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Abstract.
variable power series of finite length.

This paper deals with the minimal partial realization problem for a-multi-

Specifically, the problem of the uniqueness of the extension sequence is considered and
a fundamental criterion is given which is necessary and sufficient for the existence of

a unicque extension.

A specific class of formal power series is introduced (finite generic seguences) for

which the criterion mentioned above takes a very simple form.

This class is of interest

when considering the availability of a sequence of noise disturbed Markov parameters of

a multivariable system.

Finally the approximate partial realization problem is defined.
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tion.

1 INTRODUCTION

The problem of realization of a finite sequence of
Markov parameters {M(i)}L (L indicating the number
of Markov parameters M(i)), by a state space model
{a,B.,c} has been dealt with by several authors in
different ways. One of the reasons for this diver-
gency in strategy is the fact that the problem can
be considered from different points of view, de-
pending on the application of the results.

We can distinguish between an exact realization,
where a given sequence of Markov parameters has to
be reconstructed exactly by a corresponding state
space model, and an approximate realization, where
the sequence has to be approximated in some speci-
fic sense. The first direction, analysed by Kal-
man (1969), Tether (1970) and continued by Roman
and Bullock (1975), Kalman (1979), Bosgra/v.d.
Weijden (1980), Bistritz (1983) and Damen and
others (1984) is of mainly theoretical importance;
exact realization of a finite sequence [M(i)}
will generally lead to state space models of high
dimensions (depending on L). In the field of
identification, the problem of approximate realiz-
ation is much more interesting: a sequence of
Markov parameters has been measured or estimated,
i.e. considered to be noise corrupted. One is
interested in a low dimensional approximation of
the given sequence, leading to a reduced order
model.

This problem has been worked upon by Zeiger/McEwen
(1974), Kung (1979), v. Zee/Bosgra (1979), Staar/
Vandewalle/Wemans (1981), Damen/Hajdasinski
(1982), Damen/Van den Hof/Hajdasinski (1982) and
others.

While for the exact realization a strict formula-
tion of the problem has been stated by Kalman
{1979), a proper definition of the approximate
realization has not yet been given.

The absence of a proper definition is one of the
reasons why the present solutions to the approxi-
mation problem are ill-defined, and therefore
still far from optimal.

(see a companion paper Hajdasinski/Damen/Van den
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Hof (1984)).

In this paper an attempt will be made to bridge
the gap between the two subjects by clearly posing
the problems in a comparable way.

Corresponding to the minimal partial realization
problem (MPR), as formulated by Kalman (1979), the
approximate partial realization problem (APR) will
be defined, and it will be shown that in a speci-
fic situation, an optimal solution to this latter
problem can be found. (section 4).

One of the important aspects of both problems: the
uniqueness of the extension of the finite seguence
{M(i)}L, will be given special attention in sec-
tion 3.

2 MINIMAL PARTIAL REALIZATION

A multivariable formal power series is given by an
infinite sequence of [q X p] matrices,

My}, = men, m2),....
which can be represented by
al™s view
where A,B,C are matrices of sizes [n X n],
[nxpls [ax nl and n is the dimension of this
realization. NT is the set of all positive inte-
gers.
The triplet {A,B,C} is called a minimal realiz-
ation if and only if the dimension n is minimal
among all possible {A',B',C'} fulfilling (2). A
necessary and a sufficient condition for the exis-

tence of a minimal realization is given by the
realizability criterion:

(1)

M(i) = (2)

There is an integer ND and a block Hankel matrix H
such that
nt

pu[N_ N ] = pH[N +i, N +3] = n Vi, (3)

where oH[a,b] is the rank of the block Hankel
matrix of block dimension [a x bl.
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If we are dealing with a sequence of finite length
Lz

M} =m0, M2),0ec M) L ew (@)

we can always find a triplet {A.B,c} with a
finite dimensional A, such that:

mii) =t B i=1,2,..00.1 (5)

and consequently the dimension n of this sequ-
ence will always be finite. The crucig% question
is whether the continuation M(i) = ca'™ ' for i >
L is unique for all triplets {A,B,C} satisfying
(5).

