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Abstract: For consistent identification of a target module in a dynamic network with the
local direct method, basically two prime conditions need to be satisfied: (a) a set of structural
conditions on the choice of the predictor model, i.e. a set of input and output node variables,
and (b) conditions on data-informativity. While for conditions (a) constructive algorithms for
node selection have been presented that appropriately guarantee that the identified object can
indeed reveal the target module, the requirements for satisfying (b) have not yet been integrated
fully. In this paper, we will present simplified path-based results for generic data-informativity,
and show how they can be integrated in constructive algorithms for predictor model selection
that provide consistent target module estimates. It is shown that data-informativity not only
requires a sufficient number of external excitation signals to be present in the network, but also
puts restrictions on the structure of the predictor model, i.e. the selection of input and output
node variables. Some examples are presented to illustrate the new results.
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1. INTRODUCTION

Large-scale data analytics is currently present in a growing
number of technology areas, where data-driven diagnostics
and model-based control require the handling of dynamic
systems that are composed of interconnected subsystems,
while the interconnections are characterized by a topology,
that is often specified up front. Performing data-driven
dynamic modeling in these systems has been given atten-
tion in the literature over the last fifteen years, see e.g.
Gonçalves and Warnick (2008); Materassi and Innocenti
(2010); Haber and Verhaegen (2014); Van den Hof et al.
(2013); Hendrickx et al. (2019).
The particular problem of identifying a single module
in such networks, of which the topology is known, has
been addressed in e.g. Dankers et al. (2016); Gevers et al.
(2018); Bazanella et al. (2019); Materassi and Salapaka
(2020); Jahandari and Materassi (2022); Shi et al. (2023).
In this problem, selecting the set of node variables that
should be available from measurements, together with an
appropriate identification method are the key issues.
In Ramaswamy and Van den Hof (2021) a local direct
method has been presented in a prediction error context,
that provides the conditions under which a target module
can be identified with maximum likelihood properties, i.e.,
consistent and with minimum variance asymptotically in
the number of data. Relative to indirect methods, as e.g.
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Gevers et al. (2018), it can exploit the excitation prop-
erties of nonmeasured disturbance signals for satisfying
the required data-informativity conditions, and therefore
allows for less expensive experiments (with less external
excitation signals).
The core conditions in Ramaswamy and Van den Hof
(2021) for arriving at a consistent estimate of the tar-
get module are covered by two sets: (a) a set of graph-
based conditions for constructing an appropriate predictor
model, specified by inputs and outputs; and (b) a spectral
condition on data-informativity of the concerned signals in
the predictor model. For satisfying the conditions of type
(a), several algorithms were presented. While preliminary
work has shown that also the conditions for (b) can be
phrased as graph-based conditions, provided that we ac-
cept that the conditions hold generically (Van den Hof and
Ramaswamy (2020)), they were not in a form that could be
easily integrated into the conditions of type (a), and thus
into the algorithms for constructing the predictor model.
In this paper we are going to show that the data-
informativity conditions can be phrased in a graph-based
setting, and can be integrated into the predictor model
construction algorithms. While one could have the im-
pression that any predictor model satisfying the type (a)
conditions could be made data-informative by adding a
sufficient number of external excitation signals, it will be
shown that this is not the case, and that including the type
(b) data-informativity conditions can lead to differently
structured predictor models.
After presenting the network setup and the prime result
of Ramaswamy and Van den Hof (2021) in Sections 2 and
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(b) data-informativity conditions can lead to differently
structured predictor models.
After presenting the network setup and the prime result
of Ramaswamy and Van den Hof (2021) in Sections 2 and
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1. INTRODUCTION

Large-scale data analytics is currently present in a growing
number of technology areas, where data-driven diagnostics
and model-based control require the handling of dynamic
systems that are composed of interconnected subsystems,
while the interconnections are characterized by a topology,
that is often specified up front. Performing data-driven
dynamic modeling in these systems has been given atten-
tion in the literature over the last fifteen years, see e.g.
Gonçalves and Warnick (2008); Materassi and Innocenti
(2010); Haber and Verhaegen (2014); Van den Hof et al.
(2013); Hendrickx et al. (2019).
The particular problem of identifying a single module
in such networks, of which the topology is known, has
been addressed in e.g. Dankers et al. (2016); Gevers et al.
(2018); Bazanella et al. (2019); Materassi and Salapaka
(2020); Jahandari and Materassi (2022); Shi et al. (2023).
In this problem, selecting the set of node variables that
should be available from measurements, together with an
appropriate identification method are the key issues.
In Ramaswamy and Van den Hof (2021) a local direct
method has been presented in a prediction error context,
that provides the conditions under which a target module
can be identified with maximum likelihood properties, i.e.,
consistent and with minimum variance asymptotically in
the number of data. Relative to indirect methods, as e.g.
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Gevers et al. (2018), it can exploit the excitation prop-
erties of nonmeasured disturbance signals for satisfying
the required data-informativity conditions, and therefore
allows for less expensive experiments (with less external
excitation signals).
The core conditions in Ramaswamy and Van den Hof
(2021) for arriving at a consistent estimate of the tar-
get module are covered by two sets: (a) a set of graph-
based conditions for constructing an appropriate predictor
model, specified by inputs and outputs; and (b) a spectral
condition on data-informativity of the concerned signals in
the predictor model. For satisfying the conditions of type
(a), several algorithms were presented. While preliminary
work has shown that also the conditions for (b) can be
phrased as graph-based conditions, provided that we ac-
cept that the conditions hold generically (Van den Hof and
Ramaswamy (2020)), they were not in a form that could be
easily integrated into the conditions of type (a), and thus
into the algorithms for constructing the predictor model.
In this paper we are going to show that the data-
informativity conditions can be phrased in a graph-based
setting, and can be integrated into the predictor model
construction algorithms. While one could have the im-
pression that any predictor model satisfying the type (a)
conditions could be made data-informative by adding a
sufficient number of external excitation signals, it will be
shown that this is not the case, and that including the type
(b) data-informativity conditions can lead to differently
structured predictor models.
After presenting the network setup and the prime result
of Ramaswamy and Van den Hof (2021) in Sections 2 and
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(a) In the network (1), every path from wi to wj that
does not pass through Gji, and every loop around wj

