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Abstract

In this paper, we discuss the model predictive control algorithms that are tailored for uncertain

systems. Robustness notions with respect to both deterministic (or set based) and stochastic uncertainties

are discussed and contributions are reviewed from the model predictive control literature. We present,

classify and compare different notions of the robustness properties of state of the art algorithms, while a

substantial emphasis is given to the closed-loop performance and computational complexity properties.

Furthermore, connections between (i) the theory of risk and (ii) robust optimization research areas

and robust model predictive control are discussed. Lastly, we provide a comparison of current robust

model predictive control algorithms via simulation examples illustrating closed loop performance and

computational complexity features.

I. INTRODUCTION

A. General Outline

Model predictive control (MPC) technology is a mature research field developed over four decades

both in industry and academia addressing the question of (practical) optimal control of dynamical systems

under process constraints and economic incentives. Its popularity is mainly attributed to two significant

properties of MPC algorithms; first one is the (explicit) constraint handling capabilities while providing

(sub-)optimal operation, see, e.g., [1], [2], [3]; and the second superiority is the ease of extending the

algorithms to multi-input multi-output (MIMO) systems. Many different approaches were developed,

such as; Model Algorithmic Control in 1978 ([4]), with finite impulse response models, Dynamic Matrix
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Control in 1980 ([5]), with step response models, Generalized Predictive Control in 1987 ([6]), with

transfer function models. Lately, MPC methods developed by considering the state-space models have

become the standard way of formulating predictive control problems. Throughout the different algorithms,

however, the essence of predictive control is the same and can be stated as, [7], optimizing over

manipulated inputs to control the forecasts of future process behaviour. Stated rigorously, [8], [9], MPC

is a form of control in which the current control action is obtained by solving, at each sampling instant, a

finite or infinite horizon open-loop optimal control problem. In this technique an optimal control sequence

is obtained by using the current state of the plant as the initial state of the plant and the first control in

this sequence is applied to the plant, while at the next sampling (or decision) instant the whole procedure

is repeated.

The process of selecting an optimal control action can be summarized in two distinct steps ([10], [11]),

i) shaping the beliefs of future output performances (forecasts);

ii) the choice of to-be-applied control action as a function of these forecasts.

A general approach to obtain output forecasts is through dynamic models describing the process behaviour.

During the initial development of MPC, empirical linear input-output models were utilized. If the operating

window is relatively small, such models are proved to be sufficient. However, if the operating conditions

vary drastically, e.g., batch processes, then nonlinear models should be used, which effects the complexity

of the MPC problem1. In either case the developed models will be far from perfect; leading to mismatch

between the forecasts and the true behaviour. As a result, the commissioned MPC controllers are kept

non-operational frequently due to the model deterioration or lack of maintenance of the model, ([14]).

It is both natural and logical to include the effect of (modeled) uncertainty into the prediction model,

hence into the optimal control action. In different words, selecting a control action on the basis of the

nominal forecasts leads to undesired operation due to definite dispersion from the expectations in the

controlled variables. However, uncertainty also radically effects the optimal control actions in closed-loop

predictions, casting them to become pessimistic (or aggressive), hence the resulting performance levels

are also effected ([15]).

A well established way to overcome or reduce the effects of uncertainty is by applying feedback

techniques. In many instances, robust control theory ([16]) provides sufficient tools for achieving robust

operation. However, this design choice often leads to over-utilization of the available resources as it might

not be necessary to execute a pessimistic control law at each time instant. For industrial applications,

1Here we do not consider the difficult questions of how and at which complexity level the process model should be constructed.

We refer the interested reader to [12], [13] as introductory discussion on modeling uncertain behaviour.
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especially in process control industry where economic concerns are directly effecting the operation

decisions, the pessimistic control methods are in general rejected and robustness is achieved in an ad-hoc

manner ([17]). In recent years, a huge effort has been put in developing computationally efficient (or

tractable) and less pessimistic (or adjustable) robust optimization tools that have parameter ambiguity and

stochastic uncertainties within the formulation of the optimization (equivalently MPC) problems ([18]).

It is important to distinguish three different robustness aspects of MPC algorithms in the way of treating

uncertain effects,

1) robust feasibility,

2) robust stability,

3) robust (closed-loop) performance.

The robust feasibility is about the constraint satisfaction in the face of uncertainty, while the robust

stability is tracked via the cost function through Lyapunov based stability arguments. We have a consid-

erable understanding on robust constraint satisfaction or robust stability while the interplay between the

uncertainty and the closed-loop performance is yet to be rigorously analyzed. Although there exist some

methods to synthesize predictive controllers that operate in a computationally acceptable way ([19]), many

of the current robust MPC methods lead to computationally challenging optimization problems, while

causing unacceptable levels of performance deterioration. The performance deterioration, or even the total

absence of performance, due to overly conservative methods is causing a gap between academic works and

industrial implementations. High performance is achieved if the uncertain effects are compensated when

it is required, while robustness requirements demand to act in a pre-emptive manner. Hence incorporating

only the necessary uncertain process predictions into the control action by incorporating risk management

techniques is of great interest for predictive control applications.

Combining robust control and predictive control regarding the robust constraint satisfaction, stability

and performance aspects with quantitative guarantees is still an open problem. There are a multitude of

techniques, detailed in the next sections, to reshape robust MPC (RMPC) (or similarly stochastic MPC

(SMPC)) problems. The main dilemma is due to the open-loop nature of predictions, leading to loss

of incorporation of future uncertainty into the control actions. Dynamic programming (DP) techniques

provide a way out of this problem, however the curse of dimensionality, specifically for moderate or

large scale systems or uncertainty spaces, drastically effects the computational aspects, see [20].

Another important point regarding the industrial acceptance of RMPC algorithms is the computational

aspect. It is a requirement that RMPC problems should be consisting of relatively simple and reliable

algorithms resulting in desired performance levels of industrial needs ([17]). In the case of industrial

implementation, the algorithms should be ([21]);
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• easy to interpret and interact by the operator with sufficiently large amount of information on

controlled variables and/or constraint violation risks, ([22]);

• relatively simple to solve computationally in repeated fashion, since the industrial platforms are

generally not tailored for highly complex and efficient numerical algorithms.

The RMPC techniques developed within the academic practice are severely lacking both of these proper-

ties, ([23]). In addition, the resulting closed-loop performances are conservative. Hence, it is no surprising

that RMPC has not found applicability in process industry.

The goal of this work is to provide;

• a comprehensive review, discussion and classification of the current RMPC formulations in literature

and signify the connections with risk theory and robust optimization research areas;

• a comparison of these formulations regarding their closed loop performance and computational load.

