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Abstract 

In this paper we address the problem of computing a min- 
imal state-space realization from partial knowledge of an 
expansion in terms of generalized rational orthogonal basis 
functions. The basis functions considered are generated by 
stable all-pass filters. It is shown how a minimal state-space 
realization can be found on the basis of complete knowledge 
of the expansion coefficients. Subsequently an algorithm is 
given that solves the partial realization problem, meaning 
that it computes a minimal realization on the basis of a finite 
number of expansion coefficients. The analysis also results 
in compact expressions for computing the Hambo transform 
underlying this basis expansion as well as its inverse. Finally 
it is shown how these realization problems are related to the 
interpolation problem of finding a rational model of mini- 
mal degree that interpolates to the derivatives of a transfer 
function in a given set of points outside the unit disc. 

Keywords: orthogonal basis functions; partial realization; 
Hambo transform; interpolation 

1 Introduction 

The description of linear time-invariant systems in terms of 
basis function expansions has a long history in the field of 
system modeling and system identification. The most fa- 
miliar example are the ,,standard” basis functions zPk, with 
k E W, that form a basis for the space HZ of strictly proper, 
stable discrete-time systems. The associated expansion co- 
efficients, the so-called Markov parameters, play a funda- 
mental role in system theory, e.g. in the context of the re- 
alization of minimal state-space models, or in FIR (finite 
impulse response) modeling in system identification and fil- 
ter design. A number of other basis function families con- 
sisting of real-rational transfer functions have been applied 
for the purpose of system approximation and system analy- 
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sis, such as the Laguerre and Kautz bases [ 11. The unifying 
property of these constructions is that the basis functions 
are generated by repeated multiplication of a first (standard, 
Laguerre) or second (Kautz) order function with an all-pass 
function that has the same pole(s). 

During the past decade the use of this type of basis functions 
has received a considerable amount of attention, specifically 
in the context of system identification [2, 31. Several gen- 
eralizations of the Laguerre/Kautz construction have been 
proposed. Heuberger [4] has considered a generalized con- 
struction in which a complete orthonormal basis of H2 is 
constructed by repeated multiplication with a single all-pass 
transfer function of arbitrary order. Ninness has focused at- 
tention on the construction in which the basis functions are 
generated by multiplication with first and second order all- 
pass transfer functions that have different poles at each mul- 
tiplication step [5]. 

The principal motivation for using alternative bases lies with 
the differences in efficiency of different bases to compactly 
represent a certain class of signals and/or systems. Repre- 
sentation of signals/systems in alternative coordinates can 
significantly improve the efficiency of the computations in- 
volved. The constructions of Heuberger and Ninness can 
be seen in this light as they were introduced in order to in- 
crease the flexibility of the previous constructions by allow- 
ing a more diverse selection of poles in the rational basis 
functions. If a proper choice of poles is made, approaching 
the ‘real’ poles of the underlying system, then the number 
of parameters to be estimated can be kept small. In this way 
negative effects of the bias/variance tradeoff can, to a certain 
extent, be limited [6]. 

In this paper we will restrict attention to the case of scalar 
transfer functions. Also it is assumed throughout that the 
basis functions are real rational implying that the associ- 
ated coefficients are real valued. We will consider the use 

of the Heuberger basis construction and discuss the problem 
of how we can, once a finite number of expansion coeffi- 
cients are known, realize a minimal state-space model of 
which the corresponding expansion coefficients match the 
given ones. Apart from being an interesting system theo- 
retic problem in its own right, a solution will be of practical 
relevance when one has estimated a finite number of expan- 
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sion coefficients from input/output data and would like to 
find a compact state-space model that is in accordance with 
this information. 