pass through a node in wD (Parallel path and loop
(PPL) condition);

(b) U is decomposed in disjunct sets A and B, such
that in (1) there are no confounding variables for the
estimation problem wA → wB∪Y ;

(c) i ∈ {A ∪Q}, and
(d) Every path from {wi, wj} to wB passes through a node

in wY∪U .

The interpretation of this result is that we can allow for
input signals wB that have confounding variables with
the outputs wY , as a result of which their corresponding
modules in ḠYB will typically be estimated incorrectly.
However since i /∈ B this is not a problem, while at the
same time the nodes in wB can help to satisfy the other
conditions.

Theorem 2. (Ramaswamy and Van den Hof (2021)).
Consider a dynamic network represented by (1) and a
predictor model according to (4). Then the local direct
identification method according to (5), leads to a consis-
tent estimation of Go

ji, i.e. Ḡji(q, θ
∗) = Go

ji if

(1) M is chosen to satisfy S ∈ M (system in the model
set);

(2) The structural conditions for module variance of
Proposition 1 are satisfied;

(3) Φκ(ω) � 0 for almost all ω, with

κ(t) =

[
wD(t)
ξY(t)
uK(t)

]
(6)

(data-informativity condition).

The interpretation of the data-informativity condition is
that actually ξY and uK cannot be used to contribute to
the excitation of wD. For ξY this is due to the fact that
it serves as excitation source for the noise model H̄(q, θ),
while uK excites the parametrized transfer J̄(q, θ) in (4).
In the next section we will particularly focus on this data-
informativity condition, and analyze how it can be turned
into graphical conditions that can be merged with the
structural conditions for module invariance in Proposition
1.

4. EXCITATION SIGNALS IN THE PREDICTOR
MODEL

For further analysis of the data-informativity conditions
in Theorem 2, we need to specify how the signals uK
and uP are composed on the basis of excitation signals
in the original network (1). To this end we formulate the
following result.

Proposition 3. Consider a predictor model specified by the
signal sets A,B,Q,D,Y as defined in Section 3. Then

(1) The set of excitation signals uP are a subset of uY and
composed as follows:
• For � ∈ Q, u� ∈ uP if all loops around w� and all

paths from w� to B pass through a node in Q∪A.
• uo ∈ uP if all loops around wo pass through a

node in Q ∪ A and all paths from wo to Q pass
through a node in A.

(2) The set of excitation signals uK is composed of
• All signals uB, and
• All signals uY that are not in uP , and
• All signals uZ of which the effect on wY in the
predictor model is not covered by the predictor
inputs wD.

Proof: See Appendix.

In Figure 2 it is illustrated how excitation signals on nodes
in the original network, map to excitation signals in the
predictor model. Here Z̄ denotes the subset of immersed
nodes (Z) whose excitations do not explicitly appear in
(2), but whose effects are incorporated in wD. It follows

Fig. 2. Mapping of excitation signals in the original net-
work (1) to their role in the predictor model (2).

that uK is composed of the excitation signals u that enter
the network through (a selection of) node signals w�, with
� ∈ Y ∪ B ∪ Z, while uP is composed of the excitation
signals on a subset of the node signals wY . In order to use
these results for further specifying the data-informativity
condition in (6), we first need to convert the spectrum
condition into a path-based condition.

5. A PATH-BASED RESULT FOR GENERIC
DATA-INFORMATIVITY

We follow the reasoning introduced in Van den Hof and
Ramaswamy (2020), based on the graph-based results
in Hendrickx et al. (2019), that the spectrum condition
(6) can be rephrased as a full row rank condition on
the mapping from all external signals in the network to
the vector κ, together with a persistence of excitation
condition on the external signals in the network. This can
be turned into a graph-based condition as formulated next.