The remainder of the paper is organized as follows. After stating the notations used in this paper

at the end of this section, we start discussion with presenting a generic MPC problem, introducing

the common ways of incorporating and quantifying the uncertainty in MPC problems and stating the

different methods to find the robust counterpart problem in Section II. Section III discusses the RMPC

methods and contributions that are introduced with deterministic treatment of uncertainty, either worst-

case or uncertainty budget approaches. The SMPC approaches towards uncertain dynamics are discussed

in Section IV. We present the moment, probabilistic and randomized MPC contributions and show

the possibility of incorporating the theory of risk into the MPC setting. The effectiveness (closed-loop

performance) of the methods from literature are demonstrated by means of simulation examples in Section

V. Finally, Section VI presents the conclusions.

B. Notation

The field of reals and sets of nonnegative reals, integers and nonnegative integers are denoted by

R, R≥0, Z, Z≥0, respectively. For a vector x∈Rn×1 (or in short x∈Rn), x> denotes the transpose of that

vector. A sequence of vectors xi ∈Rn, until (time) index k, is defined as x>[0,k] :=
[
x>0 x>1 x>2 . . . x>k

]
∈

Rnk. For a (time) sequence of vectors x[0,t], xi|k denotes the (predicted) vector xk+i for i,k, t ∈ Z≥0 and

k+ i≤ t. Furthermore, x[a,b]|k denotes the sequence of vectors x[k+a,k+b].

For normed vector spaces, || · ||p denotes the standard p−norm in Rn. The unit ball in Rn corresponding

to the p−norm is denoted with Bn
p := {x ∈ Rn| ||x||p ≤ 1}. If p is not explicitly specified then || · || is

taken as the Euclidean norm || · ||2, i.e., ‖ · ‖= ‖ · ‖2.

The spectral radius of a matrix A, i.e., ρ(A), is defined as ρ(A) := maxi |λi(A)|, where λi is the ith

eigenvalue of matrix A. The identity matrix, with dimension n×n, is denoted by In.
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Given two vector spaces X , Y ⊆ Rn, the Minkowski sum of these sets is defined by

X ⊕Y = {x+ y ∈ Rn| x ∈X , y ∈ Y },

while the Pontryagin difference of these two sets, assuming X ⊂ Y ,

Y 	X = {y ∈ Y | y+ x ∈ Y , x ∈X }.

For stochastic variables, we assume that there is an underlying probability space (Rnζ ,F ,P) equipped

with the event space Rnζ , the σ−algebra F defined over the Borel sets of Rnζ and well defined probability

measure P : PRn
ζ → [0,1], where PRn

ζ is the power set of Rnζ , see [24], [25] for rigorous treatment

of probability spaces. Here, for brevity of discussion, we assume that there is no measurability issues

with the stochastic variables evolving over dynamics and used operators. We denote the probability of a

random variable w̃, to take values between
¯
w and w̄ as P{

¯
w≤ w̃≤ w̄}, which is equal to the integral of

the probability density function (pdf), fw̃(w), over the interval [
¯
w, w̄], i.e.,

P{
¯
w≤ w̃≤ w̄}=

w̄∫

¯
w

fw̃(w)dw,

while for the multi-dimensional case, w̃ ∈Rnζ , nζ ≥ 1, the probability is defined over multiple integrals

over the considered region W̄ . Lastly the mean, the variance, the moment of order n and the covariance

matrix of random variables x̃ and ỹ are denoted with µx̃, σ2
x̃ , E{x̃n}, Σx̃,ỹ, respectively.

II. ROBUSTNESS AND MPC PROBLEMS

A. A Common RMPC Problem

In this work, we detail our discussion on robustness and MPC for discrete-time linear uncertain systems,

denoted with Σ, together with its nominal counterpart Σnom.

Σ :





xk+1 = A(δk)xk +B(δk)uk +Fwk,

yk = C(δk)xk +D(δk)uk + vk,
Σ

nom :





x̄k+1 = A0x̄k +B0uk,

ȳk = C0x̄k +D0uk,
(1)

where xk (or x̄k) ∈Rn, and uk ∈Rnu , and yk (or ȳk) ∈Rny are the uncertain (or nominal) state, the control

input and the uncertain (or nominal) output at discrete time instant k ∈ Z≥0, respectively. The plant Σ is

subject to three types of uncertainties denoted by δk ∈ ∆ ⊆ Rnδ , wk ∈ W ⊆ Rnw and vk ∈ V ⊆ Rnv for

k ∈ Z≥0. These uncertainties are either the model uncertainties or the disturbances effecting the state and

output equation. These uncertainties might independently take values from bounded sets, i.e., wk ∈W for

k ∈ Z≥0, or can be stochastic vector sequences with known pdfs, e.g., fw̃k(wk) : PRnw → [0,1]. They may

also depend on the instantaneous values states xk or inputs uk, e.g., δk(xk,uk), implicitly, as discussed

thoroughly in [26]. The matrices A(δk), B(δk), C(δk), for all δk realizations, are real matrices with
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dimensions Rn×n, Rn×nu , Rny×n, respectively. We assume that the uncertain and the nominal systems Σ

and Σnom are stabilizable and observable, see [27] for the definitions of stabilizability and observability.

To generalize, we use ζk for all uncertain variables, i.e., ζ>k =
[
δ>k w>k v>k

]
. The ith-step prediction

of the state at the kth time instant is denoted with xi|k which, by Eq. (1), depends on the initial point xk,

the system dynamics Σ, the exogenous inputs u[0,i−1]|k,w[0,i−1]|k and the internal uncertainties δ[0,i−1]|k.

In this paper, we consider that the system is subject to hard or soft state (or output) and hard input

constraints. The reason for allowing state (or output) constraints to be soft is that these constraints are in

general performance requirements while the input constraints are induced from actuator limitations. The

constraints are represented here as inequalities

ci j(x j|k,u j|k,ζ j|k,y j|k)≤0, for j ∈ Z[0,Np−1], for i ∈ Z
[1,N j

c ]
, (2)

where Np denotes the prediction horizon of the MPC controller and N j
c is the number of constraints for

the time step j. In general these constraints are much more explicit, such as set (or zone) membership

constraints, i.e., x j|k ∈ X j|k ⊆ Rn, u j|k ∈ Uk ⊆ Rnu . The computational complexity of the MPC problem

is highly dependent on the prediction horizon (Np), the total number of constraints Nc := ∑
j

N j
c and

the convexity properties of the constraints ci j(·), hence each of them effect the resulting closed-loop

performance and computational properties of the MPC algorithm.

