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Abstract When first principles models are used for model-based operations as mon-
itoring, control and optimization, the estimation of accurate physical parameters is
important in particular when the underlying dynamical model is nonlinear. If the
models are the result of partial differential equations being discretized, they are of-
ten large-scale in terms of number of states and possibly also number of parameters.
Estimating a large number of parameters from measurement data leads to problems
of identifiability, and consequently to inaccurate identification results. The question
whether a physical model structure is identifiable, is usually considered in a qualita-
tive way, i.e. it is answered with a yes/no answer. However since also nearly uniden-
tifiable model structures lead to poor parameter estimates,the questions is addressed
how the model structure can be approximated so as to achieve local identifiability,
while retaining the interpretation of the physical parameters. Appropriate attention
is also given to the relevant scaling of parameters. The problem is addressed in a
prediction error setting, showing the relation with gradient-type optimization algo-
rithms as well as with Bayesian parameter estimation.
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1 Introduction

Complex dynamical physical processes raise many challenges for model-based
monitoring, control and optimization. On-line reconstruction of non-measurable
variables, design of appropriate feedforward and feedbackcontrol strategies, as well
as economic optimization of processes under appropriate operational constraints,
generally require the availability of a reliable process model, preferably accompa-
nied by a quantification of its reliability (uncertainty). If the dynamics of the consid-
ered process is linear, then a process model can be obtained by applying black-box
system identification, which provides a well-studied set oftools for identifying lin-
ear models on the basis of experimental data [15, 21]. If there is a particular interest
in the identification of physical parameters, this often does not raise any additional
problems: one has to choose the right (physics-based) modelstructure and iden-
tify the parameters through one of the available (possibly non-convex) optimization
methods. The only issue that has to be taken care of is that thephysical model
structure is identifiable, implying that the several physical parameters can be distin-
guished from each other on the basis of the model’s input-output behavior.

In the situation that the process dynamics is nonlinear, it can often be linearized
around an operating point (as e.g. in continuous-type industrial/chemical produc-
tion processes) and the above mentioned linear approach canbe followed leading
to a linear (approximate) model. However when essential nonlinear dynamical phe-
nomena are involved and the user needs to capture this dynamics in the model, it is
much harder to come up with generic black-box techniques foridentification. Al-
though there are interesting attempts to capture the nonlinear phenomena in (black-
box) model structures as Wiener and/or Hammerstein models,[1, 33], and linear
parameter-varying (LPV) models [14, 29, 2, 25, 24, 32, 34], information on the un-
derlying physical structure of the nonlinearities is very often required for selection
of an appropriate model structure.

In some processes it is desirable to capture the real underlying nonlinear dy-
namic structure of the process in order to make reliable long-term predictions. First-
principles model then provide the structure of the model, while incorporated (physi-
cal) parameters have to be estimated on the basis of experimental data. Especially in
situations where the first principles models are given by partial differential equations
(pde’s), the required step of discretizing the equations inspace and time generally
leads to complex models with a large number of states and possibly also a large
number of unknown (physical) parameters. For an interesting example of this situa-
tion in a problem of (oil) reservoir engineering, the readeris referred to [13], where
an industrial example of optimal oil recovery from reservoirs over the life time of
the reservoir (possibly> 20 years) is shown in the form of a nonlinear (batch-type)
process with a number of states and parameters exceeding theorder of 105.

Identifying extremely large number of parameters from measurement data leads
to serious problems, and at least it leads to the question which model properties can
be reliably estimated from the available measurement data.From a model-based op-
erations point of view (monitoring, control, optimization) it makes sense to limit the
complexity of an identified model to a level where the model can be reliably vali-
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dated from data. If not, the parameter estimates might be highly determined by the
-random- experiment that is done (overfit) leading to unreliable model predictions.
In identification this problem is addressed by the notion of identifiability (of a model
structure), and directly coupled to the variance of estimated parameters.

In this chapter the notion of identifiability will be evaluated in the scope of the
high-complexity type of processes discussed above. Our argument will be that hav-
ing an (locally) identifiable model structure will not be sufficient to provide reliable
parameter estimates in large scale physical model structures. Methods will be pre-
sented that allow to reduce the parameter space to limited dimension, while being
able to reliably estimate the reduced parameters and maintaining their physical in-
terpretation. To this end the qualitative notion of (local)identifiability (with a yes/no
answer) is generalized to a quantitative notion, removing that parameter subspace
from the parametrization that can only be estimated with excessively large variance.

