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Abstract— When identifying all modules in a dynamic net-
work it is natural to treat all node variables in a symmetric
way, i.e. not having pre-assigned roles of ’inputs’ and ’outputs’.
In a prediction error setting this implies that every node signal
is predicted on the basis of all other nodes. A usual restriction
in direct and joint-io methods for dynamic network and closed-
loop identification is the need for a delay to be present in every
loop (absence of algebraic loops). It is shown that the classical
one-step-ahead predictor that incorporates direct feedthrough
terms in models can not be used in a dynamic network
setting. It has to be replaced by a network predictor, for
which consistency results are shown when applied in a direct
identification method. The result is a one-stage direct/joint-io
method that can handle the presence of algebraic loops. It is
illustrated that the identified models have improved variance
properties over instrumental variable estimation methods.

I. INTRODUCTION

In most prediction error identification schemes the roles of
’input’ and ’output’ are pre-assigned to the data. Typically
outputs are predicted by models (predictors) while inputs
are not. The inputs typically represent external excitation
variables that are not influenced by the system. On the
other hand in closed-loop systems and dynamic networks
the variables that appear as input to some dynamic module
can be generated as output of another dynamic module. A
clear distinction between inputs and outputs can no longer
be made, and therefore these variables will be called nodes.

In this paper we want to detect the topology of a network,
i.e. identify the network structure and all the dynamic mod-
ules. It seems appropriate to consider all node variables in a
symmetric way, i.e. all node variables will be predicted on
the basis of all other node variables. For a classical closed-
loop system this means that the dynamics of both plant
and controller are identified, and the outputs of both plant
and controller are predicted. A closed-loop identification
method that follows this symmetric approach is the Joint-
IO method [1], [2], [3], in which the plant/module dynamics
are identified in a two-stage procedure.

Joint-IO methods (and other closed-loop identification
methods like the direct method) typically have the require-
ment that the closed-loop does not operate in the presence
of an algebraic loop [1], i.e. limz→∞ G(z)C(z) = 0. The
conditions are also studied (and slightly relaxed) in [4].

There are several situations in which it is restrictive to
discard algebraic loops. This is e.g. the case when con-
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sidering continuous time systems approximated by discrete
time models. Secondly the particular structure of a dynamic
network can originate from a structured physical system,
where physical variables interact with each other, without the
direct presence of a computer-controlled (digital) operation.
Direct couplings between physical variables is then a natural
situation to take into account, and an assumption on absence
of algebraic loops is too restrictive.

It is our goal to formulate an identification method that
results in consistent estimates of systems operating in the
presence of an algebraic loop. Some methods that can handle
the presence of algebraic loops are the IV [5], [6] and Two-
Stage methods [7]. For dynamic network versions of these
methods see [8], [9]. In both these methods the internal
signals are ’projected’ onto an external signal which is not
affected by noise. However the price is that any excitation
coming from noise is not used, and therefore the estimator
does not have minimum variance properties. External ex-
citation must be available for these methods to work, and
this excitation must be of ’sufficient’ power and order of
persistence of excitation.

The classical predictor that deals with direct feedthrough
terms in models appears to be unsuitable for application in
situations where algebraic loops are present. Therefore we
need to define a new predictor. This new predictor avoids
the algebraic loop problem by making explicit use of external
excitation, but only for estimation of the direct feedthrough
terms of the modules. It is shown that the direct identification
scheme with our new predictor leads to consistent estimates
of the network even in the presence of an algebraic loop,
and actually can be interpreted as a generalized single-stage
joint-io method.

First the general dynamic network will be defined (Section
II). Then the problems with the traditional predictor are
investigated (Section III-A), and the new predictor is formu-
lated (Section III-B). An identification method is specified
based on the parametrized new predictor (Section IV), and
consistency of this method is proven (Section V). A discus-
sion on properties of the new method is provided (Section
VI), after which results are illustrated by simulations (Section
VII), and conclusions are drawn (Section VIII).

