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Abstract — The identification of linear models that are par-
ticularly suitable for serving as a basis for (robust) model-
based control design has recently attracted considerable atten-
tion. Both the system identification community and the control
community have spent considerable efforts in developing a co-
herent approach to the problem. Typical problems that have to
be dealt with consider questions of optimal experiment design,
feedback-relevant system approximations and control-relevant
model uncertainty specifications.

Research into these problems has delivered several attempts
for bridging the gap between identification and control theory.
In this lecture these developments will be highlighted, directing
particular attention to the identification of control-relevant ap-
prorimate models, the use of closed-loop experimental data for
identification, the quantification of model uncertainty, and the
use of identification criteria that are motivated by control per-
formance cost functions.
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I. INTRODUCTION

The identification of dynamic models out of experimental
data has very often been motivated and supported by the
presumed ability to use the resulting models as a basis
for model-based control design. As such, control design
is considered an important intended-application area for
identified models. On the other hand, model-based con-
trol design is built upon the assumption that a reliable
model of the plant under consideration is available. In
situations where a first-principles-based model alone does
not provide a sufficiently accurate description of reality,
the analysis of experimental data is an important tool for
providing the necessary accurate description of the system
dynamics.

The question how to identify dynamic models that are
most suitable for a model-based control design could have
the following straightforward answer:

1 Identify from experimental data that dynamical
model that is the most accurate description of reality;

2 Use that model as a basis for control design;

3 Implement the designed controller on the real plant.

Actually this answer is based on two related simplifying
assumptions; from an identification point of view it is as-
sumed that the real underlying system dynamics can be
identified exactly from experimental data. This assump-
tion is partly covered by the expression that the system is
supposed to belong to the considered model set (S € M)
[1]. In a control design context the considered situation is
reflected by the certainty equivalence principle, meaning
that a control system is designed on the basis of a model
that is supposed to reflect the exact dynamical behaviour
of the underlying plant. This assumption then justifies the
implementation of the designed controller on this plant.
For arriving at a methodology that is feasible for reli-
able application in high-performance and advanced con-
trol problems, a more solid approach to the problem is
required, and also possible. Such a more solid approach
requires the incorporation of robustness properties in both
the identification and control problems. With the incor-
poration of robustness properties it should be avoided that
the end result (the performance of the implemented con-
trol system) is critically dependent on model inaccuracies
that might occur.

In the last two decades the development of robust con-
trol theory (see e.g. [2]) has provided tools for designing
control systems that take account of model inaccuracies.
This is done by evaluating and designing control systems
that guarantee a particular level of performance for all
models in a suitable model uncertainty set, rather than
just for a single nominal model.

In an identification context the construction of model un-
certainty bounds (in the format of parameter confidence
intervals) has been part of the classical parameter esti-
mation methods ([3], [1]). However, the validity of these
confidence bounds is limited to the situation of consistent
estimates, i.e. the situation that the considered set of
candidate models contains the real data generating sys-
tem (S € M). This restriction can be rather severe when
dealing with real-life situations. Therefore attention has
been given to the development of uncertainty bounds for
experimental models, also in situations of model approx-
imations.



Another aspect of the model building is the question
which dynamical aspects of the underlying system are
most relevant to take into account in view of the per-
formance of the resulting model-based controller. There
are many examples from (industrial) practice that show
that very complex plants can effectively be controlled by
rather simple (linear) controllers. This directly implies
that only simple (low order) models should be sufficient
as a basis for appropriate control design. The question
then occurs: which dynamical phenomena of the system
have to be modeled accurately, and which aspects are less
relevant. A quantification of these phenomena could lead
to particular guidance in the experiment design: only sim-
ple experiments can be performed that are directed to-
wards retrieving that model information that is required
for designing a reliable control system, see. e.g. [4] for an
example of this.

In this paper, the several aspects mentioned above will
be discussed separately and the results and contributions
that are achieved will be highlighted. The overall goal
that will be pursued is:

The design of appropriate identification experi-
ments and identification methods that support
the design of a high-performance model-based
control system.