2 Identifiability - the starting point

The notion of identifiability refers -roughly speaking- to the question whether pa-
rameter changes in the model can be observed in the model output signal (output
identifiability) or in the model’s input-output map or transfer function (structural
identifiability).
The notion of output identifiability has been studied in e.g.[11] and [15]. The notion
of structural identifiability was first stated by [3] and has been extensively studied
in the field of compartmental modeling ([10], [20]). State-space model parameter-
izations have been analyzed by [9] and [30]. Lately there hasbeen a renewed in-
terest in structural identifiability analysis, with contributions from [22] and [27]. In
its essence, identifiability properties are global properties, i.e. holding for the full
parameter space, as e.g. considered in [16] and [7] where parameter mappings are
studied to analyse global identifiability. However restricting attention to a local anal-
ysis is often the only situation that is feasible in terms of computational complexity.
As a result we will focus on local properties in this chapter only.

Consider a nonlinear dynamical model that generates outputpredictions accord-
ing to1:

ŷ = h(u,θ ;x0), (1)

whereŷ is a prediction ofy :=
[

yT
1 . . . yT

N

]T
denoting output signal measurements

yk ∈ Rp stacked over time,θ ∈Θ ⊂ Rq the parameter vector,u :=
[

uT
1 . . . uT

N

]T

the input vectoruk ∈ Rm stacked over time, andx0 the initial state vector. Since the
model (1) is parameterized it represents an input/output model structure.

The definition of local identifiability now is given as follows([11]):

Definition 1 An input/output model structure h(θ ,u;x0) : Θ →H is called locally
identifiable inθm ∈Θ for a givenu and x0, if for all θ1,θ2 in the neighborhood of

1 Without loss of generality we restrict attention to predictors that are not dependent on output
measurementsy, whch in an LTI-setting is referred to as Output Error predictors.
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θm holds that
{h(u,θ1;x0) = h(u,θ2;x0)}⇒ θ1 = θ2.

If we linearize the nonlinear process dynamics around a chosen operating point
or trajectory, a linear dynamical system results. This system can be modelled by an
LTI input-output model, represented by the transfer functionG, leading to an output
predictor

ŷk = G(q,θ )uk,

with q the shift operatorquk = uk+1.
The notion of local structural identifiability ([9]) is thendefined by considering

the properties of the parameterized transfer functionG(q,θ ):

Definition 2 An input/output model structure G: Θ → G with Θ ⊂ Rq andG ⊂
R(z)p×m is called locally structural identifiable inθm ∈ Θ if for all θ1,θ2 in the
neighborhood ofθm holds that

{G(z,θ1) = G(z,θ2)}⇒ θ1 = θ2. (2)

HereR(z)p×m is the set of allp×m rational transfer function matrices in the com-
plex indeterminatez.

Note that in contrast with (1) this latter notion is not dependent on either an input
signal nor an initial state. Structural identifiability will be considered in section 8,
where a link is made between structural identifiability and identifiability.

In general identifiability questions are considered qualitatively, i.e. deciding
whether a model structure is either identifiable or not. The tests required for this
evaluation are typically rank evaluations of matrices, as e.g. Fisher’s information
matrix, around a particular local operating point in the parameter space, see e.g. [6].
However, when considering parameters in large scale (nonlinear) physical models it
is relevant to raise the question how the notion of identifiability can be quantified.
This implies addressing the question which part of the parameter space is best iden-
tifiable, and which part of the model structure can be approximated so as to achieve
local identifiability, while retaining the interpretationof the physical parameters. For
structural identifiability this question was preliminary addressed in [27]. In [4] the
degree of identifiability was introduced. In [26] principalcomponent analysis was
applied to determine which parameters can be identified. Assessing identifiability
can also be done a posteriori, after the identification of allparameters, by evaluating
the parameter variance, see e.g. [12].

In this chapter we will further investigate how the notions of identifiability can
be quantified to allow for a reduction in the parameter space with physically inter-
pretable parameters.
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3 Testing local identifiability in identification

3.1 Introduction

In a model identification framework we consider parameter estimation methods that
are characterized by minimizing a cost functionV(θ ):

V(θ ) :=
1
2

εεε(θ )TP−1
v εεε(θ ), (3)

where the prediction error sequenceεεε is defined as

εεε(θ ) = y− ŷ = y−h(θ ,u;x0), (4)

wherey denotes the measured output sequence andŷ the predictor sequence, andPv

is a weighting matrix that could represent (an estimate of) the covariance matrix of
the noise sequencev that is supposed to act on the measured output. In the rest of
the chapter the shorthand notationŷ(θ ) is used to indicateh(u,θ ;x0).

