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Abstract When first principles models are used for model-based apesss mon-
itoring, control and optimization, the estimation of acterphysical parameters is
important in particular when the underlying dynamical miadenonlinear. If the
models are the result of partial differential equationspeliscretized, they are of-
ten large-scale in terms of number of states and possitbynaisiber of parameters.
Estimating a large number of parameters from measureméatatals to problems
of identifiability, and consequently to inaccurate idenéfion results. The question
whether a physical model structure is identifiable, is Ugwansidered in a qualita-
tive way, i.e. it is answered with a yes/no answer. Howeveresalso nearly uniden-
tifiable model structures lead to poor parameter estimtitegjuestions is addressed
how the model structure can be approximated so as to actueakitientifiability,
while retaining the interpretation of the physical paraeangt Appropriate attention
is also given to the relevant scaling of parameters. Thelpnolis addressed in a
prediction error setting, showing the relation with graudig/pe optimization algo-
rithms as well as with Bayesian parameter estimation.
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1 Introduction

Complex dynamical physical processes raise many chakef@emodel-based
monitoring, control and optimization. On-line reconstiao of non-measurable
variables, design of appropriate feedforward and feedbasticol strategies, as well
as economic optimization of processes under appropriageatipnal constraints,
generally require the availability of a reliable processdelp preferably accompa-
nied by a quantification of its reliability (uncertaintyjthe dynamics of the consid-
ered process is linear, then a process model can be obtajregaplying black-box
system identification, which provides a well-studied setioals for identifying lin-
ear models on the basis of experimental data [15, 21]. I&tisea particular interest
in the identification of physical parameters, this oftengioet raise any additional
problems: one has to choose the right (physics-based) nstrdeiture and iden-
tify the parameters through one of the available (possibly-convex) optimization
methods. The only issue that has to be taken care of is thathhsical model
structure is identifiable, implying that the several phgbmarameters can be distin-
guished from each other on the basis of the model’s inpyttdlttehavior.

In the situation that the process dynamics is nonlineagtitaften be linearized
around an operating point (as e.g. in continuous-type imél/ishemical produc-
tion processes) and the above mentioned linear approachectoilowed leading
to a linear (approximate) model. However when essentidimesar dynamical phe-
nomena are involved and the user needs to capture this dgsamthe model, it is
much harder to come up with generic black-box techniquegdfentification. Al-
though there are interesting attempts to capture the rearliphenomena in (black-
box) model structures as Wiener and/or Hammerstein mofel83], and linear
parameter-varying (LPV) models [14, 29, 2, 25, 24, 32, 3#hrimation on the un-
derlying physical structure of the nonlinearities is veften required for selection
of an appropriate model structure.

In some processes it is desirable to capture the real uridgrhonlinear dy-
namic structure of the process in order to make reliable-teng predictions. First-
principles model then provide the structure of the modellenihcorporated (physi-
cal) parameters have to be estimated on the basis of expgehdata. Especially in
situations where the first principles models are given byigalifferential equations
(pde’s), the required step of discretizing the equatiorspiace and time generally
leads to complex models with a large number of states andhhpsdso a large
number of unknown (physical) parameters. For an interggtkample of this situa-
tion in a problem of (oil) reservoir engineering, the readeeferred to [13], where
an industrial example of optimal oil recovery from resersaiver the life time of
the reservoir (possibly 20 years) is shown in the form of a nonlinear (batch-type)
process with a number of states and parameters exceedingveof 18.

Identifying extremely large number of parameters from measent data leads
to serious problems, and at least it leads to the questiochwhodel properties can
be reliably estimated from the available measurement Bada a model-based op-
erations point of view (monitoring, control, optimizatidhmakes sense to limit the
complexity of an identified model to a level where the model ba reliably vali-
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dated from data. If not, the parameter estimates might bayhagtermined by the
-random- experiment that is done (overfit) leading to uatdé model predictions.
In identification this problem is addressed by the notiordefiifiability (of a model
structure), and directly coupled to the variance of es@dgiarameters.