Proposition 4. (Van den Hof and Ramaswamy (2020)).
The spectrum condition (6) holds generically if in the
graph of the network model there exist dim(κ) vertex
disjoint paths between the node sets (u, ξ) and (wD, ξY , uK),
with u all measured external excitation signals in the
network, and the signals in u are mutually independent
and persistently exciting.

If the structural conditions for generic data-informativity
can be turned into graph-based conditions, we can incor-
porate them during the construction of an appropriate
predictor model, and thus guaranteeing that generic data-
informativity can be realized by simply choosing excitation
signals u that are persistently exciting.

Proposition 5. For the local direct method and predictor
model (4), the structural conditions for data-informativity
are satisfied if for all signals wk, k ∈ Q, every path from
wk to B, and every loop around wk passes through a node
in wA∪Q.

Proof: The required condition for generic data informa-
tivity entails that there should be dim(κ) vertex disjoint

3, new results on the data-informativity conditions will be
presented in Sections 4 and 5. Next the available full input
and minimum input algorithms for predictor model con-
struction are extended to include the data-informativity
conditions, and the consequences are illustrated with a 4-
node example.

2. NETWORK SETUP

We consider a dynamic network in the so-called module
framework where node variables w are interconnected
through transfer functions. A compact representation of
the network is given by

w(t) = G(q)w(t) +H(q)e(t) + u(t) (1)

with w an L-dimensional vector, G(q) a hollow rational
transfer function matrix, i.e. with zeros on the diagonal en-
tries, in the the time shift operator q, i.e. q−1w(t) = w(t−
1), e an L-dimensional vector of white noise processes,
H(q) the rational disturbance model, and u(t) = R · r(t),
accounting for the effect of measured external excitation
signals r on the network, with R a binary matrix. A non-
zero element Gk�(q) in G(q) is referred to as a module.
It is further assumed that the network is stable and well-
posed Van den Hof et al. (2013). In this paper it is also
assumed for simplicity that all elements in G(q) are strictly
proper.
After selecting a target module Gji(q) with input wi and
output wj , the single module identification problem comes
down to selecting a set of measured node variables w,
that compose a predictor model with predictor inputs and
predicted outputs, on the basis of which a (consistent)
estimate of Gji(q) can be obtained through a prediction
error identification method. In this problem it is assumed
that the network topology, i.e. the zero-pattern in G, H
and R is known.

3. CONSTRUCTING A PREDICTOR MODEL WITH
THE LOCAL DIRECT METHOD

On the basis of a selected set of node variables w, a
predictor model is constructed with inputs wD and outputs
wY , where wi ∈ wD and wj ∈ wY , that is formalized as
follows:

wY(t) = Ḡ(q)wD(t) + H̄(q)ξY(t) + J̄(q)uK(t) + S̄uP(t)︸ ︷︷ ︸
uY(t)

(2)

with ξY a vector white noise process, and the effect of
external excitation signals, uY(t) is decomposed in two
contributions, where uK and uP are distinct sets of compo-
nents of the excitation signal u, J̄(q) is a dynamic transfer
function and S̄ is a binary matrix. The dynamic term
J̄(q) typically occurs when there is an excitation signal
u entering a node w that is not present in wY∪D.

This predictor model is schematically depicted in Figure 1.
There can be node signals wQ with Q = D∩Y that appear
in both input and output. This will be used to handle
confounding variables 1 in the estimation problem, by
1 A confounding variable is an unmeasured variable that has paths
to both the input and output of an estimation problem Pearl (2000).
The resulting paths are referred to as “‘confounding paths”. If one of
the confounding paths passes through a node in w the confounding
variable is called “indirect”, else it is called “direct” (Ramaswamy
and Van den Hof (2021)).

modelling their effect through a multivariate disturbance
model at the output, to be explained later on. Additional
notation includes wU with U = D\Q, while wo = wj if
j /∈ Q; else wo is void. The node signals that do not appear
in the predictor model are referred to as the unmeasured
nodes and are collected in wZ , i.e. Z := {1, · · · , L}\{Y ∪
U}.

Fig. 1. Predictor model for the local direct method (Ra-
maswamy (2022)).

The predictor model (2) is the result of writing the network
equation for the collected set of selected node signals in the
structured form:

[
wY

wU

]

︸ ︷︷ ︸
wm

=

[
Ḡ 0

ḠUD ḠUo

]

︸ ︷︷ ︸
Ḡm

[
wD

wo

]
+

[
H̄ 0

0 H̄UU

]

︸ ︷︷ ︸
H̄m

[
ξY
ξU

]

︸︷︷︸
ξm

+

[
uY
uU

]
(3)

with ξm a white noise process, while H̄ is monic, stable
and stably invertible, the components in Ḡ are zero if it
concerns a mapping between identical signals, and uY and
uU are appropriate components of the excitation signal u.

A network transformation to the form (3) can always
be made (Proposition 1 in Ramaswamy and Van den
Hof (2021)), and is attractive because it decorrelates the
disturbances on the variables wY and wU , reflected in the
block-diagonal structure of H̄m. The first block row of (3)
then serves as a basis for the predictor model (2).