The Heuberger construction begins with building a sta- 
ble all-pass transfer function Gb(z) with minimal, balanced 
state-space realization (Ah, Bb,Cb,&), where Ab is of di- 
mension nb x nb. As a result of balancing the state tra- 
jectories Qi of this all-pass function to a unit pulse input 
will fOrIn a set Of nb IIWtUdly orthonormal elements Of 

the signal space 112[1,-). This implies that the functions 
@i(z) = eT(zl- Ab)-‘B b ,with ei the i-th Euclidean basis 
vector of IEP, form an orthonormal set in the Hz. The other 
basis elements are obtained from this initial set by repeated 
multiplication of the $i by the all-pass filter Gb(z). Orthog- 
onality of this construction can most easily be verified by 
residue calculus. It follows that 

for i, j = l..nb and k,l E N. Completeness of the basis 
is guaranteed when Gh(z) is asymptotically stable as was 
shown e.g. in [4]. 

In our notation we will often group the basis functions 
$i(z)Gt-‘(z) in batches of nb functions by stacking them 
in the vectors Vk(z) indexed according to 

h(z) = (~l(~)...~rlb(z))~G~-l(z). 

This grouping will facilitate our later analysis as it takes full 
benefit of the structure which is present in the basis construc- 
tion: the basis elements in each group share the property that 
they have been obtained by the same number of multiplica- 
tions with Gb. The basis function expansion of an arbitrary 
strictly-proper, stable transfer function G(z) in terms of this 
basis is written as 

- “b 

G(Z) = C C &i(z)G~-‘(Z) = 2 L:Vk(z) 
k=l i=l k=l 

where the 1: are the basis function coefficients which are 
grouped into coefficient vectors Lk and the vk(Z) are the as- 
sociated basis function vectors. 

The problem considered in this paper is the following. Given 
the expansion coefficient vectors Lk for k = 1 ..N, compute 
a minimal state-space realization of the underlying system 
such that its expansion coefficient vectors match the given 
ones. Minimal in this context means that it should have the 
lowest possible McMillan degree. This problem is closely 
related to the classical problem of partial realization from 
Markov parameters which was already solved by Tether in 
1970 [7]. In the classical setting the minimal realization is 
obtained by applying the Ho-Kalman algorithm to the finite 
Hankel matrix associated with the Hankel operator repre- 
sentation of the system. In the approach presented here, 
which is an extension of the approach suggested by Szabo 

and Bokor [8], we make use of the fact that we can reduce 
our realization problem to a classical realization problem by 
exploiting properties of the basis transformation involved. 

As is well-known, the classical partial realization problem is 
equivalent to an interpolation problem in which a rational- 
transfer function of minimal degree order is computed that 
interpolates to ‘$$ (z) for k = 1. .N evaluated at infinity. As 
we will show the generalized algorithm presented here can 
be interpreted as providing a way to compute a rational 
transfer function of finite order interpolating to 2(z) in a 
set of arbitrarily assigned, but distinct points outside the unit 
disk. 

In the next sections we start with explaining the basic ideas 
behind the approach by which the generalized partial real- 
ization problem can be solved. This analysis results in an 
algorithm for the solution of the partial realization problem 
which is presented in section 3. In section 4 we will dis- 
cuss how the partial realization problem is connected to an 
equivalent interpolation problem. We will finish with some 
conclusions. 

2 Realization from Hankel operators 

The solution of the classical realization problem is based 
upon the representation of the underlying system in Hankel 
operator form. In this form a linear time-invariant system is 
viewed as a mapping from past input signals IA E !2( --oo, 01, 
to the resulting future outputs y E &[l,-). The signals u 
and y are represented in terms of their expansion coefficients 
with respect to the standard basis for the .!2(-00,~) space. 
The Hankel operator in that case takes on the form of an infi- 
nite Hankel matrix H containing as its elements the Markov 
parameters gk, k E N as given by G(z) = cF=, gkZwk. In ab- 
stract notation we can write this as y = Hu, in which y and 
u are infinite sequences. 