We cast two distinct MPC problems for systems Σ and Σnom, denoted with P(k) and P̄(k), respectively,

at time k ∈ Z≥0. The mismatch between the solutions (or the resulting trajectories) of P(k) and P̄(k)

is the price paid for robustness:

P(k) :





min
u[0,Np−1]|k

Rcost(J(xk,u[0,Np−1]|k,ζ[0,Np−1]|k))

s.t. x j+1|k = A(δ j|k)x j|k +B(δ j|k)u j|k +Fw j|k,

y j|k =C(δ j|k)x j|k +D(δ j|k)u j|k + v j|k,

Rconst(ci j(x j|k,u j|k,ζ j|k,y j|k))≤ 0,

j ∈ Z[0,Np−1], i ∈ Z
[1,N j

c ]
, x0|k = xk,

(3a)

P̄(k) :





min
u[0,Np−1]|k

J(x̄k,u[0,Np−1]|k,0)

s.t. x̄ j+1|k = A0x̄ j|k +B0u j|k,

ȳ j|k =C0x̄ j|k +D0u j|k,

ci j(x̄ j|k,u j|k, ȳ j|k)≤ 0,

j ∈ Z[0,Np−1], i ∈ Z
[1,N j

c ]
, x̄0|k = xk,

(3b)
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where J(·) is assumed to be the standard quadratic cost function for convenience,

J(xk,u[0,Np−1]|k,ζ[0,Np−1]|k) :=
Np−1

∑
j=0

Jr(x j|k,u j|k)+ J f (xk+Np),

=
Np−1

∑
j=0

x>j|kQx j|k +u>j|kRu j|k + x>Np|kQ f xNp|k,
(3c)

In Eq. (3c), Jr is named as the running cost or the cost to go and J f is the terminal cost, i.e., [28],

[3]. In P(k) we introduce a (risk) functional Rcost : J (x,u,ζ )→ J̄ (x,u) (or similarly Rconst(·) :

C (x,u,ζ ,y)→ C̄ (x,u,y) ), which is mapping an uncertain function J to a deterministic function J̄ .

The deterministic functions J̄ and C̄ are called as the robust counterparts of the cost (J ) or the

constraints (C ). For linear systems, due to high parametrization, there are easy ways for expressing the

robust counterparts of cost and constraint functions, i.e., Rcost(J) or Rconst(ci j), which is not true for

nonlinear system dynamics.

The RMPC problems are dealing with robust stabilization of the system Σ while satisfying the con-

straints ci j(·) in a risk-aware manner, by solving P(k). It is expected from a robust predictive controller

σ1
σ2

O.P.1
O.P.2

E{JOP1}
E{JOP2}

d1 d2

J(x, u∗)

−∇uJ(x, u
∗)

State

D
en
si
ty

fx(x
∗
1(u

∗
1, ζ)) fx(x

∗
2(u

∗
2, ζ))

qc

(a) Selection of steady state operating point.

r1(t)

r2(t)

X

O.P.

O.P.1
O.P.2

(b) Steering in between the operating points.

Fig. 1: The steady state and transition operations with uncertainty.

to adjust the average performance levels versus the constraint violation possibility. Consider the operating

a process close to a constraint as depicted in 1a. The distance from the constraint boundary to operating

point 1 (O.P.1) or O.P.2, i.e., d1 and d2 is a nominal performance metric. Furthermore, the inherent

standard deviation in operating conditions σOP1 or σOP2 are relevant for the robustness of the operation.

As the controller suppresses the dispersion from O.P.2, the nominal operation can be pushed towards the

constraint, such as operating point O.P.1 on average. Lastly, as also mentioned in [29], nonlinear predictive

control techniques can be preferred to control the process, since some uncertainty realizations are not

necessarily adversary acts, instead many realizations are pushing the operation to the desired direction in

input-state-output space. Is this relavant here?. For the case of transitions between two operating points,

as depicted in Figure 1b 1b, the time span that the servo action to achieve its goals versus the robust
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constraint satisfaction is another robustness metric. As the controller becomes more aggressive, which is

expected to decrease the transition time, the spread of possible trajectories in general grows considerably2,

i.e., for r1(t), t ∈ R[0,t1
f ]

and r2(t), t ∈ R[0,t2
f
, in general one satisfies t1

f ≤ t2
f only if r1(t ′) ≥ r2(t ′), for

t ′ ∈ t̄, t̄ = min(t1
f , t

2
f ).

Regarding the robust stability property, three meta-approaches are used in the literature, [8], to achieve

guaranteed stability. These approaches are briefly discussed below:

(i) The first approach consists of designing an MPC controller for the nominal system by neglecting

uncertainty and achieving robustness in an ad-hoc manner. This approach has close connections with the

reasoning where the uncertainty realizations are assumed to be equal to the mean value of the distribution

over the prediction time steps, see also Certainty Equivalence principle;

(ii) In the second approach we consider some (or all) of the possible realizations in the uncertainty set to

generate the possible trajectories and cast the system to be robust with respect to all of these realizations;

(iii) The last approach consists of solving the closed-loop MPC problem through using a dynamic feedback

over the predictions. This case eventually leads to a dynamic programming problem ([30]) which is the

most promising case from the perspective of robustness however the computational demand to solve the

associated problem increases exponentially, so much that, this approach is not valid for many of the real

world examples ([31]).

In the case of first approach, the uncertainty is replaced with an instance thus we handle a nominal

MPC problem, however, the effect of other possible realizations are not taken into account, hence no

provisions of risk are taken. This leads to possibly frequent and highly effective constraint violations or

instability. In practice these drawbacks are suppressed by improving the prediction model, which shrinks

the uncertainty set. Furthermore one can make use of the larger MPC problems (with more constraints or

scenarios) since nominal MPC problems are computationally much more simpler than the cases where

uncertainties are present. To compensate for the effects of the uncertainty, one can incorporate some

realizations of uncertainty into the predictions, the case (ii). However, an undesired effect of this choice

is that it leads to poor control actions, hence poor responses, since the optimal input depends heavily on

the selected (or robustified-against) uncertainty realizations, i.e., u∗k(ζ̄
1
[0,Np−1]|k) 6= u∗k(ζ̄

2
[0,Np−1]|k), where

u∗k(ζ̄
i
(·)) is the optimal solution of MPC problem P(k) with respect to the uncertain variables ζ̄ i

[0,Np−1]|k.

In the next section we introduce the possible uncertainty descriptions.

2In Section V we implement various robust MPC techniques for a batch reactor and a CSTR system in simulation environment

to compare the closed-loop performance metrics such as the ones mentioned here
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B. Uncertainty Descriptions & Uncertainty Quantification

The internal model principle states that the uncertainty model should resemble the true uncertainty

effecting the system to counteract adverse effects of it. However, the complexity to describe the uncertainty

is a crucial factor on the feasibility and the practical applicability of the RMPC algorithms.

Here we group the uncertainties as model based (internal) uncertainties and environment based (exoge-

neous) uncertainties. The mismatch between the process and the mathematical model (internal uncertainty)

can be induced from, [16], unmodeled dynamics, time varying effect in the process or changing loads,

while the external uncertainties, the disturbance signals and the output noise, are effecting the control

input, the state evolution or the measurement signals.