The Jacobian ofV(θ ) with respect to the parameters is

∂V(θ )

∂θ
=

∂εεε(θ )T

∂θ
P−1

v εεε(θ ) =−
∂ ŷ(θ )T

∂θ
P−1

v (y− ŷ(θ )) . (5)

The Hessian ofV(θ ) with respect to the parameters is

∂ 2V(θ )

∂θ 2 =
∂εεε(θ )T

∂θ
P−1

v

(
∂εεε(θ )T

∂θ

)T

+S=
∂ ŷ(θ )T

∂θ
P−1

v

(
∂ ŷ(θ )T

∂θ

)T

+S, (6)

whereSdenotes the second-order information in∂ 2V(θ)
∂θ2 . The Jacobian and Hessian

are for a givenθ and a given operating point (given byu andx0). Parameter estima-
tion now consists in finding the parameter estimate as a minimizing argument of the
cost functionV(θ )

θ̂ := argmin
θ

V(θ ). (7)

At θ̂ the cost functionV(θ ) is minimized and the Jacobian (5) atθ̂ is zero, i.e.
∂V(θ)

∂θ = 0 atθ̂ .

3.2 Analyzing local identifiability inθ̂

Local identifiability inθ̂ is generally evaluated by the test whether the optimization
problem (7) has a unique solution in the parameter space. By locally approximating
the cost functionV(θ ) by a quadratic function2 (and thus neglecting the second

2 This is achieved by approximatinĝy(θ) with a first-order Taylor expansion aroundθ̂ .
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order termS in (6)), uniqueness of̂θ is guaranteed if the Hessian atθ̂ is positive

definite, i.e.∂ 2V(θ)

∂θ2 > 0 at θ̂ , which in this case is equivalent to rank∂ 2V
∂θ2 = q. This

is a sufficient condition for local identifiability in̂θ , see e.g. [3], [9] and [15].
The considered rank test is naturally performed by applyinga singular value

decomposition (SVD):

∂ 2V(θ )

∂θ 2 = UΣVT =
[

U1 U2
][ Σ1 0

0 0

][
VT

1
VT

2

]
,

where matricesU andV are unitary matrices,Σ1 = diag(σ1, . . . ,σp) with σ1≥ ·· · ≥
σp.
If p= q then identifiability is confirmed. Ifp< q then the column space ofU1 repre-
sents the subspace of the parameter space that is identifiable, and the column space
of U2 is its orthogonal complement, characterizing the subspacethat is not identifi-
able.
As a result, the SVD of the Hessian can be used to extend the qualitative treat-
ment of the question whether or not a particular model structure is identifiable, to
a quantitative property of specifying the identifiable parameter space. The columns
of U1 basically act as basis functions in the parameter space, determining the linear
combinations of the original parameters that will be identifiable from the measure-
ments. Differently formulated, this would point to a reparametrization of the model
structure by defining a reduced order parameterρ ∈Rp defined by

θ = U1ρ (8)

leading to an identifiable model structure in the parameterρ . The attractive fea-
ture of this mapping is that it allows to identifyρ while the estimated result̂ρ can
be uniquely interpreted in terms of the original physical parametersθ through the
mapping (8). The limitation of the approach is of course thatonly linear parameter
transformations are considered.

3.3 Approximating the identifiable parameter space

When in the SVD of the Hessian singular values are found that are (very) small,
this points to directions in the parameter space that have very limited (but nonzero)
influence on the cost functionV. In identification terms this correspond to directions
in the parameter space in which the variance is (very) large.The Hessian evaluated
at θ̂ is connected to the variance ofθ̂ , since for the Gaussian case (and provided that
θ̂ is a consistent estimate) it follows that

cov(θ̂ ) = J−1

with J the Fisher information matrix
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J = E

[
∂ 2V(θ )

∂θ 2

∣∣∣∣
θ̂

]
, (9)

whereE denotes expectation ([15]).
We are interested in specifying that part of the parameter space that is best iden-
tifiable by removing the subspace that has only a very small influence on the cost
functionV. This reasoning would point to removing those parameter (combinations)
from the model structure for which the variance is very large, as was also addressed
in [26] for nonlinear parameter mappings, and in [17] for single parameters.

The essential information on the SVD of the Hessian is now obtained from:

∂ ŷ(θ )T

∂θ
P
− 1

2
v =

[
U1 U2

][ Σ1 0
0 Σ2

][
VT

1
VT

2

]
(10)

where the separation betweenΣ1 andΣ2 is chosen in such a way that the singular
values inΣ2 are considerably smaller than those inΣ1.
If we now reparametrize the model structure by employing thereduced parameter
ρ determined byθ = U1ρ , we have realized a model structure approximation, in
which the parameters to be identified are well identifiable with a limited variance
and the physical interpretation of the parameters remains untouched. The singular
vectors that occur as the columns inU1 actually can be seen as basis functions in the
parameter space.