The realization of a state-space representation via the Ho- 
Kalman algorithm [9] makes use of a factorization of the in- 
finite Hankel matrix into a full rank decomposition H = I-A 
which reflects the division of the input/output map into a 
map from input to states via the infinitely extended control- 
lability matrix A and a map from states to output via the 
extended observability matrix I-. The B and C matrices of 
the minimal realization are directly obtained as the first col- 
umn, respectively row of A and I-. To obtain the associated 
A matrix one makes use of the fact that the Hankel opera- 
tor H pertaining to the shifted system zG(z) is related to H 
according to H = I-AA. The A matrix is then obtained as 
A = r+HA+, where + denotes pseudo-inverse. 

The complete generalized realization problem, i.e. concern- 
ing the situation in which one has knowledge of all expan- 
sion coefficients Lk in the generalized basis up to infinity, 
was solved by Szab6 and Bokor in [8]. The approach is 
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based on the representation of the Hankel operator as a ma- 
trix fi that operates on signals that are represented as coeffi- 
cient expansions in a generalized basis. Use is made of the 
fact that the representations of signals in different orthonor- 
ma1 bases are related through unitary transformations. De- 
noting the infinite series of expansion coefficients of y and u 
in the generalized basis by f and ii we can write this unitary 
relation as 

9 = Tly, ii = T2u. 

Since y and u are infinite sequences we can think of the 
transformations T1 and T2 as unitary matrices of infinite di- 
mension It follows that there exists a simple relation be- 
tween the two Hankel operators as is illustrated by the com- 
mutative diagram below. 

u-H-Y 
a I A I T; 7-2 II T; TI 

Ii 

Specifically we have that H = TTfiT2. Using this relation 
one can easily compute a full rank decomposition H = rA 
from a full rank decomposition of fi = I%, and apply the 
Ho-Kalman algorithm as before. We can write 

I- = TTf, A = dT2, A = i=+l%+, 

with k the infinite Hankel matrix pertaining to the shifted 
system zG(z), represented with respect to the generalized 
basis. 

The above argument illustrates how the generalized realiza- 
tion problem can be solved. The next question deals with 
how the necessary ingredients of the realization scheme can 
be computed. Computation of the transformation matrices 
T1 and T:! is straightforward. If we group the coefficients 
into coefficient vectors, as described in the introduction, we 
find that the k-th block row of TI is given by the impulse 
response of (zl- Ab)-lBbGk-l (z), with k E N. Similarly 
the block-rows of TZ are given by the impulse responses of 
(zl-Ai)-‘CTGf,-‘(z), with k E N. 

We will now analyze the composition of the matrix fi. Sup- 
pose that we have an output signal y E [2[ I, -) and a signal 
u E &( -=,O] that are related according to 

y(t) = &,[l,=-)G(qML 

with P~,lt,~) the orthogonal projector onto e,[ 1, -). We can 
expand the signals y and u in terms of the generalized ba- 
sis functions to obtain the sequences y and ii. Grouping the 
coefficients according to the number of multiplications with 
Gb(Z) gives us a means to efficiently compute the elements 
of fi by making use of the inherent structure in the underly- 
ing basis construction. Beware however that by grouping the 
basis functions in vectors the basic elements of the Hankel 
operator will be matrices of dimension nb x nb. If we denote 
the k-th coefficient vector of y and ti respectively by y(k) 

and ‘U(k), then it is not difficult to show that there exists a 
relation 

k=O 

with Mk E R”bX”b given by 

Mk = ~~V~(‘/z)G~(‘/z)G(z)V~(z)~. (1) 

We see that the coefficients {r(t)} are obtained from 
{u(t)} by means of a convolution operation that is deter- 
mined by the Markov parameters Mk and hence the associ- 
ated Hankel operator takes on the form of a block Hankel 
matrix of infinite dimension given by: 

/MI M2 ... \ 

In fact this convolution operator which maps from Ci’ to 
ey is the so-called Humbo transform of G(z). This Hambo 
transform was discussed extensively in [ 10, 61. We will not 
go into detail about it here, suffice it to say that it can be 
obtained from G(z) directly by means of a variable trans- 
formation, and that the McMillan degree of the underlying 
system is invariant under Hambo transformation [lo]. 