The predictor model leads to an identification of the tar-
get module Gji(q) through the one-step-ahead predictor
(Ljung (1999)):

ŵY(t, θ) = H̄(q, θ)−1[Ḡ(q, θ)wD(t) + J̄(q, θ)uK(t)] +

+(I − H̄(q, θ)−1)[wY(t)− S̄uP(t)] (4)

where θ represent the parameters of a parametrized model.
Applying a quadratic identification criterion, according to

θ∗ = argmin
θ

Ē(w(t)− ŵY(t, θ))
TP (w(t)− ŵY(t, θ)) (5)

with P a positive definite weighting matrix, then leads to
an (asymptotically) estimated model Ḡ(q, θ∗).

For recalling the consistency result of this local direct
method for network identification, we first need to present
the structural conditions for module invariance in (3).

Proposition 1. (Ramaswamy and Van den Hof (2021)).
Let Go

ji be the target module. In the transformed system’s

equation (3) it holds that Ḡji = Go
ji under the following

conditions
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(a) In the network (1), every path from wi to wj that
does not pass through Gji, and every loop around wj

pass through a node in wD (Parallel path and loop
(PPL) condition);

(b) U is decomposed in disjunct sets A and B, such
that in (1) there are no confounding variables for the
estimation problem wA → wB∪Y ;

(c) i ∈ {A ∪Q}, and
(d) Every path from {wi, wj} to wB passes through a node

in wY∪U .

The interpretation of this result is that we can allow for
input signals wB that have confounding variables with
the outputs wY , as a result of which their corresponding
modules in ḠYB will typically be estimated incorrectly.
However since i /∈ B this is not a problem, while at the
same time the nodes in wB can help to satisfy the other
conditions.

Theorem 2. (Ramaswamy and Van den Hof (2021)).
Consider a dynamic network represented by (1) and a
predictor model according to (4). Then the local direct
identification method according to (5), leads to a consis-
tent estimation of Go

ji, i.e. Ḡji(q, θ
∗) = Go

ji if

(1) M is chosen to satisfy S ∈ M (system in the model
set);

(2) The structural conditions for module variance of
Proposition 1 are satisfied;

(3) Φκ(ω) � 0 for almost all ω, with

κ(t) =

[
wD(t)
ξY(t)
uK(t)

]
(6)

(data-informativity condition).

The interpretation of the data-informativity condition is
that actually ξY and uK cannot be used to contribute to
the excitation of wD. For ξY this is due to the fact that
it serves as excitation source for the noise model H̄(q, θ),
while uK excites the parametrized transfer J̄(q, θ) in (4).
In the next section we will particularly focus on this data-
informativity condition, and analyze how it can be turned
into graphical conditions that can be merged with the
structural conditions for module invariance in Proposition
1.

4. EXCITATION SIGNALS IN THE PREDICTOR
MODEL

For further analysis of the data-informativity conditions
in Theorem 2, we need to specify how the signals uK
and uP are composed on the basis of excitation signals
in the original network (1). To this end we formulate the
following result.

Proposition 3. Consider a predictor model specified by the
signal sets A,B,Q,D,Y as defined in Section 3. Then

(1) The set of excitation signals uP are a subset of uY and
composed as follows:
• For � ∈ Q, u� ∈ uP if all loops around w� and all

paths from w� to B pass through a node in Q∪A.
• uo ∈ uP if all loops around wo pass through a

node in Q ∪ A and all paths from wo to Q pass
through a node in A.

(2) The set of excitation signals uK is composed of
• All signals uB, and
• All signals uY that are not in uP , and
• All signals uZ of which the effect on wY in the
predictor model is not covered by the predictor
inputs wD.

Proof: See Appendix.

In Figure 2 it is illustrated how excitation signals on nodes
in the original network, map to excitation signals in the
predictor model. Here Z̄ denotes the subset of immersed
nodes (Z) whose excitations do not explicitly appear in
(2), but whose effects are incorporated in wD. It follows

Fig. 2. Mapping of excitation signals in the original net-
work (1) to their role in the predictor model (2).

that uK is composed of the excitation signals u that enter
the network through (a selection of) node signals w�, with
� ∈ Y ∪ B ∪ Z, while uP is composed of the excitation
signals on a subset of the node signals wY . In order to use
these results for further specifying the data-informativity
condition in (6), we first need to convert the spectrum
condition into a path-based condition.

5. A PATH-BASED RESULT FOR GENERIC
DATA-INFORMATIVITY

We follow the reasoning introduced in Van den Hof and
Ramaswamy (2020), based on the graph-based results
in Hendrickx et al. (2019), that the spectrum condition
(6) can be rephrased as a full row rank condition on
the mapping from all external signals in the network to
the vector κ, together with a persistence of excitation
condition on the external signals in the network. This can
be turned into a graph-based condition as formulated next.

