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Abstract: In dynamic network identification usually the assumption is made that there is a
full rank process noise affecting the network. For large scale networks with many variables this
assumption is not realistic as the noise could be generated by a limited number of sources. We
extend prediction error identification methods by allowing rank-reduced process noise in the
network. The developed method is based on a modification of the typical predictor expression
and an appropriate modification of the identification criterion. It is shown that this method
leads to consistent estimates, and we provide a method to reduce the variance of the estimates,
which is confirmed by simulations.
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1. INTRODUCTION

Systems which are identified from data are becoming more
complex, large scale, and can have an interconnected struc-
ture. Examples of these systems can be found in electrical
networks, systems biology, and distributed process con-
trol. A way of modeling interconnected systems that has
been gaining popularity in recent years is to treat the
dynamical system as a dynamic network, which includes
the structure in the dynamic model. In dynamic networks
the traditional input-output structure is replaced by nodes
which act as both inputs and outputs of dynamic modules.
Identification methods for these networks can be divided
into 3 categories: Identification of a particular module
in the network [Van den Hof et al., 2013, Gevers and
Bazanella, 2015, Materassi and Salapaka, 2015, Dankers
et al., 2015, Linder and Enqvist, 2017, Dankers et al.,
2016], identification of the full network dynamics [Haber
and Verhaegen, 2014, Weerts et al., 2016a], and identi-
fication of the interconnection structure of the network
[Hayden et al., 2016, Zorzi and Chiuso, 2015].

In the current paper we aim at consistently identifying
all dynamic modules in a network. A typical assumption
in the dynamic network identification setup is that there
are as many independent noise sources as nodes in the
network, i.e. the network is excited by a full rank noise
process. However, especially when the network consists of
many nodes, this assumption might be unrealistic. Rank-
reduced noise refers to the situation that there are fewer
independent white noise sources than node disturbance
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signals, and is generally not treated in prediction error
identification. Rank-reduced noise does appear in dynamic
factor analysis [Deistler et al., 2015] for autoregressive
models. In previous work we have allowed some nodes
in the network to be completely noise-free [Weerts et al.,
2016b,c], which is a special case of rank-reduced process
noise. We have also studied the situation of general rank-
reduced noise for an open-loop SIMO system [Van den Hof
et al., 2017]. It has been shown that appropriate treatment
of the rank-reduced noise can lead to significant variance
reduction. In [Everitt et al., 2015] an example was shown
where rank-reduced noise leads to a noise-free expression
from which parameters can be identified variance-free, but
the topic was not further elaborated in that paper.

In the current paper we are extending the results in
[Van den Hof et al., 2017] from an open-loop SIMO case
to dynamic networks of any structure. When modeling a
rank-reduced noise as a filtered white noise, restricting the
filter to be square and monic does not automatically lead
to a unique model. Consequently the predictor expression
and model set have to be chosen appropriately. Using an
appropriate parameterization for the prediction error we
can show that a standard identification criterion leads to
consistent estimates. Achieving minimum variance prop-
erties of the estimate is typically done by choosing an
optimal weight in the criterion. However due to the rank-
reduced situation constructing an optimal weight is not
straightforward. Based on a maximum likelihood reasoning
we define a constrained criterion that reduces variance,
or even results in a variance-free estimate. Then we show
that this constrained criterion can be relaxed to a weighted
least squares criterion with a particular weight.

The paper proceeds with definitions of a dynamic net-
work and rank-reduced noise (Section 2). Then predictors,
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model set and prediction errors are formulated (Section
3). Identification criteria are defined and consistency of
the estimate is shown (Section 4). Variance-free estimates
due to the constraint are discussed (Section 5). The results
are illustrated by simulations (Section 6).

2. DYNAMIC NETWORK DEFINITION

Following the basic setup of [Van den Hof et al., 2013], a
dynamic network is defined by L scalar internal variables
or nodes wj , j = 1, . . . , L, and K external variables rk,
k = 1, · · ·K. Each internal variable is described as:

wj(t) =

L∑
l=1

l 6=j

G0
jl(q)wl(t) +

K∑
k=1

R0
jk(q)rk(t) + vj(t) (1)

where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1);

• G0
jl is a stricly proper rational transfer function referred

to as a module in the network;
• R0

jk are proper rational transfer functions, being the

(j, k) elements of R0;
• rk are external variables that can directly be manipu-

lated by the user.