Attention will be limited to the identification of black box
parametric models. The results also have their impact
on the situation of first-principles-based model structures,
but that will not be pursued any further here.

First attention will be given to control-relevant nominal
models; then identification of these models will be con-
sidered on the basis of open-loop and closed-loop exper-
iments. After a discussion on model uncertainty estima-
tion, attention will be given to the use of identified models
(and their uncertainty bounds) in robust control design.

II. NOMINAL MODELS FOR MODEL-BASED
CONTROL DESIGN

When discussing control systems the configuration will be
considered as shown in figure 1.

Fig. 1. Closed-loop configuration.

In this configuration the signal r is a tracking or a setpoint
signal being uncorrelated with v which is a (stochastic)
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Fig. 2. Typical curve for Bode magnitude plot of sensitivity
function Sp(e’) (solid) and related complementary sensitivity
To(e') (dashed).

noise disturbance; Gy and C' are the scalar plant and con-
troller, ¢ is the forward shift operator: qu(t) = u(t+1).
The closed-loop system equations are:

GQCSQ’I“(t) —|—So’U(t) (1)
SoCr(t) — CSov(t) @)

yit) =
u(t) =

with the sensitivity function So = (1+ CGy)~* .

It will be assumed that the closed-loop system is internally
stable, meaning that the four transfer functions in (1)-
(2) are stable, i.e. analytic in |z| > 1. In order to avoid
technicalities, it will also be assumed that the product
G C is strictly proper, which means that either C' or Gy
contains a time delay.

The feedback controller C'is designed to achieve particular
properties of the closed-loop system, such as:

« stability,

« tracking properties, i.e. the complementary sensitiv-
ity function Ty = GoCSp (the transfer from r to y)
should have a high bandwidth to guarantee a fast
response of the closed-loop system

« disturbance attenuation, i.e. the sensitivity function
So (the transfer from v to y) should be sufficiently
small in those frequency areas where v has significant
contributions, and possibly

e limited power (or amplitude) of the control signal u,
through a limitation on C'Sy.

Additionally these properties should be maintained under
slight variations on plant (and model) dynamics. Typical
curves for Ty and Sy are sketched in Figure 2.

The next example shows that not all frequency ranges are
equally important when it comes down to constructing a
control-relevant model.

Example 1: Suppose that our control design procedure in-
volves the incorporation of an integrating (I) action in the
controller to avoid static errors. Then |C'(e™)| >> 1 for
w small. As a result for low frequencies:

|So|%|CG0‘_1 <<1 |T0‘R‘41



as long as |CGg| >> 1. If the controller C' would be de-
signed on the basis of a model G, e.g. to achieve an ap-
propriate bandwidth, the low frequency behaviour of this
model would hardly influence the control system. As a
result a high level of accuracy in G in the low frequency
range does not essentially contribute to the performance
of the control system. O

It is a well know rule of thumb that for designing a
model-based controller the accuracy of the model should
be high in particular in the frequency range around
the bandwidth of the closed-loop system. However this
qualitative information one would like to incorporate in a
structural way when designing identification experiments,
and selecting/developing identification methods.

One attempt to formalize this situation is to rewrite
the control performance cost function into a related
modelling (or identification) criterion:

Consider a control performance cost function
|J(Go, Cg)ll, related to a closed-loop system with
plant G and controller Cs being designed on the basis of
a plant model G. One can think of J as e.g. a weighted
sensitivity function:

v

J(Go,Cp) = m

3)
as a cost function aiming at a control system that satisfies:
|So(e™)| < |V (e™)|~1; alternative choices for J include
LQ/LQG criteria, model reference control, and robust-
ness optimization procedures (see e.g. [5], [6]). It is the
aim of the control system to achieve a minimum value
of ||J(Go,Cg)ll, through an appropriate choice of G and
Ca. As a global optimization problem this will gener-
ally be intractable as it requires both a modelling and a
control design variable. However employing the triangle
inequality:

17(G.C&)lI = 1(Go,Ca) = J(G.CR)| <
<Gl ()
< [(G.Co+ 14(Go.Cg) = I(G.C)|

it appears that the achieved performance cost
|J(Go, Cg)|| will be close to the designed perfor-
mance cost ||.J (G,CG)|| provided that the performance
degradation term ||J(Go,C) — J(G,C)| is sufficiently
small. This exactly shows the main issue that a control
design engineer is aiming at: designing a model-based
controller that -after implementation on the real plant-
shows a performance cost that is similar to the per-
formance of the controlled model. In this way this
degradation term can be given the interpretation of a
control-performance induced modelling criterion:

G = argmin || J(Go, C) = J(G, O).

For the choice of J as given in (3) this takes the form:

. . v 1%

¢ = argmin 1+CG0_1+CGH ®)
B , V(Go—G)C
e (1+CGO)(1+CG)H' (6)

Note however that the C' on the right hand side of these
expressions actually is again dependent on G. By fixing
the controller on the right hand side, a feasible optimiza-
tion problem results that might be embedded in an itera-
tive scheme of solving for G and C in an alternating way.
The modeling criterion derived above shows that for
model-based control design two models should be consid-
ered "close” to each other if their corresponding weighted
sensitivity functions are close.

In the next section the possibilities will be evaluated to
design identification methods based on the modelling cri-
terion (6).

ITI. IDENTIFICATION OF NOMINAL MODELS
A. The open-loop case

In the open-loop situation (C' = 0) the standard way of
handling the identification is to parametrize the model
(G(q,0), H(q,0)) using a finite- dimensional parameter
vector § € ©. A parameter estimate is constructed by
minimizing a least-squares criterion:

N
R 1 )
Oy = arg min — tg_l er(t,0) (7)

where the filtered prediction error
ep(t,0) = L(@)H(q,0) [y (t) — G(q,0)u(?)]

with L a stable (user-chosen) prefilter that is applied to
the input/output data. If the input signal is persistently
exciting, the plant Gy can be consistently identified pro-
vided that (a) Gy and Hy can be modelled exactly within
the model set chosen, or (b) Gy can be modelled exactly,
and G(g¢,0) and H(g,0) have no common parameters ([1]).

Under fairly general conditions the parameter estimate On
converges to 8* with probability 1 for N — oo where

1 s
0* = argmoinz—/ D, (w,0)dw. (8)

Lt

and ®.(w,d) the power spectral density of € (¢,0). For an
output error model structure (H(q,0) = 1), it follows that

0*

1 s
argmin—/ 1Go — G(O)2Du|LI2dw  (9)
0 2w J_,

= argmin[[Go ~ GO H.L|» (10)



with H, a stable spectral factor of ®,. Note that in (9),
as in the sequel, the arguments e™ are suppressed for
brevity. Reduced-order identification now involves an in-
trinsic model reduction step with a (frequency weighted)
norm that can be directly tuned by the user through de-
signing ®,, and/or L.

When comparing the expression (10) with the criterion
that was desired from a control-relevant modelling point
of view (6) it appears that it will not be simply possible to
match the two criteria by appropriate choices of H, and
L. This problem will appear to be quite different when
considering closed-loop experimental data.

B. Closed-loop experiments

B.1 Direct identification

In the direct identification method one simply applies the
standard (prediction error) identification procedure with-
out taking account of the presence of a feedback controller.
A parameter estimate is obtained similarly as in the open-
loop case.

If the system S := (Go, Hp) is present in the model set
M :={(G(q,0),H(q,0)),0 € O}, then a consistent esti-
mate is obtained under general persistency of excitation
conditions. However in the situation that S ¢ M the
properties of the direct method collapse, and even in the
situation that the plant Gy can be modeled exactly within
M, consistency of G(q,éN) is lost if the noise model is
misspecified. The asymptotic identification criterion in
the frequency domain, as in (8), is governed by

_ 1S0?1Go = GO)PICP?
[H(O)]?