With the SVD (10) it follows that the sample estimate of the covariance matrix
of θ̂ becomes:

cov(θ̂ ) =






[
U1 U2

][ Σ−2
1 0
0 Σ−2

2

][
UT

1
UT

2

]
for trace(Σ2) > 0

U1Σ−2
1 UT

1 for Σ2 = 0
(11)

while the sample estimate of the covariance matrix of the reparametrized parameter
estimateU1ρ̂ is given by

cov(U1ρ̂) = U1Σ−2
1 UT

1 . (12)

This shows that ifΣ2 = 0 there is no benefit of the reparametrization in terms of
variance of the estimated parameterθ̂ . However if nonzero singular values are dis-
carded inΣ2, i.e. if trace(Σ2) > 0 then

cov(θ̂ ) > cov(U1ρ̂)

showing a covariance that is reduced by the reparametrization. This reduction is
particularly interesting ifΣ2 contains a (very) large number of small singular values.

Paul
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4 Parameter scaling in identifiability

The notions of identifiability are defined in such a way that the result is indepen-
dent of any particular scaling of parameters. A scaling happens when choosing a
particular physical unit for a particular parameter, as e.g. using either [nm] or [m] as
measure of distance. One would also expect that issues around identifiability should
not be dependent on these scalings. Also the analysis and test in section (3.2) is
independent of parameter scaling; a scaling of parameters leads to scaled singular
values, but nonzero singular values remain nonzero after scaling and vice versa.
However when considering the singular value decompositionin the approximating
situation of section (3.3) parameter scaling does have an influence on the numerical
values that occur inΣ1,Σ2, and therefore can essentially influence the choice for
separatingΣ1 andΣ2. This particularly plays a role when the physical parameters
contain different physical quantities. E.g. in the case of [13] the physical parameters
relate to saturations (oil/water percentages) and permeabilities in each separate grid-
block that is a result of spatial discretization. The underlying question of parameter
scaling is then: how to balance the variability in the different physical parameters.

It appears that in the approach presented above the absolutevariance of parame-
ters is used as a measure for selection, and as a result the selected parameter space
will become dependent on the chosen parameters scales/units. If it is preferred to
arrive at a selection mechanism that is scaling independent, the relative variance of
parameters is an attractive choice, i.e.

cov(Γ−1
θ̂ θ̂ )

whereΓθ̂ = diag
(
|θ̂1| . . . |θ̂q|

)
. This motivates the analysis of a scaled Hessian

Γθ̂
∂ 2V(θ )

∂θ 2

∣∣∣∣
θ̂

Γθ̂ , (13)

related to the scaled Fisher information matrixJ̃:

J̃ = E

[
Γθ̂

∂ 2V(θ )

∂θ 2

∣∣∣∣
θ̂

Γθ̂

]
. (14)

The appropriate selection of the identifiable parameter space is then obtained by
applying an SVD according to:

Γθ̂
∂ ŷ(θ )T

∂θ
P
− 1

2
v =

[
U1 U2

][ Σ1 0
0 Σ2

][
VT

1
VT

2

]
. (15)

Consequences of this parameter scaling are illustrated forsome simple examples in
Section 9.

Note that the evaluation of the relative variance of parameter estimates for model
structure selection is also done in classical methods when considering the standard
deviation of an estimated parameter related to the parameter value itself, see e.g.
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[15] and [12]. However usually the analysis is performed forparameters separately
(e.g. is zero included in the parameter confidence interval?). In the analysis pre-
sented here linear combinations of parameters are evaluated, thus focussing on the
ratio between the lengths of the principle axes of the uncertainty ellipsoids repre-
senting the parameter confidence bounds forθ̂ . The parameter uncertainty ellipsoid
is expressed by

D(α, θ̂ ) =
{

θ | N(θ − θ̂)TP−1(θ − θ̂)≤ χ2
q,α
}

with P = J−1 the covariance matrix of the estimator, andχ2
q,α corresponds to a

probability levelα in theχ2
q-distribution withq degrees of freedom. This parameter

uncertainty ellipsoid is used to specify thatθ0 ∈D(α, θ̂ ) with probabilityα.