In this chapter the notion of identifiability will be evaleatin the scope of the
high-complexity type of processes discussed above. Ounaggt will be that hav-
ing an (locally) identifiable model structure will not be ficient to provide reliable
parameter estimates in large scale physical model stestiethods will be pre-
sented that allow to reduce the parameter space to limiteeérion, while being
able to reliably estimate the reduced parameters and nraimdaheir physical in-
terpretation. To this end the qualitative notion of (logdntifiability (with a yes/no
answer) is generalized to a quantitative notion, removirag parameter subspace
from the parametrization that can only be estimated witlessively large variance.

2 ldentifiability - the starting point

The notion of identifiability refers -roughly speaking- teetquestion whether pa-
rameter changes in the model can be observed in the modeltaigmal (output
identifiability) or in the model’s input-output map or trdesfunction (structural
identifiability).
The notion of output identifiability has been studied in §ld] and [15]. The notion
of structural identifiability was first stated by [3] and haseh extensively studied
in the field of compartmental modeling ([10], [20]). Stafsase model parameter-
izations have been analyzed by [9] and [30]. Lately therelwen a renewed in-
terest in structural identifiability analysis, with combtutions from [22] and [27]. In
its essence, identifiability properties are global prapsrti.e. holding for the full
parameter space, as e.g. considered in [16] and [7] wheasneder mappings are
studied to analyse global identifiability. However regtng attention to a local anal-
ysis is often the only situation that is feasible in termsahputational complexity.
As a result we will focus on local properties in this chaptelyo

Consider a nonlinear dynamical model that generates optpdictions accord-
ing to':

¥ ="h(u,8;x%), 1)
wherey is a prediction of/ ;.= [ y{ A ]T denoting output signal measurements
yk € RP stacked over timef) € © C R the parameter vectan,:= [ u] ... uf, ]T

the input vectony € R™ stacked over time, ang the initial state vector. Since the
model (1) is parameterized it represents an input/outputatstructure.
The definition of local identifiability now is given as folla{[11]):

Definition 1 An input/output model structurg 8,u;Xp) : © — 7 is called locally
identifiable in6;,, € @ for a givenu and x, if for all 6y, 6, in the neighborhood of

1 without loss of generality we restrict attention to predistthat are not dependent on output
measurementg whch in an LTI-setting is referred to as Output Error préafis.
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6m holds that
{h(u, 61;%0) = h(u, 62;%0) } = 61 = 6,.

If we linearize the nonlinear process dynamics around aerhoperating point
or trajectory, a linear dynamical system results. Thiseystan be modelled by an
LTIl input-output model, represented by the transfer fure®, leading to an output
predictor

Yk = G(d, 0)u,

with g the shift operatoqug = Uy 1.
The notion of local structural identifiability ([9]) is thetefined by considering
the properties of the parameterized transfer funcBoq, 6):

Definition 2 An input/output model structure GO — ¢ with © Cc RY and¥ C
R(z)P*™M is called locally structural identifiable if,, € © if for all 81,6, in the
neighborhood 08, holds that

{G(z261) =G(z 6)} = 61 = 6. 2)

HereR(z)P*™M is the set of allp x mrational transfer function matrices in the com-
plex indeterminate.

Note that in contrast with (1) this latter notion is not degent on either an input
signal nor an initial state. Structural identifiability Wile considered in section 8,
where a link is made between structural identifiability agehtifiability.

In general identifiability questions are considered gagliely, i.e. deciding
whether a model structure is either identifiable or not. Téstst required for this
evaluation are typically rank evaluations of matrices, @s Eisher’s information
matrix, around a particular local operating point in thegmaeter space, see e.g. [6].
However, when considering parameters in large scale (meal) physical models it
is relevant to raise the question how the notion of identiftglcan be quantified.
This implies addressing the question which part of the patanspace is best iden-
tifiable, and which part of the model structure can be appnaxéd so as to achieve
local identifiability, while retaining the interpretatiofithe physical parameters. For
structural identifiability this question was preliminargdaessed in [27]. In [4] the
degree of identifiability was introduced. In [26] princig@mponent analysis was
applied to determine which parameters can be identifiedegsésg identifiability
can also be done a posteriori, after the identification gialameters, by evaluating
the parameter variance, see e.g. [12].