Considering the definition of Kalman (1979) we can
state the problem as follows:

Definition 1: Minimal Partial Realization Prob-
lem (MPR)

a. Find all exact realizations of sequence
[Mt1) }; whose dimension n is minimal over the
family of all possible realizations for this
sequence.

b. Give the necessary and sufficient conditions
under which there is only one minimal partial
realization. ('uniqueness' in the sense of
the continuation of {M(i)};, which means that
the result forms an equivalence class modulo
the choice of basis in the state space).

Ca Where non-uniqueness occurs, parametrize all
minimal partial realizations.

In this paper we will be dealing with aspects a.
and b. Results on analysis of aspect c can be
found in e.g. Bosgra/v.d. Weiden (1980), Bosgra
(1983), Bistritz (1983) and Damen and others
(1984).

The minimal dimension of the realization of
{M{i] }L can be found by means of the rank of the
partial behaviour matrix, defined as follows:

The partial behaviour matrix associated to the
finite sequence {M{i)}L is the following (block)
Hankel matrix:

B = B(M(1),...,M(L)):

M(1) M{2). & . . . . . . M(L)

M(2) M{3)e o o 5 5 wiw w0 %

. M(L) .

M(L-1) ? .

MILY 7 oiw o » » 3 50w 9

where the elements denoted by ? correspond to
values of the sequence which are not part of the
data given for the partial realization problem.
The rank of this partial behaviour matrix is the
minimal possible rank obtained by proper choice of
the elements indicated by the question marks.

As has been shown by Kalman (1969) and Tether
(1971), and is quite straightforward, additional
Markov parameters M(L+1), M(L+2),... can always
be found in such a way that the rank of the part-
ial behaviour matrix does not increase.

Both authors mentioned above, have analysed the
MPR-problem by looking for situations where the
Ho-Kalman algorithm could be applied, leading to
an exact realization. For this purpose the next
criterion has been introduced, which is a reflec-
tion of the realizability criterien (3).

Definition 2: Partial Realizability Criterion
(PRC)

There exist positive integers N and N' such that:
4. N +N' =1L

¢ and
b.  pH[N',N] = pu[N'+1,N] = pH[N',N#1] (=n) (7)

Note that pH[N',N] is the rank of the Hankel mat-
rix of size |gN' x pN|] whose elements are belong-
ing to {M(i)};_,.

If the partial realizability criterion is fulfil-
led, the Ho-Kalman algorithm can be applied (Ho/
Kalman(1966)) leading to a realization. It is
easy to prove that this realization realizes the
sequence {K(iJ}L exactly and moreover that this
realization is minimal and unique (see Tether
(1970), and Damen and others. (1984)).

We will now work out an example, illustrating the
effect of this criterion:

Example

Let {M(i)} be the Markov parameters of a single
input single output system (5150), which consists
of two delay lines of 1 and 5 samples:

{mt1)} = 1,0,0,0,1,0,0 .....
The infinite Hankel matrix is then given by:

1000100000 ... ..
0001000000
0010000000
0100000000
1000000000
000D0DO0DO0DO0DO0ODO0O
000D0O0DOCO0OO0OOD
000000000 .

and it is easy to show that:

For 2 € L € 4 - the rank will be 1
= the PRC is satisfied for all NN
(N+N'=L)
- there is a unique MPR with trans-
fer function z~! and e.g. A =0,
B=cC=1 o
For 5 € L € 7 = the rank n will be 4
- the PRC is not satisfied for any
N,N' (N+N'=L), for N,N' > 4 will
require L > 8
= there is not a unique MPR

For L = 8 = the rank n equals 4
- the PRC is fulfilled for N=N'=4
= there is a unique MPR with trans-
fer funection

27l 4 275 4 279 ... = z®
z'-1
for example, C = [10 0 0]
0 1 0 0 1
A=10 0 1 0 B = 0
0 0 0 1 0
1 0 0 o 0
For L = 9 - the rank n equals 5

- the PRC is not satisfied for any
N,N" (N+N'=L), for N,N' » 5 will
require L > 10.

