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Abstract— A common approach for modeling LPV systems
is to interpolate between local LTI models, often obtained
by system identification methods. We study the results of
interpolating in different domains, the so called I/O domain and
the state-space domain. It is shown that significant differences
can occur between the interpolated models, due to differences
in time propagation of the (scheduling) parameter. We intro-
duce canonical representations for LPV state-space realizations
similar to the LTV framework and derive exact formulas for
the connection between I/O and state-space based LPV models.

Index Terms— LPV, realization theory, canonical, model
interpolation.

I. INTRODUCTION

During the past 15 years, intensive research has been

carried out on Linear Parameter Varying (LPV) systems [1].

The main reason for this interest is that this framework

provides a powerful modeling tool for a wide class of

nonlinear systems, in particular found in servo-mechanical

applications. Moreover, it is commonly accepted that the

possibilities of classical control techniques, as developed for

Linear Time Invariant (LTI) models, are often too limited

to cope with the increasing industrial performance require-

ments. Although gain scheduling using LPV synthesis tech-

niques is a promising control approach, as shown by a wide

range of applied LPV control solutions on aerospace systems

[2], induction motors [3], or CD players [4], it still remains a

problem how to develop LPV models in a systematic fashion.

Commonly, LPV models are produced by following the basic

gain-scheduling idea: for a given nonlinear system N , take

locally valid LTI models of N at significant operation points

and then interpolate between these local models by a smooth

scheduling function [5], [6]. In the LTI case it is shown [7],

that for any I/O model, there exist an equivalent State-Space

(SS) based model and vice versa. This equivalence may be

the reason why in the LPV framework often no care is taken

about the domain where the interpolation between the local

LTI models is carried out (i.e. in the state space or in the

I/O operator domain). However, though the resulting LPV-

I/O and LPV-SS models are equivalent in the interpolation

points, their behavior can be significantly different for other

operation points or during a dynamic transient between the

interpolation points, even if the same interpolation function

is used in both domains. Before illustrating the difference

with an example, the following definitions are introduced.
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Definition 1: (LPV-I/O model) The I/O model of a SISO,

discrete time LPV system S is denoted by RI/O (S, p),
where RI/O (S, p) is dependent on the scheduling parameter

p (k) ∈ P with P ⊂ R
np a compact set and it is defined as:

y (k) = −
na
∑

i=1

ai (p (k)) y (k − i) + (1)

+

nb
∑

j=0

bj (p (k))u (k − j) ,

where na ≥ nb > 0, u (k) ∈ R is the system input and

y (k) ∈ R is the system output. It is assumed, that each

varying parameter in (1) is a smooth and continuous function

of p. ¤

Definition 2: (LPV-SS model) The p dependent SS model

RSS (S, p) of S is defined as follows:

x (k + 1) = A (p (k))x (k) + B (p (k)) u (k) , (2)

y (k) = C (p (k))x (k) + D (p (k)) u (k) , (3)

where x (k) ∈ R
nx is the state vector of RSS (S, p), nx ∈ N

is the model order, and
[

A (p) B (p)
C (p) D (p)

]

: P →

[

R
nx×nx R

nx×1

R
1×nx R

]

,

represents the parameter varying state-space matrices of

RSS (S, p). Again it is assumed, that all functions of p are

smooth and continuous. ¤

Definition 3: (I/O Equivalence) LPV-I/O or LPV-SS mod-

els with identical I/O behavior are called equivalent. ¤

Consider the following example to illustrate the basic

difference in the I/O behavior of the two representations.

Example 4: (Difference in interpolation) Assume that N
has two local LTI-SS representations

N =















[

α0 β0

1 0

]

if p = 0,

[

α1 β1

1 0

]

if p = 1,

where p ∈ [0, 1]. If S represents the LPV approximation of

N , then a trivial RSS (S, p) can be formulated as

[

A (p) B (p)
C (p) D (p)

]

=

1
∑

i=0

[

δi (p)αi δi (p)βi

0.5 0

]

, (4)

where δ0 (p(k)) = 1 − p(k) and δ1 (p(k)) = p(k) are the

linear interpolation functions. The two local models can also
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be interpolated based on their I/O equivalent. By using the

same interpolation functions, the resulting RI/O (S, p) is

yI/O (k) = a1 (p (k)) y (k − 1) + b1 (p (k))u (k − 1) , (5)

where a1 (p (k)) =

1
∑

i=0

δi (p (k)) αi,

b1 (p (k)) =

1
∑

i=0

δi (p (k)) βi.