5 Relation with controllability and observability

In this section we will show how the identifiable parameter space that results from
(10) is related to properties of controllability and observability.
We consider a strictly proper deterministic linear time-varying (LTV) model in
discrete-time state-space form, that could result from linearizing a nonlinear model
in the vicinity of a nominal trajectory. The model is given by

xk+1 = Ak(θ )xk +Bk(θ )uk

ŷk(θ ) = Ck(θ )xk,

where subscriptk denotes the time index. The sensitivity of the predicted outputs
with respect to the parameter vectorθ is element-wise given by

∂ ŷk(θ )

∂θ (i)
= Ck(θ )

∂xk

∂θ (i)
+

∂Ck(θ )

∂θ (i)
xk,

where ∂xk
∂θ(i) is determined by

∂xk+1

∂θ (i)
= Ak(θ )

∂xk

∂θ (i)
+

∂Ak(θ )

∂θ (i)
xk +

∂Bk(θ )

∂θ (i)
uk

︸ ︷︷ ︸
:=ũ

θ (i)
k

. (16)

Without loss of generality we assume that∂Ck
∂θ(i) = 0, sinceCk+1 can be made inde-

pendent ofθ by redefining the state. Note that the effect of a parameter change is
weighted by the value of current state and input, i.e. in (16)∂Ak(θ)

∂θ(i) is weighted byxk

and ∂Bk
∂θ(i) is weighted byuk. This means that given a specific model structure, out-

puts are more sensitive to parameters associated with states that have a large value.
In stacked form we can write
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(
∂ ŷ(θ )T

∂θ

)T

=

=





C1 0
C2

. . .
0 CN









I 0 · · ·
A1 I

A2A1 A2 I
...

. . .
...

AN−2 . . .A1 AN−2 . . .A2 . . . AN−2 I
AN−1 . . .A1 AN−1 . . .A2 . . . . . . AN−1 I





︸ ︷︷ ︸
Õ∈RN(p×n)

×





ũθ(1)
0 . . . ũθ(i)

0 . . . ũθ(q)
0

ũθ(1)
1 . . . ũθ(i)

1 . . . ũθ(q)
1

...
...

...

ũθ(1)
N−1 . . . ũθ(i)

N−1 . . . ũθ(q)
N−1





︸ ︷︷ ︸
Ũ∈RNn×q

, (17)

where we have defined̃O andŨ . For a change in the model parameters the term

ũθ(i)
k in (16) was given by∂A(θ)

∂θ(i) xk + ∂B(θ)
∂θ(i) uk. With this expression, equation (17)

provides an appealing interpretation of the Jacobian of thepredicted outputs with
respect to the parameter vector: a change in any of the parameters is translated into
a perturbation of the state of the system, which propagates over time through the
dynamical system to reveal the effect on the predicted outputs. As a result the Jaco-
bian is seen to be determined by three factors: the current state and input (xk, uk),
secondly, the mapping from a model parameter perturbation to a state change (sen-
sitivities ofA andB), and thirdly the mapping from a state perturbation to a change
in the output (observability properties iñO). Indeed only parameter changes that
result in state perturbations contained in the column spaceof (Õ) can be identified.
Moreover, the current state and input need to be nonzero. In the situation that the
initial statex0 = 0, and ∂B

∂θ u = 0, it follows that the state will be significant only
in the controllable state space. Note, however, that the initial statex0 and natural
disturbances of the states can also contribute tox being nonzero, which would allow
model parameters to be identified.

6 Cost function minimization in identification

In this section we will show how identifiability properties of the model structure
appear in gradient-based iterative parameter estimation algorithms. If we iteratively
solve for a parameter estimateθ̂ by minimizing a cost functionV(θ ), the general
update rule in stepm of a Newton-type algorithm is given by



Identification of physical parameters 135

θ̂m+1 = θ̂m− γ
(

∂ 2V
∂θ 2

)−1 ∂V
∂θ

, (18)

whereγ denotes a scalar damping factor. Note that in this expression the partial
derivatives are evaluated in the local parameterθ̂m. In contrast with the analysis
in the previous section this local parameter does not necessarily reflect a (local)
minimum of the cost functionV.

If we consider the prediction error cost function as used before, then for the
model structure considered and after linearization ofŷ(θ ) around parameterθm the
update rule becomes

θ̂m+1 = θ̂m+ γ

(
∂ ŷ(θ )T

∂θ

(
∂ ŷ(θ )T

∂θ

)T
)−1

∂ ŷ(θ )T

∂θ
(y− ŷ(θ )) . (19)

wherePv is considered identity for notational simplicity.
The parameter update (19) is actually a Gauss-Newton step ([5]), employing a first
order Taylor expansion of̂y(θ ) aroundθm, similar to the approximation in section
3.3. As an alternative, a Steepest-Descent algorithm ([5])approximates the Hessian
with any positive definite matrix, where standard the identity matrix is chosen. As a
result, the update rule in the considered situation becomes:

θ̂m+1 = θ̂m+ γ
∂ ŷ(θ )T

∂θ
(y− ŷ(θ )).