The full network is constructed by combining all nodes
w1

w2

...
wL

=


0 G0

12 · · · G0
1L

G0
21 0

. . .
...

...
. . .

. . . G0
L−1 L

G0
L1 · · ·G0

L L−1 0



w1

w2

...
wL

+R0


r1

r2
...
rK

+


v1

v2
...
vL

,
denoted by the matrix equation

w = G0w +R0r + v. (2)

The process noise is denoted vj , where the vector process
v = [v1 · · · vL]T is modeled as a stationary stochastic pro-
cess with rational spectral density, such that there exists a
white noise process e := [e1 · · · eL]T with covariance matrix
Λ0 ≥ 0 of rank p, such that

v(t) = H0
s (q)e(t)

with H0
s ∈ RL×L(z) a proper rational transfer function

matrix which is monic, stable, and stably invertible. The
process noise is called rank-reduced or singular if p < L,
and a node j is called noise-free if vj(t) = 0 for all t.

We assume that the nodes are ordered such that the first p
nodes are affected by a full rank process noise, i.e. v can be
modeled as v = [ vavb ] with va a p dimensional noise process
that is full rank, which is modeled as[

va
vb

]
= H0ea =

[
H0
a

H0
b

]
ea (3)

with H0 having all poles and zeros inside the unit cir-
cle, and H0

a monic, stable and stably invertible. Define
limz→∞H0

b =: Γ0. Using this noise model the network is
written as[

wa(t)
wb(t)

]
=

[
G0
aa(q) G0

ab(q)
G0
ba(q) G0

bb(q)

]
︸ ︷︷ ︸

G0(q)

[
wa(t)
wb(t)

]
+

+

[
R0
a(q)

R0
b(q)

]
︸ ︷︷ ︸
R0(q)

r(t) +

[
H0
a(q)

H0
b (q)

]
ea(t).

(4)

For a dynamic network as defined above, the resulting
identification problem then becomes to identify the topol-
ogy and/or the network dynamics (G0, R0, H0) on the
basis of measured node variables {wj , j = 1, · · ·L} and
external variables {rk, k = 1, · · ·K}. The topology is typi-
cally defined as the interconnection structure, specified by
the set of modules which are unequal to 0.

3. PREDICTOR AND PREDICTION ERROR

As a first step the one-step-ahead predictor that will be
used as a basis in our identification setup is defined.

Definition 1. The one-step-ahead predictor for node sig-
nals w(t) is defined as the conditional expectation

ŵ(t|t− 1) := Ē
{
w(t) | wt−1, rt

}
(5)

where wt−1 := {w(0), · · · , w(t−1)}, rt := {r(0), · · · , r(t)}.
2

All nodes are conditioned onto the same variables, such
that no distinction is made between inputs and outputs
and hence the nodes are treated symmetrically. The pre-
dictor can be represented by different expressions due to
the rank-reduced noise [Weerts et al., 2016b,c].

The noise process v can be modeled in different ways that
each have different properties. Three noise models that are
used in this paper are[

va
vb

]
=

[
H0
a

H0
b

]
︸ ︷︷ ︸
H0

ea =

[
H0
a 0

H̃0
b I

]
︸ ︷︷ ︸

H0
s

[
ea
eb

]
=

[
H0
a 0

0 I+H̃0
bΓ0†

]
︸ ︷︷ ︸

H0
d

[
ea
eb

]

(6)
where a white noise process eb has been added, such that
H0
s can be chosen monic, stable, and stably invertible with

H̃0
b := H0

b − Γ0. Alternatively H0
d allows for a (block)

diagonal model which can be useful in implementation,
see Section 6 for an example. The model H0

de only exists
whenever Γ0 has a left inverse Γ0†. In (6) we find that ea
and eb are strongly related through H0

b ea = H̃0
b ea + eb,

such that when we subtract H̃0
b ea from both sides we have

Γ0ea = eb. (7)

The covariance matrix of e = [ eaeb ] is the singular matrix

Λ0 =

[
Λa ΛaΓ0T

Γ0Λa Γ0ΛaΓ0T

]
=

[
I
Γ0

]
Λa
[
I Γ0T

]
. (8)

