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Abstract: In this paper identifiable parameterizations are determined for models of flow
in porous media as applied in the field of petroleum reservoir engineering. Starting from a
large-scale, physics-based model parameterization with an extensive parameter space, the best
identifiable reduced dimensional parameterization is constructed. This is achieved through
the development of an analytical expression for the (finite-time) information matrix of the
problem. It is shown that the information matrix can be expressed in terms of controllability
and observability properties of the model and the sensitivity of the state space matrices w.r.t.
the parameter vector. A reduced dimensional subspace is then obtained after a singular value
decomposition of the information matrix, leading to the use of basis functions (spatial patterns)
in the original parameter space. The approach is applied to two reservoir models: a SISO model
with 49 parameters and a MIMO model with 441 parameters.
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1. INTRODUCTION

This paper deals with determining identifiable parame-
terizations for large-scale, physical models in petroleum
reservoir engineering. Petroleum reservoir engineering is
concerned with maximizing the oil and gas production
from subsurface reservoirs. A common way to increase the
production is to inject water in the reservoir via injection
wells to drive the oil via production wells towards the
subsurface. However, due to strong heterogeneities in the
porous reservoir rock the resulting oil-water front is not
progressing uniformly and a large part of the oil is by-
passed and not produced. This can be partly counteracted
by manipulating the injection and production settings in
the wells. The dynamic control strategy that maximizes
the production is calculated based on a model of the
reservoir. A reservoir model (Fig. 1) describes the flow
of hydrocarbons through a porous medium in the sub-
surface. The model is non-linear due to the dependency
of the system matrices on the states. A model typically
contains 10° to 10° states, which are composed of the
fluid pressure and fluid saturations in each grid block.
The physical parameters in the model represent properties
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of the hydrocarbons, the heterogeneities in the porous
medium and the interaction between the hydrocarbons and
porous medium. The number of physical parameters is also
in the order of 10° to 10°. In the most simple model, the
parameters represent the permeability in each grid block
which determines how easily fluids flow through the porous
medium. Although geological information might provide a
rough idea about the permeability structures in the sub-
surface, the model parameters are basically unknown. For
applying model-based control strategies, they are usually
estimated together with the system states in procedures
that are referred to as history matching. These basically
consist of (extended) Kalman filter type of procedures,
applied to measured data of e.g. pressures or production
rates. The process of iteratively updating the parameters
and states, and calculating an updated control strategy
is called closed-loop reservoir management (Jansen et al.
(2005)).

The parameter estimation problem consists of two parts.
The first part is a property of the model structure itself:

Fig. 1. Example of a reservoir model with wells.
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is it possible at all to distinguish two given parameters
sets, provided the input is chosen the best possible way?
This property is called structural identifiability of a model
parameterization. The second part of the parameter es-
timation problem is to find out if the actual input is
informative enough to allow this distinction. This leads
to the requirement that the input is persistently exciting.
In this paper the first part is investigated.

The notion of structural identifiability was first stated
by Bellman and Astrém (1970) and has been extensively
studied in the field of compartmental modeling (Godfrey
(1983), Norton (1980)). State-space model parameteriza-
tions are analyzed by Glover and Willems (1974), Grewal
and Glover (1976) and Walter (1987). It is important to
notice that observable and controllable systems can still
be not structurally identifiable (DiStefano (1977)). A test
for local structural identifiability of high-order state-space
models is proposed in Dotsch and Van den Hof (1996).
Lately there has been a renewed interest in structural
identifiability analysis, with contributions from Bazanella
et al. (2007) and Stigter and Peeters (2007), where the
latter authors analyze non-linear systems.

For reservoir models it is shown in e.g. Tavassoli et al.
(2004) that different parameter sets can lead to the same
input-output behavior. Apparently, there is no unique
relation between the input-output behavior of the model
and the physical parameters. In other words, the model
parameterization is not structurally identifiable. As a re-
sult, the parameter estimation problem is ill-posed. This is
problematic, because an incorrect parameter estimate can
lead to incorrect long-term predictions.

