it allows
to identify p while the estimated result g can be uniquely
interpreted in terms of the original physical parameters 6
through the mapping (7). The limitation of the approach
is of course that only linear parameter transformations are
considered.

2 This is achieved by approximating y(0) with a first-order Taylor
expansion around 6.

3.8 Approximating the identifiable parameter space

When in the SVD of the Hessian singular values are
found that are (very) small, this points to directions in
the parameter space that have very limited (but nonzero)
influence on the cost function V. In identification terms
this correspond to directions in the parameter space in
which the variance is (very) large. The Hessian evaluated

at 0 is connected to the variance of é, since for the Gaussian

case (and provided that 6 is a consistent estimate) it
follows that

cov () = J1
with J the Fisher information matrix

92V ()

where E denotes expectation (Ljung [1999]).

We are interested in specifying that part of the parameter
space that is best identifiable by removing the subspace
that has only a very small influence on the cost function V.
This reasoning would point to removing those parameter
(combinations) from the model structure for which the
variance is very large, as was also addressed in Vajda et al.
[1989] for nonlinear parameter mappings, and in Lund and
Foss [2008] for single parameters.

7%

The essential information on the SVD of the Hessian is
now obtained from:

oo 8)[] o

where the separation between 31 and s is chosen in such a
way that the singular values in ¥4 are considerably smaller
than those in Y.

If we now reparametrize the model structure by employing
the reduced parameter p determined by 6 = U;p, we
have realized a model structure approximation, in which
the parameters to be identified are well identifiable with
a limited variance and the physical interpretation of the
parameters remains untouched. The singular vectors that
occur as the columns in U; actually can be seen as basis
functions in the parameter space.

With the SVD (9) it follows that the sample estimate of
the covariance matrix of 6 becomes:

—2 T

o[ ][
00 for ¥ =0

(10)

while the sample estimate of the covariance matrix of the
reparametrized parameter estimate U;p is given by

cov(U1p) = Uy 72U (11)
This shows that if ¥ = 0 there is no benefit of the

reparametrization in terms of variance of the estimated

parameter 6. However if nonzero singular values are dis-
carded in X, i.e. if trace(33) > 0 then

cou(d } for trace(Xz) > 0

cov(8) > cov(Uyp)
showing a covariance that is reduced by the reparametriza-
tion. This reduction is particularly interesting if ¥, con-
tains a (very) large number of small singular values.



4. PARAMETER SCALING IN IDENTIFIABILITY

The notions of identifiability are defined in such a way
that the result is independent of any particular scaling of
parameters. A scaling happens when choosing a particular
physical unit for a particular parameter, as e.g. using either
[nm] or [m] as measure of distance. While the analysis and
test in section (3.2) is independent of parameter scaling,
this scaling does influence the analysis of of section (3.3)
where the numerical values that occur in X1, X2 vary with
parameter scaling.

It appears that in the approach presented above the
absolute variance of parameters is used as a measure for
selection through the Fisher matrix. A scaling invariant
analysis results if instead we consider the relative variance
of parameters, i.e.

cov (Fglé)
where I'y = diag ( |él| e |éq| ) This motivates the anal-
ysis of a scaled Hessian
0%V (0)
) g To (12)
related to the scaled Fisher information matrix J:
~ 9%V (0)
J=E [Fé 202 9Fé] . (13)

Note that the evaluation of the relative variance of param-
eter estimates for model structure selection is also done in
classical methods when considering the standard devia-
tion of an estimated parameter related to the parameter
value itself, see e.g. Ljung [1999] and Hjalmarsson [2005].
However usually the analysis is performed for parameters
separately (e.g. is zero included in the parameter con-
fidence interval?). In the analysis presented here linear
combinations of parameters are evaluated, thus focussing
on the ratio between the lengths of the principle axes
of the uncertainty ellipsoids representing the parameter
confidence bounds for 6.

5. COST FUNCTION MINIMIZATION IN
IDENTIFICATION

If we iteratively solve for a parameter estimate 6 by
minimizing a cost function V(6), the general update rule
in step m of a Newton-type algorithm is given by

X X 92Vt ov
9m+1 = 9m - ( > an (14)

062 09’
where v denotes a scalar damping factor. Note that in this
expression the partial derivatives are evaluated in the local
parameter 0,,. In contrast with the analysis in the previous
section this local parameter does not necessarily reflect a
(local) minimum of the cost function V.

If we consider the prediction error cost function as used
before, then for the model structure considered and after
linearization of y(6) around parameter 6, the update rule
becomes

~ ~ T
(97 (307

~og(e)
00

(15)

where P, is considered identity for notational simplicity.
The parameter update (15) is actually a Gauss-Newton
step, employing a first order Taylor expansion of y(6)
around 6,,,, similar to the approximation in section 3.3.

