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Abstract

In this paper a general transform theory is presented that un-
derlies expansions of stable discrete-time transfer functions
in terms of rational orthonormal bases. The types of bases
considered are generated by cascade connections of stable
all-pass functions. If the all-pass sections in such a network
are all equal, this gives rise to the Hambo basis construction.
In this paper a more general construction is studied in which
the all-pass functions are allowed to be different, in terms
of choice and number of poles that are incorporated in the
all-pass functions. It is shown that many of the interesting
properties of the so-called Hambo transform that underlies
the Hambo basis expansion carry over to the general case.
Especially the recently developed expressions for the com-
putation of the Hambo transform on the basis of state-space
expressions can be extended to the general basis case. This
insight can for instance be applied for the derivation of a re-
cursive algorithm for the computation of the expansion co-
efficients, which are then obtained as the impulse response
coefficients of a linear time-varying system.

1 Introduction

Rational orthonormal basis functions have since long been
applied for the purpose of system approximation and iden-
tification. The earliest basis constructions date back to the
work of Takenaka and Malmquist in the twenties [14]. In
the thirties Lee and Wiener studied the application of the
well-known Laguerre functions in the context of network
theory [8]. A few decades later Kautz proposed a class of
basis functions that have come to be known as the Kautz
functions [7]. In more recent years there has been a resur-
gence of the interest in the application of the Laguerre and
Kautz functions, mainly in the field of system identification
[12, 13].

In a parallel development several generalizations of the clas-
sical Laguerre and Kautz constructions have been proposed
[6, 9]. The common principle that connects all these con-
structions is that they are are generated by a series connec-
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tion of stable all-pass transfer functions. In the construction
proposed by Heuberger, known as the Hambo basis [6, 11],
the sections in the cascade are all equal to the same all-
pass transfer function Gb(z) which can have arbitrary (fi-
nite) McMillan degree. The poles of Gb(z) determine the
characteristics of the basis expansion. In the construction
that was proposed by Ninness and Gustafsson [9] the sec-
tions are taken to be all-pass functions of McMillan degree
1, but the poles of the all-pass functions are allowed to be
different.

In this paper a construction is considered that encompasses
these bases, in the sense that the all-pass functions in the
cascade are allowed to be different and the all-pass func-
tions are allowed to have different McMillan degree. The
only restriction that is made is that the all-pass functions are
stable. This type of basis construction was first suggested
by Roberts and Mullis [10]. In section 2 the particularities
of this basis construction will be reviewed.

For the Hambo basis a general transform theory was devel-
oped that underlies the expansion of signals and systems in
terms of these basis functions [5]. This theory has been ap-
plied successfully in the context of system identification for
the calculation of asymptotic bias and variance expressions.
More recently it has been applied for the solution of the min-
imal partial realization problem for expansions in terms of
Hambo basis functions [3].

The main subject of this paper is the generalization of the
Hambo transform theory to the general basis construction.
It turns out that many of the interesting properties of the
Hambo transform theory carry over to the general case. The
main difference is that, while the Hambo transform of a lin-
ear time-invariant system is again a linear time-invariant sys-
tem, the generalized Hambo transform of this system is a
linear time-varying system.

The outline of this paper is as follows. In section 2 the
general basis construction that is studied in this paper is ex-
plained. In section 3 definitions are given of the signal and
operator transforms that underlie these expansions. In sec-
tion 4 it is shown how the generalized operator transform of
a system G(z) is obtained by applying a variable substitution
in the Laurent expansion of G(z). In section 5 expressions



are derived by which, on the basis of a minimal state-space
realization of G(z), a corresponding minimal state-space re-
alization of its operator transform can be computed. It is also
shown how this last result can be applied for the calculation
of the expansion coefficients of the system G(z).

Notation

H2 The space of scalar, discrete-time, stable proper
transfer functions.

H2− The space of scalar, discrete-time, stable, strictly-
proper transfer functions.

�n
2(J) The space of square summable vector sequences

of dimension n, with J denoting the index set.

�X ,Y � ∑∞
k=1 X(k)Y T (k) = 1

2πi

∮
X(z)Y ∗(1/z) dz

z ,

with X ∈ �nx
2 , Y ∈ �

ny
2 .