One way to overcome the ill-posedness in the parameter
estimation problem is by constraining the solution space
for the model parameters through the addition of regu-
larization terms to the objective function. Another way
is to restrict the parameter space to a low-dimensional
space, guaranteeing (local) structural identifiability. In this
paper we choose for the latter option and an identifiable
parameterization is determined using local structural iden-
tifiability analysis.

First we will briefly review the local structural identifia-
bility problem. Then we will present our approach, which
is based on Dotsch and Van den Hof (1996). However,
our approach is derived in a simplified manner, is fit for
models with multiple inputs and outputs (MIMO), and the
calculation is more efficient. In Section 4 the reservoir
model is described, and two examples are presented in
Section 5.

2. STRUCTURAL IDENTIFIABILITY

Consider a linear, time-invariant, discrete time, state-space
model structure, parameterized in 6:
x(k+1) = A(0)x(k) + B(0)u(k) (1)
y(k) = C(O)x(k), (2)
where x(k) € R", u(k) € R™, y(k) € RP, and 0 € R?.
There are several approaches to evaluate the structural
identifiability of a model. In this paper we use the lo-

cal structural identifiability formulation of Glover and
Willems (1974).

Definition 1: A model structure is said to be locally
identifiable from the input-output behavior at 6 if, for

every 61,05 in the neighborhood of 0
G(q,01) = G(q,02) — 01 = 65,

with G(g,0) = C(8) (¢I — A(8)) ' B() and ¢ the for-
ward shift operator.

In words: in the neighborhood of 6 there are no two
models with distinct parameters which have the same
input-output behavior.

Note that G(g,0) can be written as:

G(q,0) =) M(k,60)g ", (3)
k=1

where M(k,0) = C(0)A*~1(0)B(0) are the Markov pa-
rameters. Based on (3) we can argue that equality of the
models G(q,01) and G(q, 05) is related to equality of the
Markov parameters of G(gq,01) and G(q,02). For reasons
that become clear later the MIMO Markov parameters
are decomposed into p multi-input single-output (MISO)
Markov parameters of dimension 1 x m, which are orga-
nized row—y}se

M(k,0) := M1.(k,0),...,M,.(k,0)], (4)
where M. (k,8) denotes the j-th row of Markov parame-
ter M(k, 9).
We now present Lemma 1 on injective maps, which will
lead together with Definition 1 to Proposition 2 (see also
Glover and Willems (1974); Grewal and Glover (1976);
Norton (1980)):
Lemma 1. Let ) be an open set in R™ and f : Q@ — R™
be a k-times continuously differentiable map with £ > 1.

If %(000 has constant rank [ in a neighborhood of 6, then
f is locally injective at 6 if and only if I = n.

Proposition 2. Consider the map ?T :© C R? — RP™
defined by:

_
S,(0) := [M(1,0) M(2,0) ... M(r,0)] € R*P™ . (5)

Then the model structure is locally identifiable in 6y if, for

sufficiently large r, rank (886—5(9)) =gqin 0 = 6.

This is equal to a rank test on the matrix:

— — T
_(05.0)\ (9S.(0)

6o

which has dimension ¢ x q. We will refer to (6) as an
information matrix. It expresses the sensitivity of the
parameters and combinations of parameters on the input-
output behavior. If the model structure is not structurally
identifiable, then the user of the model can decide to
reparameterize the model such that the parameters that
marginally contribute to the input-output behavior are
eliminated.