H2 2
b 4+ | Hol?|So|
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where S(6) = (1+ CG(q,0))~! is the sensitivity function
of the parametrized model. Due to the fact that the two
terms in the right hand side of the expression above are
coupled through 6, it will not be possible to obtain an
identificaiton criterion similar to (6). Note however that
the appearance of the sensitivity function Sy as a weight-
ing function in ®. already points to a phenomenon that
is also present in (6).

B.2 Indirect approaches

As alternatives to the direct approach, several methods
have been developed recently, being generalizations of
the classical indirect and joint i/o-methods [7]. For an
overview of the more recent developments see [8], [9].

e In the two-stage method first the transfer functon
from r to w is identified, and with this estimate a
noise-free input signal 4, is simulated. In the second
step the transfer between 4, and y is identified.

e In the coprime-factor method a one input (r) two out-
put (y,u) model is identified and a plant model is con-
structed by taking the quotient of the two estimated
transfers.

o In the indirect method or dual-Youla-Kucera method
the transfer function between r and y is identified,
and with knowledge of the controller C' a correspond-
ing plant model is calculated.

e In the tailor-made parametrization approach the
closed-loop transfer function from » to y is
parametrized in terms of the model parameters of
G and the known controller. Then the model param-
eters of G are identified on the basis of data r and

Y.

These identification methods have a number of properties
in common. When using fixed (non-parametrized) noise
models during identification, consistent plant models of
Gy can be obtained, and the limiting parameter estimate
is given by!

——
= argmin —
& 0 2w

T (br

1S0GoC — S(0)G(0)C| —2— dw

K.

(11)
By designing the (fixed) noise model K, (or the signal
spectrum ®,.), this bias expression can explicitly be tuned
to the designer’s needs. However the expression is differ-
ent from the related open-loop expression (9). Instead
of a weighted additive error on Gy, the integrand con-
tains an additive error on the closed-loop transfer Gy SyC'.
Straightforward calculations show that

GoSo — G(0)S(0) = So[Go — G(0)]S(0),

so that the asymptotic bias distribution can be character-
ized by

Gy — G(O)]CD?
1+ CGo)1+ CGO)K.

(12)

0* = arg min

This implies that the additive error on Gy is always
weighted with Sy, and thus emphasis will be given to
an accurate model fit in the frequency region where Sy
is large, being typically the region that determines the
bandwidth of the control system, as depicted in the typi-
cal situation of Figure 2. By setting K, according to

¢, (w) = K. |V]?

expression (12) will become equivalent to (6), and so a
control-relevant identification criterion has been obtained.

At frequencies where Sy will be small (low frequencies),
poor process knowledge is obtained. This refers to the sit-
uation of Example 1 where it is motivated that in this fre-
quency range accurate model information is not required.

1 Details vary slightly over the methods.



Due to Bode’s sensitivity integral, [ log |S(e™)| dw = ¢,
(constant), the attenuation of signal power in the low fre-
quency range, will always be ”compensated” for by an am-
plification of signal power in the higher frequency range.

Whereas direct identification needs consistent estimation
of noise models in order to consistently identify Gy, the
alternative methods can do without noise models. Incor-
poration of noise models here is very well possible, but this
will result in bias distributions that become dependent on
the identified noise models as well as on (the unknown)
noise spectrum @,,.

The indirect methods for closed-loop identification are im-
plemented in a public domain add-on to Matlab’s System
Identification toolbox, see [10].

C. Variance

The analysis above is directed towards the limiting param-
eter estimate 6*, and therefore only considers structural
(bias) errors in the models. For analyzing the asymptotic
variance of the transfer function estimates the prediction
error framework provides variance expressions that are
asymptotic in both n (model order) and N (number of
data) [1]. For the direct identification approach, and in
the situation that S € M this delivers:

-1

Peulw) | (13

oo (G0 )~ etor | i) !