- there is not a unigue MPR

For L » 10 - the rank n equals 5
= the PRC is satisfied for N » 5
N' > 5 (N+N'=L)
= there exists a unique MPR with
transfer function
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W
2=l + 275 = 21 | for example
z
01 0 0 0 1
gs E 0] we fO
0 0 0 1 0 0
00 0 0 1 0
g 0 0 0 O 1

c=[10000]

Until now nothing has been said about the minimal
partial realization when this partial realizabi=-
lity criterion is not fulfilled. This aspect,
together with the uniqueness of the MPR will be
dealt with in the next section.

3 UNIQUENESS OF MINIMAL PARTIAL
REALIZATIONS; FINITE GENERIC SEQUENCES

In the previous section it has been shown that in
a specific situation it is possible to find a
unique minimal partial realization by means of the
Ho-Kalman algorithm. Both Tether (1970) and Kal-
man (1971) have given this result before. However
if the partial realizability criterion is not
fulfilled, the existence of a unique minimal part-
ial realization has never been discussed for the
general situation. With respect to this we pres-
ent the next result:

Theorem 1: A finite seguence {M(i}}L has a unigue
minimal partial realization if and only if the
partial realizability criterion is fulfilled.

A proof of this theorem, using results of Bosgra/
v.d. Weiden (1980) is given in the appendix.

Now formally the necessary and sufficient condi-
tion for a unique MPR is stated by the PRC. In
practice this criterion shows two disadvantages:

1. It is a rank test on at least three different
matrices, which implies quite a lot of work. 'At
least' is used as we do not know beforehand N and
N', which could fulfil PRC. Therefore ws have fo
check all possible pairs (N,N') as long as no pair
is found that satisfies the PRC.

2. A rank test becomes rather indefinite when it
concerns inaccurate data.

In cases where one is dealing with data which is
not disturbed by noise, the second disadvantage
may be overcome, but numerical (truncational)
errors may still be troublesome. If we are deal-
ing with noisy data, the exact minimal partial
realization will be of a high dimension and will
also incorporate the noise contribution. We will
now show that the partial realizability criterion
can be substantially simplified for such "noisy
sequences". A "noisy sequence” will belong to the
following class of sequences:

Definition 3: Finite Generic Seguence (FGS)

A finite generic sequence {ﬁ(i)}L is a sequence of

[q X p] matrices for which every Hankel matrix
constructed from this sequence has full rank.

Comment: In practice it concerns a "generic"
sequence, which has been deteriorated by (indepen-
dent) broad-banded noise. Only in the exceptional
case of certain deterministic (particular, singu-
lar) sequences, dependencies may appear among the
rows (or columns) of the Hankel matrices concern=
ed. Consequently the probability is one that a
random sequence will be an FGS.

Because of the special properties of a FGS, a
concrete statement can be made with respect to the
minimal dimension of the corresponding partial
vealization, reflected in the next theorem:

Theorem 2: The minimal dimension A of a finite
generic sequence is the rank of the partial beha-
viour matrix and equals the dimension of the
greatest square submatrix of known elements.

The verification of this theorem is easy and will
be left to the reader.

For a finite generic sequence the partial realiz-
ability criterion cannot be satisfied by linear
dependency between the elements in the rows/col-
umns in the Hankel matrix; the stochastic nature
of the sequence will prevent this. Therefore the
only situation in which the PRC can be satisfied,
is when the rank of an enlarged Hankel matrix
cannot increase because it is restricted by the
smallest dimension of H. This result is stated in
the next lemma.