From (1), one can easily calculate the Markov parameters 
Mk. In the following we will give an outline of the method 
by which they can be obtained. Detailed proofs of most of 
the steps taken can be found in [I 11. We make use of the 
fact that we can write 

k=l i=l 

and that there exist matrices Pi, Qi such that 

VI(Z)@(Z) =EVI(Z) +QiVlGb(Z), (2) 

with Z’i, Qi E IR”b Xnb. Substituting this in (1) reveals that the 
Markov parameters Mk are directly related to the expansion 
coefficients of the transfer function G(Z) as follows: 

(3) 
i=l 

A similar relation is found for the Markov parameters of the 
shifted system of zG(z) which are denoted by fik. The tik 
are also needed for the computation of the realization since 
they form the Hankel matrix k. From (2) it can be deduced 
that the matrices Pi and Qi are the solutions of the set of 
coupled Sylvester equations 

AP,AT + BerAT = P. I I I 

AQiAT + BeFCTBT + APiCT BT = Qi. 

Equation (3) implies that any Markov parameter Mk depends 
solely on the coefficient vectors &+ i and Lk. In order to cal- 
culate the first N - 1 Markov parameters it therefore suffices 
to have available the first N coefficient vectors. 
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Although we now, in principle, have the necessary tools for 
constructing the matrices fi, fi,Tl and T2, we need to take 
some additional steps before we can solve the partial real- 
ization problem. 

3 Partial realization 

The main difficulty with applying the Hankel operator and 
transformation concepts directly, lies with fact that the Han- 
kel matrices involved are of infinite dimension, while in the 
partial realization problem setting we are only given a fi- 
nite number of Markov parameters. However, we can re- 
solve the problem by observing that the minimal partial re- 
alization problem of the Hambo transform of G(z) can be 
solved under the same rank conditions as in the classical re- 
alization problem setting [7]. Once a realization (A,B,C) 
of the Hambo transforms of G(z) has been derived we have 
available the necessary information to construct complete 
full rank decomposition of 8. Further, once a state-space 
realization of the Hambo transform of G(z) is known, a re- 
alization of the strictly proper part of the Hambo transform 
of zG(z), and hence a full rank decomposition of k, can be 
found according to the following proposition. 

Proposition 1 Suppose that the Hambo transform of G(z) 
with respect to the basis generated by the all-pass function 
Gb(z) has a realization (A,B,C,D). Then a realization of 
the strictly proper part of the Hambo transform of zG(z) is -- - 
(A, B,A;C + C;XcA), with Xc the solution to the Sylvester 
equation 

D;XcA + B;C = Xc. 

Proof: We make use of the fact that the Hambo transform 
of zG(z) is equal to NT(z-‘) times the Hambo transform of 
G(z), with N(z) = Ah + Bj,(zl- &)-I& for an explanation 

of this see e.g. [6]. Hence it is equal to the product of infinite 
series 

(A; + C,TB;z + C,TD;B;z2 + . . . ) (b + &jz-’ + . . .) . (4) 

Evaluating this expression term by term and discarding the 
terms with non-negative powers of z leads to an expression 
that has the given realization’. n 

Denoting the first block-column (of dimension QO x nb) of 
TI and T2 by Tt and Tz, respectively we get that our minimal 
realization is given by 

‘Another possible realization is found by interchanging the factors in 
expression (4). This leads to an alternative (dual) formulation of the real- 
ization algorithm. 

Substituting A+ = ATx;’ and p = r?;‘f’ with & = AAT 
and XC, = fTf (the controllability and observability Grami- 
ans of (A, B, c)) we see that we are left with computing 

--m - 
i;Tr,AAT,AT2,TtTf. 

These four entities are, as can easily be shown, the solu- 
tions to a set of four separate discrete-time Sylvester equa- 
tions, involving only known quantities. In particular from 
proposition 1 it follows that zT is in fact equal to XC which 
simplifies the computation of A considerably, as it cancels 
against 2‘: ’ . 

The procedure is summarized in the following partial real- 
ization algorithm. 