If the model structure is not identifiable in̂θm the matrix inverse in (19) will not
exist. Although this is often indicated as a serious problemfor iterative optimization
algorithms it can simply be overcome by restricting the update rule to make steps
only in that part of the parameter space that does influence the output predictor, see
e.g. [18, 28, 19]. This actually come down to utilizing the pseudo-inverse of the
Jacobian in (19), on the basis of the SVD:

∂ ŷ(θ )T

∂θ
=
[

U1 U2
][ Σ1 0

0 Σ2

][
VT

1
VT

2

]
(20)

with Σ1 ∈ Rp×p. If Σ2 = 0, the update rule for the Gauss-Newton iteration can then
be replaced by

θ̂m+1 = θ̂m+ γU1Σ−1
1 VT

1 (y− ŷ(θ )),

while the update rule of Steepest-Descent is given by

θ̂m+1 = θ̂m+ γU1Σ1V
T
1 (y− ŷ(θ )).

Both algorithms update the parameter only in the subspace that is determined by the
column space ofU1, being the locally identifiable subspace of the parameter space
in the local pointθ̂m.
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Note that the difference between the two update mechanisms is that Steepest-
Descent emphasizes the vectors ofU1 that correspond to large singular values of
the Jacobian, while Gauss-Newton emphasizes the vectors ofU1 that correspond to
small singular values of the Jacobian.
Large singular values of the Jacobian are associated with directions in which the pre-
dictions are very sensitive to a change in the parameters. Indeed, Steepest-Descent
looks for the direction in which the cost function decreaseswith the least amount of
effort in changing the parameters. Gauss-Newton follows anopposite strategy. Here
the algorithm looks for a change in predicted outputs (i.e. cost function) which is
induced by the largest change in the parameters.

It can simply be verified that parameter scaling does influence the estimate of
the steepest-descent algorithm, in contrast with the Gauss-Newton algorithm which
is scaling invariant, see e.g. [5]. This scaling-invariance however is only true if the
Hessian has full rank inθ = θm.

Similar to the analysis in the previous sections the rank reduction of the Jacobian,
as represented in (20) can of course be enforced if the SVD shows a large number
of small singular values inΣ2, and the Jacobian is approximated by settingΣ2 = 0.

A similar approach of Jacobian reduction is employed in the fully parametrized
state-space model identification using so-called data-driven local coordinates of
[18, 19] as well as in subspace identification [28], where search directions are cho-
sen to be orthogonal to the tangent space of the manifold representing equivalent
models. See also [31] for a further comparison of methods. Ifthe main interest of
the modelling procedure is to identify (linear) system dynamics, these approaches
are attractive as they simply use the parameters as vehiclesto arrive at an appropriate
system model. However, in this paper we aim at preserving thephysical interpreta-
tion of the parameters and therefore are more focussing on the uniqueness of the
parameters estimates in order to obtain reliable long-term(non-linear) model pre-
dictions.

7 A Bayesian approach

Lack of identifiability of a model structure and the subsequent non-uniqueness of
parameters that are estimated on the basis of measurement data, can be dealt with in
different ways. One way is to reduce the parameter space in the model structure, as
indicated in the previous sections. Alternatively additional prior information can be
added to the identification problem. In those situations where a parameter estimate
may not be uniquely identifiable from the data, a regularization term can be added
to the cost function that takes account of prior knowledge ofthe parameters to be
estimated. In this setting an alternative (Bayesian) cost function is considered:

Vp(θ ) := V(θ )+
1
2
(θ −θp)P

−1
θp

(θ −θp), (21)
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where the second term represents the weighted mismatch between the parameter
vector and the prior parameter vectorθp with covariancePθp. When again the model
output ŷ(θ ) is approximated using a first-order Taylor expansion aroundθp, the
Hessian of (21) becomes:

∂ 2Vp(θ )

∂θ 2 =
∂ ŷ(θ )T

∂θ
P−1

v

(
∂ ŷ(θ )T

∂θ

)T

+P−1
θp

. (22)

SinceP−1
θp

is positive definite by construction and the first term is positive semi-
definite, the Hessian has full rank and the parameter estimate

θ̂bayes= argmin
θ

Vp(θ )

is unique. This uniqueness is guaranteed by the prior information that has been
added to the problem. Formally there can still be lack of identifiability, however it
is not any more reflected in a non-unique parameter estimate.A consequence of this
approach is that the obtained parameter estimate may be highly influenced by the
prior information, and less by the measurement data.