If the model structure is not identifiable in ém the ma-
trix inverse in (15) will not exist. Although this is often
indicated as a serious problem for iterative optimization
algorithms it can simply be overcome by restricting the
update rule to make steps only in that part of the param-
eter space that does influence the output predictor, see
e.g. McKelvey et al. [2004]. This actually comes down to
utilizing the pseudo-inverse of the Jacobian in (15), on the
basis of the SVD:
S(NT T

oy(0) Uy ] {21 0 } {Vﬂ
00 0 2| |V,
with X7 € RP*P_If ¥5 = 0, the update rule for the Gauss-
Newton iteration can then be replaced by

Omi1 = Om +YULET VT (y — 9(6)).
The algorithm updates the parameter only in the subspace

that is determined by the column space of Uy, being the
locally identifiable subspace of the parameter space in the

local point 6,,.

(16)

Similar to the analysis in the previous sections the rank
reduction of the Jacobian, as represented in (16) can of
course be enforced if the SVD shows a large number of
small singular values in ¥, and the Jacobian is approxi-
mated by setting 3o = 0.

A similar approach of Jacobian reduction is employed
in the fully parametrized state-space model identification
using so-called data-driven local coordinates of McKelvey
et al. [2004] as well as in subspace identification Verdult
[2002], where search directions are chosen to be orthog-
onal to the tangent space of the manifold representing
equivalent models. See also Wills and Ninness [2008] for
a further comparison of methods. If the main interest
of the modelling procedure is to identify (linear) system
dynamics, these approaches are attractive as they simply
use the parameters as vehicles to arrive at an appropriate
system model. However, in this paper we aim at preserving
the physical interpretation of the parameters and therefore
are more focussing on the uniqueness of the parameters
estimates in order to obtain reliable long-term (non-linear)
model predictions.

6. A BAYESIAN APPROACH

Lack of identifiability of a model structure and the sub-
sequent non-uniqueness of parameters that are estimated
on the basis of measurement data, can be dealt with in
different ways. One way is to reduce the parameter space in
the model structure, as indicated in the previous sections.
Alternatively additional prior information can be added
to the identification problem. In those situations where
a parameter estimate may not be uniquely identifiable
from the data, a regularization term can be added to the
cost function that takes account of prior knowledge of the
parameters to be estimated. In this setting an alternative

(y — y(6)) .(Bayesian) cost function is considered:

Vo(6) = V) + 50~ 6)F;, (6 6,), (D



where the second term represents the weighted mismatch
between the parameter vector and the prior parameter
vector ¢, with covariance Py,. When again the model
output y(6) is approximated using a first-order Taylor
expansion around 6, the Hessian of (17) becomes:
PV,(0) _05(0) s (05(0)"

062 00 7 00

Since P(;p !is positive definite by construction and the first

term is positive semi-definite, the Hessian has full rank
and the parameter estimate

T
) +P L (18)

ébayes = arg mein Vp(6)

is unique. This uniqueness is guaranteed by the prior
information that has been added to the problem. Formally
there can still be lack of identifiability, however it is not
any more reflected in a non-unique parameter estimate.
A consequence of this approach is that the obtained
parameter estimate may be highly influenced by the prior
information, and less by the measurement data.

The covariance matrix of the Bayesian parameter estimate
can also be analyzed using the classical prediction error
theory, see Ljung [1999]. Under ideal circumstances (con-
sistent estimation and 6, = 6y (!)) it can be shown that

—1
02V, (6)
2500 1

In other words, the inverse of the Hessian of the iden-
tification criterion remains to play the role of (sample
estimate of) the parameter covariance matrix, and the
same considerations as discussed in the earlier sections
can be applied to the SVD analysis of this Hessian. By
appropriately operating on the expression for the Hessian
(18), it can be shown that a relevant SVD analysis for
dimension reduction can now be applied to

cov(ébayes) = |E

z9y(0)" -1
Fo, =0 1

which in Tavakoli and Reynolds [2009] is referred to as the
dimensionless sensitivity matrix.

It may be clear that the parameter estimate becomes
highly dependent on the prior information, and that bias
will occur when the parameter prior 6, is not correct.

It has to be noted that this Bayesian approach is typi-
cally followed when using sequential estimation algorithms
for joint parameter and state estimation, as in Extended
Kalman Filters and variations thereof, such as the Ensem-
ble Kalman Filter, see e.g. Evensen [2007].