In this chapter we will further investigate how the notiorisdentifiability can
be quantified to allow for a reduction in the parameter spaitte physically inter-
pretable parameters.
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3 Testing local identifiability in identification
3.1 Introduction

In a model identification framework we consider parametgémedion methods that
are characterized by minimizing a cost functio(d):

1 -
V(6) = 5(0)'R, '&(6), 3)
where the prediction error sequerees defined as

£(0)=y—-9y=y—h(6,u;%), (4)

wherey denotes the measured output sequenceydhe predictor sequence, aRgd
is a weighting matrix that could represent (an estimatetw)dovariance matrix of
the noise sequenaethat is supposed to act on the measured output. In the rest of
the chapter the shorthand notatig(®) is used to indicatl(u, 6;Xp).
The Jacobian 0¥ (6) with respect to the parameters is

N@O) e 4
20— o8 H EO)=

9o

SRy - 9(0)). ©)

The Hessian oY (6) with respect to the parameters is

0*v(6) _0(0) 1 (0e(®)\"  ( 99(O)T , ; (99(6)"
002 90 'V 00 T IR 20

)T+s; )

whereS denotes the second-order informatiorﬁizg%@. The Jacobian and Hessian
are for a giverf and a given operating point (given byandxp). Parameter estima-
tion now consists in finding the parameter estimate as a n@mmargument of the
cost functiorvV (8)

6:= argngiri\/(e). @)

At B the cost functiorV(6) is minimized and the Jacobian (5) @tis zero, i.e.
MG — 0 atb.

3.2 Analyzing local identifiability ind

Local identifiability in 6 is generally evaluated by the test whether the optimization
problem (7) has a unique solution in the parameter spaceod@ly approximating
the cost functiorV () by a quadratic functioh(and thus neglecting the second

2 This is achieved by approximatirjg®) with a first-order Taylor expansion aroudd
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order termSin (6)), uniqueness of is guaranteed if the Hessian biis positive

definite, Le_a;ve(ze) > 0 atf, which in this case is equivalent to ra%%% =(q. This

is a sufficient condition for local identifiability iR, see e.g. [3], [9] and [15].
The considered rank test is naturally performed by appl@rgngular value
decomposition (SVD):

0%V () - 5 0] v/
Taer U= 1w v [ T o) [ |

where matriceb) andV are unitary matrices, = diag(oy, ..., 0p) with oy > --- >
Op.

prp = gthen identifiability is confirmed. Ip < q then the column space 0f, repre-
sents the subspace of the parameter space that is idesmtiféetal the column space
of Us is its orthogonal complement, characterizing the subspaatds not identifi-
able.

As a result, the SVD of the Hessian can be used to extend tHéatva treat-
ment of the question whether or not a particular model sfinecis identifiable, to
a quantitative property of specifying the identifiable paetder space. The columns
of Uz basically act as basis functions in the parameter space;ndieting the linear
combinations of the original parameters that will be idiatle from the measure-
ments. Differently formulated, this would point to a repagdrization of the model
structure by defining a reduced order parampterRP defined by

6= Uip (8)

leading to an identifiable model structure in the paramptefhe attractive fea-
ture of this mapping is that it allows to identify while the estimated resuft can

be uniquely interpreted in terms of the original physicaigoaetersd through the
mapping (8). The limitation of the approach is of course trdy linear parameter
transformations are considered.