3. IDENTIFIABILITY ANALYSIS BASED ON
FINITE-TIME INFORMATION MATRIX

In this section we will first derive an expression for calcu-
lating the information matrix as given in (6). In subsequent
subsections we explain how an identifiable parameteriza-
tion is calculated, determine the minimum required num-
ber of Markov parameters r, and express the information
matrix in terms of controllability, observability and matrix
sensitivities.
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8.1 Derivation

First recall that the chain rule for differentiating a matrix
AF wrt. 6; € R gives us
OAF  OAAF! OAF~1 DA
= = +—AFL (7
(’“)6‘1» 00; 00; 00;
W has dimensions equal to that of A. This can
also be written as

where 2

k

891_;‘6‘ 8—91_A : (8)

The Jacobian matrix of A¥ € R"*™ w.r.t. the parameter
vector 6 € R? is consequently given by:

IA0) ¢ 11y OA i
T => (oA )aBA (9)
1=1
where I, is the identity matrix with dimensions ¢ x ¢, ®

denotes the Kronecker product, and where %—‘3 € Ramxn

consists of the partial derivatives % organized under each
other.

Similarly, the Jacobian matrix of M. (k, 8) € R™™ w.r.t.
0 is:

OM,.(k,0)  0C;.(0)A*1(6)B(0)

00 - 00
60]* k-1 k—1y 9B
90 A B-i-(I ®C]*A )30 (10)
k—1
OA
I, ® C.,A"Y) Z——AF1-IB.
+;( Q® J ) (90

Equation (10) shows that the Jacobian of each Markov
parameter can be expressed using the system matrices A,
B, C, and the analytical partial derivatives of the state-
space system matrices w.r.t. the parameter vector. As
stated in (5) the Markov parameters are organized row-

wise

— — —

S, = [M(m, . ..,M(r)} e RUxPmT (11)
where we have omitted, for brevity, the dependence of S,

and M(k) on 6. The Jacobian of g)r w.r.t. the parameter
vector O € R? is defined as:

as, [oM@)  oM(r)
- RIXPT 12
20 20 o0 | € o (12
where al\g—ék) € R1*P™ for k= (1,...,r).

Proposition 3. Using the notational conventions stated
before, the information matrix Z, for a multi-input multi-
output system is defined as

-y (M

=1 j=1

S AT
95,087
"T00 80T

80T

) OMY, (i ))
(13)

. . . M. (4)
with dimensions g x ¢, and where —5

is given by (10).

As in Dotsch and Van den Hof (1996) Z, is computed

using the matrices A(6), B(6), C(6), 9A(8) IB(O) ,nq

96 96
9(C9) Computation of the partial derivatives of A(6),

90
B(0), C(0) wrt. 0, (i = 1,...,q), for 8 = 6y is done
analytically. However, the procedure given here is strongly

simplified and much more direct compared to the one
proposed by Détsch and Van den Hof (1996), and has been
extended to MIMO models. Also, computation of Z, with
(13) is computationally more efficient because the matrix
is calculated as a whole, instead of element by element.

8.2 Identifiable parameterization

After calculating Z, with (13) its rank is evaluated. The
rank of Z, provides an estimate of the number of linearly
independent rows or columns in Z,.. It is denoted as
l:=rank(Z,). (14)
Here we use a singular value decomposition (SVD) to de-
termine the numerical rank (Golub and Van Loan (1996)).
Let Z, = UXVT be the SVD of Z,, where U and V
are unitary and ¥ = diag(oy,...,04) with oqg > -+ >
0y > 0141 = ... > 04. The singular values o;41,...04
are regarded as negligible. Numerical determination of the
matrix rank [ requires a criterion for deciding when a
singular value o; should be treated as zero. In the example
the choice is made that 2= < 1 x 107°.
Accordingly, the SVD of I can be partitioned as follows

-t [24] 3]

where U; € R?* U, € R*e-D 3, € RV, ¢
R?*! and V, € R?%(¢=D_ This means that the SVD of
the information matrix can be utilized to determine an
identifiable parameterization. From (15) we see that the
columns of U; provide an orthogonal basis of the column
space of Z,.. The columns of U; are regarded as directions
in the parameter space that are structurally identifiable
and serve as a mapping from high-dimensional parameter
space 6 to a low-dimensional parameter space p = U7 6.