However by computing the I/O behavior of RSS (S, p), one

can conclude that

ySS (k + 1) = a1 (p (k)) y (k) + b1 (p (k)) u (k) , (6)

which is clearly not equal to (5). The reason for the differ-

ence lies in the propagation of the variation of p through

the state evolution, which in this one-dimensional example

only causes a one-sample delay in the coefficient variation

(compare 5 and 6), but in higher dimensional cases more

complicated effects can occur (see Section II). ¤

Note that in Example 4, RI/O (S, p) is also the direct real-

ization of RSS (S, p) in the I/O domain utilizing the concepts

of the LTI theory, therefore it is a trivial conclusion that the

class of LPV-I/O and LPV-SS systems defined through the

frequently used Definition 1 and 2 of the literature [8], [9]

are not equivalent. Similar result holds in case of Linear Time

Varying (LTV) systems as pointed out by [10]. Then it can

be proved (see Section II), that the following problem holds:

Problem 5: The equivalence classes of system definitions

1 and 2 are distinct as there exists no p(k) dependent (static)

transformation between them. ¤

To establish equivalence transformations, we need to ex-

tend Definition 1 and 2, such that we allow representations

of S to depend on different scheduling functions. By intro-

ducing φ(k) = p(k) and ψ(k) = p(k + 1), it holds true that

RSS (S, φ) and RI/O (S, ψ) in Example 4 are equivalent.

This phenomenon leads to much confusion in the liter-

ature. In the area of LPV system identification, recently

several (global) methods were proposed to extract an LPV

model from measurement data. This concerns among others,

methods based on subspace techniques [11], [12], basis

functions [13], Linear Matrix Inequalities (LMI’s) based

optimization [14], simple Least Means Square (LMS) ap-

proaches [8], and on parameter estimation based gradient

searches [9]. All of these methods can be categorized in the

way that the obtained models are either SS or I/O operator

based. After producing an LPV model, some authors convert

it from one domain to the other, as in the LTI case, relying

only on the local validity of the conversion. The error caused

by this conversion, due to the propagation effect illustrated

in Example 4, is often misinterpreted or overlooked. See

for instance [6], [15]. In [15], a global I/O model of a

compressor is obtained by identifying SISO LPV-I/O models

on each input-output channel of the device. These channel

models are then assembled to a canonical MIMO LPV-SS

representation using the LTI realization theory locally. When

the MIMO model is validated, the gain and phase lags of

the outputs are explained as the error of the approximation.

However, such lags are commonly produced by the above

mentioned problem of transformations between the domains

(see Section IV for details). Though the LPV-SS model in

[15] seems to correspond to the true system because of the

slow variations of the scheduling parameter, it is not investi-

gated what happens when the scheduling parameter changes

rapidly, in which case the above mentioned phenomenon

would show its full deviance.

There is a second problem in the conversion between LPV-

I/O and LPV-SS systems that is often overlooked. It is well

known that a SS representation is not unique and can only

be identified up to an unknown state transformation. For

a single system, this problem is generally unimportant if

one is only interested in the general I/O behavior, which

is left unaltered by state transformations. However, when

assembling an LPV model by interpolating between different

local LTI models, difficulties may occur. If all of the local

LTI models are identified independently from the others, then

their representations will generally be in different state space

bases. This problem is recognized in [16] and solved in the

case of piecewise linear models, a particular subclass of LPV

models. In papers dealing with more general systems, such

as in [6] this problem is neglected. The choice of writing all

the local systems in a canonical form and then interpolating

the parameters of these canonical representations seems

attractive, but is not motivated theoretically, because of the

following fact:

Problem 6: Given an LPV-SS system as defined by Equa-

tions (2-3). The use of local state transformation matri-

ces T (p(k)) dependent only on the local value p(k) to

reach a canonical representation will produce SS-matrices

Ã(p(k))) = T (p(k))−1A(p(k))T (p(k)) etc, which do not

constitute a canonical form for the global LPV system. ¤

Problem 6 is verified by the computation of the impulse

response of the locally converted system, resulting in:
[

D (p0) , C (p1)T (p1)T−1 (p0)B (p0) , · · ·
]

for a {pk} sequence. Here it is obvious that the trans-

formation matrices are not canceling each other like in

the LTI case, completely altering the I/O behavior of the

original system. As will follow from Section II, the correct

approach will lead to related matrices of the form Ã(φ(k)) =
T (p̄(k + 1))−1A(p(k))T (p̄(k)) etc., where T is a function

of a sequence of parameters p̄ and φ is constructed from p̄.

This is directly related to canonical forms for LTV systems

[17]. A consequence of the local approach is that the states

at consecutive parameter points p(k), p(k + 1), etc. are not

related correctly. Even when the parameter variation is small

the resulting induced error can be substantial, as shown in

Example 24 (Section IV).

