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Identi�ation of parameters in large salephysial model strutures ⋆Jorn F.M. Van Doren ∗,∗∗,∗∗∗ Paul M.J. Van den Hof ∗Sippe G. Douma ∗∗∗ Jan Dirk Jansen ∗∗,∗∗∗ Okko H. Bosgra ∗

∗Delft Center for Systems and Control, Delft University ofTehnology, Mekelweg 2, 2628 CD Delft, The Netherlands (e-mail:j.f.m.vandoren�tudelft.nl)
∗∗Dept. of Geotehnology, Delft University of Tehnology, Stevinweg 1,2628 CN Delft, The Netherlands
∗∗∗ Shell International Exploration and Prodution, PO Box 60, 2280AB Rijswijk, The NetherlandsAbstrat: When �rst priniples models are used for model-based operations as monitoring,ontrol and optimization, the estimation of aurate physial parameters is important inpartiular when the underlying dynamial model is nonlinear. If the models are the resultof partial di�erential equations being disretized, they are often large-sale in terms of numberof states and possibly also number of parameters. Estimating a large number of parametersfrom measurement data leads to problems of identi�ability, and onsequently to inaurateidenti�ation results. The question whether a physial model struture is identi�able, is usuallyonsidered in a qualitative way, i.e. it is answered with a yes/no answer. However sine also nearlyunidenti�able model strutures lead to poor parameter estimates, the questions is addressed howthe model struture an be approximated so as to ahieve loal identi�ability, while retainingthe interpretation of the physial parameters. Appropriate attention is also given to the relevantsaling of parameters. The problem is addressed in a predition error setting, and is illustratedwith an example taken from oil reservoir engineering.Keywords: identi�ability; strutural identi�ability; physial model strutures; model strutureapproximation.1. INTRODUCTIONComplex dynamial physial proesses raise many hal-lenges for model-based monitoring, ontrol and optimiza-tion. On-line reonstrution of non-measurable variables,design of appropriate feedforward and feedbak ontrolstrategies, as well as eonomi optimization of proessesunder appropriate operational onstraints, generally re-quire the availability of a reliable proess model, preferablyaompanied by a quanti�ation of its reliability (uner-tainty). If the dynamis of the onsidered proess is linear,then a proess model an be obtained by applying blak-box system identi�ation, whih provides a well-studiedset of tools for identifying linear models on the basis ofexperimental data Ljung [1999℄. If there is a partiularinterest in the identi�ation of physial parameters, thisoften does not raise any additional problems: one hasto hoose the right (physis-based) model struture andidentify the parameters through one of the available (pos-sibly non-onvex) optimization methods. The only issuethat has to be taken are of is that the physial modelstruture is identi�able, implying that the several physial

⋆ The TU Delft authors aknowledge �nanial support from theIntegrated Systems Approah to Petroleum Prodution (ISAPP)program, whih is jointly sponsored by Shell International E&P,TNO and Delft University of Tehnology.

parameters an be distinguished from eah other on thebasis of the model's input-output behavior.In the situation that the proess dynamis is nonlin-ear, it an often be linearized around an operating point(as e.g. in ontinuous-type industrial/hemial produtionproesses) and the above mentioned linear approah anbe followed leading to a linear (approximate) model. How-ever when essential nonlinear dynamial phenomena areinvolved and the user needs to apture this dynamis inthe model, it is muh harder to ome up with generiblak-box tehniques for identi�ation. Although there areinteresting attempts to apture the nonlinear phenom-ena in (blak-box) model strutures as Wiener and/orHammerstein models, Bai [1998℄, Zhu [2002℄, and linearparameter-varying (LPV) models Verdult and Verhaegen[2002℄, Tóth et al. [2007℄, Tóth [2008℄, van Wingerden andVerhaegen [2009℄, information on the underlying physialstruture of the nonlinearities is very often required forseletion of an appropriate model struture.In some proesses it is desirable to apture the real under-lying nonlinear dynami struture of the proess in orderto make reliable long-term preditions. First-priniplesmodel then provide the struture of the model, while inor-porated (physial) parameters have to be estimated on thebasis of experimental data. Espeially in situations wherethe �rst priniples models are given by partial di�erential