∏k
j=l Xj XkXk−1 · · ·Xl+1Xl . For l > k it is equal to identity.

PX Orthogonal projection onto the space X .

2 Basis construction

The starting point of the general orthonormal basis construc-
tion considered in this paper is the selection of a sequence
of stable all-pass functions {Gb,k(z)}k∈N. Given a set of nb,k

stable poles (with nb,k some finite number) an all-pass func-
tion Gb,k is defined as

Gb,k(z) =
nb,k

∏
j=1

1− ξ∗k, jz

z− ξk, j
.

For the construction of the basis, balanced realizations
(Ab,k,Bb,k,Cb,k,Db,k) of the all-pass functions Gb,k(z) are
used. Defining the input-to-state transfer functions φk(z) =
(zI −Ab,k)

−1 Bb,k, we construct the vector valued functions
Vk(z):

Vk(z) = φk(z)
k−1

∏
j=1

Gb, j(z). (1)

Proposition 1 The functions Vk(z) with k ∈ N constitute an
orthonormal basis of H2− in the sense that �Vi(z),Vj(z)� = 0
if i �= j and Ini if i = j, and any system G(z) ∈ H2− can
be uniquely represented by a sequence of coefficient vectors
{Lk}k∈Z

as in

G(z) =
∞

∑
k=1

LT
k Vk(z).

The mutual orthonormality of the basis functions can easily
be verified by means of residue calculus. Completeness in
H2− can be proved along the lines of the analysis in [9].

Gb,1 Gb,2 Gb,3✲ ✲

LT
1 LT

2 LT
3

✲

❄ ❄ ❄

❄ ❄ ❄✲ ✲

✲

✲

u(t)

y(t)

states:

+ + +

V1 V2 V3

Figure 1: Representation of the system G(z) as a cascade network
of generalized orthonormal basis functions.

The representation of a system G(z) in terms of these basis
functions can be viewed as a cascade network of balanced
all-pass functions as is visualized in Figure 1. The output
of the system is then equal to the sum of the states of the
sections Gb,k multiplied by the coefficient vectors LT

k .

By the isomorphic property of the z-transform, an orthonor-
mal basis of the signal space �2(N) is obtained by applying
the inverse z-transform to the functions {Vk(z)}k∈Z

. The cor-
responding time-domain basis functions are written as Vk(t)
with index t ∈ N denoting time.

Consider the series connection of a sequence of k balanced
all-pass functions Sk. A state-space realization of Sk can be
constructed from the realizations (Ab,k,Bb,k,Cb,k,Db,k) such
that the basis function vectors Vk(z), stacked in one large
column, form precisely the input-to state transfer function
of Sk. It can further be shown that this realization of Sk(z) is
minimal and balanced.

Proposition 2 [10]
Consider the system Sk = ∏k

j=1 Gb, j = Gb,k · · ·Gb,2Gb,1.
Then for any k > 1 it holds that Sk is an all-pass func-
tion that has a minimal balanced state-space realization
(Ak,Bk,Ck,Dk) which satisfies the recursive relation:

Ak =
[

Ak−1 0
Bb,kCk−1 Ab,k

]
Bk =

[
Bk−1

Bb,kDk−1

]
, (2)

Ck =
[
Db,kCk−1 Cb,k

]
Dk = Db,kDk−1, (3)

with (A1,B1,C1,D1) = (Ab,1,Bb,1,Cb,1,Db,1).

By construction the input-to-state transfer function of the
system Sk is equal to

[
V T

1 (z) V T
2 (z) · · · V T

k (z)
]T

,

with Vj(z) as defined in (1). In time domain notation it there-
fore holds that

Vk(t +1) =
[
Bb,kCk−1 Ab,k

]



V1(t)
V2(t)

...
Vk(t)


+Bb,kDk−1δ(t),



where δ(t) represents the unit pulse signal. This can also be
stated as

Vk(t +1) = Bb,k

k−1

∑
j=1

k−1

∏
i= j+1

Db,iCb, jVj(t)+Ab,kVk(t)

+Bb,k

k−1

∏
j=1

Db, jδ(t). (4)

This equation can be used to calculate the basis functions Vk

in an efficient manner.