Algorithm 1 Let Mk...1 for k = 1 ..N be the first N Markov 
parameters of the Hambo transform of the system G(z). 
Construct a block Hankel matrix fin- 1 ,J,- 1, where the index 
pair (N - 1,~ - 1) denotes the block-row, respectively block- 
column dimension of the matrix. A minimal realization of 
the system G(z) is obtainedfollowing these steps: 

1. Check whether there exists a j < (N - 1) for which the 
rank condition 

rank(Hj,,i) = rank(fi,j+t,i) = rank(fi,j,j+i) = n 

holds. If not then the algorithm fails. If the rank condition 
holds then proceed with the next steps. 

2. Compute from I&,LI,N-~ a minimal realization (McMil- 
lan degree n) (A, B,C). This can be done by applying the 
Ho- Kalman algorithm. 

3. Compute the observability Gramian Xc, of the pair (A, C). 
Also compute the solutions to the following set of Sylvester 
equations: 

AX,D,T + BC; = XB 

D;sXcA + B;z. = Xc 

AT&/i + CT (A;C + C;Xc,‘i) = XA (5) 

A minimal state-space realization (A,B, C) of McMillan de- 
gree n of G(z) is given by 

A =&;‘XA, B =XB, C=Xc. (6) 

We can view equations (5) and (6) as a means to com- 
pute the Hambo inverse transform, i.e. to obtain a minimal 
(A, B,C) from (A,B, z’), under the condition that the latter 
indeed constitute a valid Hambo transform. Following a re- 
verse route,finding a minimal (A, B, e) from (A, B, C) by the 
same realization approach provides us with a dual result: a 
straightforward way to compute the Hambo transform. 

Corollary 1 (Hambo transform) Suppose that G(z) has a 
minimal realization (A, B, C) and we are given a general- 
ized basis generated by the all-pass function with minimal, 
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balanced realization (Ab,B&,,Cb). A minimal realization of 
the strictly proper part of the Hambo system transform of 
G(z) is given by 

with X, the observability Gramian of the pair (A,C) and 
Xr, Xg, Xc given by 

Ax&, + Bcb = XB 

&&.A + Bbc = x, 

ATXAA + CT (&C + C/,XcA) = X,. 

Note that a Hambo transform of a strictly proper system is in 
general only proper. When necessary the direct feedthrough 
term I) = Me can be computed from the first expansion co- 
efficient vector Lr using relation (1). 

4 The underlying interpolation problem 

It is well-known that the classical problem of minimal par- 
tial realization from the first N Markov parameters is equiv- 
alent to the problem of constructing a stable strictly-proper 
real-rational transfer function of minimal degree that inter- 
polates to the first N - 1 derivatives of G(z) evaluated at 
infinity [ 121. Also it is easy to see that the least-squares ap- 
proximation of a stable transfer function G(z) in terms of a 
finite set of rational basis functions interpolates to the func- 
tion G(z) and/or its derivatives in the points l/&3 with 3Li the 
poles of the basis functions involved [ 131. 

In the basis construction considered in this paper the error 
function of an N-th order approximation c;‘(z) takes on the 
form 

E(Z) = 2 L;Vk(z) = G;(z) i L;+,V&)Gb($+ 
k=N+ 1 k=l 

The basis function vectors vk(Z) are obtained by repeated 
multiplication of the first vector VI(Z) with Gb(Z). This 
transfer function is all-pass and of McMillan degree fZb and 
henceforth it can be written in the form (modulo multiplica- 
tion by -1) 

This function has poles hi and zeros 1 /hi. Due to the repeti- 
tion of the all-pass function Gb(z) in vk, the error E(z) will 
have as a factor the function G;(z). This means that E(z) 
has zeros of order N at each of the points l/hi and subse- 
quently G(z) interpolates to 9 in z = l/hi for k = l..N 
and i = 1 ..nb. This interpolation property in fact holds true 
for any model of which the first N expansion coefficient vec- 
tors match those of the system, in particular for a model 
found by solving the partial realization problem. 