Lemma : For a finite generic sequence the part-
ial realizability criterion is satisfied if and
only if there exist integers N',N such that N'+N =
L and H[N‘,Nl is a sguare matrix.

The proof of this lemma is given in Damen and
others (1984).

1f the condition mentioned in this lemma is ful-
filled, the rank of the square Hankel matrix will
equal the minimal dimension f of the finite gener-
ic sequence.

The results above give us instruments for develop-
ing a very concrete and manageable criterion for
the uniqueness of a minimal partial realization of
a FGS:

Theorem 3: A finite generic sequence has a unique
minimal partial realization if and only if:

L= ELE:EL where a ¢ W%, (8)
k is the greatest
common divisor (GCD) of (p.,qa)
Proof: In theorem 1 it has been proved that the

PRC is a necessary and sufficient condition for
the existence of a unigque MPR which, of course,
also holds for a FGS.

According to the lemma, the fulfilment of the PRC
is equivalent to the existence of a square Hankel
matrix of size gN' x pN.

Consequently:
fowB g B
4 P
n = EEQ a € Nt

k = GCD(p.q)

because all variables are positive integers.
This is equivalent to

_ alptq) Al
L = 28 n-L% Q.E.D
Comment :

- This criterion for uniqueness is a very suit-
able, simply decountable tool.

- The rank of the partial behaviour matrix was fi.
Consequently the degrees of freedom for a state
space description equal n(p+g). By putting
this equal to the number of elements Lpg in the
¥GS [M(i) | the same condition (8) can be de-
rived.

Finally, if, for a finite generic sequence the
partial realizability criterion is fulfilled or
equivalently L satisfies theorem 3 the realization
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can easily be found, e.g. by means of the Ho-
Kalman algorithm. If the PRC is not fulfilled
random (indeterminate) matrices M(i) have to be
joined until L satisfies the given condition and
again Ho-Kalman can be applied. Another approach
is, of course, to neglect the last number of mat-
rices until L satisfies the given condition.
However, in this case these neglected matrices
will not be realized exactly and therefore the
solution to the MPR problem will not be correct in
the sense of definition 1.

The results, as presented in this section, can be
considered as a starting point to deal with the
problem of approximation as illustrated in the
introduction. This will be handled in the next
section.

4 THE APPROXIMATE PARTIAL REALIZATION
PROBLEM

As we have seen in theorem 2 the minimal dimension
o of a finite generic sequence equals the dimen-
sion of the greatest square submatrix of known
elements in the partial behaviour matrix.

This greatest square submatrix of By, has to con-
tain either an integer number of block rows or an
integer number of block columns or both. Based on
this statement an expression for the minimal di-
mension n can be derived:

n = max [q entier[{L+1}5%a],p entier[(L+1);§E]}

(9)

(see also Damen and others (1984)).

If a proper value of L is chosen, corresponding
with the uniqueness condition (8), this

expression (9) again becomes n= EEg ¥

Whether the MPR is unique or not, the dimension n
generally given by expression (9) becomes ex-
tremely high with increasing L. This is due to
the fact that the realization represents both the
corrupting noise and the underlying deterministic
system, which generated the sequence. Under

these circumstances one wants to eliminate the
noise part by choosing a proper norm in the reduc-
tion of the dimension. This brings us to the
problem of approximate realization.

Definition 4: Approximate Partial Realization
Froblem (APR).

Given the sequence {M(i)}L and the dimension n of
the corresponding MPR, where L € N* (possibly in-
finite)

a. Find all realizations of dimension n. < n,
where a prescribed norm is minimized.

b. Give the necessary and sufficient conditions
under which the realization is unique.

Ca In the case of non-uniqueness, parametrize
all APR's.

Comment: MNote that we defined the APR for the
general case and not just for finite generic
sequences. General sequences may be processed
along the same lines e.g. if one wants to apply
dimension reduction of known filters.