equations (pde's), the required step of disretizing theequations in spae and time generally leads to omplexmodels with a large number of states and possibly also alarge number of unknown (physial) parameters. For aninteresting example of this situation in a problem of (oil)reservoir engineering, the reader is referred to Jansen et al.[2008℄, where a model is handled with a number of statesand parameters exeeding the order of 105.Identifying extremely large number of parameters frommeasurement data leads to serious problems, and at leastit leads to the question whih model properties an bereliably estimated from the available measurement data.From a model-based operations point of view (monitoring,ontrol, optimization) it makes sense to limit the om-plexity of an identi�ed model to a level where the modelan be reliably validated from data. If not, the parameterestimates might be highly determined by the -random- ex-periment that is done (over�t) leading to unreliable modelpreditions. In identi�ation this problem is addressed bythe notion of identi�ability.In this paper the notion of identi�ability will be evaluatedin the sope of the high-omplexity type of proessesdisussed above. Our argument will be that having an (lo-ally) identi�able model struture will not be su�ient toprovide reliable parameter estimates in large sale physialmodel strutures. Methods will be presented that allow toredue the parameter spae to limited dimension, whilebeing able to reliably estimate the redued parameters andmaintaining their physial interpretation. To this end thequalitative notion of (loal) identi�ability (with a yes/noanswer) is generalized to a quantitative notion, removingthat parameter subspae from the parametrization thatan only be estimated with exessively large variane.2. IDENTIFIABILITY - THE STARTING POINTThe notion of identi�ability refers -roughly speaking- tothe question whether parameter hanges in the model anbe observed in the model output signal (output identi�-ability) or in the model's input-output map or transferfuntion (strutural identi�ability).The notion of output identi�ability has been studied in e.g.Grewal and Glover [1976℄ and Ljung [1999℄. The notion ofstrutural identi�ability was �rst stated by Bellman andÅström [1970℄ and has been extensively studied in the �eldof ompartmental modeling (Godfrey [1983℄. In its essene,identi�ability properties are global properties, i.e. holdingfor the full parameter spae. However restriting attentionto a loal analysis is often the only situation that is feasiblein terms of omputational omplexity. As a result we willfous on loal properties of (output) identi�ability only.Consider a nonlinear dynamial model that generatesoutput preditions aording to 1 :
ŷ = h(u, θ; x0), (1)where ŷ is a predition of y :=

[

yT
1 . . . yT

N

]T denotingoutput signal measurements yk ∈ R
p staked over time,

θ ∈ Θ ⊂ R
q the parameter vetor, u :=

[

uT
1 . . . uT

N

]T

1 Without loss of generality we restrit attention to preditors thatare not dependent on output measurements y, whh in an LTI-settingis referred to as Output Error preditors.

the input vetor uk ∈ R
m staked over time, and x0 theinitial state vetor. Sine the model (1) is parameterizedit represents an input/output model struture.The de�nition of loal identi�ability now is given asfollows(Grewal and Glover [1976℄):De�nition 1. An input/output model struture h(θ,u; x0) :

Θ → H is alled loally identi�able in θm ∈ Θ for a given
u and x0, if for all θ1, θ2 in the neighborhood of θm holdsthat

{h(u, θ1; x0) = h(u, θ2; x0)} ⇒ θ1 = θ2.If we linearize the nonlinear proess dynamis around ahosen operating point or trajetory, a linear dynamialsystem results. This system an be modelled by an LTIinput-output model, represented by the transfer funtion
G, leading to an output preditor

ŷk = G(q, θ)uk,with q the shift operator quk = uk+1.In general identi�ability questions are onsidered qualita-tively, i.e. deiding whether a model struture is eitheridenti�able or not. The tests required for this evaluationare typially rank evaluations of matries, as e.g. Fisher'sinformation matrix, around a partiular loal operatingpoint in the parameter spae, see e.g. Dötsh and Van denHof [1996℄. However, when onsidering parameters in largesale (nonlinear) physial models it is relevant to raise thequestion how the notion of identi�ability an be quanti�ed.This implies addressing the question whih part of theparameter spae is best identi�able, and whih part ofthe model struture an be approximated so as to ahieveloal identi�ability, while retaining the interpretation ofthe physial parameters. For strutural identi�ability thisquestion was preliminary addressed in Van Doren et al.[2008℄. In Vajda et al. [1989℄ prinipal omponent analysiswas applied to determine whih parameters an be identi-�ed. Assessing identi�ability an also be done a posteriori,after the identi�ation of all parameters, by evaluating theparameter variane, see e.g. Hjalmarsson [2005℄.3. TESTING LOCAL IDENTIFIABILITY INIDENTIFICATION3.1 IntrodutionIn a model identi�ation framework we onsider parameterestimation methods that are haraterized by minimizinga ost funtion V (θ):
V (θ) :=