1) Modeling the Internal Uncertainties: We classify the model mismatch possibilities as;

• Multi-model Uncertainty: Equally acceptable class of models, a countable set of models likely to

represent the true system, see [32] as an example,

 A(δ ) B(δ )

C(δ ) D(δ )


 ∈






 A(δi) B(δi)

C(δi) D(δi)


 |δi ∈ ∆, i = 1,2, . . . ,NMM



 . (4)

• Unknown-but-bounded uncertainty description: By assigning a nominal model with describing

the uncertainty set ∆ in terms of; (i) affine relations on the system matrices, such as, for the polytopic

affine uncertainties case, which is quite common in control relevant literature

 A(δ ) B(δ )

C(δ ) D(δ )


 ∈ ∆ :=






 A0 B0

C0 D0


+

Nv

∑
i=1

δi


 Ai Bi

Ci Di


 ,

Nv

∑
i=1

δi = 1,δi ≥ 0



 ,

or for the ellipsoidal affine uncertainty case, which is not commonly preferred in MPC literature,

 A(δ ) B(δ )

C(δ ) D(δ )


 ∈ ∆ :=






 A0 B0

C0 D0


+

Nv

∑
i=1

δi


 Ai Bi

Ci Di


 ,(δ −δc)

>Qδ (δ −δc)≤ 1,



 ,

(ii) parameteric (structured or unstructured, dynamic or static) uncertainty description, ([33]), such

as

Σ :





xk+1 = A0xk +B0uk +Bδ δk,

yk = C0xk,

qk = Cδ xk +Dδ uk,

δk = ∆qk,

where ∆ is a(n) (un-)structured, dynamic (or static) operator with norm bounds on the (possibly time-

varying) elements; (iii) uncertainty in impulse response coefficients ([34]) such as ∆h = {hk|hl
k ≤

hk ≤ hu
k}, where yk = ∑

k
τ=0 hk−τuτ , or uncertainty in frequency response values ∆( jω) = {δ ( jω) ∈

C( jω),ω ∈ [0,∞)}, where Y ( jω) = G( jω)(I +∆( jω))U( jω) and G( jω) is the nominal transfer
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function. In some cases uncertain systems modeled via the linear fractional representation (LFR) are

preferred in comparison to other uncertainty models, due to the ease of incorporation of a larger set

of possible dynamics, see the discussion in [35], [36] or [16].

• probability distribution functions for uncertainties: by assigning probabilistic information to the

parameters of uncertain models to describe the internal uncertainties. One possible benefit of utilizing

stochastic descriptions is that the models/parameters identified from data yield statistical information

which is difficult to express in deterministic uncertainty models such as the previous cases.

2) Modeling the External Uncertainties: External uncertainties are the unknown signals affecting the

system in an exogenous way, wk and vk vectors in Equation (1). In this paper we note three distinct

approaches for modeling the external uncertainty while considering only the effect of wk, since a similar

reasoning is valid also for noise vector vk.

• The uncertainties with discrete set of realizations: The uncertainties with an event space of finite

number of realizations can effect the plant exogenously, such as different load configurations,

Σ :





xk+1 = Axk +Buk +Fwk,

yk = Cxk +Duk,
(5)

where wk ∈ W := {w1,w2, . . . ,wNs}. Since the number of realizations are finite, one can come up

with all of the possible instances, called also as the scenario tree.

• Unknown-but-bounded disturbances: Uncertainties with bounded support can also be affecting

the processes, the case for Σ in (5) with wk ∈ W ⊂ Rnw . In literature, these uncertainty sets are

mainly considered to be either polytopic or ellipsoidal sets, due to the numerical properties of these

set classes, see [37] for an extensive discussion on the set-theoretic methods.

• Statistical descriptions: The distributional uncertainties can also be used instead of bounded distur-

bances. In this case the uncertain state evolution can be modeled as driven by an exogenous signal

that is assuming realizations from its pdf. such as the estimated (initial) state that is deviating from

the true state with a finite covariance value.

Remark 1. The uncertainty models are in general not equivalent to each other, that is the uncertain

dynamics describe different behaviours (or different processes) for different uncertainty descriptions. This

results in MPC algorithms belonging to different complexity classes. The MPC literature is very scarce

with regard to rigorous uncertainty modeling, in general the uncertainties are not modeled at all, instead

uncertainty descriptions are taken as a given.
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C. Robust Counterparts of MPC Problems

One can distinguish three different sources of uncertain predictions in MPC problems; i) wrong

initial condition estimation due to measurement noise or lack of sensors measuring all of the states;

ii) perturbations to the dynamics; iii) plant-prediction model mismatch. In any type of uncertainty, the

state predictions result in a collection of trajectories (with or without stochastic properties). To incorporate

possible prediction errors to the MPC formulation, one needs to apply a risk-mapping (Rcost or Rconst

in Equation (3a)) to the functions of uncertain state, i.e., the cost and constraint functions. There are

five different common approaches to map an uncertain optimization problem, which are the certainty

equivalence, the scenario based, the worst case based, the moment based, or the quantile (probabilistic)

based mappings, see Figure 2. The resulting MPC problem, and hence the control law, differs according

Uncertain MPC
Problem

Worst-case
Methods

Moment Probabilistic
Methods

Scenario

Methods
Methods

Certainty
Equivalence

Deterministic
Approaches

Stochastic
Approaches

Uncertainty
Budget Based

Theory
of Risk

Fig. 2: Commonly used projection techniques for uncertain optimization problems, in particular RMPC.

to the used risk mapping. These risk mappings re-shape the feasible area of the optimization problem,

in general drastically tightening it, see Figure 3 for the worst case, the probabilistic and the moment

based cases, but also the selected method effects the computational complexity properties of the robust

counterpart problem. We summarize the effects of these risk mapping methods in Table I, where the

computational complexity of the nominal MPC problem is denoted with O(P̄), the uncertain constraint

(w.l.o.g. the cost) function with c(x j|k,u j|k,y j|k,ζ j|k)≤ 0 or simply c(ζ )≤ 0, the functions mapping the

uncertain constraints to robust counterparts with Ri, where i is the indicator of the respective mapping,

the probability of satisfying the constraint with P{c(ζ )≤ 0}; ‘coherent’ corresponds to the risk function

Ri being a coherent risk metric, implying a convex, monotonic and closed mapping, see [38] for the

rigorous definition of coherence. All of the techniques result in a trade-off between various aspects, the

constraint satisfaction guarantees, the resulting risk aversity, the computational complexity and the effort

to model the uncertainty set. In the robust MPC literature, a rigorous discussion encompassing all aspects

of the risk-mappings in Table I is missing, even for the linear systems case.

Some of these techniques are already well studied, such as the worst-case or the scenario based

approach, leading to many survey articles and books available in literature, see Table II. Furthermore we
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Operating
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Fig. 3: The operating point space and various forms of mapping the uncertainty to a deterministic

counterpart.

mention two topics that are closely related to the RMPC research topic, the contributions from the robust

optimization and the (asymmetric) risk metrics research areas.

Until recently many of the RMPC problem constructions followed solely the robustness with respect

to worst case approach. We also start our discussion with this approach.