Modeling v as H0ea has the property that it is driven by
a full rank white noise of dimension p, but also that H0

is not square and does not have a unique inverse. Models
H0
s and H0

d are monic and invertible, but are driven by a
rank-reduced white noise of dimension L. For noise model
v = H0

s e the expression for the one-step-ahead predictor
can be given as:

Proposition 1. The one-step-ahead predictor is given by

ŵ(t|t−1) = w−(H0
s (q))−1

(
(I −G0(q))w −R0(q)r

)
. (9)

Proof: Can be found by following the predictor derivation
steps in [Weerts et al., 2015]. 2

Other predictor filters can be found by modeling v using
different expressions as in (6). Now that a predictor
expression has been obtained it can be parameterized using
a set of models.
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Definition 2. (network model set). A network model set
for a network of L nodes, and K external signals, is defined
as a set of parametrized transfer functions:

M := {[G(q, θ), H(q, θ), R(q, θ)], θ ∈ Θ},
with

G(z, θ) =

[
Gaa(z, θ) Gab(z, θ)
Gba(z, θ) Gbb(z, θ)

]
∈ RL×L(z),

H(z, θ) =

[
Ha(z, θ)
Hb(z, θ)

]
∈ RL×p(z),

R(z, θ) =

[
Ra(z, θ)
Rb(z, θ)

]
∈ RL×K(z)

while

• Gaa(z, θ), Gbb(z, θ) have zeros on the diagonal, G(z, θ)
is strictly proper, and (I−G(z, θ))−1 proper and stable;

• Ha(z, θ) ∈ Rp×p monic, Hb(z, θ) ∈ R(L−p)×p proper;
• Hs(z, θ) is defined with the same structure as H0

s , and
Ha and Hb are such that Hs(z, θ) is monic, proper,
stable and stably invertible;

• R(z, θ) is proper.

Additionally Γ(θ) := limz→∞Hb(z, θ), and H̃b(z, θ) :=
Hb(z, θ) − Γ(θ). One particular model in M is denoted
by M(θ) :=[G(q, θ), H(q, θ), R(q, θ)] . 2

Requiring (I − G(z, θ))−1 to be proper and stable is
induced by requiring all mappings from external and noise
signals to node signals to be proper and stable. Predictor
(9) will be parameterized using the model set to create the
parameterized predictor

ŵ(t|t− 1, θ) = w(t)+

− (Hs(q, θ))
−1 {(I −G(q, θ))w(t)−R(q, θ)r(t)} .

(10)

By choosing this particular form we guarantee that the
parameterized transfer functions Gba, Gbb, and Rb appear
in the parameterized predictor, as this is not necessarily
the case for other predictor expressions [Weerts et al.,
2016b]). The definition of the prediction error is

ε(t, θ) =

[
εa(t, θ)
εb(t, θ)

]
:=

[
wa(t)
wb(t)

]
−
[
ŵa(t|t− 1, θ)
ŵb(t|t− 1, θ)

]
. (11)

It must be noted that the prediction error does not take
the direct feedthrough of Hb(θ) into account, i.e. Γ(θ) is
not a part of the prediction error defined above.

4. IDENTIFICATION CRITERION

An estimate of the network is obtained by application
of an identification criterion. Typically the asymptotic
prediction error identification criterion for multivariable
estimators is [Ljung, 1999]

θ∗ = arg min
θ

Ē εT (t, θ) Q ε(t, θ) (12)

with Q strictly positive definite. One of the conditions
for consistent estimates is network identifiability, which
ensures that we can distinguish between different network
topologies and dynamics. For more details on network
identifiability and conditions under which a model set is
network identifiable see [Weerts et al., 2015, 2016c]. The
following definition is in line with those publications.

Definition 3. Model setM is globally network identifiable
at M(θ0) if for all M(θ1) ∈ M the following implication
holds

T (θ1) = T (θ0)⇒M(θ1) = M(θ0), (13)

where T (θ) := (I −G(θ))−1 [H(θ) R(θ)]. 2

A sufficient condition for network identifiability is when
every node has an independent excitation source coming
from either noise or external excitation. The consistency
result is then as follows.