3.3 Approximating the identifiable parameter space

When in the SVD of the Hessian singular values are found trea{\sery) small,
this points to directions in the parameter space that hameliveited (but nonzero)
influence on the cost functioh. In identification terms this correspond to directions
in the parameter space in which the variance is (very) large.Hessian evaluated
at 6 is connected to the variance 8f since for the Gaussian case (and provided that
6 is a consistent estimate) it follows that

cov(f)=J"1

with J the Fisher information matrix
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02V (6)

1-5| g7

é} ’ ©

whereE denotes expectation ([15]).
We are interested in specifying that part of the parametacesphat is best iden-
tifiable by removing the subspace that has only a very smiilldnce on the cost
functionV. This reasoning would point to removing those parametenfiinations)
from the model structure for which the variance is very laggewas also addressed
in [26] for nonlinear parameter mappings, and in [17] foigénparameters.

The essential information on the SVD of the Hessian is nowiakd from:

99O g 4 (U1 Uz ] {Zol 202] {xﬂ (10)

2
56

where the separation betwe&ih and 2, is chosen in such a way that the singular
values inZ, are considerably smaller than thosesin
If we now reparametrize the model structure by employingréticed parameter
p determined byd = U1p, we have realized a model structure approximation, in
which the parameters to be identified are well identifiablghwi limited variance
and the physical interpretation of the parameters remait@uched. The singular
vectors that occur as the columngdJdpactually can be seen as basis functions in the
parameter space.

With the SVD (10) it follows that the sample estimate of thear@ance matrix
of 6 becomes:

A [Up Up | 5% 0 ug for tracg ;) > 0
coM8) = 0 5,2] U] (11)
UIETQU% for>,=0
while the sample estimate of the covariance matrix of than@mpetrized parameter

estimateJ; p is given by
covU1p) = Uy 5207 (12)

This shows that i, = 0 there is no benefit of the reparametrization in terms of
variance of the estimated parameffieHowever if nonzero singular values are dis-
carded in%, i.e. if tracé€2,) > 0 then

cov(6) > co\(U1p)

showing a covariance that is reduced by the reparametizatfihis reduction is
particularly interesting i£, contains a (very) large number of small singular values.
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4 Parameter scaling in identifiability

The notions of identifiability are defined in such a way that thsult is indepen-
dent of any particular scaling of parameters. A scaling leagpvhen choosing a
particular physical unit for a particular parameter, asasing either [nm] or [m] as
measure of distance. One would also expect that issuesdidemtifiability should
not be dependent on these scalings. Also the analysis anihtesction (3.2) is
independent of parameter scaling; a scaling of parametadsIto scaled singular
values, but nonzero singular values remain nonzero af@imgcand vice versa.
However when considering the singular value decompositighe approximating
situation of section (3.3) parameter scaling does havefareimce on the numerical
values that occur irEq, 55, and therefore can essentially influence the choice for
separatingz; and >,. This particularly plays a role when the physical paranseter
contain different physical quantities. E.g. in the casel8] fhe physical parameters
relate to saturations (oil/water percentages) and perifitesgin each separate grid-
block that is a result of spatial discretization. The ungiag question of parameter
scaling is then: how to balance the variability in the diéfetphysical parameters.

It appears that in the approach presented above the abgatidgace of parame-
ters is used as a measure for selection, and as a result ¢oteskEparameter space
will become dependent on the chosen parameters scales/linitis preferred to
arrive at a selection mechanism that is scaling indepenttentelative variance of
parameters is an attractive choice, i.e.

cov(r; 16)
wherel; = diag( 6] ... |éq| ). This motivates the analysis of a scaled Hessian
0%V (0
I 09(2 ) éré’ (13)

related to the scaled Fisher information matfix

" 2
J:E{réaavig))’éré] (14)

The appropriate selection of the identifiable parameteresjmthen obtained by
applying an SVD according to:

99(6)" 1 50V
r y(ge) RZ=[U U2]|:Ol ZzHVﬂ' (15)

Consequences of this parameter scaling are illustratezsbfoe simple examples in
Section 9.