III. DETERMINISTIC APPROACH TO ROBUSTNESS IN MPC

In this section we first introduce the worst case (also called as the min-max) MPC approach, then we

discuss the uncertainty budgets and their relation with MPC. Lastly, we present and classify contributions

from MPC with deterministic robustness properties.

A. Worst Case MPC Problems

The worst-case (WC) optimization approach can be summarized with the following three distinct

statements;

• The control action is calculated either in a “here-and-now” fashion, the uncertainty reveals itself

after the control decisions are made, or “wait-and-see” fashion, the control action is decided after

some of the uncertain variables reveal themselves to the decision maker.

• The decisions are made for, and only for, a known/decided subset of the uncertainty. If the whole

(true) uncertainty set, say ∆, is taken, then we call it the worst case MPC (WC-MPC), else, if a strict

subset is taken into account ∆̄⊂ ∆, then we name it the budgeted worst case MPC (BWC-MPC).
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Approach
Uncertainty and

Risk Function

Constraint

Guarantees
Risk Aversity

Computational

Complexity

Modelling

Uncertainty

Scenario

Based

Approach

Nominal

PCE

RCE : c(ζ )→ c(ζ̄ ),

ζ̄ = E{ζ}
Coherent

No guarantees
Optimistic

Risk-loving
O(PCE) = O(P̄)

Easy

Calculate E{ζ}

Randomized

Prand

Rrand : c(ζ )→ c(ζ̄ s),

s = 1, . . . ,Ns

Coherent

Probabilistic

guarantees

P{c(ζ )≤ 0} ≥ β (Ns)

with prob. 1− ε(Ns)

Risk Decision

Select Ns

As Ns� 1

Pessimistic

O(Prand)≈ NiO(P̄)

Parallelizable

Easy

Generate

scenario tree

Worst Case

Based

Approach

Full Set

PWC

RWC : c(ζ )→max
ζ∈∆

c(ζ ),

Coherent
P{c(ζ )≤ 0}= 1

Highly

pessimistic

O(PWC)� O(P̄)

Reformulations

exist

Di f f icult

All possible

realizations

Uncertainty

Budget Set

PBWC

RBWC : c(ζ )→max
ζ∈∆̄

c(ζ ),

Coherent

P{c(ζ )≤ 0}= αBWC(∆̄)

lim
∆̄→∆

αBWC→ 1

Risk Decision

Select ∆̄

As ∆̄→ ∆

Pessimistic

O(PBWC)� O(P̄)

Reformulations

exist

Easy

Select

realizations

Moment

Based

Approach

Mean

PM

RM : c(ζ )→ E{c(ζ )},
Coherent

P{c(ζ )≤ 0}= αM

αM depends on c(·)
Optimistic

Risk-loving

(Online)

O(PM) = O(P̄)

(Offline)

O(E{c(·)})

Easy

Convergent

with samples

Mean

Variance

PMV

RMV : c(ζ )→ fMV (c(·),ζ )
fMV (·) = E{c(ζ )}+λvD{c(ζ )},

Not coherent

Not monotonic

P{c(ζ )≤ 0}= αMV

lim
λv→∞

αMV → 1

Risk Decision

Select λv

As λv� 1

Pessimistic

(Online)

O(PMV ) = O(P̄)

(Offline)

O(E{c(·)},D{c(·)})

Easy

Convergent

with samples

Probabilistic

Approach
PCC

RCC : c(ζ )→ qαCC (c(ζ )),

Not coherent

Not convex

P{c(ζ )≤ 0}= αCC

Risk Decision

Select αCC

As αCC→ 1

Pessimistic

(Online)

O(PCC)� O(P̄)

(Offline)

Calculate

P{c(ζ )≤ 0}

Di f f icult

Calculate

true pdf of ζ ,

and propogate ζ

TABLE I: Common approaches and properties of projecting an uncertain MPC problem to a robust

counterpart MPC problem.

Nominal MPC Robust MPC Stochastic MPC
Practical Aspects

Industrial Applications
Robust Optimization Theory of Risk

Surveys
[7], [8], [9], [21], [23]

[34], [39], [40]

[7], [8], [9], [17], [20]

[21], [23], [33], [34], [39]

[40]

[17], [23], [31] [41], [42], [43], [44] [18], [45] [18], [45], [46], [47], [48]

Books
[29], [49], [50], [51], [52],

[53], [54], [55], [56], [57]

[29], [49], [50], [51], [52],

[53], [54], [56]
[49], [52], [56] [29], [49], [50], [54], [57] [15] [15]

TABLE II: Surveys and books on MPC with robustness properties.

• Any realization from the uncertainty set can not violate the constraints or destabilize the closed-loop

system.

All of these statements are highly effective on the resulting control action and introduces the high

pessimism in closed-loop response. This is due to the fact that the true trajectories of the system and

predicted, but highly unlikely, set of trajectories deviate from each other, see Figure 4. Allowing the
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Fig. 4: Fan of trajectories and the conservative worst-case bounds on the trajectories, for the discrete

time integrator system effected by additive uncertainty with bounds [−1,1], inspired from [58].

designer to decide on the set of uncertainty realizations, i.e., ∆̄, might eventually improve the closed-loop

performance. By actively selecting the set of uncertainties, one can quantitatively discuss the trade-off

of including a larger set of uncertainty, or equivalently adjusting the operating point.

In many cases WC-MPC problems are generally presented with here-and-now strategy and full uncer-

tainty set case ([59]). The inherent pessimism within the construction is difficult to avoid, which leads to a

tremendous effort in incorporating closed-loop predictions into the RMPC algorithms and computational

problems. To reduce the pessimism, one can allow the control actions to be parameterized as function of

future uncertainties or cast them as control policies, the wait-and-see formulation. Once the uncertainty

set is decided and the control law structure (sequence or policies) is selected, then the distinction between

different min-max MPC techniques depends on how the stability and constraint satisfaction are guaranteed.

Various methods are proposed in the literature which we group in Figure 5.
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Splines u∗k =
Ns∑
i=1

αiφi(xk)
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Fig. 5: Diagram visualizing the commonly used techniques for WC-MPC methods, with the approaches

utilized for achieving robust constraint satisfaction or stability.

One example of WC-MPC problems is given as in PWC,

PWC :





min
u[0,Np−1]|k

max
ζ[0,Np−1]|k

Np−1
∑
j=0

x>j|kQx j|k +u>j|kRu j|k + x>Np|kQxNp|k,

s.t. x j+1|k = A(δ j|k)x j|k +B(δ j|k)u j|k +Fw j|k,

y j|k =C(δ j|k)x j|k +D(δ j|k)u j|k + v j|k,

ci j(x j|k,u j|k,ζ j|k,y j|k)≤ 0, ∀ζ[0, j]|k ∈ ∆[0, j]|k,

ζ>j|k =
[
δ>j|k w>j|k v>j|k

]
∈ ∆ j|k,

i = 1, . . . ,N j
c , j = 0, . . . ,Np−1, x0|k = xk,

(6)

hence the risk mappings Rcost and Rconst are selected as

Rcost
WC (J) = max

ζ∈∆

J(ζ ), Rconst
WC (ci j) = max

ζ∈∆

ci j(ζ ).