= Examples of norms:

1o} ) - a({mi"1n}les

where {A,B,C} is a triplet representing a
wanted partial realization.

The matrix H is a block Hankel matrix of spec-
ific size built up by the sequence {M(i) ] and
S stands for spectral norm.

This norm particularly suits control purposes
as it weighs the sequence as an operator on
input signals:

Let u” be the vector of all inputs prior to
moment k, then

¥t = H[{M(i]}L]Ef is the prediction of the
outputs after moment k and
et = [H[{M(i)}L] - H[{Cnl_1ﬂ}]L]E' is a meas-

ure for the misfit, if a dimension reduction
to nrhas been applied. Then:
i-1
+ i
e, < m({m} ) - #({ca B} )ig
YuT: ﬁi-'p = 1, where F stands for Frobenius

TIOXM.

2. If we are dealing with a parameter estimation
problem, where our goal is to estimate the
actual Markov parameters from the given noise
disturbed sequence {ﬁ(i)}L, the sequence it-
self is an object and no longer seen as an
operator. For a least squares estimate the
norm would then simply be the sum of squares
of all elements in the sequence (Frobenius
norm). This conforms with the following
norm:

i i-1
up[{nll)}L] - p({ca B} )i,
where P stands for Page matrix, whose en=
tries consist of the matrices M({i), such that
each M(i) is used only once. More information
can be found in Damen/Van den Hof/Hajdasinski
(1982).

In the above examples of norms it has been sug-
gested that the state space representation is
directly parametrized. Most authors dealing with
this topic attacked the problem, by initially
estimating a sequence {H(i)}L, which was condi-
tioned to have a unique realization of order N4
e.g. Zeiger/McEwen (1974), van Zee/Bosgra (1979},
Kung (1979), Staar/Vandewalle/Wemans (1981},
Damen/Hajdasinski (1982), Damen/Van den Hof/
Hajdasinski (1982), Van den Hof (1984).

No author, however, has so far succeeded in find-
ing an optimal solution in the sense of minimizing
a prescribed norm.

Following the opposite line, where from the very
beginning a state space representation is used,
fruitful use may be made of the Adamjan/Arov/
Krein algorithm (see Kung/Lin, 1981). This al-
gorithm is capable of finding a realization of
prescribed dimension o, according to the minimiza-
tion of the spectral norm of the infinite Hankel
matrix, once a partial realization for the orig-
inal sequence {H{i}}L has been found.

Problems arise in the case that this original MPR
is non-unique because it cannot be stated that the
non-uniqueness (indefinite part) will be elim=
inated during the dimension reduction phase.
Consequently the condition of unigqueness remains
an important one. This is precisely the reason
why we were so concerned with the uniqueness of
the MPR in section 3.

However, even in cases where a unique MPR can be
determined, the Adamjan/Arov/Krein approach may
lead to ill-defined solutions. If a MPR of the
original sequence {ﬁ(i)}L has been determined,
this sequence can be extended to an infinite
sequence {ﬁ(i)}w. In the algorithm mentioned above
the infinite Hankel matrix serves in the criterion
from which the approximation of the original
sequence has been derived theoretically. Depen=
dent on its index i the Markov parameter F(i)
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appears more frequently in this infinite Hankel
matrix, which implies that in the dimension reduc-
tion procedure the extension of the sequence
{ﬁ[i)}L is much more weighed than the original
sequence itself. This aspect becomes important in
cases where the MPR of the original sequence
contains (almost) non-stable poles. If we are
dealing with a sequence of Markov parameters
disturbed by noise, this situation will very like-
ly happen, caused by the (random) effects of the
noise. As a result these non-stable poles will be
considered to be dominant because of their heavy
influence on the extension of the sequence
{Mti)},+ therefore in the dimension reduction
phase these poles will not be eliminated, in
contrast with the really relevant poles of this
sequence. For this moment we will only give two
suggestions that may serve as a remedy for this
problem.
1. Construct a new sequence {M'(i)} in such a way
that M'(i) = F(i) 4i=1,..,L
m'¢i}y =0 i2L+1
Find a unigue MPR of {M'(i)}w and apply the
Adamjan/Arov/Krein algorithm to this MPR to
construct an approximate partial realization.
Because the last part of the sequence {M'(i)}
ig fixed to zero, a MPR will be found without
any non-stable poles, thus circumventing the
problem described above.
2. Find a unique MPR of {ﬁ{i)}L as before and
use the sum of squared contributions of the
different poles of this MPR present in the
original FGS, as a criterion to distinguish
between relevant and non relevant poles. This
directly leads to a APR of desired dimension