It is important that in Definitions 1 and 2 the dependency

on p can be any continuous function. However, a particulary

interesting class of LPV systems are affine LPV systems:

Definition 7: Any R (S, p) SS or I/O model of S has

affine dependency on p, if every f (p(k)) varying parameter
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(A,B, C,D, a, b) of R (S, p) can be written as

f (p (k)) =

np
∑

i=1

pi (k) fi, (7)

where pi denotes the ith element of p and {fi}
np

i=1 are

constants. ¤

Then, the following theorem holds true:

Theorem 8: For any RSS (S, p) or RI/O (S, p) models,

there exists an equivalent RSS (S, φ) or RI/O (S, ψ) repre-

sentation with affine dependency on φ(k) ∈ Pφ ⊂ P
nφ and

ψ(k) ∈ Pψ ⊂ P
nψ , where 0 < nφ ≤ n2

x + 2nx + 1 and

0 < nψ ≤ na + nb + 1. ¤

Proof: Define φi(k) or ψi(k) to substitute any f(p(k))
parameter dependency which is not affine. For RSS (S, p) at

most n2
x +2nx +1 and for RI/O (S, p) at most na +nb +1

such substitutions are needed. By preserving the relation of

each φi and ψi to p equivalence is preserved.

Theorem 8 states that any LPV system can be repre-

sented by an affine representation, which also resembles how

nonlinear dependencies are usually eliminated from LPV

systems in order to reach a representation which is suitable

for LPV optimal control or LPV identification. In terms

of analysis it is more important, that in order to establish

equivalence relations and canonical forms, uniqueness of

dependency over the scheduling parameter is required. Prob-

lem 5 shows that it is not trivial how to introduce the new

parameters to compensate the propagation effects. Therefore

in the sequel, to preserve mathematical validity, we denote

by RSS (S, φ) and RI/O (S, ψ) the affine representations

of the LPV system S and define equivalence classes and

transformations between affine systems. By knowing the

exact functional dependence of φ or ψ over p, one can always

reach nonlinear or even time lagged dependencies related

equivalent representations of S. However, these cases are not

covered by Definition 1 and 2. The use of affine dependency

is only a mathematical necessity and does not restrict the

validity of the presented theory for general LPV systems. In

the following, only the case of SISO systems is considered

because of the highly complicated notation of the MIMO

case. However, the results are easily generalizable to MIMO

systems.

The analysis presented in this paper will provide a method

to solve Problem 5 and 6 by obtaining a globally equivalent

SS or I/O realization of an LPV model with a given parame-

ter dependence. The question in the main focus of the follow-

ing discussion is ”How one should treat LPV models after

identification to preserve validity.” The paper is organized as

follows: in Section II, LPV-SS canonical representations are

introduced with the investigation of their equivalent LPV-

I/O model; in Section III, it is investigated how the derived

results affect the current identification approaches and future

research of the identification field; in Section IV, several

examples are given to show the validity of the presented

theories and to give some insight into the depths of the

underlying problems; in Section V, the main conclusions are

summarized.

II. STATE-SPACE CANONICAL FORMS OF LPV MODELS

In the LTI case, canonical forms of SS models are very

important as they provide the common ground of represen-

tation of SS models that differ in parameters but are equal

in I/O behavior due to the fact, that their SS matrices can be

related through a linear state transformation. Canonical forms

provide a common state-basis of these models, therefore if

the state-basis of two SS models are equivalent, then the

systems are called equivalent up to a state transformation

and belong to the same equivalence class, which is uniquely

determined by a canonical SS model [7]. For general LPV-SS

systems it is also essential to develop such representations

in order to compare and uniquely represent the underlying

dynamics or equivalence classes.

In the LTV framework, canonical forms of discrete-time

SS models were recently developed and investigated by

several authors [18], [17], [19]. Formally, the class of LTV

models can be considered to be broader than the class of

LPV systems, since – by substitution as in f̃(k) = f(p(k))
– an LPV model can be reparameterized as an LTV model.

For instance, one can rewrite Equation (2) to obtain Ã(k) =
A(p(k)) etc, leading to a general LTV formulation. A major

difference is that the trajectory of the scheduling parameter

for LPV systems is generally assumed to be unknown but

measurable in real time, whereas the dependence on time for

LTV systems is generally assumed to be known. Naturally,

the two classes of systems inhabit a lot of similarities.

Therefore, in the LPV framework, one can utilize many

results developed for LTV systems, be it that always care

has to be taken to validate the assumptions of these theories

in the LPV case. Based on the LTV framework, the following

concepts are utilizable for LPV systems to obtain canonical

SS forms of affine equivalent realizations.

Definition 9: (State-observability matrix) The parameter

varying state-observability matrix of RSS (S, φ) is defined

as the function Onx
: P

nx

φ → R
nx×nx with

Onx
(φ̄) =











C(φ1)
C(φ2)A(φ1)

...

C(φnx
)
∏nx−1

l=1 A(φl),











, (8)

where φ̄ =
[

φ1, · · · , φnx

]

⊂ Pφ is an arbitrary sequence. ¤

Definition 10: (State-reachability matrix) The parameter

varying state-reachability matrix of RSS (S, φ) is defined as

the function Rnx
: P

nx

φ → R
nx×nx with

Rnx
(φ̄) =











BT (φ1)
BT (φ2)A

T (φ1)
...