II. SYSTEM DEFINITION

A general dynamic network setup [8] will be used to
formulate the results. The dynamic network consists of L
internal variables or nodes w1(t), · · · ,wL(t). We do not
distinguish between ’inputs’ and ’outputs’, all nodes are
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treated symmetrically. The network is defined by the equation

w(t) = G(q)w(t)+R(q)r(t)+H(q)e(t), (1)

where
• nodes w(t) ∈ RL;
• q is the forward shift operator: qw(t) = w(t +1);
• r(t)∈RK , are K quasi-stationary external variables that

can directly be manipulated by the user;
• G∈RL×L(z), R∈RL×K(z), are proper rational transfer

function matrices;
• H(q)e(t) is the process noise affecting the nodes, it is

modeled as a stationary stochastic process with rational
spectral density;

• e(t)∈RL, a stationary white noise process with diagonal
covariance matrix Γ > 0.

The diagonal of G(q) is 0, i.e. nodes are not directly
connected to themselves. H ∈ RL×L(z) is monic, stable and
stably invertible.

In this paper we are modeling the relations between
measured variables only. When actually the network contains
some unmeasured (hidden) nodes, then we are identifying
the so-called immersed network [9], [10]. Some methods to
identify the hidden nodes are available in literature, e.g. [11].

A transfer function Gi j has a direct term or feedthrough
denoted

G∞
i j := lim

z→∞
Gi j(z).

As a shorthand notation we use G∞ := limz→∞ G(z) to indi-
cate the direct terms of the whole network. When a transfer
function Gi j has a delay then G∞

i j = 0. It is possible that
there are algebraic loops in the network. A dynamic network
operates in the presence of an algebraic loop if there exists
a sequence n1, · · · ,nk such that

G∞
n1n2

G∞
n2n3
· · ·G∞

nkn1
6= 0.

Even though algebraic loops are present, we do require
that the network is well-posed. For a discussion on well-
posedness see [9]. Well-posedness implies that (I −G(q))
and (I−G∞) have a proper inverse.

As an illustrative example system named S1 we consider
the symmetric closed-loop defined in Figure 1. This system
is a network consisting of the variables w(t) =

[
w1(t)
w2(t)

]
, r(t) =[

r1(t)
r2(t)

]
, e(t) =

[
e1(t)
e2(t)

]
, and the filters

G(q) =
[

0 G12(q)
G21(q) 0

]
,

H(q) =
[

H1(q) 0
0 H2(q)

]
,

R(q) =
[

1 0
0 1

]
.

This closed-loop system is similar to the classical loop used
in the Joint-IO method [1], however now additional external
excitations r1,r2 are present. Well-posedness for this loop
implies that the direct terms in the loop satisfy

G∞
12G∞

21 6= 1. (2)

This example will be used as a base-case for developing our
approach to the general problem.

G21+
w1

+G12
w2

r1

e2

r2

H2

H1

e1

Fig. 1. Symmetrical closed-loop system S1.

III. PREDICTORS
A. Traditional predictor

When there is a direct feedthrough term present in G21(q)
the traditional one-step-ahead predictor for w2 ([12]) is

w̆2(t|t−1) := E{w2(t) | wt−1
2 ,wt

1} (3)

where wt
i refers to the past of wi up until time moment t. In

an open-loop situation (G12 = 0) or in absence of algebraic
loops, this predictor is given by

w̆2(t|t−1) = H−1
2 (q)G21(q)w1(t)+

(
1−H−1

2 (q)
)

w2(t). (4)

Note that through the direct feedthrough term G∞
21, the

predictor will be dependent/conditioned on w1(t). If we apply
this predictor in a situation where w1(t) is correlated with
w2(t) through a feedthrough term G∞

12, the predictor (3) is not
given by (4) anymore, and does not have a simple explicit
expression in terms of just module dynamics G12 and G21.

We can conclude that the traditional predictor for w2
works fine in open-loop (G12 = 0) and closed-loop with delay
(G∞

12G∞
21 = 0). When a loop does not contain delay, then the

expression beloning to (3) becomes more complicated than
(4) and less attractive to use.

B. Network predictor

A new predictor will be defined to replace the traditional
predictor. This new predictor has an expression which can
be used for identification purposes in a direct method even
when there are algebraic loops in the network. The predictor
will be multivariable and fully symmetric to take the nature
of the dynamic network into account.

Definition 1 (Network predictor): The network predictor
is defined as the conditional expectation

ŵ(t|t−1) := E
{

w(t)
∣∣wt−1,rt} . � (5)

The predictor is conditioned with respect to the delayed
values wt−1. This seems strange for a network which contains
transfer functions without delay since it seems like we
discard useful information that is present in w(t). But by
leaving out w(t) we are sure that e(t) is not part of the
predictor. Additional conditioning onto rt ensures that we do
use information on the feedthrough terms of the modules.