nr.

5 CONCLUSIONS

The realization of a finite seguence of Markov
parameters is handled in this paper from two dif-
ferent points of view: exact and approximate real-
igation. The notion of uniqueness of the extension
of the given sequence plays a very important role.
If the extension and, consequently, the realiz-
ation is non-unique, it will lead to results which
contain indefinite information. Depending on the
application of the results, this indefinite part
may cause problems, e.g. in dimension reduction.
For the partial realization problem, a necessary
and sufficient condition has been introduced for
the existence of a unique realization which can
always be evaluated using the Ho-Kalman algorithm.
A class of finite generic sequences (FGS) is de-
fined containing sequences that are constructed
from noisy data.

when such a sequence is considered, the criterion
for uniqueness of a minimal partial realization
takes a very simple form. A straightforward alge-
braic test on the length of the available sequence
will show uniqueness or non-unigueness of the
extension sequence. This unique extension, in
turn, is important when trying to find an approxi-
mate realization of prescribed low dimension,
which fits the original sequence as well as pos-
sible.

This problem of approximate partial realization is
defined, and it is shown how a unigue solution to
this problem may be obtained.

REFERENCES

Bistritz, ¥. (1983). WNested bases of invariants '
for minimal realizations of finite matrix se-
quences. SIAM J. Control and Optimiz., 21,
804-821. -

Bosgra, O.H. (1983). On parametrizations for the
minimal partial realization problem. Syst. and
Control Lett., 3, 181-187.

IWC1-G

Bosgra, O.H. and A.J.J. van der Weiden (1980).
Input-output invariants for linear multivari-
able systems. IEEE Trans. Autom. Control,
AC-25, 20=-36.

Damen, B.A.H. and A.K. Hajdasinski (1982).
pPractical tests with different approximate
realizations based on the singular value decom-
position of the Hankel matrix.

Proc. 6th IFAC Symp. on Ident. and Syst.
Param. Estim., Washington D.C., 1982, pp. 903-

908.
Damen, A.A.H., P.M.J. Van den Hof and A.K.
Hajdasinski (1982). Approximate realization based

upon an alternative to the Hankel matrix: The
Page Matrix. Systems and Control Letters, 2,
202-208.

pamen, A.A.H., R.P. Guidorzi, A.K. Hajdasinski and

P.M.J. Van den Hof (1984). On multivariable
partial realization. (Submitted for publica-
tion).

Hajdasinski, A.K., A.A.H. Damen and P.M.J. Van den

Hof (1984). Waive approximate realization of
noisy data. Prep./Proc. 9th IFAC World Con-
gress, July 2-6, 1984, Budapest, Hungary.

Ho, B.L. and R.E. Kalman (1966). Effective con-
struction of linear state-variable models from
input-output functions. Regelungstechnik, 14,
545-548.

Hof, P.M.J. Van den (1984). Approximate realiz-
ation of noisy linear multivariable systems.
Journal A, 25.

Kalman, R.E., P.L. Falb and M.A. Arbib (1969).
Topics in mathematical system theory. New
York, McGraw-Hill, 196%. Int. Series in Pure
and Applied Mathematics.