Proposition 2. Consider a model set M and data gener-
ated by (2) with M0(q) := (G0, H0, R0). Let θ? be the
solution of the criterion (12), Then G(q, θ?) = G0(q),

Ha(q, θ?) = H0
a(q), H̃b(q, θ

?) = H̃0
b (q), and R(q, θ?) =

R0(q) provided that:

(1) The data generating system is in the model set, i.e.
∃θ0 ∈ Θ such that M(q, θ0) = M0(q), and

(2) external excitation r is persistently exciting of suffi-
ciently high order, and

(3) M is globally network identifiable at θ0.

Proof: Collected in the appendix. 2

Note that the prediction errors are not dependent on Γ(θ)
and therefore no estimate is made of Γ(θ). This is the

reason that H̃b is estimated consistently, rather than Hb.
Whenever we want to determine Γ0 in (7) then it can be
estimated using the obtained model by

Γ? =
(
Ē εb(θ

∗)εTa (θ∗)
)(
Ē εa(θ∗)εTa (θ∗)

)−1
. (14)

Since θ? is a consistent estimate we have ε(θ?) = e and

Γ? =
(
Ē ebe

T
a

)(
Ē eae

T
a

)−1
= Γ0ΛaΛ−1a = Γ0. (15)

Consistency of the estimate has been shown under fairly
general conditions. We can conclude that for a network
with rank-reduced noise a standard weighted least squares
criterion can be used for identification, in combination
with a modified noise model. Typically, in order to achieve
minimum variance, weight Q in the criterion must be the
inverse of the covariance matrix of e, but this is impossible
since this covariance matrix is singular. The criterion (12)
is based on εa and εb, without taking into account that
the innovation process satisfies the relation (7). Based on
a maximum likelihood reasoning we would like to include
(7) in the criterion similar to the approach in [Van den
Hof et al., 2017]. Therefore a constrained identification
criterion is defined which enforces Γεa = εb by including
it as a constraint. Let Qa > 0, then the criterion is

θ? = arg min
θ

Ē εTa (t, θ) Qa εa(t, θ)

under constraint: Γ(θ)εa(t, θ) = εb(t, θ) ∀t.
(16)

Note that Γ(θ) is parameterized and will be estimated from
data. Consistency (now including Γ0) is shown under the
same conditions as for the unconstrained criterion.

Proposition 3. Consider data generated by (2) with
(G0, H0, R0) = M0(q), and let θ? be the solution of the
criterion (16). Then M(q, θ?) = M0(q) provided that:

(1) The datagenerating system is in the model set, i.e.
∃θ0 ∈ Θ such that M(q, θ0) = M0(q), and

(2) external excitation r is persistently exciting of suffi-
ciently high order,

(3) M is globally network identifiable at θ0.

Proof: Collected in the appendix. 2
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The constraint naturally represents the presence of de-
pendencies in the innovation process. In comparison with
the unconstrained criterion (12) we can expect that the
variance of the estimate will be reduced.

When considering implementation of the constrained cri-
terion in practice then we must keep in mind that there is
the possibility that the constraint is not feasible. In case
the true network is not in the model set, or when initial
conditions are not taken into account, it is possible that no
model in the model set satisfies the constraint. An always
feasible relaxed version of the criterion can be constructed
by adding the constraint (in a quadratic version) as a
weighted penalty term to the optimization problem

θ? = arg min
θ

Ē
{
εTa (θ)Qaεa(θ) + λZ(θ)

}
, (17)

with Z(θ) = (Γ(θ)εa(t, θ)−εb(t, θ))T(Γ(θ)εa(t, θ)−εb(t, θ))
which can also be written as criterion (12) with a param-
eterized weighting matrix

Q(θ) =

[
Qa + λΓT (θ)Γ(θ) −λΓT (θ)

−λΓ(θ) λI

]
. (18)

For λ → ∞ the unconstrained criterion (17) is equivalent
to the constrained criterion. In cases where the constraint
(from (16)) is not feasible, λ → ∞ will likely not be the
optimal choice for λ. An analysis of appropriately choosing
λ in such a situation is deferred to future work.

5. VARIANCE-FREE ESTIMATION

Improving the variance of the estimate is the main reason
for choosing the constrained criterion over the uncon-
strained criterion. In [Everitt et al., 2015] the following
basic example has been shown which allows variance-free
estimation of parameters. Consider this system without
dynamics

y1(t) = θ01u1(t) + e(t), y2(t) = θ02u2(t) + e(t). (19)

By using the equality relation of the noise in both equa-
tions, we can substitute e = y2−θ02u2 into the y1 equation
to obtain y1(t)− θ01u1(t) = y2(t)− θ02u2(t). This equation
can be parameterized with θ1 and θ2 such that

θ01u1(t) + e(t)− θ1u1(t) = θ02u2(t) + e(t)− θ2u2(t). (20)

There is no contribution of e(t) and what is left is a
variance-free estimation problem.