Proposition 1: The network predictor (5) is given by
(omitting arguments q, t)

ŵ(t|t−1) =
(

I− (I−G∞)−1H−1(I−G)
)

w+

+(I−G∞)−1H−1Rr. �
(6)
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The proof of the proposition is included in appendix A.
Predictor expression ŵ has some interesting properties.

Note that through the factor (I − G∞)−1, the filter (I −
G∞)−1H−1(I−G) becomes monic, which implies that the
predictor filter of w is strictly proper. This conforms to the
conditioning on wt−1 that is used in the predictor definition
(5).

The innovation related to the network predictor ŵ is

ê(t) := w(t)− ŵ(t|t−1), (7)

which is equal to a scaled version of the driving noise process

ê(t) = (I−G∞)−1e(t). (8)

Due to the scaling of e(t) the innovation is correlated over
the channels, but it is still a white noise.

IV. IDENTIFICATION SETUP
An identification setup will be introduced which has sim-

ilar structure as the direct method for multivariable systems
[5]. The difference with the direct method is the definition
of the predictor. First the network predictor ŵ will be
parameterized, and then an identification criterion is defined.

Definition 2: [13] A network model set is defined as a set
of parametrized transfer functions:

M := {G(q,θ), H(q,θ), R(q,θ), θ ∈Θ}

with G ∈RL×L(z), with zeros on the diagonal and all entries
proper, H ∈ RL×L(z), monic, diagonal, stable and stably
invertible, R ∈ RL×K(z), all entries proper. �
Particular models will be indicated with M(θ) :=
{G(q,θ),H(q,θ),R(q,θ)}. The direct terms of the model
are part of the dynamics of G(q,θ) and are G∞(θ) :=
limz→∞ G(z,θ).

With the use of the parameterized model set the parame-
terized predictor is defined as

ŵ(t|t−1;θ) :=Ww(q,θ)w(t)+Wr(q,θ)r(t) (9)

with

Ww(q,θ) = I−(I−G∞(θ))−1H−1(q,θ)(I−G(q,θ))

Wr(q,θ) = (I−G∞(θ))−1H−1(q,θ)R(q,θ). (10)

The prediction error is defined as ε̂(t,θ) := w(t)− ŵ(t|t −
1;θ) such that we obtain

ε̂(t,θ) = (I−G∞(θ))−1
ε(t,θ), (11)

with

ε(t,θ) = H−1(q,θ)
(
(I−G(q,θ))w(t)−R(q,θ)r(t)

)
. (12)

In [13] ε was used as the prediction error. With this new
predictor we use ε̂ , being a scaled version of ε .

As identification criterion a weighted least squares crite-
rion will be applied:

θ̂N = argmin
θ

VN(θ), (13a)

VN(θ) =
1
N

N

∑
t=1

ε̂
T (t,θ)Λ−1

ε̂(t,θ), (13b)

where the matrix Λ > 0 is chosen by the user. If the ’true
system’ is in the model set and indicated by θ0, then for
θ = θ0 the prediction error is a white noise. More precisely,
for θ = θ0 the prediction error is the innovation

ε̂(t,θ0) = ê(t) = (I−G∞)
−1e(t). (14)

In order to reduce the variance of the estimator an appropriate
choice for Λ is the covariance matrix of ê(t) being given
by (I−G∞)

−1Γ(I−G∞)
−T . This will be further commented

upon in section VI.

V. CONSISTENCY

In this section we will show that the estimator M(θ̂N)
produces consistent estimates.

One of the conditions for consistency is that the data
must contain sufficient information on the system. We define
informative data in line with [12].

Definition 3 (Informative data): A quasi-stationary data
sequence is called informative with respect to the model set
M if for any two θ1,θ2 ∈Θ

Ē
(

ε̂(t,θ1)− ε̂(t,θ2)
)T

Λ
−1
(

ε̂(t,θ1)− ε̂(t,θ2)
)
= 0 (15)

implies that Ŵw(eiω ,θ1) = Ŵw(eiω ,θ2) and Ŵr(eiω ,θ1) =
Ŵr(eiω ,θ2) for almost all ω . �

In classical direct and joint-io methods the presence of
external signals r is not strictly necessary for arriving at
informative data. In our new setup the presence of signals
r is necessary to be informative in view of the presence of
direct feedthrough terms in the models.