1

2
ǫ(θ)T P−1

v ǫ(θ), (2)where the predition error sequene ǫ is de�ned as
ǫ(θ) = y − ŷ = y − h(θ,u; x0), (3)where y denotes the measured output sequene and ŷ thepreditor sequene, and Pv is a weighting matrix thatould represent (an estimate of) the ovariane matrixof the noise sequene v that is supposed to at on themeasured output. In the rest of the hapter the shorthandnotation ŷ(θ) is used to indiate h(u, θ; x0).The Jaobian of V (θ) with respet to the parameters is

∂V (θ)

∂θ
=

∂ǫ(θ)T

∂θ
P−1

v ǫ(θ) = −
∂ŷ(θ)T

∂θ
P−1

v (y − ŷ(θ)) .(4)



The Hessian of V (θ) with respet to the parameters is
∂2V (θ)

∂θ2
=

∂ǫ(θ)T

∂θ
P−1

v

(

∂ǫ(θ)T

∂θ

)T

+ S

=
∂ŷ(θ)T

∂θ
P−1

v

(

∂ŷ(θ)T

∂θ

)T

+ S, (5)where S denotes the seond-order information in ∂2V (θ)
∂θ2 .The Jaobian and Hessian are for a given θ and a givenoperating point (given by u and x0). Parameter estima-tion now onsists in �nding the parameter estimate as aminimizing argument of the ost funtion V (θ)

θ̂ := argmin
θ

V (θ). (6)At θ̂ the ost funtion V (θ) is minimized and the Jaobian(4) at θ̂ is zero, i.e. ∂V (θ)
∂θ

= 0 at θ̂.3.2 Analyzing loal identi�ability in θ̂Loal identi�ability in θ̂ is generally evaluated by thetest whether the optimization problem (6) has a uniquesolution in the parameter spae. By loally approximatingthe ost funtion V (θ) by a quadrati funtion 2 (and thusnegleting the seond order term S in (5)), uniqueness of
θ̂ is guaranteed if the Hessian at θ̂ is positive de�nite,i.e. ∂2V (θ)

∂θ2 > 0 at θ̂, whih in this ase is equivalentto rank ∂2V
∂θ2 = q. This is a su�ient ondition for loalidenti�ability in θ̂.The onsidered rank test is naturally performed by apply-ing a singular value deomposition (SVD):

∂2V (θ)

∂θ2
= UΣV T = [ U1 U2 ]

[

Σ1 0
0 0

] [

V T
1

V T
2

]

,where matries U and V are unitary matries, Σ1 =
diag(σ1, . . . , σp) with σ1 ≥ · · · ≥ σp.If p = q then identi�ability is on�rmed. If p < q thenthe olumn spae of U1 represents the subspae of theparameter spae that is identi�able, and the olumn spaeof U2 is its orthogonal omplement, haraterizing thesubspae that is not identi�able.As a result, the SVD of the Hessian an be used to extendthe qualitative treatment of the question whether or not apartiular model struture is identi�able, to a quantitativeproperty of speifying the identi�able parameter spae.The olumns of U1 basially at as basis funtions in theparameter spae, determining the linear ombinations ofthe original parameters that will be identi�able from themeasurements. Di�erently formulated, this would point toa reparametrization of the model struture by de�ning aredued order parameter ρ ∈ R

p de�ned by
θ = U1ρ (7)leading to an identi�able model struture in the parameter

ρ. The attrative feature of this mapping is that it allowsto identify ρ while the estimated result ρ̂ an be uniquelyinterpreted in terms of the original physial parameters θthrough the mapping (7). The limitation of the approahis of ourse that only linear parameter transformations areonsidered.
2 This is ahieved by approximating ŷ(θ) with a �rst-order Taylorexpansion around θ̂.