Note that the evaluation of the relative variance of paramestimates for model
structure selection is also done in classical methods whasidering the standard
deviation of an estimated parameter related to the parameliee itself, see e.g.
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[15] and [12]. However usually the analysis is performeddarameters separately
(e.g. is zero included in the parameter confidence inteyvai?the analysis pre-
sented here linear combinations of parameters are evdluhtes focussing on the
ratio between the lengths of the principle axes of the uaa@st ellipsoids repre-
senting the parameter confidence boundgfoFhe parameter uncertainty ellipsoid
is expressed by

2(a,0)={0|NO-0)TP1(0-8) < x2,}

with P = J~1 the covariance matrix of the estimator, axlgja corresponds to a
probability levela in thexé-distribution withq degrees of freedom. This parameter
uncertainty ellipsoid is used to specify thate % (a, é) with probability a.

5 Relation with controllability and observability

In this section we will show how the identifiable parameteacpthat results from
(10) is related to properties of controllability and obsdality.

We consider a strictly proper deterministic linear timeywag (LTV) model in
discrete-time state-space form, that could result fromdiizing a nonlinear model
in the vicinity of a nominal trajectory. The model is given by

Xer1 = Ak(0)xi+ Bx(6)uk
Yk(8) = Ci(0)x,

where subscripk denotes the time index. The sensitivity of the predictegotst
with respect to the parameter vectbis element-wise given by

9y(6) _ O 0C(0)
a0m) O 380m  Gag
Wherefe—"(ki) is determined by
X1 X | OA(B)  JBk(B)

Uk . (16)

a0 O30 Gap «F

Without loss of generality we assume tl'%% =0, sinceCy 1 can be made inde-
pendent of6 by redefining the state. Note that the effect of a paramet@ngh is

weighted by the value of current state and input, i.e. in @9@%9)—) is weighted by

and(fe—% is weighted byux. This means that given a specific model structure, out-
puts are more sensitive to parameters associated witls sketehave a large value.

In stacked form we can write
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where we have defined andU. For a change in the model parameters the term
GE(” in (16) was given by%((ie))xk—i— %%—f))uk. With this expression, equation (17)
provides an appealing interpretation of the Jacobian optieeicted outputs with
respect to the parameter vector: a change in any of the pseesig translated into

a perturbation of the state of the system, which propagatestone through the
dynamical system to reveal the effect on the predicted dsitpis a result the Jaco-
bian is seen to be determined by three factors: the currata and inputx, uy),
secondly, the mapping from a model parameter perturbatiarstate change (sen-
sitivities of A andB), and thirdly the mapping from a state perturbation to a gean
in the output (observability properties 'zﬁ). Indeed only parameter changes that
result in state perturbations contained in the column sp&¢€) can be identified.
Moreover, the current state and input need to be nonzertesituation that the
initial statexg = 0, and%u =0, it follows that the state will be significant only
in the controllable state space. Note, however, that th&irstatex, and natural
disturbances of the states can also contributgteing nonzero, which would allow

model parameters to be identified.

6 Cost function minimization in identification

In this section we will show how identifiability propertie$ the model structure
appear in gradient-based iterative parameter estimalgmmignms. If we iteratively
solve for a parameter estima@eby minimizing a cost functioV (68), the general
update rule in stem of a Newton-type algorithm is given by
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(18)

AN
062 a6’

ém+1: ém_y(

wherey denotes a scalar damping factor. Note that in this expredbkie partial
derivatives are evaluated in the local paraméigrIn contrast with the analysis
in the previous section this local parameter does not nadbsseflect a (local)
minimum of the cost functiok'.

If we consider the prediction error cost function as usedigefthen for the
model structure considered and after linearization(éf) around parametei,, the
update rule becomes

i A S0V 799N\ L 50707
%Hy_&ﬁy<dﬁ? (%55) ) PO y-s0). a9

whereR, is considered identity for notational simplicity.

The parameter update (19) is actually a Gauss-Newton sgpémploying a first
order Taylor expansion gf(8) aroundfn, similar to the approximation in section
3.3. As an alternative, a Steepest-Descent algorithm gf&pyoximates the Hessian
with any positive definite matrix, where standard the idgmtiatrix is chosen. As a
result, the update rule in the considered situation becomes

9(6)" .
g0 Y~ (0)).