The next property that we need is that the identification
criterion has a unique solution. To this end we use a property,
denoted as global network identifiability, to reflect the unique
relationship between predictor filters and model structure.

Definition 4: [13] A network model set is globally net-
work identifiable if for all θ1,θ2 ∈Θ the following implica-
tion holds

Ww(q,θ1) =Ww(q,θ2)
Wr(q,θ1) =Wr(q,θ2)

}
⇒M(θ1) = M(θ2). � (16)

This is a definition on dynamics level, not on parameter
level. A precise investigation of network identifiability is
outside the scope of this paper, for a thorough discussion
see [13], [14], [15]. A sufficient condition for global network
identifiability is that R(q,θ) = I

The final step in this section is to prove consistency of the
estimator M(θ̂N).

Theorem 1: M(θ̂N) is a consistent estimate if all of the
following conditions are satisfied:

1) The network system is in the model set, i.e. ∃ θ0 ∈
Θ such that G(q,θ0) = G(q), H(q,θ0) = H(q), and
R(q,θ0) = R(q);

2) The data is informative with respect to M ;
3) The model set M is globally network identifiable. �

The proof of the theorem is included in appendix B
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VI. DISCUSSION

We will now further interpret and comment on the results
that have been derived.

The identification setup that we have chosen is basically
a direct identification method that apparently can estimate
a dynamic network / closed-loop system while algebraic
loops are present. The basic step that we have made in
this respect is to exclude direct feedthrough terms in the
predictor models from the node variables w, but we include
the direct feedthrough terms in the predictor models from
the external signals r. As a result, when algebraic loops
are present, the presence of an external excitation signal is
necessary. However different from the alternative projection
methods (IV, two-stage), we keep on using the full signals w
as predictor inputs, rather than projecting them onto external
signals first. This has two consequences:
• Firstly, the requirements on the persistence of excitation

properties of the external signals will be limited, as the
r signals only serve to identify the direct feedthrough
terms;

• Secondly, the variance of the estimated models will be
driven by the signal power of the w signals, rather than
by their projections onto r, thus substantially improving
the variance of the estimate.

Since external excitation is used for identification of the
direct terms, one could wonder whether it would be necessary
to have external excitation signals on all node variables
when only a few loops are algebraic. This question can be
answered by the conditions under which the model set is
network identifiable. For an in-depth reasoning on network
identifiability see [13], [15]. In short we can say that for the
symmetric closed-loop system S1 we need r j to be present
when G∞

i j(θ) 6= 0. This implies that two external excitations
are necessary when the closed-loop contains an algebraic
loop.

One could wonder whether it would be necessary in
dynamic network identification to have external excitation
signals on all node variables, and to apply the presented
network predictor to all node variables. However, without
addressing this problem in detail now, it seems feasible to use
the traditional predictor for predicting those node variables
that are a priori known to have no algebraic loops, while
applying the new network predictor for the variables that
can be part of an algebraic loop.

Concerning the asymptotic variance of the estimate, it
can be stated that minimum variance is achieved when the
covariance of the innovations process is used as weighting Λ

in the identification criterion. According to [12] the resulting
asymptotic (minimum) variance is equal to the asymptotic
variance of the maximum likelihood estimator under Gaus-
sian assumptions, resulting in the criterion

VN(θ) =
1
N

det
N

∑
t=1

ε̂(t,θ)ε̂T (t,θ). (17)

The method introduced in this paper can be linked to the
classical results for MIMO identification [12], as the network

predictor (5) is actually the same as the MIMO predictor
defined in [12]. Network identification can be interpreted as
MIMO identification with a structured (grey box) model.

VII. SIMULATION EXAMPLE

The direct identification method with network predictor ŵ
will be validated by numerical simulations. A comparison to
the extended instrumental variable (EIV) method [6] is made
since it is one of the methods that can deal with algebraic
loops. S1 is used to generate data, and has the following
dynamical components:

G12(q) = 0.3+0.7q−1 +0.3q−2,

G21(q) = 0.15+0.9q−1−0.5q−2,

H1(q) = 1,
H2(q) = 1,

R(q) = I.