In the constrained criterion (16), the parameter values are
determined through the constraint Γεa = εb. Another way
to write the constraint is as a filter driven by a full rank
process

[Γ(θ) −I]X(θ)

[
ea(t)
r(t)

]
= 0 ∀t (21)

for some filter X(θ), which implies that (provided r is
persistently exciting of sufficiently high order)

[Γ(θ) −I]X(θ) = 0. (22)

Under particular conditions only one model inM satisfies
(22), leading to a variance-free estimate.

As an example for variance-free estimation we use the
network S1 (Figure 1)[
w1(t)
w2(t)

]
=

[
0 G0

12(q)
G0

21(q) 0

] [
w1(t)
w2(t)

]
+

[
r1(t)
r2(t)

]
+ v(t) (23)

G0
21

w1

G0
12

w2

r1

r2

H0
2

H0
1

e1

Fig. 1. Dynamic network S1 with a rank-reduced noise.

with v(t) =
[
H0

1 (q)

H0
2 (q)

]
e1 where H0

2 (q) = 1+H̃0
2 (q) such that

Γ0 = 1. For this network wa could be either w1 or w2, but
we choose wa = w1.

Proposition 4. Consider a 2 node network (L = 2) with
rank 1 noise (p = 1) and 2 external excitations (R = I).
Let M be a model set with S ∈ M and R(θ) = I. Then
the constraint

Γ(θ)εa(t, θ) = εb(t, θ) ∀t ⇒ G(q, θ) = G0(q). (24)

Proof: Enclosed in the appendix. 2

A variance-free estimate is obtained since the implication
holds for every realization of data. The proposition shows
that in case of network S1 only a constraint, and no
minimization criterion is needed to obtain a consistent
variance-free estimate of G. Weight Q(θ) from (18) can
in that case be approximated with

lim
λ→∞

Q(θ) ∝ Q∞(θ) =

[
ΓT (θ)Γ(θ) −ΓT (θ)
−Γ(θ) I

]
(25)

which is a singular matrix. It must be noted that Propo-
sition 4 can not be generalized to any network. Only in
special cases can a variance-free estimate be obtained.

6. SIMULATIONS

In order to illustrate the theoretical results obtained in
the previous sections a simulation example is included.
Network S1 will be used as data generating system. The
noise of the network can be modeled with diagonal form

v(t) =

[
H1(q) 0

0 H2(q)

] [
e1
e1

]
. (26)

A diagonal noise model is favorable over a non-diagonal
noise model for optimization. For simulation the follow-
ing systems will be used: G0

12(q) = 0.7q−1 + 0.3q−2,
G0

21(q) = 0.9q−1 + −0.5q−2, H0
1 (q) = 1

1+0.3q−1 , and

H0
2 (q) = 1

1−0.4q−1 . r1,r2 and e1 are realizations of normally

distributed white noise, with σ2
e = 1, σ2

ri = 0.01.

A network model set will be used with G of FIR structure
G12(q, θ) = b121 q

−1 + b122 q
−1, G21(q, θ) = b211 q

−1 + b212 q
−1,

H of the form (26) where the inverse has FIR structure
H−11 (q, θ) = 1 + d11q

−1, H−12 (q, θ) = 1 + d21q
−1 such that

Γ(θ) = 1, and R(q, θ) = I. In total 6 parameters must
be estimated. M satisfies the conditions of Proposition
4, so the constrained criterion can make a variance-free
estimation of G. Identification criterion (12) will be used
with weights QI = I, Qλ =

[
1+λ −λ
−λ λ

]
for λ = 10, 103, and

Q∞ =
[

1 −1
−1 1

]
. A bilinear optimization problem results

from the used model/criterion. The criterion is optimized
using Matlab’s function fmincon() and initialized with
parameters equal to 0.
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100 different realizations of 1000 datapoints are used for
100 identifications. The resulting parameter estimates are
plotted in Figure 2 as boxplots. The criterion with Q = I