In view of the interpolating property of the basis func- 
tion expansion it is not surprising that there exists a 
one-to-one correspondence between the expansion coeffi- 
cient vector sequence {&}k=t..N and the interpolation data 

{$&/hi)} = k i.,N. An explicit expression for this relation 
can be derived by exploiting the linear transformation that 
links the set of basis function vectors vk and the set of vec- 
tors that consists of single-pole transfer functions as given 

with hi the poles of the basis generating function Gb(Z). If 
we assume the poles hi to be distinct we can write 

with Tkt E lk”” “b. The coefficient vectors Lk are obtained as 
the solutions of 

Lk = &$vk(‘lZ)G(z)$. 

When substituting vk( 1 /Z) = i Tkl&( 1 /z) and applying 
l=I 

Cauchy’s integral formula we find that 

and H a matrix that is given by 

with Aek = diag( l/L!,... , l/hi,,). Since l/hi exists only 
for hi # 0, we must make the additional assumption that 
hi # 0, Vi. Equation (7) shows that there exists a direct cor- 
respondence between the first N coefficient vectors Lk and 
the first N vectors Fk that contain the data dz”-’ dk-‘G fork = l..N 
evaluated at the points hi. 

A similar relation can be derived that shows the correspon- 
dence between the generalized Markov parameter sequence 
{Mk-r}k=l..N and the interpolation data { $$$}k=r.,N. 
starting from equation (1). 

Now that we are able to compute the parameters {Lk}k=i ,,N 

and {M,&l}k=r..N from {$$(l/hi)}k=r..N we can solve 
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the following interpolation problem, by means of the mini- 
mal partial realization algorithm given in the previous sec- 
tion. Given the interpolation conditions 

dk-‘G 
=(I/%) = Pi,k, Pi,k E c 

for i = l..nb and k = 1 ..N, with hi # 0 distinct points inside 
the unit disc, find the rational transfer function of minimal 
degree that interpolates these points. The problem is solved 
by constructing a balanced all-pass function (Ah, Bb, Cb, &) 
such that the eigenvalues of & are hi. From this all-pass 
function we can then obtain all the parameters that are nec- 
essary to compute the set of Markov parameters Mk that 
correspond to the interpolation data. Realization of a state- 
space model from these Markov parameters gives us the de- 
sired transfer function. Note that apart from the requirement 
that the hi should be distinct and unequal to zero they must 
satisfy the restriction that if complex they should come in 
conjugate pairs. This latter requirement ensures that the re- 
sulting transfer function has only real valued parameters. 

The relation between the Markov parameters Mk and the 
derivatives of G(z) evaluated at l/hi has been treated in a 
similar context in the work of Audley and Rugh [ 141 on the 
representation of systems in so-called H-matrix form. The 
H-matrix is not to be mistaken for the Hankel operator dis- 
cussed earlier but it is closely connected to it. It takes on a 
Toeplitz instead of a Hankel matrix form but the basic ele- 
ments of the H-matrix for the basis considered in this paper 
are still the Markov parameters Mk. Audley and Rugh pro- 
vided an algorithm to realize a transfer function of minimal 
degree from a finite dimensional H-matrix representation, 
by directly solving the underlying interpolation problem. 

5 Conclusions 

In this paper we have shown how to realize a minimal state- 
space model on the basis of partial knowledge of the ex- 
pansion of a transfer function G(z) in terms of a set of ra- 
tional orthogonal basis functions. The problem was solved 
by computing the Markov parameters that correspond to the 
representation of the underlying system as a convolution op- 
erator that operates on expansion coefficient sequences. A 
minimal state-space realization of this operator, also known 
as the Hambo transform of G(z), can be found under the 
same conditions that apply in the classical partial realiza- 
tion problem setting. After this state-space form has been 
obtained, one simply has to transform it back to the orig- 
inal domain to obtain the minimal realization of G(z). It 
was shown that the analysis related to the realization prob- 
lem provides us with compact expressions for computing the 
Hambo inverse transform as well as the Hambo transform it- 
self. 
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