Proposition 4. (Van den Hof and Ramaswamy (2020)).
The spectrum condition (6) holds generically if in the
graph of the network model there exist dim(κ) vertex
disjoint paths between the node sets (u, ξ) and (wD, ξY , uK),
with u all measured external excitation signals in the
network, and the signals in u are mutually independent
and persistently exciting.

If the structural conditions for generic data-informativity
can be turned into graph-based conditions, we can incor-
porate them during the construction of an appropriate
predictor model, and thus guaranteeing that generic data-
informativity can be realized by simply choosing excitation
signals u that are persistently exciting.

Proposition 5. For the local direct method and predictor
model (4), the structural conditions for data-informativity
are satisfied if for all signals wk, k ∈ Q, every path from
wk to B, and every loop around wk passes through a node
in wA∪Q.

Proof: The required condition for generic data informa-
tivity entails that there should be dim(κ) vertex disjoint
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predictor model w2 → (w1, w2) with wo = w1; wQ = w2.
Since the new output w2 has been added we need to
return to Step 2 and add all its inneighbors to wD. As
a result w3 and w4 are added to wA and w1 (already
present in wY) is added to wQ. We are back in Step 3
now with A = {3, 4} and noticing that both nodes have
confounding variables with output w1. We first consider
node w3 ∈ wA, that has a direct confounding variable (e3)
and an indirect confounding variable (e4) with w1. Moving
w3 to wB is not allowed since it does not satisfy Condition
(d) of Proposition 1. Therefore, (Step 4) we copy w3 to
the output wY , such that it becomes an element of wQ.
The direct confounding variable between w4 and w1 is
addressed (Step 3) by moving w4 to wB. This results in
the predictor model

(w1, w2, w3, w4) → (w1, w2, w3) (7)

with wA = ∅; wB = w4; wo = ∅; wQ = {w1, w2, w3}
and this concludes the original algorithm that satisfies
Condition 2 of Theorem 2.

If we evaluate the DI conditions for this predictor model,
it appears from the results of Section 5 that all nodes
in wQ (i.e. w1, w2, w3) should have independent external
excitations r, but at the same time also that the excitation
on w3 cannot be effectively used for data informativity, as
it does not satisfy the Conditions of Proposition 5. w3 has
a path to w4 ∈ wB that is not blocked by a node in wA∪Q.
As a result the selected predictor model can never satisfy
the DI conditions. Even if we excite all nodes (w1, w2, w3),
the excitation on w3 will appear in the predictor model as
input to a parametrized transfer function, and therefore
cannot be used for excitation of G12.

Following the full-input algorithm now with the additional
Step 7, shows that w4 is not allowed to go to wB; it cannot
be moved to wA since there is a confounding variable then
between wA and wY . As a result w4 should go to wQ, leading
to the predictor model:

(w1, w2, w3, w4) → (w1, w2, w3, w4) (8)

with all nodes in wQ = {w1, w2, w3, w4}. For the final pre-
dictor model it holds that all external signals u1, u2, u3, u4

belong to uP∩Q, and are required for satisfying the data-
informativity conditions. �

7. MINIMUM INPUT ALGORITHM

The minimum input algorithm for predictor model selec-
tion focuses on using a minimum number of measured node
signals as predictor inputs, and, in its original form, follows
the following strategy

(1) We start by selecting wD=wA=wi and wo=wY =wj ;
(2) Extend A with a minimum number of w-inneighbors

of wY such that the PPL condition (Condition(a) of
Proposition 1) is satisfied;

(3) For every node signal wk, k ∈ A that has a confound-
ing variable with wY , copy wk to wY , move it to wQ;

(5) Finally the predictor model is defined by the mapping
wD → wY , with D = Q ∪A, Y = Q ∪ {o} and B = ∅.

This algorithm can now be extended to also include the
structural data-informativity condition as formulated in
Proposition 5, as follows:

• At the end of the Algorithm, add an additional Step
(4), as follows.

(4) For every wk ∈ wQ that does not satisfy the DI
conditions:
(a) Verify if moving wo to wQ removes a violated

condition for wk;
(b) Find an additional node w�, not present yet in

wY∪U , to be added to either wA or wQ that solves
the problem for wk;

We will illustrate this algorithm on the Example presented
in the previous Section.

Example 2. (Minimum input algorithm). Consider the
same network as in Example 1 in Figure 3. The predictor
model based on the original algorithm starts with the tar-
get module: w2 → w1, with w2 ∈ wA and w1 = wo, which
in line with Step 2, already satisfies the PPL condition (a)
of Proposition 1. To deal with the confounding variable e2
between w2 and w1, we copy w2 to the output and move
it to wQ (Step 3)

w2 → (w1, w2) (9)

with wQ = w2, wo = w1, after which the original algorithm
finishes.

It can be observed that with this algorithm the predictor
model is considerably smaller sized than with the full input
algorithm. Applying the data-informativity analysis shows
that w2 = wQ would need external excitation, but at the
same time it also shows that any excitation on w2 will
not become a part of the excitation signals uP , as there
is a non-blocked loop w2 → w3 → w2 that is violating
the conditions of Proposition 5. As a result the selected
predictor model can never satisfy the DI conditions.