The basis construction of equation (1) generalizes the con-
structions that were mentioned in the introduction. Obvi-
ously, it closely resembles the Hambo basis construction
[6, 5]. The main difference is that the all-pass functions
in the cascade are allowed to be different. It should be
noted that the Laguerre construction, which is basically a
Hambo basis construction with nb = 1 is also a special case
of (1). The generalized construction also subsumes the Nin-
ness construction [9] which can be viewed as the special
case in which the all-pass sections are single pole functions
(McMillan degree 1). Supposing that the all-pass functions
Gb,k used in the construction have poles ξk, then the Ninness
basis can be generated according to (1) using the balanced

realizations
(

ξk,
√

1−|ξk|2,
√

1−|ξk|2,−ξ∗k
)

. For the case

where nb,k = 2 ∀k the construction (1) becomes equivalent
to the general Kautz construction [7].

In the remainder of this paper it is assumed for notational
convenience that the all-pass functions Gb,k and their real-
izations are real. The theory can be adapted to deal with
complex all-pass functions without any difficulty [2].

3 Signal and operator transforms

In this section the fundamentals of the transform theory that
underlies expansions in the generalized basis are given. This
theory has its roots in the Hambo transform theory that was
presented in [5].

Consider an arbitrary signal x ∈ �2(N). Because the func-
tions {Vk(t)} constitute an orthonormal basis of the signal
space �2(N) the signal x can be expanded as,

x(t) =
∞

∑
k=1

XT (k)Vk(t),

with X(k) denoting the expansion coefficient vectors. The
vector sequence {X(k)}k∈N

, denoted by X for ease of nota-
tion, is the so called signal transform of the signal x taken
with respect to the generalized basis. Note that the dimen-
sion of the coefficient vectors X(k) can change with index
k, depending on the McMillan degree of the corresponding
all-pass function Gb,k. The coefficients X(k) are obtained by
taking inner products of x with the basis functions Vk:

X(k) =
∞

∑
t=1

Vk(t)x(t) = �Vk,x� . (5)

As in the “classical” Hambo setting [5], the operator trans-
form, induced by the generalized basis in this case, is defined
as follows.

Definition 3 The operator transform of a system G ∈ H2,
denoted by G̃, is defined as the operator that maps the input
coefficient sequence U into the output coefficient sequence
Y, for all inputs u ∈ �2(N) with y the corresponding outputs.

It is not difficult to see that G̃ is a causal linear operator.

Proposition 4 Given G ∈ H2 and u,y ∈ �2(N) such that y =
Gu, it holds that

Y(k) =
k

∑
j=1

Mk, jU( j), (6)

with

Mk, j =

�
φk(z),φj(z)

k−1

∏
i= j

Gb,i(1/z)G(z)

�
(7)

Proof: Y(k) can be expressed as

Y(k) =

�
Vk,G

∞

∑
j=1

UT ( j)Vj

�
=

∞

∑
j=1

�Vk,VjG�U( j).

Using (1) one finds

Y(k) =
∞

∑
j=1

�
φk

k−1

∏
i=1

Gb,i,φj

j−1

∏
i=1

Gb,iG

�
U( j).

Consider the inner product term for the case where j ≤
k. Use is made of the fact that the adjoint of Gb,k(z) is
equal to Gb,k(1/z) which by its all-pass property is equal
to Gb,k(z)−1. Therefore the inner product can be written as�

φk(z),φj(z)∏k−1
i= j Gb,i(1/z)G(z)

�
. Now consider the inner

product term for the case j > k. Then with the same ar-

gument one finds
�

φk(z),φj(z)∏ j−1
i=k Gb,i(z)G(z)

�
. This lat-

ter expression is equal to zero. This follows from the fact
that the elements of the transfer function φk(z) constitute an
orthonormal set which exactly spans the orthogonal com-
plement in H2− of the shift-invariant subspace Gb,k(z)H2−.
The right argument of the inner product is an element of that
subspace.