T
It can be shown that 868,; %ST = ¥. In case we choose

that the parameter to be estimated is the permeability in
each grid block (see Section 4 for model description), each
column of U; with length ¢ can be projected on the N grid
blocks of the reservoir model. This can be done because
each parameter value in @ corresponds to one grid block
(¢ = N). Consequently, each column of U; can also be
interpreted as a spatial pattern, expressing the sensitivity
of the Markov parameters w.r.t. the permeability vector.
The columns of Uy provide an orthogonal basis of the
null space of Z,. The columns of U; are regarded as
directions in the parameter space that are structurally not
identifiable.

(15)

8.8 Number of Markov parameters

One of the questions is how many Markov parameters r
should be taken into account in order to arrive at correct
expressions for the local identifiability analysis. In the SISO
case it is well known that 2n Markov parameters uniquely
determine a linear system with McMillan degree n. In the
MIMO case the minimum number of Markov parameters
that uniquely determine the underlying linear system is
given by v + u, with v the observability index and u the
controllability index. See e.g. Kailath (1980). It implies
that r is sufficient if rank(H,_;) = rank(H,), where
H, denotes a block Hankel matrix containing r Markov
parameters (Damen et al. (1985)).
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3.4 Observability, sensitivity and controllability

The information matrix in (13) can be expressed in terms
of controllability and observability properties of the model
and the sensitivity of the state matrices w.r.t. the param-
eter vector 0. In the following we assume that system
matrices B and C are not dependent on 6, which leads
to an expression without 88—]3 and %—S. This is also the case
in the reservoir engineering example presente_c}l later.

For g =1, p =1 and r = 4 we can write 68594 = [0 X],
where
oA
00 9A B AB A’B
X =[C CA CA?] 20 B AB
OA B
00
(16)

In this expression a block diagonal matrix of the sensitivity
of the state space matrices w.r.t. the parameter vector is
left multiplied with the observability matrix, and right
multiplied with a block Toeplitz matrix containing the
controllability matrix and shifted controllability matrices.
For ¢ > 1, p =1 and r = 4, the expression becomes

X = [(1,© C) (I, CA) (1, ® CA?)]

oA
00 B AB A’B

oA B AB |.
OA B

20
which possesses a similar structure as (16).

4. RESERVOIR MODEL

The structural identifiability analysis is applied to a reser-
voir model. A reservoir model describes the fluid flow in
a porous medium in time and space. The equations are
based on a mass balance combined with Darcy’s Law,
which states that the fluid flow rate in a reservoir rock
is proportional to the pressure gradient (Aziz and Settari
(1986)). The model is non-linear, large-scale (10° - 10°
states), can contain several tens of wells that can have
measurement and control capabilities, and is uncertain in
the model parameters and initial state. See Jansen (2007)
and references therein for more material about the physical
model. However, as concluded in e.g. Heijn et al. (2004)
the dynamics of the reservoir model is in most cases several
orders less then the number of states. This is mainly due to
the unobservable and uncontrollable part of the reservoir
model.

In this analysis we use a two-dimensional model, that
contains only one fluid. The resulting model is linear in
the states, but non-linear in the parameters. A five-point
finite difference discretization in space and an implicit dis-
cretization in time yield the following state-space ordinary
differential equation in discrete time

p(k+1)=A(0)p (k) +Bu(k), (17)

y (k) =Cp (k), (18)

where k € Z denotes discrete time. The state variables
p € R’ denote (positive) fluid pressures in each grid

p(0) =po

block. The number of states is equal to the number of
grid blocks. The input variables u € R™ denote control
settings such as injection or production rates or pressures
in grid blocks containing wells. The output variables y €
R?P denote measured pressures in grid blocks containing
wells. A(f) € R™ ™ is a penta-diagonal matrix with
entries that are a function of grid block volume, fluid
density, compressibility, fluid viscosity, porosity in each
grid block, and permeability in each grid block. The latter
parameter can be interpreted as the conductivity of the
fluid through the porous medium. We choose not to use
a well inflow model, and therefore B € R™*" is a sparse
matrix containing ones in entries corresponding to a grid
block containing a well. C € RP*™ is also a sparse matrix
containing ones in entries corresponding to a grid block
containing a well. At the boundaries no-flow conditions
are assumed.