Continuing the minimum-input algorithm with the ad-
dition of Step 4, shows that with w2 ∈ wQ, there are
multiple loops around w2 that need to be blocked. The loop
w2 → w1 → w2 can be blocked by moving the output w1

to wQ (Step 4(a)). Moreover, the remaining loops around
w2 pass through node w3, therefore we add w3 to the
predictor model (Step 4(b)) to block them. Because there
is a confounding variable between w3 and wY , w3 cannot
go into wA and so it has to go to wQ. The final solution of
the extended algorithm now provides the predictor model:

(w1, w2, w3) → (w1, w2, w3) (10)

with all elements in wQ = {w1, w2, w3}, and thus requires
external excitation signals u1, u2, u3 to guarantee data-
informativity, where the required excitation signals auto-
matically belong to uP∩Q due to the additional step 4 in
the algorithm. �

The algorithms presented in this paper have been imple-
mented in the MATLAB app SYSDYNET (Van den Hof,
2023).

Remark 1. Note that the example in the previous Sec-
tions has been selected to emphasize the role of data-
informativity conditions for the local direct method in
the presence of confounding variables. Alternatively, for
the particular example network, an indirect identification
method as in e.g. Gevers et al. (2018) could provide a
consistent target module estimate on the basis of a sin-
gle external excitation signal only, while refraining from
extensive noise modeling.

paths in the mapping (u, ξ) → (wD, ξY , uK) or equivalently
(uK, uP , uA, uZ̄ , ξU , ξY) → (wU , wQ, ξY , uK).
In the condition on vertex disjoint paths similar compo-
nents on the left hand side and the right hand side can
be removed, provided that we condition the remaining
vertex disjoint paths not to pass through the removed
components. This allows us to remove uK and ξY , while
we also know that, due to the assumption of full rank
disturbances in the network, ξU has dim(wU) vertex disjoint
paths to wU . As a result the vertex disjoint path condition
can be reformulated as the existence of dim(wQ) vertex
disjoint paths in the mapping (uP , uA, uZ̄) → wQ, where
paths are not allowed to pass through ξY , wU or uK.
Since any path from uA to wQ passes through wA ⊂ wU ,
and all paths from uZ̄ to wY pass through a node in
wU , no paths from uA and uZ̄ can be used, and therefore
we consider the vertex disjoint paths between uP → wQ,
where paths are not allowed to pass through wU . By the
definition of the set P, an excitation on the output wo

can only be an element of uP if all paths from wo to wQ

pass through a node in wU , which in the above statement
is not allowed. Therefore the result is that there should
be dim(Q) vertex disjoint paths between uP∩Q → wQ, in
other words: only excitation signals that directly excite wQ

can be used for satisfying the structural data-informativity
conditions. With the definition of the set P the result then
follows directly. �

The immediate implication of this result is that for satis-
fying the structural data-informativity conditions:

(1) All nodes in wQ need (independent) external excita-
tion, and

(2) All those excitations should satisfy: uQ ∈ uP .

The first condition can typically be satisfied by adding
external excitations r to all nodes in wQ. However the
second condition is a structural condition on the graph
of the network model, and is principally limited by the
network topology. Whereas the construction of predictor
models in Ramaswamy and Van den Hof (2021) was
based on satisfying condition 2 of Theorem 2 only, we
now have to extend these graphical conditions with the
structural conditions for data-informativity, as formulated
in Proposition 5. This is further explored and illustrated
in the next Sections for two different algorithms presented
in Ramaswamy and Van den Hof (2021), the full input
algorithm and the minimum input algorithm.

6. FULL INPUT ALGORITHM

The original full input algorithm for predictor model
construction according to Condition 2 of Theorem 2 is
outlined below.

(1) We start by selecting wD = wA = wi and wo = wY =
wj ;

(2) Extend A in such a way that all w-inneighbors of wY

are included in wA;
(3) For every node signal wk, k ∈ A that has a confound-

ing variable with wY , move wk to wB if this is allowed
by the conditions on B;

(4) For every remaining node signal wk, k ∈ A that has a
direct confounding variable with wY , copy wk to the
output wY , move it to wQ and return to Step (2).

(5) For every remaining node signal wk, k ∈ A that has
a indirect confounding variable with wY , find a new
node signal to be added to wB that satisfies the con-
ditions on B and blocks 2 the concerned confounding
variable.

(6) For every remaining node signal wk, k ∈ A that has
a confounding variable with wY , copy wk to wY , move
it to wQ and return to Step (2).

(8) Finally the predictor model is defined by the mapping
wD → wY , with D = Q ∪A ∪ B and Y = Q ∪ {o}.

This algorithm can now be extended to also include the
structural data-informativity condition as formulated in
Proposition 5, as follows:

• In Steps (3) and (5), add a node to wB only if the
data-informativity conditions of Proposition 5 (DI
conditions) are satisfied, and

• At the end of the Algorithm, add an additional Step
(7), as follows.