Since G̃ is a causal linear operator it can be represented by
a block triangular matrix (of infinite dimension), in which
the block indexed (k, j) has dimension nb,k × nb, j. It can
also be viewed as a causal (linear) time-varying system for
which also the dimension of the input and output vectors can
change in time, see [4] for a treatment of linear time-varying
systems. In the Hambo basis case it even holds that G̃ is a
shift-invariant operator (with respect to the index k). This



means that in that case it holds that Mk, j = Mk+m, j+m for all
k, j and m. Stated otherwise, Mk, j depends only on the dif-
ference k− j. This can easily be verified using the fact that
in that case ∏k−1

i= j Gb,i(1/z) = Gb(1/z)k− j, where Gb is the
single all-pass function generating the basis. In the Hambo
case one therefore usually writes Mk− j instead of Mk, j. It
should be noted that in that case the matrix representation
of G̃ becomes block lower triangular Toeplitz. Also in that
case all the blocks have dimension nb ×nb.

For the Hambo basis it was shown in [5] that G̃(λ) which
is defined as G̃(λ) = ∑∞

k=1 Mkλ−k, is obtained from G(z) by
applying a simple variable substitution. Also it was shown
how a minimal state-space realization of G̃(λ) can be de-
rived on the basis of a minimal realization of G(z) by means
of solving a set of Sylvester equations in [3]. In the follow-
ing sections it will be shown that very similar results hold
for the generalized basis.

4 Variable substitution property

It will be shown that the operator transform, as defined pre-
viously, can be obtained from the original transfer function
G(z) ∈ H2 by applying a variable substitution in its Laurent
expansion, which is given by

G(z) =
∞

∑
τ=0

gτz−τ. (8)

The parameters gτ represent the impulse response parame-
ters of the system G. The variable substitution consists of
a replacement of the shift operation z−1 by a causal linear
time-varying operator, denoted N, to be defined shortly.

In order to demonstrate this property, use is made of a dual
orthonormal basis that spans the space of coefficient se-
quences.

Proposition 5 Denote Wt(k) = Vk(t). Then the sequences
{Wt(k)}k∈N with t ∈ N, constitute an orthonormal basis of
the space of coefficient sequences that is related to the gen-
eralized orthonormal basis generated by the sequence of
balanced all-pass functions Gb,k.

For a proof the reader is referred to [5] in which a similar
proposition is given for the Hambo basis case.

With (4) it immediately follows that the basis functions Wt

can be constructed recursively using the following set of
equations.

W1(k) = Bb,k

k−1

∏
j=1

Db, j, (9)

Wt+1(k) = Bb,k

k−1

∑
j=1

k−1

∏
i= j+1

Db,iCb, jWt( j)+Ab,kWt(k). (10)

These expressions imply the following.

Proposition 6 It holds for all t ∈ N that Wt+1 = NWt where
N is a causal linear time-varying operator that has state-
space realization (Db,k,Cb,k,Bb,k,Ab,k).

Defining Nm as ∏m
j=1 N proposition 6 may alternatively be

expressed as Wt = Nt−1W1. Note that the operator N can be
thought of as the block lower triangular matrix A∞ defined
as the limiting case of Ak in (2).

The operator N can be used to derive an expression for G̃
according to the following proposition.

Proposition 7 (Variable substitution property)
The operator transform G̃ of a system G ∈ H2 is given by

G̃ =
∞

∑
τ=0

gτN
τ. (11)

Proof: Take any input u ∈ �2(N) and corresponding output
y of the system G. It follows from (5) and the definition of
Wt that the expansion coefficients of these signals satisfy

U(k) =
∞

∑
t=1

Nt−1W1(k)u(t), Y(k) =
∞

∑
t=1

Nt−1W1(k)y(t).

Supposing G has Laurent expansion (8) the expression for
Y, can be phrased as

Y(k) =
∞

∑
t=1

Nt−1W1(k)
t

∑
τ

gτu(t − τ)

=
∞

∑
τ=0

gτ

∞

∑
t=τ+1

u(t − τ)Nt−1W1(k).

Substituting t′ = t − τ one gets

Y(k) =
∞

∑
τ=0

gτ

∞

∑
t′=1

u(t ′)Nt′+τ−1W1(k).