Here two important aspects of risk mappings R(·) are striking, (i) one minimizes the worst case cost and

(ii) the constraints ci j(·) should be satisfied for all realizations of ζ[0, j]|k. From these points and regarding

the closed-loop performance, the min-max-MPC formulation is;

• leading to excessive backing-off from the nominally optimal operating point, since the constraints

are forced to be satisfied for all uncertainty realizations within the prediction horizon. This results
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in a shrinking feasible set of control actions, see Table I. Furthermore the min-max MPC algorithms

are highly fragile to uncertainties with outlier realizations or unstable dynamics;

• considering the worst case cost hence further deteriorating the average control performance. The

worst-case cost is not a good representative of the true performance measure, in general, since

u∗k(argmin
u

max
ζ∈∆

J(ζ )) 6= u∗k(argmin
u

R(J(ζ ))),

where R(·) is a risk-mapping other than worst case method with full set of uncertainty, see Table I.

From the computational point of view, the main difficulty is in the inner maximization step (for the

cost function) or the satisfaction of constraints for all realizations, leading to semi-infinite constraints for

uncertainties with continuous domains. For convex problems, the constraint satisfaction is relatively well

discussed in literature ([60]). The tube-based MPC is introduced into the RMPC (and later to SMPC) area

by incorporating reachability analysis. For guaranteeing robust stability the stability conditions should be

assured while guaranteeing the constraint satisfaction after the prediction horizon and bounded gains from

the uncertain effects. A common technique to establish robust stability is to; 1) use a robust positively

invariant (RPI) set, i.e., a set XRPI satisfying the invariance property over time iterations;

x ∈XRPI → f (x,u,ζ ) ∈XRPI,x ∈XRPI,∃u ∈U ,∀ζ ∈ ∆,

where f (x,u,ζ ) is the dynamics of the considered system. The set XRPI is computationally difficult to

find for large scale nonlinear processes; 2) construct a (locally continuous) Lyapunov function (inside the

RPI set) that is sufficiently decreasing after each step. This approach is then further investigated within

the input-to-state-stability (ISS) reasoning.

Remark 2. The invariant sets play a crucial role in MPC problems and here we mention some important

contributions on the area of invariant set calculations. In [61], authors present the construction of

minimal invariant sets for linear systems with additive external uncertainties. A comprehensive treatment

on the invariant sets of dynamical systems is also conducted in [62]. The paper [63] investigates the

polytopic invariant set approximations from the ellipsoidal invariant sets for nonlinear systems effected

by parametric uncertainties and exogenous inputs3. The wrapping effect, the phenomena observed when

sets are over-approximated with simpler (to parametrize) sets, severely affects the invariant sets’ size

over the approximation iterations. One effective treatment of this issue is discussed in [66], through the

use of zonotopes.

3We skip detailed discussion on calculation of invariant sets for dynamical systems affected by additive or multiplicative

uncertainties, however interested reader is referred to [64], [65] and also [37] for further information on the set-theoretic

methods in control theory applications.
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Min-max MPC methods are well-established by now, many different approaches and numerical methods

exists in the literature to overcome known drawbacks of the this type of robust MPC. Here, in the next

section, we discuss briefly two approaches that stem from original min-max MPC approach, the input-

to-state MPC and tube based MPC techniques. The ISS-MPC approaches are tuned towards establishing

stable operation via MPC controllers for nonlinear systems, though ISS-MPC results for linear systems

case also exists. Tube based MPC is essentially taking advantage of highly parameterized state prediction

trajectories, which are expressed as sets that construct the tube, which is then used to reformulate the

min-max problem as a nominal MPC problem with tighter requirements for stability, in the sense of

tighter constraint or the Lyapunov function decrease.

1) Input-to-state stability and RMPC: The notion of input-to-state stability ([67]) is frequently used

to establish robust stability properties of uncertain (generally nonlinear) systems. One can make use of the

ISS-Lyapunov functions to guarantee robust stability under continuity conditions on dynamics and/or the

cost function. For the case of constrained problems, the constraints should also be tightened to account

for the uncertain effects. Here we present the case by using explicit (but generally theoretical) Lipschitz

bounds on the uncertain trajectories, summarized from [68]. Consider a nonlinear system with additive

uncertainty, expressed with its nominal counterpart as

Σ :





xk+1 = f (xk,uk,ζk),

yk = h(xk,uk,ζk),
Σnom :





x̄k+1 = f̄ (x̄k,uk),

ȳk = h̄(x̄k,uk),
(7)

with ζk ∈ ∆. Now assume that there exists a Lipschitz gain L f for the nominal system, i.e.,

|| f̄ (x̄1,κ(x̄1))− f̄ (x̄2,κ(x̄2))||p ≤ L f ||x̄1− x̄2||p

holds for all x̄1, x̄2 inside the region of interest X and κ(x̄) ∈ U is an admissible control law. If the

uncertainties are bounded, i.e., ζk ∈ ∆ ⊆ γBp(0), for all k ∈ Z≥0, then the predictions of the true state

x j|k can be encapsulated inside a cone defined through the Lipschitz gain L f , γ and x̄0|k = xk which is

an overapproximation of the reachable set4. We denote the upper bounds as γ
j

L f ,γ
Bp(0), where γ

j
L f ,γ

is

the calculated upper bound, tighten the constraints with γ
j

L f ,γ
as X̄ j|k := X 	 γ

j
L f ,γ

Bp(0). Under some

technical properties on the dynamics and cost function, the optimal solution u∗k of P ISS (Equation (8))

4Here we make use of open-loop predictions, which leads to highly conservative results in closed-loop evolution. Parameter-

izing the control actions as control laws and generating the closed-loop predictions of state inherently reduces the associated

pessimism, see [69] for a detailed discussion on the closed-loop ISS-MPC methods. Furthermore, an ISS-MPC technique in

which the Lipschitz gain L f is parameterized in terms of state and input actions is presented in [70], in which the robustness

properties, and hence the required constraint tightening and pessimism, can be adjusted in real-time.
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steers the state into the XTer, guarantees recursive feasibility, and robustly stabilizes the closed-loop

system,

P ISS :





min
u[0,Np−1]|k

Np−1
∑
j=0

x̄>j|kQx̄ j|k +u>j|kRu j|k + x̄>Np|kQx̄Np|k,

s.t. x̄ j+1|k = f (x̄ j|k,u j|k),

x̄ j|k ∈ X̄ j|k, u j|k = κ(x̄ j|k) ∈ U, x̄Np|k ∈XTer

j = 0, . . . ,Np−1, x̄0|k = xk,

(8)

Performance wise, by construction, the Lipschitz constant cased bounds, i.e., γ
j

L f
for j ∈ [1,Np], can be

overly conservative, causing over-tightening of the constraints, which potentially leads to infeasibilities

or poor average performances. Computationally it is not clear whether the computational load is due to

the requirements of ISS-MPC or naturally induced from the nonlinearities of the plant.