3.3 Approximating the identi�able parameter spaeWhen in the SVD of the Hessian singular values arefound that are (very) small, this points to diretions inthe parameter spae that have very limited (but nonzero)in�uene on the ost funtion V . In identi�ation termsthis orrespond to diretions in the parameter spae inwhih the variane is (very) large. The Hessian evaluatedat θ̂ is onneted to the variane of θ̂, sine for the Gaussianase (and provided that θ̂ is a onsistent estimate) itfollows that
cov (θ̂) = J−1with J the Fisher information matrix

J = E

[

∂2V (θ)

∂θ2

∣

∣

∣

∣

θ̂

]

, (8)where E denotes expetation (Ljung [1999℄).We are interested in speifying that part of the parameterspae that is best identi�able by removing the subspaethat has only a very small in�uene on the ost funtion V .This reasoning would point to removing those parameter(ombinations) from the model struture for whih thevariane is very large, as was also addressed in Vajda et al.[1989℄ for nonlinear parameter mappings, and in Lund andFoss [2008℄ for single parameters.The essential information on the SVD of the Hessian isnow obtained from:
∂ŷ(θ)T

∂θ
P

−
1

2

v = [ U1 U2 ]

[

Σ1 0
0 Σ2

] [

V T
1

V T
2

] (9)where the separation between Σ1 and Σ2 is hosen in suh away that the singular values in Σ2 are onsiderably smallerthan those in Σ1.If we now reparametrize the model struture by employingthe redued parameter ρ determined by θ = U1ρ, wehave realized a model struture approximation, in whihthe parameters to be identi�ed are well identi�able witha limited variane and the physial interpretation of theparameters remains untouhed. The singular vetors thatour as the olumns in U1 atually an be seen as basisfuntions in the parameter spae.With the SVD (9) it follows that the sample estimate ofthe ovariane matrix of θ̂ beomes:
cov(θ̂) =







[ U1 U2 ]

[

Σ−2
1 0
0 Σ−2

2

] [

UT
1

UT
2

] for trae(Σ2) > 0

∞ for Σ2 = 0 (10)while the sample estimate of the ovariane matrix of thereparametrized parameter estimate U1ρ̂ is given by
cov(U1ρ̂) = U1Σ

−2
1 UT

1 . (11)This shows that if Σ2 = 0 there is no bene�t of thereparametrization in terms of variane of the estimatedparameter θ̂. However if nonzero singular values are dis-arded in Σ2, i.e. if trae(Σ2) > 0 then
cov(θ̂) > cov(U1ρ̂)showing a ovariane that is redued by the reparametriza-tion. This redution is partiularly interesting if Σ2 on-tains a (very) large number of small singular values.



4. PARAMETER SCALING IN IDENTIFIABILITYThe notions of identi�ability are de�ned in suh a waythat the result is independent of any partiular saling ofparameters. A saling happens when hoosing a partiularphysial unit for a partiular parameter, as e.g. using either[nm℄ or [m℄ as measure of distane. While the analysis andtest in setion (3.2) is independent of parameter saling,this saling does in�uene the analysis of of setion (3.3)where the numerial values that our in Σ1, Σ2 vary withparameter saling.It appears that in the approah presented above theabsolute variane of parameters is used as a measure forseletion through the Fisher matrix. A saling invariantanalysis results if instead we onsider the relative varianeof parameters, i.e.
cov (Γ−1

θ̂
θ̂)where Γ

θ̂
= diag

(

|θ̂1| . . . |θ̂q|
). This motivates the anal-ysis of a saled Hessian

Γ
θ̂

∂2V (θ)

∂θ2

∣

∣

∣

∣

θ̂

Γ
θ̂
, (12)related to the saled Fisher information matrix J̃ :

J̃ = E

[

Γ
θ̂

∂2V (θ)

∂θ2

∣

∣

∣

∣

θ̂

Γ
θ̂

]