BT (φnx
)
∏nx−1

l=1 AT (φl)











. (9)

¤

Now denote

φ̄+(k) = [φ(k), φ(k + 1), · · · , φ(k + nx − 1)] ,

φ̄−(k) = [φ(k), φ(k − 1), · · · , φ(k − nx + 1)] .
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Then the following two theorems hold:

Theorem 11: (Complete observability, [19]) RSS (S, φ)
of S is completely observable, iff rank

[

Onx
(φ̄+(k))

]

= nx

for all k ∈ Z. ¤

Theorem 12: (Complete reachability, [19]) RSS (S, φ) of

S is completely reachable, iff rank
[

Rnx
(φ̄−(k))

]

= nx for

all k ∈ Z. ¤

Corollary 13: If RSS (S, φ) is completely observable

(reachable), then the rows of Onx
(φ̄+(k)) (columns of

Rnx
(φ̄−(k))) are linearly independent and Onx

(φ̄+(k))
(Rnx

(φ̄−(k))) is invertible. ¤

Definition 14: (Minimality) RSS (S, φ) is called minimal,

if it is both completely reachable and observable. ¤

Because of space limitations, definition of a canonical

form will not be exactly given, see for instance [20] and [21]

for more details. Roughly spoken, a canonical RSS (S, φ)
belongs to a subset of the equivalence class of S and

possesses the least possible number of meaningful param-

eters. Through the utilization of complete reachability and

observability, parameter varying state-transformations can be

deduced that provide canonical representations of S.

A. Observability canonical form

Assume that RSS (S, φ) is completely observable. We

introduce a new parameter varying state basis with the

transformation matrix

To(φ̄+(k)) = O−1
nx

(φ̄+(k)), (10)

leading to new state variables x̄o (k), such that

x (k) = To(φ̄+(k))x̄o (k) , (11)

x (k + 1) = To(φ̄+(k + 1))x̄o (k + 1) . (12)

The state transformation To(φ̄+(·)) fulfilling (11) and (12)

implies algebraic equivalence between x and x̄o. However,

algebraic equivalence does not preserve stability [7]. For this

it is necessary and sufficient to have topological equivalence

[7]. The condition for To(φ̄+(·)) to imply topological equiv-

alence lies in the concept of Lyapunov transformations.

Definition 15: (Lyapunov transformation, [22]) Let n ≥
0. A parameter varying SS transformation T : P

n
φ → R

nx×nx

is a Lyapunov transformation, if it is full rank and there exists

a finite constant ε ∈ R
+
0 , such that for any φ̄ ∈ P

n
φ

∥

∥T (φ̄)
∥

∥ ≤ ε, (13)
∥

∥T−1(φ̄)
∥

∥ ≤ ε. (14)

where ‖ · ‖ is the euclidian (arbitrary) norm. ¤

Theorem 16: A Lyapunov transformation always pre-

serves global stability of the system. Furthermore, the tra-

jectories of the pole functionals, the parameter dependent

local pole locations are also preserved [7]. ¤

It turns out that the transformation defined by (10) fulfills

the conditions:

Lemma 17: The observability transformation To(φ̄+(·)) is

a Lyapunov transformation. ¤

Proof: The compactness of Pφ and the continuous de-

pendence of the full rank Onx
on φ̄+ implies that To(φ̄+(·))

exists, both To(φ̄+(·)) and T−1
o (φ̄+(·)) are bounded, and

rank
(

To(φ̄+(k)
)

= rank
(

T−1
o (φ̄+(k)

)

= nx, (15)

for any k ∈ Z.

Because To implies algebraic equivalence (preserving lo-

cal equivalence) and it is a Lyapunov transformation (pre-

serving global stability), therefore To implies topological

equivalence which guarantees the preservation of the original

I/O behavior. For proof see [7]. The transformed matrices for

the new state-basis are given by [17]:

Ao(φo(k)) = T−1
o (φ̄+(k + 1))A(φ(k))To(φ̄+(k) =

=















0 . . . 0 −α
(o)
nx (φo(k))

1
. . .

... −α
(o)
nx−1 (φo(k))

...
. . . 0

...

0 . . . 1 −α
(o)
1 (φo(k))















T

,

Bo(φo(k)) = T−1
o (φ̄+(k + 1))B(φ(k)) =

=
[

β
(o)
1 (φo(k)) . . . β(o)

nx
(φo(k))

]T

,

Co(φo(k)) =
[

1 0 . . . 0
]

,

Do(φo(k)) = D(φ(k)) = β
(o)
0 (φo(k)),

where φo(k) is a new scheduling vector, function of

[φ (k) , . . . , φ (k + nx)] such that {α
(o)
i (φo(k))}nx

i=1 and

{β
(o)
j (φo(k))}nx

j=0 has affine dependency on φo(k). Then,

R
O

SS (S, φo) =

[

Ao(φo) Bo(φo)
Co(φo) Do(φo)

]

, (16)

is called the observability canonical state space representa-

tion of S and it is equivalent with RSS (S, φ). Proof of the

results provided by the above given matrix operations can be

found in [19].