Low order FIR filters are used to keep numerical computation
relatively easy.

In total two sets of experiments are performed. Each set
of experiments is performed on 1000 random realizations of
data. The external excitation is known but generated as nor-
mally distributed white noise ri =N (0,σ2

r ), and randomized
in each experiment. The first set of experiments is performed
with the power of the noise (ei =N (0,σ2

e )), and the power
of the external excitation equal, σ2

e = σ2
r = 1. In the second

set of experiments the external excitation has less power to
illustrate the benefit of the additional excitation coming from
the noise, σ2

e = 1,σ2
r = 0.01. For all experiments 1000 data

samples are drawn, and initial conditions are 0.
For the identification methods the following setup is used.

The prediction error ε̂(t,θ) is considered with the criterion
defined in (13), and the model set is chosen to contain the
network system. As weighting matrix the covariance of the
innovation will be used

Λ = Eê0(t)êT
0 (t).

Here we use the true covariance matrix to obtain the optimal
weighting for the least squares criterion. In case one does
not know the true covariance matrix, then a determinant
minimization criterion (17) can be used, leading to the
same asymptotic variance [12]. The cost function (13) is
minimized in Matlab by the function fmincon().

Evaluation of estimates is performed in two ways. First
the sample mean of the estimated parameters over the 1000
experiments is calculated. For the first set of experiments
we obtain the sample means shown in Figure 2. This
figure shows that on average both methods produce unbiased
estimates of the true parameters. In order to indicate the
variance the Best Fit Ratio (BFR) of all these estimated
systems is calculated on a validation data set. The Best Fit
Ratio is calculated in the following way

BFR =
1
2

2

∑
i=1

(
1− ‖wi(t)− ŵi(t|t−1, θ̂N)‖2

‖wi(t)−mean(wi(t))‖2

)
. (18)
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Fig. 2. Sample mean for each parameter over 1000 experiments with
σ2

r = σ2
e . The black horizontal lines indicate the parameter value of the

true system, the purple (left) bar indicates the mean value of estimated
parameters using the network predictor, the yellow (right) bar indicates the
mean value of estimated parameters using the EIV method.
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Fig. 3. BFR over 1000 experiments with σ2
r =σ2

e . The horizontal black line
is the BFR obtained by the true system on the validation data, the left box
indicates the BFR for the estimated network predictors on a validation data
set, the right box indicates the BFR for the EIV method on the validation
data set.

Best Fit Ratios depend on the noise level of the true
system, therefore the BFR of the true system is plotted as a
comparison. Best Fit Ratios for the first set of experiments
are plotted in Figure 3. In this figure we can see that the
network predictor obtains a better fit ratio when compared to
the IV when compared over 1000 experiments. The variance
of the network predictor is lower than that of the EIV as
expected by the amount of excitation used by the estimator.

In the second set of experiments the power of the external
excitation is lowered by a factor 100 (σ2

r = 0.01). Again the
sample means of the parameter estimates are plotted, see
Figure 4. In this figure it can be seen that on average the IV
estimate over 1000 experiments does not produce the true
parameter values. It is an unbiased estimate, but the external
excitation did not have enough power to provide a decent
estimation. In contrast the network predictor produces on
average still the true parameter values with this low external
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Fig. 4. Sample mean for each parameter over 1000 experiments with
σ2

r = 0.01σ2
e . The black horizontal lines indicate the parameter value of

the true system, the purple (left) bar indicates the mean value of estimated
parameters using the network predictor, the yellow (right) bar indicates the
mean value of estimated parameters using the EIV method.
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Fig. 5. BFR over 1000 experiments with σ2
r = 0.01σ2

e . The horizontal
black line is the BFR obtained by the true system on the validation data,
the left box indicates the BFR for the estimated network predictors on a
validation data set, the right box indicates the BFR for the EIV method on
the validation data set

excitation. A similar mechanic is seen in the BFR plot in
Figure 5. The BFR of the network predictor has small
variance, all experiments result in a model that is rougly
as good as the true system. The BFR of the IV shows that
there is a large variance on the estimate, and that many of
the estimated models are much worse than the true system.
In the case that external excitation is of low power, the IV
is significantly outperformed by the network predictor.