This reduces to ([11]):

e n @, 1 (CSoHo)*
cov N ~—_— P, ,
H N o1 CSoHy bW
0

where @], is the spectral density of u” being that part of
the input signal that is generated by the reference signal,
i.e. u" = SyCr. Consequently

n ®, .

o, d,
cov(H) n

~ . 14
Y (14)

This shows that only the noise-free part u” of the input
signal u contributes to variance reduction of the trans-
fer functions. Note that for u” = u the corresponding
open-loop results appear. In [11] it is shown that for the
alternative indirect methods presented before, these ex-
pressions are the same.

The asymptotic variance analysis tool gives an appealing
indication of the mechanisms that contribute to variance
reduction. It also illustrates one of the basic mechanisms
in closed-loop identification, i.e. that noise in the feedback
loop does not contribute to variance reduction. Particu-
larly in the situation that the input power of the process
is limited, it is relevant to note that only part of this input
power can be used for variance reduction.

The results seem to indicate that from a variance point of
view, open-loop identification always has to be preferred
over closed-loop identification (since ®! < ®,,). However
when a controller is designed on the basis of both G and
H also the nondiagonal terms of cov(G H)T will play a
role, leading to the situation that in those cases a closed-
loop experiment leads to minimal variance of the resulting
controller [12].

Because of the “doubly asymptotic” nature of the results
(N,n — 00), the asymptotic variance analysis tool is also
quite crude. For finite model orders, the variance results
will likely become different over the several methods, as
discussed in [9].

IV. QUANTIFICATION OF MODEL UNCERTAINTY
FROM EXPERIMENTAL DATA

A. The classical approach

In a statistical (prediction error) framework the parame-
ter estimate (7) will -under fairly general conditions- lead
to a consistent estimate of the underlying plant Go, Hy
provided that the input signal is sufficiently informative,
and the model set is flexible enough to contain the real
system, i.e. & € M which means that there exists a 8y € ©
such that G(q,00) = Go(q) and H(q,600) = Ho(q).
Moreover, under the same conditions, the parameter esti-
mate v/ N (0 —0) will converge in distribution to a Gaus-
sian distribution for N — oo with asymptotic covariance
matrix P, being dependent on noise level and on deriva-
tives of the cost function with respect to the parameters.
Important point here is that P can also be estimated from
data, and as a result a (statistical) parameter confidence
interval can be constructed of the form:

-1

(On — 90)TPT(9AN — o) € X*(d)

where x?(d) refers to a x? distribution with d = dim(6)
degrees of freedom.

This (parametric) quantification of model uncertainty has
two shortcomings when considered in the scope of the
problem discussed in the previous section. The bound
leads to a probabilistic expression for model uncertainty,
which at the moment can not easily be translated into
hard guarantees for control performance. The model un-
certainty dealt with in a robust control configuration is
generally of a hard-bounded (non-probabilistic) nature
([2]). The second point is that the assumption of exact
modeling (S € M) has been considered a rather severe
restriction of its applicability.

B. Hard-bounded model error bounds

As an alternative, and in particular in order to avoid prob-
abilistic bounds, the so-called bounded error models have



been extensively given attention, see e.g. [13]. In this
approach the framework is

y(t) = Go(q)u(t) + v(t)

where v is any disturbance signal acting on the measure-
ment, reflecting all kinds of deviations between measure-
ment data and real system. A model G(q) is said to be
unfalsified by the data if the residual signal

V() = y(t) — Gg)u(?)

belongs to some hypothesized class V of disturbance sig-
nals v. The set of models that is now unfalsified by the
data is dependent on the choice of the class V. Several
alternatives for ¥V have been considered, as e.g.

» Bounded error disturbances |v(t)| <ceR
N

1
o Bounded power disturbances — ZUQ (t)<ceR
N

while related approaches are also pursued in a frequency
domain setting (for an overview see e.g. [14]). The as-
sumption on the noise disturbance class V will have a
high influence on the set of models that is unfalsified by
the data. If the chosen set V is hard-bounded, then the
resulting set of unfalsified models will necessarily also be
hard-bounded, and so a non-probabilistic specification of
model uncertainty results.