By linearity of the operator N this can be expressed as

Y(k) =
∞

∑
τ=0

gτ

(
Nτ

∞

∑
t′=1

u(t ′)Nt′−1W1

)
(k).

Since it holds that ∑∞
t′=1 u(t ′)Nt′−1W1 = U this expression

can more concisely be written as (11).

Expression (11) can be interpreted as the equivalent of
the variable substitution property of the original Hambo
transform [5]. In that case it holds that the oper-
ator transform G̃(λ) is obtained according to G̃(λ) =
∑∞

τ=0 gτN(λ)τ, with the operator N being the time-invariant
version of N. With Gb(z) with balanced state-space realiza-
tion (Ab,Bb,Cb,Db) is the all-pass function generating the
Hambo basis, then the corresponding N(λ) has state-space
realization (Db,Cb,Bb,Ab).



5 State-space expressions

In [3] it was shown how using a realization theory approach
a set of Sylvester equations could be derived by which on the
basis of a state-space realization of a system G(z), a state-
space realization of its Hambo operator transform can be
determined. In this section it is shown that the very same
Sylvester equations can be used for the computation of a
state-space realization of the operator transform that is in-
duced by the generalized basis construction of (1).

The expressions for the state-space realization of the gener-
alized operator transform, denoted by G̃ are derived on the
basis of equation (7). Due to lack of space we cannot give a
complete derivation but an idea of the proof is given in the
appendix.

Proposition 8 Given a stable linear-time invariant system
G with minimal state-space realization (A,B,C,D), it holds,
with Mk, j as defined by (6), that

Mk, j = D̃k, j = k, (12)

Mk, j = C̃k

k−1

∏
i= j+1

ÃiB̃ j, j < k, (13)

with Ãk, B̃k,C̃k and D̃k satisfying

AB̃kAb,k +BCb,k = B̃k, (14)

Ab,kC̃kA+Bb,kC = C̃k, (15)

AT XoÃkA+CT (Cb,kC̃kA+Db,kC
)

= XoÃk, (16)

Ab,kD̃kAT
b,k +

(
Bb,kD+Ab,kC̃kB

)
BT

b,k = D̃k, (17)

where Xo represents the observability Gramian associ-
ated with the pair (A,C). Hence the operator transform
G̃, as defined in definition 3 has state-space realization(
Ãk, B̃k,C̃k,D̃k

)
.

An idea of the proof is given in the appendix. It can be
shown that equations (14) through (17) can be written as
one Sylvester equation [2]:[

AT CTCb,k

0 Ab,k

][
XoÃk XoB̃k

C̃k D̃k

][
A BBT

b,k
0 AT

b,k

]

+
[
CT Db,k

Bb,k

][
C DBT

b,k

]
=
[

XoÃk XoB̃k

C̃k D̃k

]
. (18)

Note that equation (18) can be simplified further by first ap-
plying an output balancing transformation to the state-space
realization of G(z) so that Xo = I. It should also be men-
tioned that a dual formulation of (18) involving the control-
lability Gramian associated with the pair (A,B) is also pos-
sible.

Equation (16) reveals that the state-space dimension of the
resulting realization of G̃ is equal to the state-space di-
mension of the realization (A,B,C,D) of G. It can be

shown that the Gramians associated with
(
Ãk, B̃k,C̃k,D̃k

)
are equal to the Gramians associated with (A,B,C,D) [2].
Since (A,B,C,D) is assumed to be minimal this, among
other things, implies that

(
Ãk, B̃k,C̃k,D̃k

)
is minimal as well,

which in turn implies that McMillan degree is invariant un-
der operator transformation.

In the special case of Hambo bases, the operator transform
G̃(λ) is a linear time-invariant system. In order to obtain a
minimal state-space realization of G̃(λ) equation (18) needs
to be solved only once, instead of for every k as in the gen-
eral case.

In the context of Hambo transform theory formula (18) has
been derived before in [3]. Also, for that specialized case,
a dual formula for the inverse operator transform was given.
In this paper we will not pursue the derivation of an inverse
expression for the generalized case (see [2] for a treatment
of that problem). Instead we will present one possible appli-
cation of the generalized operator transform theory, namely
for the computation of the expansion coefficients Lk.