VIII. CONCLUSIONS

An identification method has been presented that can
consistently identify all modules in a dynamic network while
allowing the presence of algebraic loops. The presented
method combines a fully symmetric treatment of node vari-
ables, as present in classical joint-io methods, with a one-
stage algorithm as present in direct identification methods.
External excitation signals are necessary in case algebraic
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loops are present. The presented method makes maximum
use of module excitation through noisy signals in the loops,
thereby outperforming projection methods (IV, two-stage) in
terms of variance. Numerical aspects of the algorithm, in
particular for large scale networks, will need to be considered
in future work.

APPENDIX

A. Proof of Proposition 1

In the proof, arguments q and t will be omitted where
possible. Starting with (1) add a multiplication with identity
after H, and subtract w from both sides of the equation:

0 =−(I−G)w+Rr+H(I−G∞)(I−G∞)−1e. (19)

Pre-multiplying the equation with (I−G∞)−1H−1 and adding
w to both sides of the equation delivers

w =
{

I− (I−G∞)−1H−1(I−G)
}

w+

+(I−G∞)−1H−1Rr+(I−G∞)−1e.
(20)

Since the first filter on the right hand side is strictly proper,
the second filter is proper, and e is white noise, it follows
directly, by applying the definition of the network predictor,
that the predictor is given by the first two terms on the right
hand side.

B. Proof of Theorem 1

The proof is divided into 3 parts. The first part is the
convergence of VN(θ) to V̄ (θ) := Ē ε̂T (t,θ)Λ−1ε̂(t,θ) for
N → ∞. This convergence can be shown by applying the
convergence proof found in [12].

As second part of the proof it is shown that the true
system minimizes the quadratic function V̄ (θ). Rewrite the
prediction error in terms of its driving variables with the use
of w = (I−G)−1(He+Rr) (omitting arguments q, t)

ε̂(θ) =
(
I−G∞(θ)

)−1H−1(θ)
(
I−G(θ)

)
(I−G)−1H−1e+ ·

·+
(
I−G∞(θ)

)−1H−1(θ)
{(

I−G(θ)
)
(I−G)−1R(q)−R(q,θ)

}
r.

(21)

The above equation contains a mix of parameterized and
non-parameterized transfer functions. In the above equation
the e terms can be split into a delayed and non-delayed part{(

I−G∞(θ)
)−1H−1(θ)

(
I−G(θ)

)
(I−G)−1H−1+

−
(
I−G∞

)−1
}

e(t)+
(
I−G∞

)−1e(t),
(22)

where the first e term is delayed, and the second non-delayed.
The two terms are uncorrelated since e(t) is a white noise.
In the quadratic function V̄ (θ) any cross-term between the
non-delayed e term and r or the delayed e term is zero, due
to uncorrelatedness. The choice of parameter has no effect
on the non-delayed and non-parameterized e term, and it has
no cross-terms in the expectation of the quadratic expression.
The choice θ = θ0 results in the first term in (22) and the
second (r-dependent) term in (21) to be equal to 0. This
minimizes V̄ (θ) and the prediction error is then equal to the
innovation ε(t,θ0) = ê(t). In the last step we consider any
model θ1 which realizes the same criterion V̄ (θ) as θ0,

V̄ (θ0) = V̄ (θ1). (23)

It can be shown that

V̄ (θ1)−V̄ (θ0) = Ē (ε̂1− ε̂0)
T

Λ
−1(ε̂1− ε̂0)+

+2Ē(ε̂1− ε̂0)
T

Λ
−1

ε̂0

where ε̂i := ε̂(t,θi).
Analysing the second term we can use the fact that ε̂0 = e0(t)
being a white noise process, while ε̂1− ε̂0 can be shown to
be dependent on data up to t−1 only. Therefore this latter
term will be uncorrelated with e(t), and the second term in
the above equation will be 0, so that

V̄ (θ1)−V̄ (θ0) = Ē (ε̂1− ε̂0)
T

Λ
−1(ε̂1− ε̂0). (24)

With the condition on informativity of data in Definition
3 it now follows that V̄ (θ0)− V̄ (θ1) = 0 implies that the
corresponding predictor filters must be equal. Then with the
use of network identifiability (Definition 4) we know that
this must also imply that the models are equal

M(θ0) = M(θ1), (25)

which concludes the proof.
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