QI Q10 Q103 Q∞

0.66

0.68

0.7

0.72

b
12 1

QI Q10 Q103 Q∞

0.26

0.28

0.3

0.32

0.34

b
12 2

QI Q10 Q103 Q∞

0.85

0.9

0.95

b
21 1

QI Q10 Q103 Q∞

-0.55

-0.5

-0.45
b

21 2

QI Q10 Q103 Q∞

0.25

0.3

0.35

d
1 1

QI Q10 Q103 Q∞

-0.5

-0.4

-0.3

d
2 1

Fig. 2. Resulting parameter estimates over 100 realizations
of data for different weights.

as weight shows that treating noises as being completely
independent leads to parameter estimates close to the true
value. Using Qλ leads to smaller variance than QI for
increasing λ. But most remarkable is the weight Q∞ which
leads to parameter estimates which deviate from the true
value by an error with order of magniture 10−5, which is
the error tolerance of the solver. So the weight Q∞ leads to
unbiased variance-free estimates for this example system.

7. CONCLUSIONS

In this paper we have extended prediction error identifi-
cation in dynamic networks to handle rank-reduced noise.
It has been shown that a typical weighted least squares
criterion leads to consistent estimates when the noise
model is chosen appropriately. A constrained criterion that
explicitly accounts for the rank-reduced nature of the noise
will also lead to consistent estimates. Additionally the
constrained criterion reduces variance, and in particular
in certain situations can result in a variance-free estimate.

Appendix A. PROOF OF PROPOSITION 2

The proof consists of 2 steps. First it will be shown that θ0
is a minimum of the criterion, after which it will be shown
that M(q, θ0) is the only minimum.

The multivariable prediction error is

ε(θ) = H−1s (θ)
(
I −G(θ)

)
w −H−1s (θ)R(θ)r, (A.1)

which can be expanded as a function of just e and r

ε(θ)=H−1s (θ)
(
I −G(θ)

)
(I −G0)−1

(
H0
s e+R0r

)
+

−H−1s (θ)R(θ)r.
(A.2)

The innovation e can be separated to create 3 terms on
the right hand side that are mutually uncorrelated

ε(θ) =

(
H−1

s (θ)
(
I −G(θ)

)
(I −G0)−1H0

s − I

)
e+

+ e+H−1
s (θ)

((
I −G(θ)

)
(I −G0)−1R0 −R(θ)

)
r.

(A.3)

The first term has a strictly proper filter, hence it is
uncorrelated to the second term and the 3 terms are
uncorrelated. Since the 3 terms are uncorrelated the power
of each term can be minimized individually. For the
parameter θ0 the first and last terms are 0, and the other
term does not contain parameters, hence the minimum is
reached.

In the second step it is shown that any θ1 which reaches
the minimum of the cost function must result in the same
dynamic model as θ0. The cost of the criterion for a
particular parameter θ will be denoted with V (θ), so the
minimum cost satisfies V (θ0) = V (θ1). It can be shown
that [Ljung, 1999]

V (θ0)− V (θ1) = Ē
(
ε(θ0)− ε(θ1)

)T
Q
(
ε(θ0)− ε(θ1)

)
= 0

(A.4)
where ε can be written as a function of ea and r (A.2)

ε(θ) = H−1s (θ)
(

(I −G(θ))w −R(θ)r
)

(A.5)

with w = (I − G0)−1
[
H0 R0

] [ea
r

]
. Define shorthand

notation ε(θ) = α(θ) [ ear ] with

α(θ) =H−1s (θ)(I −G(θ))(I −G0)−1
[
H0 R0

]
+

−H−1s (θ1) [0 R(θ)] .
(A.6)

Then (A.4) can be written as

Ē
(

(α(θ0)− α(θ1))

[
ea
r

])T
Q
(

(α(θ0)− α(θ1))

[
ea
r

])
= 0

(A.7)
which implies that α(θ0) = α(θ1) since [ ear ] is a full
rank process (provided that r is persistently exciting of
sufficiently high order) and Q is strictly positive definite.
The expression for α(θ0) can be simplified since θ0 is equal
to the real network

α(θ0) = H−1s (θ0)
[
H0 0

]
=

[
I 0
Γ0 0

]
(A.8)

such that the equation for α reduces to[
I 0

Γ0 0

]
= α(θ1). (A.9)

When the above equation is pre-multiplied with (I −
G(θ1))−1Hs(θ1) then we obtain, when using (A.6):

(I −G(θ1))−1
[

Ha(θ1) 0

H̃b(θ) + Γ0 0

]
=

(I −G0)−1
[
H0 R0

]
− (I −G(θ1))−1 [0 R(θ1)] .