Kalman, R.E. (1971). On minimal partial realiz-
ations of a linear input/output map.

In (Eds.), R.E. Kalman, N. DeClaris, Aspects
of Network and System Theory. Holt, Rinehart,
Winston, 385-407.

Kalman, R.E. (1979). On partial realizations,
transfer functions and canonical forms.

Acta Polytechnica Scandinavica, MA 31, 9-32.

Kung, S. (1979). A new identification and model
reduction algorithm via singular value decom-
positions. 12th Asilomar Conference on Cir-
cuits, Systems and Computers, Nov. 6-8, 1978,
Pacific Grove, California.

Kung, S. and D.W. Lin (1981). Optimal Hankel-norm
model reductions: multivariable systems. IEEE
Trans. Autom. Control, AC-26, 832-852.

Roman, J.R. and T.E. Bullock (1975}. Minimal
partial realizations in a canonical form.

IEEE Trans. Autom. Control, AC-20, 529-533.

Staar, J., J. Vandewalle and M. Wemans (1981).
Realization of truncated impulse response sequ-
ences with prescribed uncertainty. Proc. 8th
IFAC World Congress, Kyoto, 1981, wol. I, pp.
7-12.

Tether, A.J. (1970). Construction of minimal
linear state-variable models from finite input-
output data. IEEE Trans. Autom. Control, AC-
15, 427-436.

Zee, G.A. van and O.H. Bosgra (1979). The use of
realization theory in the robust identification
of multivariable systems. Proc. 5th IFAC Symp.
Ident. and Syst. Param. Estim., Darmstadt,
1979, pp. 477-484.

Zeiger, H.P. and J. McEwen (1974). Approximate
linear realizations of given dimension via Ho's
algorithm. IEEE Trans. Autom. Control, AC-19,
153.

APPENDIX

Proof of theorem 1

It has to be proved that the partial realizability
criterion (PRC) is a necessary and sufficient
condition for the existence of a unique minimal
partial realization (MPR).
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For this purpose the following results of Bosgra/-
v.d. Weiden (1980) and Bosgra (1983) are of in-
terest: Given a multivariable formal power
geries (M k

= { Tk l}k=1,...,L; i=1,000q; 3=1,4..,p"
with ij indicating element ij in matrix M(k).

Suppose In = {“lf“Z""f“q} and Jn = {ul,uz,..,gp}

represent resp. structural row and column indi-
ces, defining a nice selection of independent rows
and columns of the partial behaviour matrix Bp-

It can be proved that {In'\h's} with

G = {nijtk) k-1,2,...,ui+uj} for i=1,...,q;

j=14.«.,p constitutes a complete set of indepen-
dent invariants under state-coordinate transform-
ations for triples (A,B,C). Note that according
to the definition of a nice selection by Bosgra/
v.d. Weiden (1980) structural indices are allowed
to be zero.

If we consider a set of structural indices (Iﬁ,
JA) defining a Kronecker selection, the result
mentioned above is still valid and the set
{I&,JA,G'} is uniquely determined.

From this statement it follows immediately that a
unique MPR of a formal power series exists if and
only if this basis of invariants is known.
Furthermore, (see Bosgra (1983)), this basis of

invariants is known if and only if

max {vi + ul) <L (A1)
ij J

For the proof of theorem 1, the equivalence of
this condition with the PRC has to be shown:

Necessity: Assume that the PRC is fulfilled. For
all positive 4, block rows with block row index
N+% as well as block columns with block column
index N+& in B; will only contain dependent rows/
columns.

As a result max v{ < N' and max u; < N which
i :
means that (A1) is fulfilled, because N'"+N = L.

Sufficiency: Assume (A1) is fulfilled.

Define max ui = V' and max u; = pu'.
|

Because of (A1) v'+p' < L.

It follows directly that the PRC is satisfied with

e.g. N' = v' and N = L-v' > y'.