Proposition 9 Suppose G ∈ H2− has a minimal state-space
realization (A,B,C). Then the expansion coefficients Lk of
the expansion of G in terms of the generalized orthonormal
basis functions as defined by (1) satisfy

Lk = C̃k

k−1

∏
j=1

Ã jB, (19)

with Ã j and C̃k obtained as the solutions to equations (16)
and (15).

A proof is given in the appendix.

This proposition shows that the coefficients can be com-
puted as the impulse response of a linear time-varying sys-
tem with state-space realization (Ãk,B,C̃k). In the Hambo
basis case it holds that Ãi = Ã j ∀i, j and then the coefficients
can be computed as the impulse response of a linear time-
invariant system, i.e. in that case one gets

Lk = C̃Ãk−1B.

The result of proposition 9 can be used to devise an efficient
recursive algorithm for the computation of expansion coef-
ficients for generalized orthonormal bases. At the k-th step
only the Sylvester equations for computation of Ãk and C̃k

need to be solved. Such an algorithm is of course very rem-
iniscent of similar recursive algorithms that were presented
in the literature, e.g. [1] for the generalized case and [6] for
the Hambo basis case.

6 Conclusion

In this paper a general transform theory was presented that
underlies expansions of stable linear time-invariant systems



in terms of general rational orthonormal basis functions.
The basis functions considered are generated by a cascade
network of internally balanced all-pass functions. This con-
struction closely resembles the Hambo basis construction of
[6] but it is more general in the sense that different all-pass
sections, in terms of choice and number of poles, can be in-
corporated in the cascade. It was shown that much of the
operator transform theory that underlies the Hambo basis
expansion can be extended to the generalized case. The no-
table difference is that while the Hambo operator transform
is again a linear time-invariant system, the generalized oper-
ator transform is a linear time-varying system. It was shown
how the generalized operator transform can be obtained by
means of a variable substitution in the Laurent expansion of
the system considered. Furthermore, expressions were pre-
sented by which, on the basis of a given minimal state-space
realization, a corresponding minimal state-space realization
of the operator transform can be computed. Finally, as an
application of the presented theory, it was shown how the
expansion coefficients of a given stable LTI system with re-
spect to the generalized basis can be computed as the im-
pulse response of a linear time-varying system that involves
the state-space matrices of the LTI system and its general-
ized operator transform.
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Appendix

Idea of the proof of proposition 8
The expression of Mk, j for j = k follows by straightforward
evaluation (7) with G(z) = D+∑∞

t=1 CAt−1B z−t and φk(z) =
∑∞

l=1 Al−1
b,k Bb,k z−l . The expression for Mk, j for j < k follows

similarly making use of the following lemmata.

Lemma 10 Given G(z) ∈ H2 with state-space realization
(A,B,C,D), it holds that�

φk(z),φj(z)Gb, j(1/z)G(z)
�

=
∞

∑
t=1

At−1
b,k Bb,kCAt−1

∞

∑
l=0

AlBCb, jA
l
b, j.

Lemma 11 Given G(z) ∈ H2 with a minimal state-
space realization (A,B,C,D), it holds for all j that
PH2− ∏k−1

i= j+1 Gb,i(1/z)G(z) has a state-space realization(
A,∏k−1

i= j+1 ÃiB,C
)

, with

Ãi =
∞

∑
l=0

Algb,il, (20)

and gb,il the impulse response coefficients of the all-pass
function Gb,i.

Equation (20) is equivalent to (16) in combination with (15).

Proof of proposition 9: The coefficients satisfy

Lk = �Vk(z),G(z)� =

�
φk(z)

k−1

∏
i=1

Gb,i(z),G(z)

�
=�

φk(z),
k−1

∏
i=1

Gb,i(1/z)G(z)

�
.

The right side term of the inner product can be replaced by
its projection onto H2− without changing the outcome. Us-
ing lemma 11 and taking the inner product one finds

Lk =
∞

∑
t=1

At−1
b,k BbCAt−1

k−1

∏
i=1

ÃiB = C̃k

k−1

∏
i=1

ÃiB.