(7) For every wk ∈ wQ that does not satisfy the DI
conditions:
(a) Verify if moving wo to wQ removes a violated

condition for wk;
(b) Verify if moving one or more nodes in wB to wQ

removes a violated condition for wk;
(c) Find an additional node w�, not present yet in

wY∪U , to be added to either wA or wQ that solves
the problem for wk;

(d) If in the previous steps a new node is added to
wQ, return to Step (2).

Fig. 3. Four node example with G12 as target module.

In the following example we illustrate how the original
algorithm and its extension to include the structural
data-informativity conditions differ when applied to the
example sketched in Figure 3.

Example 1. (Full input algorithm). Consider the network
in Figure 3 with G12 the target module we want to
identify. The original full input algorithm, as presented
in this section, starts with Step 1, including the input
and output of the target module, i.e. w2 → w1, with
wD = wA = w2; wY = wo = w1. Since w2 is the only
in-neighbor of the output w1, no further inputs need to be
added in Step 2. Since w2 has a direct confounding variable
(e2) and indirect confounding variables (e3 and e4) with w1

these need to be blocked. In Step 3 we evaluated whether
w2 can be moved to wB. This is not allowed because of
the rule that i /∈ B. The direct confounding variable can
only be blocked by copying w2 to the output wY (Step 4),
such that it becomes an element of wQ, resulting in the

2 “Blocking” the confounding variable means that a measured node
w� is added to wB that is on the path from the confounding variable
to wk.
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predictor model w2 → (w1, w2) with wo = w1; wQ = w2.
Since the new output w2 has been added we need to
return to Step 2 and add all its inneighbors to wD. As
a result w3 and w4 are added to wA and w1 (already
present in wY) is added to wQ. We are back in Step 3
now with A = {3, 4} and noticing that both nodes have
confounding variables with output w1. We first consider
node w3 ∈ wA, that has a direct confounding variable (e3)
and an indirect confounding variable (e4) with w1. Moving
w3 to wB is not allowed since it does not satisfy Condition
(d) of Proposition 1. Therefore, (Step 4) we copy w3 to
the output wY , such that it becomes an element of wQ.
The direct confounding variable between w4 and w1 is
addressed (Step 3) by moving w4 to wB. This results in
the predictor model

(w1, w2, w3, w4) → (w1, w2, w3) (7)

with wA = ∅; wB = w4; wo = ∅; wQ = {w1, w2, w3}
and this concludes the original algorithm that satisfies
Condition 2 of Theorem 2.

If we evaluate the DI conditions for this predictor model,
it appears from the results of Section 5 that all nodes
in wQ (i.e. w1, w2, w3) should have independent external
excitations r, but at the same time also that the excitation
on w3 cannot be effectively used for data informativity, as
it does not satisfy the Conditions of Proposition 5. w3 has
a path to w4 ∈ wB that is not blocked by a node in wA∪Q.
As a result the selected predictor model can never satisfy
the DI conditions. Even if we excite all nodes (w1, w2, w3),
the excitation on w3 will appear in the predictor model as
input to a parametrized transfer function, and therefore
cannot be used for excitation of G12.

Following the full-input algorithm now with the additional
Step 7, shows that w4 is not allowed to go to wB; it cannot
be moved to wA since there is a confounding variable then
between wA and wY . As a result w4 should go to wQ, leading
to the predictor model:

(w1, w2, w3, w4) → (w1, w2, w3, w4) (8)

with all nodes in wQ = {w1, w2, w3, w4}. For the final pre-
dictor model it holds that all external signals u1, u2, u3, u4

belong to uP∩Q, and are required for satisfying the data-
informativity conditions. �

7. MINIMUM INPUT ALGORITHM

The minimum input algorithm for predictor model selec-
tion focuses on using a minimum number of measured node
signals as predictor inputs, and, in its original form, follows
the following strategy

(1) We start by selecting wD=wA=wi and wo=wY =wj ;
(2) Extend A with a minimum number of w-inneighbors

of wY such that the PPL condition (Condition(a) of
Proposition 1) is satisfied;

(3) For every node signal wk, k ∈ A that has a confound-
ing variable with wY , copy wk to wY , move it to wQ;

(5) Finally the predictor model is defined by the mapping
wD → wY , with D = Q ∪A, Y = Q ∪ {o} and B = ∅.

This algorithm can now be extended to also include the
structural data-informativity condition as formulated in
Proposition 5, as follows:

• At the end of the Algorithm, add an additional Step
(4), as follows.

(4) For every wk ∈ wQ that does not satisfy the DI
conditions:
(a) Verify if moving wo to wQ removes a violated

condition for wk;
(b) Find an additional node w�, not present yet in

wY∪U , to be added to either wA or wQ that solves
the problem for wk;

We will illustrate this algorithm on the Example presented
in the previous Section.