éerl = ém'f‘V

If the model structure is not identifiable &, the matrix inverse in (29) will not
exist. Although this is often indicated as a serious prol@miterative optimization
algorithms it can simply be overcome by restricting the updale to make steps
only in that part of the parameter space that does influereceutput predictor, see
e.g. [18, 28, 19]. This actually come down to utilizing theepdo-inverse of the
Jacobian in (19), on the basis of the SVD:

w3

with Z; € RP*P, If 5, =0, the update rule for the Gauss-Newton iteration can then
be replaced by

Omi1 = b+ YL V] (Y~ 9(6)),
while the update rule of Steepest-Descent is given by

Bmi1 = B+ WiV (Y —9(8)).

Both algorithms update the parameter only in the subspatéstietermined by the
column space dfJ;, being the locally identifiable subspace of the parametacep
in the local pointGy,.
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Note that the difference between the two update mechanisiimi Steepest-
Descent emphasizes the vectordafthat correspond to large singular values of
the Jacobian, while Gauss-Newton emphasizes the vecttlstbat correspond to
small singular values of the Jacobian.

Large singular values of the Jacobian are associated wéhtains in which the pre-
dictions are very sensitive to a change in the parametetteelh Steepest-Descent
looks for the direction in which the cost function decreasith the least amount of
effortin changing the parameters. Gauss-Newton followsoosite strategy. Here
the algorithm looks for a change in predicted outputs (iocst dunction) which is
induced by the largest change in the parameters.

It can simply be verified that parameter scaling does inflaghe estimate of
the steepest-descent algorithm, in contrast with the Gilesgon algorithm which
is scaling invariant, see e.g. [5]. This scaling-invariahowever is only true if the
Hessian has full rank i = 6.

Similar to the analysis in the previous sections the ranlsegdn of the Jacobian,
as represented in (20) can of course be enforced if the SVidshdarge number
of small singular values iy, and the Jacobian is approximated by setfing= 0.

A similar approach of Jacobian reduction is employed in thky parametrized
state-space model identification using so-called datgedrlocal coordinates of
[18, 19] as well as in subspace identification [28], wherededirections are cho-
sen to be orthogonal to the tangent space of the manifolésepting equivalent
models. See also [31] for a further comparison of methodhelfmain interest of
the modelling procedure is to identify (linear) system dyis, these approaches
are attractive as they simply use the parameters as veto@desve at an appropriate
system model. However, in this paper we aim at preservingltiysical interpreta-
tion of the parameters and therefore are more focussing®nnigueness of the
parameters estimates in order to obtain reliable long-{@n-linear) model pre-
dictions.

7 A Bayesian approach

Lack of identifiability of a model structure and the subseguen-uniqueness of
parameters that are estimated on the basis of measuren@ntatabe dealt with in
different ways. One way is to reduce the parameter spaceimtuel structure, as
indicated in the previous sections. Alternatively additibprior information can be
added to the identification problem. In those situationsre@laeparameter estimate
may not be uniquely identifiable from the data, a regulaigreterm can be added
to the cost function that takes account of prior knowledgthefparameters to be
estimated. In this setting an alternative (Bayesian) aosttion is considered:

V() ::V(e)+%(e—ep)ng1(e—ep), (21)



Identification of physical parameters 137

where the second term represents the weighted mismatcledettie parameter
vector and the prior parameter vectirwith covariancé®,. When again the model
outputy(0) is approximated using a first-order Taylor expansion arofgdhe
Hessian of (21) becomes:

NL(8) BT _ L /age)T\
AT e

Sincengl is positive definite by construction and the first term is pesisemi-
definite, the Hessian has full rank and the parameter estimat

ébayes: arg ne]im/p(e)

is unique. This uniqueness is guaranteed by the prior irdtion that has been
added to the problem. Formally there can still be lack of idi@bility, however it
is not any more reflected in a non-unique parameter estirhatensequence of this
approach is that the obtained parameter estimate may bd lifluenced by the
prior information, and less by the measurement data.