For clarity purposes, we will use two symbols, q−1 and

w−1 for the backward time shift operator, where q is used for

the signals u and y, while w will only be used for variables

that depend directly on the scheduling parameter. In this

respect it has to be understood, that in the notation

wsβ(φ)q−tu = β(φ(k + s))u(k − t),

the operator w only works on the scheduling parameter

dependent function β(φ(·)) and q only on the function u(·).
Theorem 18: R

O

SS (S, φo) is completely observable [19].

¤

Based on the structure of R
O

SS (S, φo),

x̄
(o)
1 = y − β

(o)
0 (φo)u,

x̄
(o)
2 = qy − wβ

(o)
0 (φo) qu − β

(o)
1 (φo)u,

...

x̄(o)
nx

= qnx−1y −
nx−1
∑

t=0

wtβ
(o)
nx−1−t (φo) qtu.
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Here time k is omitted from the expressions. Then, it follows:

x̄(o) = Qoy − Wo (φo)Qou, (17)

where

Qo =
[

1 q . . . qnx−1
]T

,

and Wo (φo) is defined as














β
(o)
0 (φo) 0 . . . 0

β
(o)
1 (φo) wβ

(o)
0 (φo)

. . .
...

...
...

. . . 0

β
(o)
nx−1 (φo) wβ

(o)
nx−2 (φo) . . . wnx−1β

(o)
0 (φo)















.

By substitution of (17) into (2) and (3), it follows that the

I/O operator form of R
O

SS (S, φo) is

[Λ (φo) Qo] y = [Λ (φo) Wo (φo)Qo+ (18)

+w−1Bo (φo)
]

u,

where Λ (φo) =
(

Iq − w−1Ao (φo)
)

. Relation (18) can be

given in a more simplified form of (1), defining RI/O (S, ψ)
as the I/O representation of S, where

ai (ψ) = w−nxα
(o)
i (φo) , (19)

bj (ψ) = w−jβ
(o)
j (φo) + (20)

+

j
∑

t=1

[

w−nxα
(o)
t (φo)

] [

w−jβ
(o)
j−t (φo)

]

,

with i ∈ I
nx

1 , j ∈ I
nx

0 , na = nb = nx, and ψ(k) a new

scheduling vector, function of [φo (k) , . . . , φo (k − nx)],
such that each ai (ψ) and bj (ψ) has affine dependency on

ψ. Here I
t
s = {s, s + 1, . . . , t} ⊂ Z is the index set.

Theorem 19: (Equivalence transformation) For any given

completely observable and affine RSS (S, φ), there exists an

affine, unique, and equivalent RI/O (S, ψ) in the form of (1)

with coefficients given by (19) and (20). For any given affine

RI/O (S, ψ), there exists an affine, unique, equivalent, and

minimal R
O

SS (S, φo) with nx = na and coefficients

α
(o)
i (φo) = wnxai (ψ) , (21)

β
(o)
j (φo) = wjbj (ψ) −

j
∑

t=1

[

wjat (ψ)
]

β
(o)
j−t (φo)(22)

where i ∈ I
na

1 , j ∈ I
na

0 , all dependence is affine, and if

j > nb, then bj (ψ) ≡ 0. ¤

B. Reachability canonical form

Assume that RSS (S, φ) is completely reachable. We

introduce a new state basis, using

Tr

(

φ̄− (k)
)

= Rnx

(

φ̄− (k)
)

, (23)

with a new state variable x̄r (k) such that

x (k) = Tr

(

φ̄− (k − 1)
)

x̄r (k) , (24)

x (k + 1) = Tr

(

φ̄− (k)
)

x̄r (k + 1) . (25)

Again topological equivalence is pursued through Tr.

Lemma 20: The reachability transformation Tr

(

φ̄− (·)
)

is

a Lyapunov transformation. ¤

Proof: Analogous to the proof of Lemma 17.

Since Tr

(

φ̄−

)

implies topological equivalence, therefore the

state transformation will not change the I/O behavior of the

system. Proof of the I/O equivalence can be deduced from

[7] and the transformed matrices are given as [18]:

Ar (φr(k)) = T−1
r

(

φ̄−(k)
)

A (φ(k))Tr

(

φ̄−(k − 1)
)

=

=















0 . . . 0 −α
(r)
nx (φr(k))

1
. . .

... −α
(r)
nx−1 (φr(k))

...
. . . 0

...

0 . . . 1 −α
(r)
1 (φr(k))















,

Br (φr(k)) =
[

1 0 . . . 0
]T

,

Cr (φr(k)) = C (φ(k)) Tr

(

φ̄−(k − 1)
)

=

=
[

β
(r)
1 (φr(k)) , . . . , β(r)

nx
(φr(k))

]

,

Dr (φr(k)) = D (φ(k)) = β
(r)
0 (φr(k)) .

where φr(k) is a new scheduling vector, function of

[φ (k) , . . . , φ (k − nx)], such that {α
(o)
i (φr(k))}nx

i=1 and

{β
(o)
j (φr(k))}nx

j=0 has affine dependency on φr(k). Then,

R
R

SS (S, φr) =

[

Ar(φr) Br(φr)
Cr(φr) Dr(φr)

]

, (26)

is called the reachability canonical state space representation

of S. For a proof of the results provided by the above given

matrix operations see [19].