The linear, time-invariant reservoir model of (17,18) can
be seen as a state-space model that is parameterized by a
parameter vector 8. Because the permeability in each grid
block directly influences the flow, it is vital to estimate
this parameter vector using the available measurements
in order to obtain reliable model predictions and control
strategies. Therefore, we propose to analyze the structural
identifiability for this parameter vector and determine an
identifiable subspace of the parameter space.

5. EXAMPLES AND APPLICATION

In this section the identifiability analysis is applied to two
reservoir models. The first example is a SISO model with 25
parameters. It mainly serves to show the influence of the
permeability values on the information matrix. The second
example is a MIMO model with 441 parameters and five
inputs and five outputs. It demonstrates the influence of
the permeability values and also the position of the wells.
The examples will show that the permeability estimation
problem is ill-posed, as rank(Z,.) < g. More importantly, an
identifiable parameterization is determined and visualized
based on Z,.

5.1 Single input / single output

In the first example the identifiability analysis is performed
on a reservoir model with 49 states and an equal number
of parameters. The compressibility is ¢ = 1 x 10710Pg =1,
the viscosity is = 1 x 1073 Pa - s, the porosity is ¢ = 0.2
in each grid block, and each grid block has dimensions
10m x 10m x 10m. The permeability is 10~*m? and equal
in each grid block (Fig. 2, left picture, top view of a
2D representation). The model contains one input and
one output, which are both located in the middle grid
block. This can be regarded as one well that measures
and controls the pressure in the middle of the reservoir.
We first determined r based on a rank evaluation of the
two block Hankel matrices. The information matrix is
calculated with r» = 4, and rank(Z,) is evaluated. The
singular values of Z, decrease rapidly and g—; =1 x 106,
The rank of the information matrix is [ = 2 with the
cut-off value chosen as % < 1 x 1075, This means that
in this case 2 parameters can be identified using pressure
measurements. U; has consequently dimensions of ¢ x 2
and since each parameter is connected to a grid block each
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Permeability [log m?]
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Fig. 2. Top view of a homogeneous permeability distri-
bution with well location indicated by a grey dot
(left) and corresponding dominant spatial patterns in
parameter space (middle and right).

0

|U1(1)\ projected
-12 1

Permeability [log m?] |U,(2)] projected

1

-14 0

Fig. 3. Permeability distribution containing a streak with
higher permeability values (left) and corresponding
dominant spatial patterns in parameter space (middle
and right).

0

|U1(1)\ projected

-12 1

Permeability [log m2]

14 0

Fig. 4. Permeability distribution containing a streak with
lower permeability values (left) and corresponding
dominant spatial patterns in parameter space (right).

column of U; can be projected onto the reservoir grid
(Fig. 2, middle and left picture). These spatial patterns can
be interpreted as the dominant direction in the parameter
space to which the output is sensitive to changes in 8. We
depicted the absolute values of U; to show clearly which
values are equal or close to 0. As can be seen in Fig. 2
the model parameters are mainly structurally identifiable
around the well, because the values corresponding to these
grid blocks are not equal or close to 0. Also, it is clear that
a five-point spatial discretization scheme is used, because
the parameter corresponding to the grid block containing a
well and its four surrounding grid blocks are not close to 0.
Finally, due to the symmetry in the model properties, the
dominant directions in the parameter space also display
symmetric patterns.