The covariance matrix of the Bayesian parameter estimatalsa be analyzed
using the classical prediction error theory, see [15]. Uidkmal circumstances (con-
sistent estimation anél, = 6 (1)) it can be shown that

-1
Eywww] | (23)
6o

COV( ébayes) = ] 62

In other words, the inverse of the Hessian of the identificatriterion remains to
play the role of (sample estimate of) the parameter coveeiamatrix, and the same
considerations as discussed in the earlier sections cappliedto the SVD analysis
of this Hessian. By appropriately operating on the expogsgir the Hessian (22),
it can be shown that a relevant SVD analysis for dimensionaton can now be
applied to .
which in [23] is referred to as the dimensionless sensjtiviatrix.

It may be clear that the parameter estimate becomes highgndient on the prior
information, and that bias will occur when the parametesi}, is not correct.

It has to be noted that this Bayesian approach is typicallpi@d when using
sequential estimation algorithms for joint parameter gatesestimation, as in Ex-
tended Kalman Filters and variations thereof, such as tlsefhle Kalman Filter,
see e.g. [8].

3
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8 Structural identifiability

The question whether parameters can be uniquely identif@ad flata basically
consists of two parts. The first part concerns the model tsireicis it possible at

all to distinguish two given parameters, provided that tipit is chosen in the best
possible way? This property is called structural identifighof a model structure.
The second part concerns the issue whether the actual mmfbrmative enough

to allow this distinction. In the previous sections bothtpavere considered simul-
taneously. In this section only the first part is investigatéonsider definition 2 on
structural identifiability. Without loss of generality, tfor ease of notations, we will
limit attention to thesisocase. The multivariable case is also treated in [27]. Note
thatG(z 0) can be written as:

8

G(z6) =S M(k0)z K (24)
1

Y
Il

whereM(k, 8) are the Markov parameters. Based on (24) we argue that ggogli
G(z 61) andG(z 6,) is related to equality of the Markov parameter€xgz, 6;) and
G(z 6,). We can now use the following proposition ([9], [11], [2027]):

Proposition 3 Consider the mapg8) : © ¢ R9 — RN defined by:

SN(B) :=[M(1,08) ... M(N,0)]". (25)

, , o . o (9)\ _
Then the model structure is locally structural identifialole, if rank( 35 ) =q
in 6 = 6.

Both the qualitative question of structural identifialyiliand the determination of
the “best” structurally identifiable subspace of paransetan now be examined by
applying an SVD to the matrix
-
0i(6) 26)

06
and examining the column space of this matrix, see [27]. Hewalso in this prob-
lem we need to take care that our (approximate) identifighigist is not dependent
on user-chosen parameter scaling, and so we need a prdioatigm of (26) with
the scaling matrixg,,. If a parameter has high impact on a particular Markov pa-
rameter, but the Markov parameter itself has a very smalleyathe considered
parameter is still a good candidate to be removed in our nsidedture approxima-
tion problem. Therefore an additional weighting of (26)ésiled that takes account
of the values of the Markov parameters. As a result we congiidecolumn space
of the matrix

IS\ (9)
I, 20 s 27)
where for thesiso casels := diag( [Mi1] ... |Mn| ). The consequence is that

Markov parameters that have a high value are considered moobbe important to
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include than Markov parameters with a small vatue.
The row space of (27) that relates to the dominant singullregaof the matrix,
now is a representation of the parameter space of the appated model structure.
The Jacobian matrix (26) can be calculated analyticallis asown in [27] for state
space model structures.

The structurally identifiable problem and the identifiglifiroblem are of course
closely related to each other. This can be observed by ieglizat

99(6)" _ 9s\(9)
50— a8 ™V (28)
where®y is given by
u; Uz UN
oy=| M (29)
ui

and the derivatives are evaluatedat O,.
Note that the matrix®y with input signals acts as a weighting matrix in (28) in a
similar way as the weighting matrix does in (27).

9 Examples

In order to illustrate the concepts, and in particular tHe od the scaling/weighting
functions, we will now discuss two examples where we haveseh@ very simple
sisofinite impulse response (FIR) model. The model structurkbgibpproximated
using the previously discussed identifiability analysibewe we assume thRf = 1.