If the considered model G(g,0) is linear in 6 (e.g. FIR
models or other basis function expansions) the resulting
problems are computationally more attractive and solu-
tions to the considered problem are relatively easily ob-
tained.

The principal problem and challenge in the bounded error
approach is the choice of disturbance class V. If this class
is chosen too large in comparison with the actual distur-
bances on the data, the results will be unnecessarily con-
servative, i.e. the uncertainty sets will be hard-bounded
but unnecessarily large. The information that then is re-
trieved from the identified uncertainty set is very much
limited. This happens in particular if the disturbance
signals are allowed to be correlated with the input sig-
nal (which is the case when only considering amplitude
bounds on v). The incorporation of constraints on the
correlation between u and v can then be added to limit
this conservatism. For a more extensive discussion the
reader is referred to [14].

C. Statistical approaches for approximate models

As mentioned before, the classical -statistical- approach
to the problem is restricted to the situation S € M. In
the last decade several approaches have been followed
to generate results that go beyond this restriction. In
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Fig. 3. Nyquist diagram with identified uncertainty bounds

(rectangles, ellipsoids).

the approach of stochastic embedding [15] the undermod-
elling error is embedded in a stochastic framework. In [16]
and [17] solutions are constructed by a combined worst-
case/probabilistic approach for bounding model uncer-
tainty. The method of [17] can be summarized as follows:

o It is assumed that measurement data y,u satisfies the
system equations:

y(t) = Golq)u(t) + v(t)

with v a stationary stochastic process, indepen-
dent of u, and that Gy allows a series expansion
Go(z) = Y re o 90(k) fr(z) with the expansion coeffi-
cients bounded by an a priori known bound

lg0(k)| < (k). k> 0.

e A linearly parametrized model G(q,60) is chosen, and
a finite number of expansion coefficients is identified
with a least squares (linear regression) algorithm.

e Then for a fixed frequency w the estimated model
G(e™) can be shown to satisfy

Ale™) = G(e™) = Go(e™) = Bi(w) + Ba(w) + Ba(w)

where

— [ reflects the neglected tail of the expansion; this
term can be worst-case bounded;

— [ reflects a bias term on the estimated coefficients
due to the neglected tail; this term can also be
worst-case bounded;

— (3 reflects a variance contribution, which can be
bounded in a probabilistic way by using the asymp-
totic theory according to [1].

o The uncertainty bounds can be computed in any user-
chosen frequency grid, and lead to a Nyquist curve
with uncertainty regions in user-specified frequencies,
as illustrated in figure 3. In all cases the three differ-
ent sources of uncertainty can be distinguished, which
allows the user to determine which part is dominant,
and to adjust the experimental setup so as to reduce
the overall uncertainty bound.



The result is an uncertainty bound

[ e dier) r/\l | Teatin) | <9

with probability > « in a user-defined frequency grid €2,
and for a user-specified choice of a. The main difference
of this result with the result from the classical statistical
approach, is that in the latter situation there is a paramet-
ric uncertainty set, leading to a global confidence interval.
When considering unmodelled dynamics, the parametric
structure is lost and a probabilistic expression results for
a particular frequency w that is frozen, and where rela-
tions between several different frequencies is not simply
taken into account.

D. A generalized linear model structure

In almost all uncertainty bounding procedures in the lit-
erature use is made of linearly parametrized models. The
most commonly known linearly parametrized model struc-
ture in identification and uncertainty bounding proce-
dures is a finite impulse response (FIR) model:

n

G(Q79) = bO + b1q71 + - b7zq7 )
which (because of the linear way in which b; enters G) has
several attractive properties. However, for an accurate
modelling of moderately damped systems it may require
a large number of parameters. This can be overcome by
using dynamical (orthogonal) basis functions fx(q), lead-
ing to a model structure:

G(‘LQ) =Co +clf1(q) +cnfn(Q)