2) Tube Based RMPC: The tube-based MPC is another WC-MPC approach based on the reachability

analysis and set-theoretic operations. The interesting observation of tube-based MPC is the separation of

the robustness problem from the MPC problem. Consider the linear system Σ and the nominal counterpart

as in Equation (1). The idea is to keep the true state xk close to the nominal state x̄k over time instants k ∈
Z≥0, while controlling the nominal state x̄k into a RPI set XTer at time k+Np. For this purpose (although

not necessary) with a “low-level” controller K, the control signal is constructed as uk = ūk +K(xk− x̄k),

where K(xk− x̄k) term attenuates the effect of the uncertainties affecting the true state xk but not the

nominal (and virtual) state x̄. The tube is then all the possible values of the mismatch x j|k− x̄ j|k over

the prediction horizon j ∈ Z[0,Np]|k. Hence by subtracting the tube from the original constraints, the

tightened constraints that are used for the are found the MPC problem cast on nominal system Σnom.

Controlling the nominal state, which is defined to be the center of the tube, within the tightened constraint

sets guarantees that the true state trajectory is inside the original constraint sets. With several technical

but common conditions on the nominal MPC problem, the nominal system is then stabilized, but more

importantly due to the fact that the reachable set of true state’s deviation from nominal state is stabilized

while adhering the constraints, the robust stability is also established. A tube-MPC problem, considering

system Σ with additive uncertainty, can be stated as follows;

Ptube :





min
ū[0,Np−1]|k

Np−1
∑
j=0

x̄>j|kQx̄ j|k + ū>j|kRū j|k + x̄>Np|kQ f x̄Np|k,

s.t. x̄ j+1|k = Ax̄ j|k +Bū j|k,

x̄ j|k ∈ X̄ j|k, ū j|k ∈ Ū j|k, x̄Np|k ∈ X̄Ter|k,

j = 1, . . . ,Np−1, x̄0|k = xk

(9)
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with the standard stability conditions on the terminal set X̄Ter|k, the terminal cost Q f and the terminal

controller K f
5. The tightened constraints X̄ j|k, X̄Ter|k, Ū j|k are calculated from reachable sets of dynamics

and the Pontryagin difference operation, following a three-step procedure;

i) Compute the reachable states from the initial state xk with the plant dynamics Σ and the uncertainty

sets, e.g., w j|k ∈W , for the prediction horizon as

X[1,Np]|k :=
[
X1|k . . . XNp|k

]
, Xi|k := {x′|x′ = Ax′′+Fw,w ∈W ,x′′ ∈Xi−1|k}, (10a)

with X0|k := {xk}6;

ii) Calculate the tightened constraint sets by

X̄[1,Np−1]|k := X	X[1,Np−1]|k, U[1,Np−1]|k := KX[1,Np−1]|k,

X̄Ter|k := XTer	XNp|k, Ū[1,Np−1]|k := U	U[1,Np−1]|k,
(10b)

where X and U are the original constraint sets;

iii) Solve the nominal MPC problem Ptube to find ¯u[0,Np−1]|k and apply the first control signal to the

nominal system while applying the control signal uk = ūk +K(xk− x̄k) to the plant.

Performance-wise, if no precompensator, K, is used, since the reachable state sets are equivalent, the

tube-MPC is equivalent with the min-max MPC. However a well-defined feedback structure with K

causes the deviations to be suppressed between the nominal and the true state within the predictions and

hence results in a tube diameter which is much smaller in comparison to the K = 0 case. This is expected

to increase the closed-loop performance by allowing the MPC controller act on top of the controller K.

On the other hand one important drawback of tube based MPC with controller structure is the shrinking

input constraint set due to the compensation action K(xk− x̄k). If, as suggested earlier, the compensator

is aggressive to suppress the deviation (xk− x̄k), achieved by a high gain static feedback matrix K, the

input constraints are tightened substantially. This tightening can be so much that the feasible set becomes

an empty set for realistic disturbance bounds.

Computationally, if one considers only the MPC problem, then it is simplified since one solves

an nominal MPC problem. However tube-MPC approach contains (i) complex set-based operations,

Minkowski sums (for reachable set calculations) and Pontryagin differences (for constraint tightening

step), and (ii) calculation of a prestabilizing controller K for the process. Two major issues are inherent

to set-based operations, (a) the memory requirement for expressing the n-step reachable sets grow quite

5The terminal controller K f is not necessarily equal to the low-level precompensator K.

6One can also incorporate nonlinear dynamics, hence input actions, and also compact and bounded sets as the initial condition

X0|k into the reachable set of disturbance effected state formulation.
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fast (and approximations induce further conservativeness), (b) the effect of dimensionality, for medium to

large sized systems (say more than 100 states), for the mentioned set operations are leading to numerical

problems, even in the simplest forms of sets, see [71] for a discussion.

Remark 3. Affine State or Disturbance Feedback Structures: An important development in the RMPC

area is using low level controllers within the optimization step. The validity of using these controllers

can be seen from the tube-MPC construction, the set of reachable states may shrink for a stabilizing

controller K. In parallel to this observation, one might seek to optimize the state feedback controller K

at each time step, by optimizing over control actions ū[0,Np−1]|k and gain matrices K[0,Np−1]|k, i.e.,

u j|k = ū j|k +
j

∑
i=0

K j,i|kxi|k.

However the resulting MPC problem in ū j|k and K j,i is shown to be non-convex, hence leads to sub-

optimality or computational issues. The remarkable extension comes via adjustable robust optimization

(ARO) approach, leading to convex RMPC problems with affine disturbance feedback structures, ([72]),

u j|k = ū j|k +
j

∑
i=0

K j,i|kwi.

B. Price of Robustness, Uncertainty Budgets and RMPC Problems

In recent years the robust optimization (RO) techniques, e.g., ([15], [18]), highlight one crucial question

relevant also in the robust control area, “what is the corresponding performance deterioration with respect

to the uncertainty set?”. Here we name this aspect as the price of robustness or uncertainty budgets for

robustness. Now consider the approach as in the worst-case MPC reasoning, but replace the uncertainty

set ∆ with a subset of it, say ∆̄. For an uncertain optimization problem PWC(∆) that is feasible under ∆,

then for any subset of the true uncertainty set, i.e., ∆̄⊆ ∆, the problem PBWC(∆̄) remains feasible and

the performance w.r.t. cost function is non-decreasing. Furthermore, since the selected set ∆̄ is directly

effecting the resulting control action, i.e.,

u∗ = argmin
u

max
ζ∈∆̄

(J(xk,u,ζ )) = argmin
u

Rcost
BWC(J(xk,u,ζ )),

one can actively design an uncertainty set to which a RMPC is synthesized with desired performance

properties, while providing robustness against ∆̄, see Table I. With this construction one can circumvent

the pessimism problems or give quantitative measures on the robustness to the uncertainty with unbounded

distributions, [15], hence increasing the degree of freedom of the designer.
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A generic RMPC example with uncertainty budgets can be stated as follows,