The covariance matrix of the Bayesian parameter estimate can also be analyzed
using the classical prediction error theory, see [15]. Under ideal circumstances (con-
sistent estimation andθp = θ0 (!)) it can be shown that

cov(θ̂bayes) =

[
E

∂ 2Vp(θ )

∂θ 2

∣∣∣∣
θ0

]−1

. (23)

In other words, the inverse of the Hessian of the identification criterion remains to
play the role of (sample estimate of) the parameter covariance matrix, and the same
considerations as discussed in the earlier sections can be applied to the SVD analysis
of this Hessian. By appropriately operating on the expression for the Hessian (22),
it can be shown that a relevant SVD analysis for dimension reduction can now be
applied to

P
T
2

θp

∂ ŷ(θ )T

∂θ
P
− 1

2
v ,

which in [23] is referred to as the dimensionless sensitivity matrix.
It may be clear that the parameter estimate becomes highly dependent on the prior

information, and that bias will occur when the parameter prior θp is not correct.
It has to be noted that this Bayesian approach is typically followed when using

sequential estimation algorithms for joint parameter and state estimation, as in Ex-
tended Kalman Filters and variations thereof, such as the Ensemble Kalman Filter,
see e.g. [8].
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8 Structural identifiability

The question whether parameters can be uniquely identified from data basically
consists of two parts. The first part concerns the model structure: is it possible at
all to distinguish two given parameters, provided that the input is chosen in the best
possible way? This property is called structural identifiability of a model structure.
The second part concerns the issue whether the actual input is informative enough
to allow this distinction. In the previous sections both parts were considered simul-
taneously. In this section only the first part is investigated. Consider definition 2 on
structural identifiability. Without loss of generality, but for ease of notations, we will
limit attention to theSISOcase. The multivariable case is also treated in [27]. Note
thatG(z,θ ) can be written as:

G(z,θ ) =
∞

∑
k=1

M(k,θ )z−k, (24)

whereM(k,θ ) are the Markov parameters. Based on (24) we argue that equality of
G(z,θ1) andG(z,θ2) is related to equality of the Markov parameters ofG(z,θ1) and
G(z,θ2). We can now use the following proposition ([9], [11], [20], [27]):

Proposition 3 Consider the map SN(θ ) : Θ ⊂ Rq→RN defined by:

SN(θ ) := [ M(1,θ ) . . . M(N,θ ) ]T . (25)

Then the model structure is locally structural identifiablein θm if rank
(

∂ST
N(θ)

∂θ

)
= q

in θ = θm.

Both the qualitative question of structural identifiability, and the determination of
the “best” structurally identifiable subspace of parameters can now be examined by
applying an SVD to the matrix

∂ST
N(θ )

∂θ
(26)

and examining the column space of this matrix, see [27]. However also in this prob-
lem we need to take care that our (approximate) identifiability test is not dependent
on user-chosen parameter scaling, and so we need a premultiplication of (26) with
the scaling matrixΓθm. If a parameter has high impact on a particular Markov pa-
rameter, but the Markov parameter itself has a very small value, the considered
parameter is still a good candidate to be removed in our modelstructure approxima-
tion problem. Therefore an additional weighting of (26) is desired that takes account
of the values of the Markov parameters. As a result we consider the column space
of the matrix

Γθm

∂ST
N(θ )

∂θ
ΓS (27)

where for theSISO caseΓS := diag
(
|M1| . . . |MN|

)
. The consequence is that

Markov parameters that have a high value are considered to bemore important to
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include than Markov parameters with a small value.3

The row space of (27) that relates to the dominant singular values of the matrix,
now is a representation of the parameter space of the approximated model structure.
The Jacobian matrix (26) can be calculated analytically, asis shown in [27] for state
space model structures.

The structurally identifiable problem and the identifiability problem are of course
closely related to each other. This can be observed by realizing that

∂ ŷ(θ )T

∂θ
=

∂ST
N(θ )

∂θ
ΦN, (28)

whereΦN is given by

ΦN =





u1 u2 . . . uN

u1
...

. . .
u1




(29)

and the derivatives are evaluated atθ = θm.
Note that the matrixΦN with input signals acts as a weighting matrix in (28) in a
similar way as the weighting matrixΓS does in (27).

9 Examples

In order to illustrate the concepts, and in particular the role of the scaling/weighting
functions, we will now discuss two examples where we have chosen a very simple
SISOfinite impulse response (FIR) model. The model structure will be approximated
using the previously discussed identifiability analysis, where we assume thatPv = I .