Theorem 21: R
R

SS (S, φr) is completely reachable [19]. ¤

Then, because of the structure of R
R

SS (S, φr),

x̄
(r)
1 = q−1u − w−1α(r)

nx
(φr) q−1x̄(r)

nx
,

x̄
(r)
2 = q−2u − w−2α(r)

nx
(φr) q−2x̄(r)

nx
−

−w−1α
(r)
nx−1 (φr) q−1x̄(r)

nx
,

...

x̄(r)
nx

= q−nxu −
nx−1
∑

l=0

wl−nxα
(r)
nx−l (φr) ql−nx x̄(r)

nx
,

from which it follows that

x̄(r) = Qru − Wr (φr) Qrx̄
(r)
nx

, (27)

where

Qr =
[

q−1 q−2 . . . q−nx
]T

,

Wr (φr) =













w−1α
(r)
nx (φr) 0

w−1α
(r)
nx−1 (φr) w−2α

(r)
nx (φr)

...
. . .

w−1α
(r)
1 (φr) . . .

. . . 0
. . .

...

. . . 0

w1−nxα
(r)
nx−1 (φr) w−nxα

(r)
nx (φr)













.
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Then it is possible to write the outputs as

y = Čr (φr) x̄(r) + β(r)
nx

(φr) x̄(r)
nx

+ β
(r)
0 (φr) u, (28)

where

Čr (φr) =
[

β
(r)
1 (φr) . . . β

(r)
nx−1 (φr) 0

]

.

After some algebraic manipulation based on the non-

singularity of Cr (φr) and substitution by (27), the equation

(28) can be written in the form of (1) where

ai (ψ) =
[

ω−1α
(r)
i (φr)

] β
(r)
nx−i+1 (φr)

[

ω−iβ
(r)
nx−i+1 (φr)

] , (29)

bj (ψ) = β
(r)
j (φr) +

j
∑

t=1

αt (φr)
[

w−tβ
(r)
j−t (φr)

]

(30)

with i ∈ I
nx

1 , j ∈ I
nx

0 , na = nb = nx, and ψ(k) a new

scheduling vector, function of [φr (k) , . . . , φr (k − nx)],
such that each ai (ψ) and bj (ψ) has affine dependency on

ψ.

Remark 22: The division in (29) is always accomplishable

if none of the elements of β(r)(φr) is zero which is guaran-

teed if the system is well defined. If β(r) (φr) can have zero

values, then for the specific time instance of their occurrence

the (29) and (30) formulas change. As the formulas in these

cases are completely case dependent (index and number of

β(r) (φr(k)) = 0 elements), no general derivation is possible.

Theorem 23: (Equivalence transformation) For any given

completely reachable and affine RSS (S, φ), there exists an

unique, equivalent, and affine RI/O (S, ψ) in the form of (1)

and with coefficients given by (29) and (30). For any given

affine RI/O (S, ψ), there exists an affine unique, equivalent,

and minimal R
R

SS (S, φr) with nx = na and coefficients

α
(r)
i (φr) = [wai (ψ)]

[

w−(i−1)β
(r)
nx−i+1 (φr)

]

[

wβ
(r)
nx−i+1 (φr)

] , (31)

β
(r)
j (φr) = bj (ψ) −

j
∑

t=1

at (ψ)
[

w−tβ
(r)
j−t (φr)

]

,(32)

where i ∈ I
na

1 , j ∈ I
na

0 , all dependence is affine, and if

j > nb, then bj (ψ) ≡ 0. ¤

Recall from LTI theory, that the observability and reach-

ability canonical form can be given in an other so called

companion form [23]. This also holds for the LPV case, but

it is omitted here because of space limitations.

It is also important to point out, that for a given SISO LTI

system F , it holds that

RSS (F) =

[

A B

C D

]

,

R
T
SS (F) =

[

AT CT

BT D

]

,

have equivalent I/O behaviors [24]. Here R
T
SS (F) is called

the adjoint of RSS (F). However, in the LPV case, the I/O

behavior of RSS (S, φ) is strictly not equal to R
T
SS (S, φ).

Equivalence only holds if R
T
SS (S, φ) is simulated backward

in time [7]. This means that for the LPV-SS case

R
O

SS (S, φo) 6=
[

R
R

SS (S, φr)
]T

, (33)

R
R

SS (S, φr) 6=
[

R
O

SS (S, φo)
]T

, (34)

as due to the forward time flow, it is not guaranteed for this

transposed form that it is observable, controllable or has any

connection with the non-transposed form between the local

points (see Section IV). Only the canonical forms, defined

before, guarantee validity and observability or reachability

for any variation of φ globally [17], [18].