Example 2. (Minimum input algorithm). Consider the
same network as in Example 1 in Figure 3. The predictor
model based on the original algorithm starts with the tar-
get module: w2 → w1, with w2 ∈ wA and w1 = wo, which
in line with Step 2, already satisfies the PPL condition (a)
of Proposition 1. To deal with the confounding variable e2
between w2 and w1, we copy w2 to the output and move
it to wQ (Step 3)

w2 → (w1, w2) (9)

with wQ = w2, wo = w1, after which the original algorithm
finishes.

It can be observed that with this algorithm the predictor
model is considerably smaller sized than with the full input
algorithm. Applying the data-informativity analysis shows
that w2 = wQ would need external excitation, but at the
same time it also shows that any excitation on w2 will
not become a part of the excitation signals uP , as there
is a non-blocked loop w2 → w3 → w2 that is violating
the conditions of Proposition 5. As a result the selected
predictor model can never satisfy the DI conditions.

Continuing the minimum-input algorithm with the ad-
dition of Step 4, shows that with w2 ∈ wQ, there are
multiple loops around w2 that need to be blocked. The loop
w2 → w1 → w2 can be blocked by moving the output w1

to wQ (Step 4(a)). Moreover, the remaining loops around
w2 pass through node w3, therefore we add w3 to the
predictor model (Step 4(b)) to block them. Because there
is a confounding variable between w3 and wY , w3 cannot
go into wA and so it has to go to wQ. The final solution of
the extended algorithm now provides the predictor model:

(w1, w2, w3) → (w1, w2, w3) (10)

with all elements in wQ = {w1, w2, w3}, and thus requires
external excitation signals u1, u2, u3 to guarantee data-
informativity, where the required excitation signals auto-
matically belong to uP∩Q due to the additional step 4 in
the algorithm. �

The algorithms presented in this paper have been imple-
mented in the MATLAB app SYSDYNET (Van den Hof,
2023).

Remark 1. Note that the example in the previous Sec-
tions has been selected to emphasize the role of data-
informativity conditions for the local direct method in
the presence of confounding variables. Alternatively, for
the particular example network, an indirect identification
method as in e.g. Gevers et al. (2018) could provide a
consistent target module estimate on the basis of a sin-
gle external excitation signal only, while refraining from
extensive noise modeling.
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8. CONCLUSIONS

We have addressed the construction of predictor mod-
els for consistent identification of a single module in a
dynamic network, with the local direct prediction error
method. The original structural conditions have been ex-
tended with appropriate graph-based data-informativity
conditions that are shown to have a serious impact on the
predictor models. These graph-based data-informativity
conditions can be integrated in constructive algorithm
for arriving at predictor models that guarantee consistent
estimation of a local target module.

Appendix A. PROOF OF PROPOSITION 3.

Given size constraints we will only provide a sketch of
proof, and for the details refer to Ramaswamy (2022).
From (3) and (2), it follows that uY(t) = J̄(q)uK(t)+S̄uP(t).
By writing uY(t) = R̄Y�(q)u(t), analyzing R̄Y�(q) will show
which external signals in u will appear in uK or in uP .
Under conditions (b) and (d) of Proposition 1, and the
fact that wo is a scalar signal, Lemma 4.1. in Ramaswamy
(2022) provides the following results:

(a) R̄k� = 0 with k, � ∈ Q and k �= �;
(b) R̄o� = 0 with � ∈ Q;
(c) R̄k� = 0 with k ∈ Y and � ∈ A;
(d) R̄kk = 1, k ∈ Y, if:

• all loops through wk pass through a node in wQ∪U ;
• there exist no direct or unmeasured paths from
wk to any wm,m ∈ B when k ∈ Q;

(e) R̄ko = 0, k ∈ Q, if:
(a) all paths from wo to wk pass through a node in

wQ∪U ;
(f) R̄k� = 0, k ∈ Y, � ∈ Z, if:

(a) all paths from w� to wk pass through a node in
wQ∪U ; and

(b) there exist no direct or unmeasured paths from
w� to any wm,m ∈ B.

The signals that are in uP are characterized by a binary
matrix S̄, and thus are determined by the entries in R̄ that
are equal to 1. The combined statements under result (d),
then lead to the specification of uP in Proposition 3, see
also Proposition 4.3 in Ramaswamy (2022).
In order to specify uK, we will follow a reasoning of
exclusion. The above results (a)-(f) specify columns in R̄Y�

that are zero, i.e. they determine the nodes of which the
excitation is not explicitly present in (3). All remaining
nodes, for which the corresponding terms in R̄Y� cannot
be shown to be 0 or 1, will typically have a parametrized
transfer to wY and therefore will constitute uK. With P̄
being defined as the set of node indices that correspond to
0-columns in R̄Y�, it follows that L = P ∪ P̄ ∪ K, leading
to K = L\{P ∪ P̄}.
For specification of the set P̄, it is observed that from
result (c) it follows that A ∈ P̄, and from results (a),(b)
and (e) that Y ∩ P̄ = ∅. Moreover result (f) specifies
the subset (Z̄) of unmeasured nodes that corresponds to
zero columns in R̄Y� and thus belongs to P̄. This leads
to K = L\{P ∪ A ∪ Z̄} which proves the second part of
Proposition 3.
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