Example 4 Consider the data-generating system

y(t) = α0u(t−1)+ β0u(t−2)

with α0 = 106 andβ0 = 10−6, andθ0 := [α0 β0]
T . Consider the input/output model

structure
y(t,θ ) = αu(t−1)+ βu(t−2), θ := [α β ]T .

For an analysis of the local identifiability inθ = θ0 we consider

ψ(t,θ0) :=
∂y(t,θ )

∂θ
=

[
u(t−1)
u(t−2)

]
(30)

so that the Fisher information matrix J is given by

3 Note that in a more generalized setting this weighting should be replaced by a weighting that
takes account of the application in which the model is used.
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J = E

N

∑
t=1

ψ(t,θ0)ψ(t,θ0)
T

= NE

(
u(t−1)
u(t−2)

)(
u(t−1)
u(t−2)

)T

= N

[
Ru(0) Ru(1)
Ru(1) Ru(0)

]

with Ru(τ) = E [u(t)u(t− τ)].
The scaled Fisher information matrix̃J of (14) for a local analysis aroundθ0 is then
given by

N

[
α0 0
0 β0

][
Ru(0) Ru(1)
Ru(1) Ru(0)

][
α0 0
0 β0

]
.

The relative parameter variance is indicated byJ̃−1. In the case of a unit variance
white noise input, it follows that

J̃ = N

[
1012 0

0 10−12

]
,

while the unscaled Fisher information matrix satisfies J= N · I. Analysis ofJ̃ shows
that the second parameter can very well be neglected, leading to an approximate
model structure y(t) = αu(t−1).

Structural identifiability analysis without scaling showsthat both parameters are

structurally identifiable, since
∂ST

N(θ)

∂θ = I. However, including both scaling matrices
Γθ andΓS, we obtain

Γθ
∂ST

N(θ )

∂θ
ΓS =

[
1012 0

0 10−12

]
,

also showing that the second parameter can be very well neglected. In light of sec-
tion 5 we remark that inθ = θ0 this model is poorly observable/controllable and as
a result it is also poorly identifiable.

Example 5 In this example the same data-generating system as in the previous ex-
ample is considered. Consider the input/output model structure

y(t,θ ) = αu(t−1)+10−6γu(t−2), θ := [α γ]T .

whereγ0 = 1. In comparison with the previous example we have scaled the second
parameter with a factor10−6. This can be thought of to be the result of choosing a
different physical unit for the parameter. The scaled Fisher information matrixJ̃ of
(14) is

N

[
α0 0
0 γ0

][
Ru(0) 10−6Ru(1)

10−6Ru(1) 10−12Ru(0)

][
α0 0
0 γ0

]
.

Under the same input conditions it follows that

J̃ = N

[
1012 0

0 10−12

]
,
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while the unscaled Fisher information matrix is

J = N

[
1 0
0 10−12

]
.

Whereas the unscaled matrix is essentially different from the previous example, the
scaled analysis shows again that the second parameter can very well be neglected
and that the model structure can be approximated with y(t) = αu(t−1).
Structural identifiability analysis without scaling showsthat α is structurally best
identifiable, since

∂ST
N(θ )

∂θ
=

[
1 0
0 10−6

]
.

Including both scaling matricesΓθ andΓS, we obtain in quadratic form

Γθ
∂ST

N(θ )

∂θ
ΓS =

[
1012 0

0 10−12

]
,

being exactly the same as matrix as in the previous example, meaning that the struc-
tural identifiability analysis is now-scaling invariant.

The examples are of course very simple, and they are meant to illustrate the basic
phenomena that might occur in large scale physical structures. Use of a notion of
relative variance, reflected in a scaled Fisher informationmatrix, leads to selection
results that are scaling-invariant. The fact that we consider a local analysis only is
of course a limitation of the results presented here.

10 Conclusions

The question whether a large scale (nonlinear) physical model structure is identifi-
able, is usually considered in a qualitative way. In this chapter the notion of identi-
fiability is quantified and it is shown how the model structurecan be approximated
so as to achieve identifiability, while retaining the interpretation of the physical pa-
rameters. In this chapter this question has been addressed in a prediction error set-
ting. The analysis has been related to iterative optimization algorithms (like Gauss-
Newton and Steepest-Descent) and to Bayesian estimation. It has been shown that
parameter scaling becomes relevant when approximating model structures.
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[2] Bamieh, B., Giarré, L.: Identification of linear parameter varying models. Int. J. Robust and
Nonlinear Control12, 841–853 (2002)
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