7. EXAMPLE FROM RESERVOIR ENGINEERING

Petroleum reservoir engineering is concerned with maxi-
mizing the oil and gas production from subsurface reser-
voirs. A common way to increase the production is to inject
water in the reservoir via injection wells to drive the oil
via production wells towards the subsurface. However, due
to strong heterogeneities in the porous reservoir rock the
resulting oil-water front is not progressing uniformly and
a large part of the oil is bypassed and not produced. This
can be partly counteracted by manipulating the injection
and production settings in the wells. The dynamic control

Permeability [mlog m2]
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Fig. 1. Permeability distribution (top view) for MIMO
example. Rectangles indicate well positions.

strategy that maximizes the production is calculated based
on a model of the reservoir.

A reservoir model describes the fluid flow in a porous
medium in time and space. The model basically is de-
termined by a non-linear pde, which after discretization
in space and time yield the following state-space ordinary
differential equation in discrete time

p(k+1)=A(0)p (k) +Bu(k),
y (k) = Cp (k),

A model typically contains 10° to 10° states in p, which
are composed of the fluid pressure and fluid saturations
in each grid block. The input variables u € R™ denote
control settings such as injection or production rates or
pressures in grid blocks containing wells. The output
variables y € RP denote flow rates in grid blocks containing
wells. In the most simple model, the parameters represent
the permeability in each grid block which determines how
easily fluids flow through the porous medium. Because
the permeability in each grid block directly influences the
flow, it is vital to estimate this parameter vector using the
available measurements in order to obtain reliable model
predictions and control strategies.

(20)
(21)

P (0) = po

The simple example that we consider here reflects a
2D reservoir with five wells in a characteristic five-spot
pattern, indicated in Figure 1 by grey squares. There is
one injection well in the center and four production wells
in the four corners. The reservoir model is discretized in
441 grid blocks and therefore also has 441 parameters.
The permeability distribution consists of three zones: the
upper left corner has a high permeability, the lower right
corner a low permeability, and the intermediate zone an
intermediate permeability. As inputs we use the injection
flow rate in the injection well and four bottom hole
pressures in the production wells. The input signals u are
depicted in Figure 2. As measurements we have used the
oil and water flow rates in the four production wells, where
we note that water breakthrough has occurred in all wells.

In our identifiability analysis we have chosen I'y =

diag(1¥log8) and Py* = I in our SVD analysis of the
expression

(22)
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depicted in Figure 1.
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As can be clearly seen the singular values in Figure
3 drop steeply. Since the identifiable parametrization
partly depends on the parameter value we use an iterative
procedure. Starting from an initial parameter vector an
(locally) identifiable parametrization is determined. With
this parametrization a new parameter vector is estimated,
and the procedure is repeated. The iteration is stopped
when no substantial improvement of the cost function is
obtained.

Perfect measurements y are generated by simulating the
two-phase reservoir model for 200 days in the in-house
reservoir simulator with the so-called real permeability

distribution (see left plot in Figure 5), initial pressure
po = 100 x 10°Pa and initial oil saturation s = 0.2 in
every grid block. As input we have used the pressures in the
production wells and the injection flow rate in the injection
well (see Figure 2 for the signals). As measurements
we have used the oil and water flow rates in the four
production wells (see Figure 4 for the signals).

As initial guess a homogeneous permeability distribution is
chosen with the value 6;,;; = —13.3 which is equivalent to
a permeability value of 5 x 10~ '3m?2. This permeability dis-
tribution is depicted in the middle of Figure 5. The corre-
sponding value of the objective function is V (0ini) = 135.
Based on 0y,;; the model structure is approximated using
the SVD of (22) keeping only the first 15 singular values.
To estimate the grid block permeability we have used the
Gauss-Newton update rule. In this example the best result
is obtained in case the model structure is approximated
after each update. The estimate has converged after 30
iterations to the permeability distribution depicted in the
right of Figure 5. The value of the objective function has
decreased to V = 5.93. From the estimated permeability
distribution we see that the largest changes have occurred
in the grid blocks which are penetrated by production
wells. Although the real permeability distribution is not
recognizable anymore, the flow relevant features are appar-
ently estimated since the objective function has decreased
significantly, and the fluid flow rates predicted by the
model according to Figure 4 are very well matching the
measurements.

The example shows that the premeability is only identifi-
able in the grid blocks that are in the direct neighborhood
of wells.

8. CONCLUSIONS

The question whether a large scale (nonlinear) physical
model structure is identifiable, is usually considered in a
qualitative way. In this chapter the notion of identifiability
is quantified and it is shown how the model structure
can be approximated so as to achieve identifiability, while
retaining the interpretation of the physical parameters.
In this chapter this question has been addressed in a
prediction error setting. The analysis has been related
to Bayesian estimation, and has been illustrated for an
example from oil reservoir engineering, in which lack of
identifiability has been illustrated.
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