III. IDENTIFICATION OF LPV SYSTEMS

In the previous section the relation between LPV models

in the I/O and SS domains was established. Through the

introduced equivalence transformation, the I/O behavior of

the system is preserved during a conversion between the

domains, eliminating problems of the propagation gain and

phase lags (Problem 5 in Section II). Moreover, through the

state transformations used to achieve canonical forms the

problems of unknown state basis (Problem 6 in Section II)

also do not apply. However, the price to be paid for the

equivalence is in the increased complexity of the resulting

models (growing dimension of P).

The consequences are threefold. First, current identifi-

cation methods are only focusing on LPV systems that

have static dependence on p(k). Therefore, if the physical

system S to be identified has an underlying RSS(S, p) or

RI/O(S, p) model completely defining the I/O behavior of

S, then only those methods will be capable of efficient LPV

system identification of S with static p(k) dependence, which

are based on the specific domain of S. Methods of the

other domain will result only in a poor approximation in

terms of output error, as they are not able to cope with the

time-lagged dependency on p, which is needed to describe

the equivalent model in their domain (see Section II). This

means, that for example sub-space methods will never be

able to fully identify an LPV-I/O model if they operate

with static parameter dependence only. On the other hand,

if the system has an underlying RSS(S, p) model, then the

identification of a RI/O(S, p) is impossible. Moreover, even

if the equivalent RSS(S, ψ) is given, then finding back the

specific unknown state-basis where the dependence on p(k)
is static is as hard as the identification problem itself.

The other consequence is that the interpolation of local

models to reproduce a global LPV or NL behavior is a

very delicate operation. Basically after identification of the

local models, the interpolation on the coefficients must be

carried out in the domain where the produced model is

going to be used. If the global model was produced in an

undesirable domain, then transformation to the other is still

possible through the presented equivalence transformations

but with extreme caution on the increasing scheduling param-

eter dimensions and the possibly increasing model variance.

Moreover, for systems that have a well fitting first principle

model described by a nonlinear difference equation, the local
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observations of the parameters must be interpolated in the

I/O domain, otherwise, even if the interpolation function is

100% correct, the locally equivalent LPV-I/O model of the

system will not be able to reproduce the same output. This

phenomena is true vice-versa.

The third consequence is purely related to the usability

of the presented equivalence transformations. As it can be

observed, causality of the model with respect to p(k) can

be seriously violated during the conversions between the do-

mains. Therefore, the reachability canonical form should be

distinguishably used in any conversions of SS to I/O systems

as it always guarantees causality of the equivalent model.

Also by converting I/O models to SS systems the reachability

canonical form only requires one sample advance of the

scheduling parameter in comparison with the required nx

sample advance of the observability form.

These consequences suggest, that parting the LPV-I/O and

LPV-SS identifiable systems is strongly needed to improve

the efficiency of the current identification methods and

enable the application of the produced models for control.

IV. EXAMPLES

In the following some simple examples are going to be

presented to visualize the theorems of Section II.

Example 24: (Canonical forms) In the first example con-

sider the following LPV system

RSS (S1, p) =





p(k) 1
0 p(k)

1
p(k)

1 p(k)−1 p(k)





with P =
[

1
4

3
4

]

. It is trivial that the above system is

affine for φ(k) =
[

p(k), p−1(k)
]

and completely controllable

and reachable for any p (k) sequence (the rank of Onx

(

φ̄+

)

and Rnx

(

φ̄−

)

never drops below 2 on P). By calculating the

R
O

SS (S1, φo) observability and R
R

SS (S1, φr) reachability

canonical forms defined in Section II, one can conclude that

α
(o)
1 (φo (k)) = [φo(k)]1 = p (k)

p2 (k + 1)

p (k + 2)
,

α
(o)
2 (φo (k)) = [φo(k)]2 = p (k + 1) +

p2 (k + 1)

p (k + 2)
,

β
(o)
1 (φo(k)) = [φo(k)]3 = 1 +

p (k)

p (k + 1)
,

β
(o)
2 (φo(k)) = [φo(k)]4 =

p (k + 1) p (k)

p (k + 2)
+ p (k) +

+p (k + 1) ,

and

α
(r)
1 (φr (k)) = [φr(k)]1 = p (k − 1) + p (k − 2) ,

α
(r)
2 (φr (k)) = [φr(k)]2 = p2 (k − 1) ,

β
(r)
1 (φr (k)) = [φr(k)]3 = 1 +

p (k − 1)

p (k)
,

β
(r)
2 (φr (k)) = [φr(k)]4 =

p (k − 1) p (k − 2)

p (k)
+

+p (k − 2) + p (k − 1) .