. (13)Note that the evaluation of the relative variane of param-eter estimates for model struture seletion is also done inlassial methods when onsidering the standard devia-tion of an estimated parameter related to the parametervalue itself, see e.g. Ljung [1999℄ and Hjalmarsson [2005℄.However usually the analysis is performed for parametersseparately (e.g. is zero inluded in the parameter on-�dene interval?). In the analysis presented here linearombinations of parameters are evaluated, thus foussingon the ratio between the lengths of the priniple axesof the unertainty ellipsoids representing the parameteron�dene bounds for θ̂.5. COST FUNCTION MINIMIZATION INIDENTIFICATIONIf we iteratively solve for a parameter estimate θ̂ byminimizing a ost funtion V (θ), the general update rulein step m of a Newton-type algorithm is given by
θ̂m+1 = θ̂m − γ

(

∂2V

∂θ2

)−1
∂V

∂θ
, (14)where γ denotes a salar damping fator. Note that in thisexpression the partial derivatives are evaluated in the loalparameter θ̂m. In ontrast with the analysis in the previoussetion this loal parameter does not neessarily re�et a(loal) minimum of the ost funtion V .If we onsider the predition error ost funtion as usedbefore, then for the model struture onsidered and afterlinearization of ŷ(θ) around parameter θm the update rulebeomes

θ̂m+1 = θ̂m+γ

(

∂ŷ(θ)T

∂θ

(

∂ŷ(θ)T

∂θ

)T
)

−1
∂ŷ(θ)T

∂θ
(y − ŷ(θ)) .(15)

where Pv is onsidered identity for notational simpliity.The parameter update (15) is atually a Gauss-Newtonstep, employing a �rst order Taylor expansion of ŷ(θ)around θm, similar to the approximation in setion 3.3.If the model struture is not identi�able in θ̂m the ma-trix inverse in (15) will not exist. Although this is oftenindiated as a serious problem for iterative optimizationalgorithms it an simply be overome by restriting theupdate rule to make steps only in that part of the param-eter spae that does in�uene the output preditor, seee.g. MKelvey et al. [2004℄. This atually omes down toutilizing the pseudo-inverse of the Jaobian in (15), on thebasis of the SVD:
∂ŷ(θ)T

∂θ
= [ U1 U2 ]

[

Σ1 0
0 Σ2

] [

V T
1

V T
2

] (16)with Σ1 ∈ R
p×p. If Σ2 = 0, the update rule for the Gauss-Newton iteration an then be replaed by

θ̂m+1 = θ̂m + γU1Σ
−1
1 V T

1 (y − ŷ(θ)).The algorithm updates the parameter only in the subspaethat is determined by the olumn spae of U1, being theloally identi�able subspae of the parameter spae in theloal point θ̂m.Similar to the analysis in the previous setions the rankredution of the Jaobian, as represented in (16) an ofourse be enfored if the SVD shows a large number ofsmall singular values in Σ2, and the Jaobian is approxi-mated by setting Σ2 = 0.A similar approah of Jaobian redution is employedin the fully parametrized state-spae model identi�ationusing so-alled data-driven loal oordinates of MKelveyet al. [2004℄ as well as in subspae identi�ation Verdult[2002℄, where searh diretions are hosen to be orthog-onal to the tangent spae of the manifold representingequivalent models. See also Wills and Ninness [2008℄ fora further omparison of methods. If the main interestof the modelling proedure is to identify (linear) systemdynamis, these approahes are attrative as they simplyuse the parameters as vehiles to arrive at an appropriatesystem model. However, in this paper we aim at preservingthe physial interpretation of the parameters and thereforeare more foussing on the uniqueness of the parametersestimates in order to obtain reliable long-term (non-linear)model preditions.6. A BAYESIAN APPROACHLak of identi�ability of a model struture and the sub-sequent non-uniqueness of parameters that are estimatedon the basis of measurement data, an be dealt with indi�erent ways. One way is to redue the parameter spae inthe model struture, as indiated in the previous setions.Alternatively additional prior information an be addedto the identi�ation problem. In those situations wherea parameter estimate may not be uniquely identi�ablefrom the data, a regularization term an be added to theost funtion that takes aount of prior knowledge of theparameters to be estimated. In this setting an alternative(Bayesian) ost funtion is onsidered:
Vp(θ) := V (θ) +