To show the influence of 8y, we changed the uniform
permeability distribution and added a high-permeable
streak to the uniform permeability distribution (Fig. 3,
left picture). The value of the permeability in the streak
is 10 times higher and the fluids in this area flow easier.
We calculated the information matrix with » = 5 and its
rank is [ = 2. However, the dominant directions in the
parameter space that are sensitive to changes in the input-
output behavior are different (Fig. 3, middle and right
picture). Apparently, the input-output behavior is more
sensitive to permeabilities with high values.

If the permeability in the streak is 10 times lower (Fig. 4,
left picture), the rank of the information matrix is only
Il = 1. The corresponding dominant direction in param-
eter space is plotted in the right picture of Fig. 4, and

Permeability [log mz]

-1

15

Fig. 5. Permeability distribution (top view) for MIMO
example. Grey dots indicate well positions.

shows that the input-output behavior is less sensitive to
permeabilities with low values.

5.2 Multiple input / multiple output

In the second example the identifiability analysis is per-
formed on a reservoir model with 441 states and an equal
number of parameters. The permeability distribution con-
sists of three zones: the upper left corner has a high
permeability, the lower right corner a low permeability,
and the intermediate zone an intermediate permeability
(Fig. 5). The other physical parameters are chosen the
same as in the first example. The model contains 5 wells,
all with measurement and control capabilities. This means
that the model has 5 inputs and 5 outputs. The wells
are distributed in a characteristic five-spot pattern, in-
dicated in Fig. 5 by grey circular shapes. We computed
the corresponding impulse response, which revealed that
there is a negligible interaction between the wells in the
case of a single-phase flow model. However, interaction
between the wells is more likely in the case of a multi-
phase flow model. For example, if water is injected via
an injection well and displaces oil towards a production
well, there is clearly interaction between the injection and
production well when the front between the fluids reaches
the production well.
It was found that in this case with 19 Markov parameters
rank(H,) was not increasing anymore and rank(H,_;) =
rank(H,). The information matrix is therefore calculated
with r = 19. The singular values of Z,. are plotted in the
left part of Fig. 6. The 30 largest singular values are plotted
again in the right part of Fig. 6. For this example the rank
of Z, is more difficult to determine, because the difference
between two subsequent singular values is less distinct
than for the SIS0 example. However, we do see that at least
a(18) to o(g) are close to machine precision. This means
that the maximum number of parameters that can be
structurally identified with perfect pressure measurements
and finite machine precision is only 17 (out of a total of
441).

The absolute singular vectors, the columns of |U|, cor-
responding to the 9 largest singular values are depicted
in Fig. 7. The first singular vector, the most dominant
direction in the parameter space, corresponds to a well
in the part with a lower permeability. The next three
singular vectors correspond to wells in the part with the
intermediate permeability. The fifth to eighth singular
vectors correspond to the well in the part with a higher
permeability, where each subsequent vector covers a larger
area. The last singular vector corresponds to a well in
the part with the intermediate permeability. From this
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Fig. 6. Singular values of Z, for the MIMO case.
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Fig. 7. For the MIMO case the first 9 spatial patterns in
parameter space (top view).

example we conclude that only parameters in an area
near a well are structurally identifiable. Furthermore, the
structural identifiability is to a lesser extent affected by
the permeability distribution.

6. CONCLUSION

In this paper a best identifiable, reduced-dimensional
parameterization is constructed, which is applicable to
large-scale, non-linearly parameterized and multi-input
multi-output state-space models. This is achieved through
the development of an analytical expression for the finite-
time information matrix. It is shown that the information
matrix can be expressed in terms of controllability and
observability properties of the model and the sensitivity of
the state matrices w.r.t. the parameter vector. A singular
value decomposition of the information matrix is used to
construct a reduced-dimensional subspace. In the original
parameter space this leads to basis functions or spatial
patterns. The approach was applied to two examples in
petroleum reservoir engineering. It was demonstrated that
the identifiable parameterization was mainly depending on
the position of the actuators and sensors, and to a lesser
extent on the permeability distribution.
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