(A.10)

Note that the above equation contains Γ0 at the left hand
side. Then we can write T (θ1) = T (θ0) with

T (θ) = (I −G(θ))−1
[

Ha(θ) Ra(θ)

H̃b(θ) + Γ0 Rb(θ)

]
. (A.11)

The model set which corresponds to the above situation
with fixed Γ0 is defined as

M̃ :=
{
M ∈M

∣∣ Γ(θ) = Γ0
}
⊆M.

M̃ is globally network identifiable at θ0 whenM is globally
network identifiable at θ0 since it is a subset of M. Since
M̃ is globally network identifiable at θ0 we then have

T (q, θ0) = T (q, θ1)⇒


G(q, θ?) = G0(q)
Ha(q, θ?) = H0

a(q)

H̃b(q, θ
?) = H̃0

b (q)
R(q, θ?) = R0(q).

(A.12)
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Appendix B. PROOF OF PROPOSITION 3

Using the proof of Proposition 2 it is easy to show that θ0
is a minimum of the cost function. Moreover θ0 satisfies
the constraint, hence it is a solution of the criterion. Next
we show that it is a unique solution. Any model θ1 in the
minimum of the cost function has εa(t, θ1) = εa(t, θ0) =
ea(t), or expanded

ea = H−1a (θ1)

{
[I −Gaa(θ1) −Gab(θ1)]

[
wa
wb

]
−Ra(θ1)r

}
.

(B.1)
Then the constraint can be written as Γ(θ1)ea(t) =
εb(t, θ1), or expanded

Γ(θ1)ea=−H̃b(θ1)ea + [−Gba(θ1) I−Gbb(θ1)]
[
wa
wb

]
−Rb(θ1)r.

(B.2)

By bringing H̃bea to the left-hand side, (B.1) and (B.2)
can be stacked into one matrix[

Ha(θ)
Hb(θ)

]
ea = (I −G(θ))w −R(θ)r. (B.3)

w can be replaced by w = T (θ0) [ ear ]. Then with some
algebra we obtain

T (θ1) [ ear ] = T (θ0) [ ear ] . (B.4)

Since the equation is driven by a full rank process provided
that r is persistently exciting of sufficiently high order we
obtain T (θ1) = T (θ0). and a consistent estimate under the
condition that M is globally network identifiable at θ0.

Appendix C. PROOF OF PROPOSITION 4

For the considered model the constraint can be written as

0 = [Γ(θ) −I]H−1s (θ)
(
(I −G(θ))w − Ir

)
. (C.1)

In this equation w can be replaced by w = (I −
G0)−1(H0e + Ir), such that we have two equations (pro-
vided r is persistently exciting of sufficiently high order)

0 = [Γ(θ) −I]H−1s (θ)(I −G(θ))(I −G0)−1H0, (C.2)

0 = [Γ(θ) −I]H−1s (θ)
(

(I −G(θ))(I −G0)−1−I
)
. (C.3)

When (C.3) is post-multiplied with H0 and (C.2) is
subtracted then 0 = [Γ(θ) −I]H−1s (θ)H0 is obtained,
which leads to

Hb(θ)H
−1
a (θ) = H0

b (H0
a)−1. (C.4)

Taking only the feedthrough terms

lim
z→∞

Hb(z, θ)H
−1
a (z, θ) = lim

z→∞
H0
b (z)(H0

a)−1(z) (C.5)

shows due to Ha being monic that Γ(θ) = Γ0. Then when
(C.3) is postmultiplied with (I −G0) we obtain

0 =
[
Hb(θ)H

−1
a (θ) −I

]
(G0 −G(θ)). (C.6)

Since we have a 2 node network this implies

0 = G0
21 −G21(θ),

0 = Hb(θ)H
−1
a (θ)(G0

12 −G12(θ)).

For this network Γ(θ) = Γ0 = 1, so Hb(θ)H
−1
a (θ) is some

nonzero transfer function, hence we have G0 = G(θ).
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