1

2
(θ − θp)P

−1
θp

(θ − θp), (17)



where the seond term represents the weighted mismathbetween the parameter vetor and the prior parametervetor θp with ovariane Pθp
. When again the modeloutput ŷ(θ) is approximated using a �rst-order Taylorexpansion around θp, the Hessian of (17) beomes:

∂2Vp(θ)

∂θ2
=

∂ŷ(θ)T

∂θ
P−1

v

(

∂ŷ(θ)T

∂θ

)T

+ P−1
θp

. (18)Sine P−1
θp

is positive de�nite by onstrution and the �rstterm is positive semi-de�nite, the Hessian has full rankand the parameter estimate
θ̂bayes = argmin

θ
Vp(θ)is unique. This uniqueness is guaranteed by the priorinformation that has been added to the problem. Formallythere an still be lak of identi�ability, however it is notany more re�eted in a non-unique parameter estimate.A onsequene of this approah is that the obtainedparameter estimate may be highly in�uened by the priorinformation, and less by the measurement data.The ovariane matrix of the Bayesian parameter estimatean also be analyzed using the lassial predition errortheory, see Ljung [1999℄. Under ideal irumstanes (on-sistent estimation and θp = θ0 (!)) it an be shown that

cov(θ̂bayes) =

[

E
∂2Vp(θ)

∂θ2

∣

∣

∣

∣

θ0

]

−1

. (19)In other words, the inverse of the Hessian of the iden-ti�ation riterion remains to play the role of (sampleestimate of) the parameter ovariane matrix, and thesame onsiderations as disussed in the earlier setionsan be applied to the SVD analysis of this Hessian. Byappropriately operating on the expression for the Hessian(18), it an be shown that a relevant SVD analysis fordimension redution an now be applied to
P

T
2

θp

∂ŷ(θ)T

∂θ
P

−
1

2

v ,whih in Tavakoli and Reynolds [2009℄ is referred to as thedimensionless sensitivity matrix.It may be lear that the parameter estimate beomeshighly dependent on the prior information, and that biaswill our when the parameter prior θp is not orret.It has to be noted that this Bayesian approah is typi-ally followed when using sequential estimation algorithmsfor joint parameter and state estimation, as in ExtendedKalman Filters and variations thereof, suh as the Ensem-ble Kalman Filter, see e.g. Evensen [2007℄.7. EXAMPLE FROM RESERVOIR ENGINEERINGPetroleum reservoir engineering is onerned with maxi-mizing the oil and gas prodution from subsurfae reser-voirs. A ommon way to inrease the prodution is to injetwater in the reservoir via injetion wells to drive the oilvia prodution wells towards the subsurfae. However, dueto strong heterogeneities in the porous reservoir rok theresulting oil-water front is not progressing uniformly anda large part of the oil is bypassed and not produed. Thisan be partly ounterated by manipulating the injetionand prodution settings in the wells. The dynami ontrol
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Fig. 1. Permeability distribution (top view) for mimoexample. Retangles indiate well positions.strategy that maximizes the prodution is alulated basedon a model of the reservoir.A reservoir model desribes the �uid �ow in a porousmedium in time and spae. The model basially is de-termined by a non-linear pde, whih after disretizationin spae and time yield the following state-spae ordinarydi�erential equation in disrete time
p (k + 1) = A (θ)p (k) + Bu (k) , p (0) = p0 (20)

y (k) = Cp (k) , (21)A model typially ontains 105 to 106 states in p, whihare omposed of the �uid pressure and �uid saturationsin eah grid blok. The input variables u ∈ R
m denoteontrol settings suh as injetion or prodution rates orpressures in grid bloks ontaining wells. The outputvariables y ∈ R

p denote �ow rates in grid bloks ontainingwells. In the most simple model, the parameters representthe permeability in eah grid blok whih determines howeasily �uids �ow through the porous medium. Beausethe permeability in eah grid blok diretly in�uenes the�ow, it is vital to estimate this parameter vetor using theavailable measurements in order to obtain reliable modelpreditions and ontrol strategies.The simple example that we onsider here re�ets a2D reservoir with �ve wells in a harateristi �ve-spotpattern, indiated in Figure 1 by grey squares. There isone injetion well in the enter and four prodution wellsin the four orners. The reservoir model is disretized in
441 grid bloks and therefore also has 441 parameters.The permeability distribution onsists of three zones: theupper left orner has a high permeability, the lower rightorner a low permeability, and the intermediate zone anintermediate permeability. As inputs we use the injetion�ow rate in the injetion well and four bottom holepressures in the prodution wells. The input signals u aredepited in Figure 2. As measurements we have used theoil and water �ow rates in the four prodution wells, wherewe note that water breakthrough has ourred in all wells.In our identi�ability analysis we have hosen Γ