There are similarities between the two set of coefficients,

but it remains obvious that the two LPV systems are not the

transpose of each other. However, if we freeze p(k) = p ∈ P

(applying constant scheduling), then the two representations

become at the constant p point to be each others transpose

and therefore local equivalence is trivial. Now compute

what would result from putting the original system into

reachability and observability canonical forms at every local

point based on LTI theory. This very intuitive but wrong

approach produces the following LPV systems:

R̆
O

SS (S1, p) =





0 1
−p2(k) 2p(k)

2
3p(k)

1 0 p(k)





R̆
R

SS (S1, p) =
(

R̆
O

SS (S1, p)
)T

Generally in the literature some follow this approach [6].

It is important to note that the two sets of LPV systems

coincide for constant parameter trajectories, but they are

unequal globally. To show this phenomenon, try what the

outputs of these system are for u (k) = sin
(

1
4k + π

6

)

,

p (k) = 1
2 + 1

4 sin
(

1
4k + π

2

)

and assuming initial rest at

k = 0. Here k is in radial for the computation of the sin (.).

As it can be seen in Figure 1, the two canonical forms

R
O

SS (S1, φo) and R
R

SS (S1, φr) are completely reproducing

the original output with zero error. However, R̆
O

SS (S1, p) and

R̆
R

SS (S1, p) have a relatively huge representation error in the

magnitude of 35%, which mainly comes from a parameter

dependent phase and gain lag with respect to y.

Example 25: (SS form of I/O representations) Now we

investigate the representation of an LPV-I/O model in a SS

form. The following RI/O (S2, p) of an LPV system S2 is

defined

y (k) = −p (k) y (k − 1) − p (k) y (k − 2) (35)

+p (k)u (k − 1) ,

with P =
[

1
4

3
4

]

. It is trivial that RI/O (S2, p) has affine

dependency on ψ(k) = p(k). Now develop the SS canonical

representation of this I/O system as it is given in Section II.

The resulting R
O

SS (S2, φo) and R
R

SS (S2, φr) are defined by

α
(o)
i (φo (k)) = [φo(k)]1 = p (k + 2) , i = 1, 2

β
(o)
1 (φo (k)) = [φo(k)]2 = p (k + 1) ,

β
(o)
2 (φo (k)) = [φo(k)]3 = −p (k + 2) p (k + 1) ,

and

α
(r)
i (φr (k)) = [φr(k)]1 = p (k − 1) , i = 1, 2

β
(r)
1 (φr (k)) = [φr(k)]2 = p (k) ,

β
(r)
2 (φr (k)) = [φr(k)]3 = −p (k) p (k − 1) .

The I/O system can also be converted to a reachable and

observable canonical form locally at every scheduling point

based on the LTI theory. This would be the same as what

is used in the literature by obtaining I/O models, then
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Fig. 1. Comparison of canonical representations of the LPV sys-

tem S1. R̆O

SS
(S1, p) (blue), R̆R

SS
(S1, p) (red), RO

SS
(S1, φo) (green),

RR

SS
(S1, φr) (identical to green), RSS (S1, p) (identical to green).

0 10 20 30 40 50 60 70 80 90 100
−4

0 

4 

System output

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

Output error

Fig. 2. Comparison of canonical representations of the LPV sys-

tem S2. R̆O

SS
(S2, p) (blue), R̆R

SS
(S2, p) (red), RO

SS
(S2, φo) (green),

RR

SS
(S2, φr) (identical to green), RSS (S2, p) (identical to green).

interpolating between the coefficients, and then putting them

into a controllability form, see [15]:

R̆
O

SS (S2, p) =





0 1
−p(k) −p(k)

p(k)
−p2(k)

1 0 0





R̆
R

SS (S2, p) =
(

R̆
O

SS (S2, p)
)T

Again, this is an intuitive approach, but completely destroys

the structure. To prove it, consider the similar p and u

functions as u (k) = sin
(

1
4k

)

, p (k) = 1
2 + 1

4 cos
(

1
4k

)

−
sin

(

1
4k + π

2

)

. As it can bee seen on Figure 2, the pragmatic

approach produces 35% difference while the transformation

proposed in Section II retains the correct output.

V. CONCLUSION

In this paper an investigation of canonical SS and I/O

representations of LPV systems was presented, exploring the

connections and the differences of the two representations.

It was also clearly pictured how interpolation between local

models in one of the (SS or I/O) domains relate to the

interpolation of the locally equivalent models in the other

domain. Through affine equivalent representations, direct

equivalence transformations between general LPV-SS and

LPV-I/O systems were introduced. Due to the dynamic nature

of these transformations, conclusions were drawn about the

identifiability of LPV systems based on static dependence

on the scheduling parameter. Based on this conclusion, one

can point out that future research in the area must make a

distinction between models that are identifiable in the SS

or in the I/O domain, because it might happen, that there

exists no LPV-SS or I/O model with equivalent I/O behavior

depending on the non-shifted sequence of p, reducing greatly

the effectiveness of all methods and approaches of the

identification field.
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