Generalized orthogonal basis functions can be constructed
on the basis of an all-pass function Gy, (|Gp(e™)| = 1) with
a balanced state-space realization (A, B,C, D). Then the
scalar components of

Vi(2) = (21 = A)7'B -Gy (2)

form an orthonormal basis for the space of all stable sys-
tems, and a generalization is obtained for the FIR models
(corresponding to Gy, = 2~ 1), Laguerre models (first-order
Gyp) and Kautz models (second order Gp). An interesting
phenomenon is that it can be shown that whenever the
set of poles of a system G and of the all-pass function G
approach each other, the rate of convergence of the series
expansion Gy = > ¢ fr(z) increases. This allows more
accurate modelling with a limited number of parameters.
For details on this parametrization and its use in identi-
fication one is referred to [18], [19].

V. USE OF UNCERTAINTY MODELS FOR ROBUST
CONTROL ANALYSIS AND DESIGN

On the basis of the procedures presented in the previ-
ous sections several different types of model uncertainty
bounds can be obtained. Continuing with the statistical
approach for approximate models, a typical result could
be

P(Gyy) = {G(E) = Gle)+A(E™), [A@E)] < 7(e)}

where the uncertainty set is structured as an additive error
on the nominal model. This structure is retrieved from
the frequency-dependent ellipsoidal uncertainty regions as
discussed in section IV-C. The reformulation into a norm-
bounded set, being equivalent to:

v Al <1

is motivated by the use of these kind of uncertainty sets
in robust control analysis and design. The choice for a
particular structure however is still open. Note that when
applying the procedure to closed-loop data, and using one
of the indirect closed-loop identification methods, the re-
lated result would become e.g.

. CG
6™ 1 ca

[A(e™)] < y(e™)}-

This latter uncertainty set is clearly controller dependent.

P(Gy) = =T(e) +A(e™)

(15)

Does it make a difference which option is chosen? Yes,
because just as the considerations around the choice of
a control-relevant nominal model, the uncertainty area
should be such that it is directed towards obtaining small
uncertainty in the control-relevant area. Therefore a
closed-loop setting for the uncertainty structure is again
attractive. For a more extensive discussion on this see

[20].

The corresponding uncertainty structures (varying from
open-loop additive bounds to bounds on closed-loop ob-
jects) can be written in a linear fractional transformation
as indicated in figure 4,

y = [Mag + Moy A(1 — My A) " Myslu

with Moy = é, the nominal model, and where A is norm-
bounded: ||[A|loc < 1. This formulation of the problem
now matches the use of these uncertainty models in ro-
bustness analysis and robust control design. As a conse-
quence they can now be used to

o Verify the worst-case performance cost achieved for
the current controller:

sup [|J(G, Ol
GeP



Fig. 4. New controller applied to a model uncertainty set with an
LFT structured (norm-bounded) uncertainty.

e To verify whether a newly designed controller Ci,c,,
will stabilize all models G' € P, and

e To design a (robust) controller C),e,, that minimizes
the worst-case performance cost:

min sup ||J(G, C)|leo
¢ gep

These robustness analyses and synthesis problems are gen-
erally solved by so-called p-analysis and synthesis tools,
available from robust control theory, see e.g. [2]. For
a generally formulated control performance cost function,
these problems are worked out in [20]; applications to con-
trol designs in a wafer stepper and Compact Disc servo
system are reported in [21], [22].

When employing the parametric uncertainty models as
discussed in section IV-A robustness analysis can also be
applied, as reported in [23], [24]. For application in control
design of the bounded error type of modeling as discussed
in section IV-B see e.g. [25].

VI. CONCLUSION

In this paper several aspects of the problem of identifying
experimental models for use in model-based control de-
sign have been given attention. Interesting observations
are that closed-loop experimental conditions should not
necessarily be considered as a degenerate or unfavorable
situation, but that they can play an important role in
identifying accurate models for control. The challenging
area of identification for control has delivered a couple of
first solutions; there are still numerous open problems to
be solved.
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