θ̂
=

diag(10log θ) and P
−

1

2

v = I in our SVD analysis of theexpression
Γ

θ̂

∂ŷ(θ)T

∂θ
P

−
1

2

v . (22)
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Fig. 2. Input signals as funtion of time that are used toexite the two-phase reservoir model. Liquid �ow rates(right) and bottom-hole pressures (left).
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Fig. 3. All singular values (left) and 30 largest singular val-ues (right) of (22) using the permeability distributiondepited in Figure 1.
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eFig. 4. Measured and predited water (blue) and oil (red)�ow rates.As an be learly seen the singular values in Figure3 drop steeply. Sine the identi�able parametrizationpartly depends on the parameter value we use an iterativeproedure. Starting from an initial parameter vetor an(loally) identi�able parametrization is determined. Withthis parametrization a new parameter vetor is estimated,and the proedure is repeated. The iteration is stoppedwhen no substantial improvement of the ost funtion isobtained.Perfet measurements y are generated by simulating thetwo-phase reservoir model for 200 days in the in-housereservoir simulator with the so-alled real permeability

distribution (see left plot in Figure 5), initial pressure
p0 = 100 × 105Pa and initial oil saturation s0 = 0.2 inevery grid blok. As input we have used the pressures in theprodution wells and the injetion �ow rate in the injetionwell (see Figure 2 for the signals). As measurementswe have used the oil and water �ow rates in the fourprodution wells (see Figure 4 for the signals).As initial guess a homogeneous permeability distribution ishosen with the value θinit = −13.3 whih is equivalent toa permeability value of 5×10−13m2. This permeability dis-tribution is depited in the middle of Figure 5. The orre-sponding value of the objetive funtion is V (θinit) = 135.Based on θinit the model struture is approximated usingthe SVD of (22) keeping only the �rst 15 singular values.To estimate the grid blok permeability we have used theGauss-Newton update rule. In this example the best resultis obtained in ase the model struture is approximatedafter eah update. The estimate has onverged after 30iterations to the permeability distribution depited in theright of Figure 5. The value of the objetive funtion hasdereased to V = 5.93. From the estimated permeabilitydistribution we see that the largest hanges have ourredin the grid bloks whih are penetrated by produtionwells. Although the real permeability distribution is notreognizable anymore, the �ow relevant features are appar-ently estimated sine the objetive funtion has dereasedsigni�antly, and the �uid �ow rates predited by themodel aording to Figure 4 are very well mathing themeasurements.The example shows that the premeability is only identi�-able in the grid bloks that are in the diret neighborhoodof wells. 8. CONCLUSIONSThe question whether a large sale (nonlinear) physialmodel struture is identi�able, is usually onsidered in aqualitative way. In this hapter the notion of identi�abilityis quanti�ed and it is shown how the model struturean be approximated so as to ahieve identi�ability, whileretaining the interpretation of the physial parameters.In this hapter this question has been addressed in apredition error setting. The analysis has been relatedto Bayesian estimation, and has been illustrated for anexample from oil reservoir engineering, in whih lak ofidenti�ability has been illustrated.REFERENCESE. W. Bai. An optimal two-stage identi�ation algorithmfor hammerstein-wiener nonlinear systems. Automatia,34(3):333�338, 1998.R. Bellman and K. J. Åström. On strutural identi�ability.Mathematial Biosienes, 7:329�339, 1970.H. G. M. Dötsh and P. M. J. Van den Hof. Test forloal strutural identi�ability of high-order non-linearlyparameterized state spae models. Automatia, 32(6):875�883, 1996.G. Evensen. Data Assimilation. Springer, 2007.K. R. Godfrey. Compartmental Models and their Applia-tion. Aademi Press, London, 1983.
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