Example 4 Consider the data-generating system
y(t) = aou(t — 1) + Bou(t — 2)

with ag = 10° and By = 107°, and 6y := [ap Bo] " . Consider the input/output model
structure
y(t,0) =aut—1)+But—2), 6:=[a B]".

For an analysis of the local identifiability ifi = 6y we consider

wit.o0) = 258 ) (30)

so that the Fisher information matrix J is given by

3 Note that in a more generalized setting this weighting sthde replaced by a weighting that
takes account of the application in which the model is used.
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N
J=E t, t,60)"
t;w( Bo) Y (t, 6o)

_ e (=D (ut=1 T _ [ R(0) Ru(D)
= NE(u(t—Z)) (u(t—Z)) =N [ Ru(1) (0>]
with Ry(7) = E[u(t)u(t — 1)]. .
The scaled Fisher information matrikof (14) for a local analysis arouné is then

aenty ERIBEDIER
N Qo Qo '

Ry
Ru

0 Bo|Ru(l) Ru0) ]| O PBo

The relative parameter variance is indicated by*. In the case of a unit variance
white noise input, it follows that

= 102 0
J=N [ 0 1012] )

while the unscaled Fisher information matrix satisfies 8 - 1. Analysis of] shows
that the second parameter can very well be neglected, lgadiran approximate
model structure §t) = au(t —1).

Structural identifiability analysis without scaling shoth&t both parameters are

2
structurally identifiable, sincé?%e) =I. However, including both scaling matrices
g andls, we obtain

95,(6) 102 0
fo=56 s=| 0 1022

also showing that the second parameter can be very well aegleln light of sec-
tion 5 we remark that i = 6y this model is poorly observable/controllable and as
aresultitis also poorly identifiable.

Example 5 In this example the same data-generating system as in tvéopseex-
ample is considered. Consider the input/output model sirac

y(t,0) =aut—1)+10 %t —-2), 6:=[ay].

whereyy = 1. In comparison with the previous example we have scaledetbens
parameter with a facto0~8. This can be thought of to be the result of choosing a
different physical unit for the parameter. The scaled FHsh&érmation matrixJ of
(14)is
N| % O Ru(0)  10°°Ry(1)
0 ¥ | | 10 °Ry(1) 107?R,(0)

Under the same input conditions it follows that

102 0
0 1012

ap O
0 w |’

ij[
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while the unscaled Fisher information matrix is

1 0
J_N{o 1012]'

Whereas the unscaled matrix is essentially different floenprevious example, the
scaled analysis shows again that the second parameter agnwedl be neglected
and that the model structure can be approximated with 3 au(t —1).
Structural identifiability analysis without scaling shotet o is structurally best
identifiable, since

95,(6) 1 0

6 { 0 10° } '
Including both scaling matrice§y andl's, we obtain in quadratic form

rasz(e),__ 102 0
%90 'ST| 0 1012

being exactly the same as matrix as in the previous exampkenimg that the struc-
tural identifiability analysis is now-scaling invariant.

The examples are of course very simple, and they are mealhigtyate the basic
phenomena that might occur in large scale physical strestwse of a notion of
relative variance, reflected in a scaled Fisher informatiarrix, leads to selection
results that are scaling-invariant. The fact that we carsidlocal analysis only is
of course a limitation of the results presented here.

10 Conclusions

The question whether a large scale (nonlinear) physicalefrstducture is identifi-
able, is usually considered in a qualitative way. In thispthathe notion of identi-
fiability is quantified and it is shown how the model structoa®m be approximated
S0 as to achieve identifiability, while retaining the intergation of the physical pa-
rameters. In this chapter this question has been addrasseprediction error set-
ting. The analysis has been related to iterative optimopagigorithms (like Gauss-
Newton and Steepest-Descent) and to Bayesian estimattibas lbeen shown that
parameter scaling becomes relevant when approximatinghstrdictures.
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