PBWC :





min
ū[0,Np−1]|k

max
ζ[0,Np−1]|k∈∆̄[0,Np−1]|k

Np−1
∑
j=0

x>j|kQx j|k +u>j|kRu j|k + x>Np|kQ f xNp|k,

st. x j+1|k = A(δ j|k)x j|k +B(δ j|k)u j|k +Fw j|k,

y j|k =C(δ j|k)x j|k +D(δ j|k)u j|k + v j|k,

ci j(x j,u j,ζ j,y j|k)≤ 0, ∀ζ j|k ∈ ∆̄ j|k,

i = 1, . . . ,N j
c , j = 0, . . . ,Np−1, x0|k = xk,

(11)

where ∆̄ is adjusting the trade-off between guaranteed robustness versus closed-loop performance (risk-

aversion), [73]. The associated risk-mappings are defined as

Rcost
BWC(J) = max

ζ∈∆̄

J(ζ ), Rconst
BWC (ci j) = max

ζ∈∆̄

ci j(ζ ).

The computational complexity of PBWC problem is still challenging similar to the PWC problem, the min-

max (saddle) nature of the problem is still effective. For generic convex uncertain optimization problems,

the robust counterparts are in general intractable, while for some uncertainty classes the robustified

problems remain convex, hence tractable ([74], [45]). For examples from literature, we refer to; [75] for

the robustified generic convex optimization problems, [76] for the robustified least squares problems, [77]

for the robust semidefinite programming problems, [78] for the robust linear programming problems, [79]

for the robustified quadratic programming or the robust conic programming problems, and lastly [80] for

the approximations of the robust conic programming problems.

C. Contributions from RMPC Literature

In this section we present and classify various contributions in RMPC literature. One group of the

earliest works done in close association with WC-MPC problems is called the ‘pursuit-evasion problems’,

i.e., [81], [82], [83], [84], closely related to the developments in the optimal control theory. However,

the first works conducted strictly in receding horizon fashion was [85], [59], [86] and [87]; where both

[86] and [59] elegantly present the WC-MPC problem for nonlinear and DAE systems, respectively,

and [87] focuses on the frequency domain robust performance measures. The article [88] constructs the

robust stability proof quite similar to the standard stability arguments for the nominal MPC problems.

Another milestone contribution for guaranteeing robust stability property is [89] which uses linear

matrix inequalities (LMIs) in RMPC problems for polytopic or parametric internal uncertainties through

overbounding the cost function and using positive invariance arguments for the constraints on the future

trajectory. Later, specifically for nonlinear systems, input-to-state stability (ISS) arguments are introduced

for WC-MPC in [68], which tightens the constraints and forces the nominal system to have an ISS-

Lyapunov function within a RPI terminal set inside the tightened constraints. A two-level (sometimes,
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though incorrectly, called as the closed-loop MPC) controller approach is presented in [90] which consists

of a MPC and an H∞ controller. Constructing a low level controller (precompansator) on top of a MPC

lead to WC-MPC with disturbance feedback control structure [91] and tube based MPC approach, [1].

Lastly we mention the min-max MPC constructions with cost functions cast as linear norms such as [92],

[93], [94] and more recently [95] while [96] provides a nice discussion on linear programming in MPC

domain.

In Table III we distinguish publications in RMPC area with respect to; underlying system class

(linearity), type of uncertainties, the high-level approach (min-max, ISS, tube), control parameterization,

how the constraints are robustified and lastly the complexity of simulation examples provided in these

papers. To comment on some observations on the Table III, due to the various contributions from

output feedback structure and nonlinear systems domains, the current effort is directed towards practical

implementations with various complexity reduction formulations. Similarly in many contributions the

attention has been directed towards disturbance rejection properties (additive external uncertainties), while

the polytopic internal uncertainty case has been treated (mainly) with LMI based techniques. The dynamic

uncertainty and the effect of estimator in the loop (the initial condition mismatch case) is still lacking

a detailed treatment. The ISS and the tube based RMPC approaches offer various solution strategies by

decreasing the complexity back to the nominal MPC problem (with additional computationally complex

operations) and the affine disturbance feedback parametrization lead to a huge reduction in the pessimism,

while the sub-optimality should be further discussed in comparison to the policy based approaches.

Lastly constraint tightening methods operate in coherence with the ISS and tube based approaches, while

calculation of these sets (or approximations) is still to be mastered, which necessitates using highly

complex (or realistic) examples to observe the drawbacks of the proposed techniques and convince the

practitioners.

Although not in the RMPC area, but min-max based methods are also used in MPC design for i) LPV

systems, [150], [151], ii) game-theoretic approaches, [152], [153], iii) decentralized or distributed control,

[154], iv) (robust) estimation, [155], v) energy-consumption and smart-communication, [156]. Similarly

due to the highly structured construction of MPC problems, multi-parametric programming approaches

([157]) were utilized for RMPC problems also. The article [95] constructs the robustly invariant set of an

uncertain linear system with polytopic uncertainties for explicit RMPC purposes which is then extended

by [125], [126], [158], [141] and [19]. In [118], one of the first practical applications of explicit RMPC

for a linearized system, solving the estimation and robust control problem for a batch polymerization

process, is presented.
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System Dynamics and

Control Implementation

Linear Nonlinear

State Feedback Output Feedback

The majority of the papers

[3], [28], [87], [97], [98],

[99], [100] [101], [102], [103],

[104],

State Feedback Output Feedback

[2], [59], [68], [86], [90],

[69], [105], [106], [26], [107]

[108], [109], [110], [111], [112],

[113], [114], [115], [116], [117]

[115], [118], [119],

Uncertainty types

Additive External Polytopic or Parametric Internal Dynamic Internal
State Estimation

Measurement Noise

Multi-model and

Linearization

[1], [2], [3], [19], [28],

[59], [68], [72], [86], [88],

[91], [95], [103], [69], [105],

[106], [26], [107], [108], [109],

[110], [113], [114], [115], [117],

[118], [119], [120], [121], [122],

[123], [124], [125], [126], [127],

[128], [65], [129], [130], [131],

[132], [133], [134],

[59], [86], [89], [95], [100]

[101], [102], [69], [105], [26],

[107], [108], [109], [110], [114],

[115], [118], [121], [135], [136],

[137], [138], [139], [140], [141],

[142], [143],

[90], [97], [98], [99], [144],

[145],

[3], [28], [87], [116], [118], [32], [104], [112],

High-level Approach

Min-max Cost overbounds ISS Tube Other

[19], [88], [86], [59], [95],

[100], [26], [107], [108], [111],

[121], [122], [125], [135], [140],

[142], [143],

[32], [89], [97], [98], [99],

[101], [102], [104], [109], [110],

[136], [137], [138], [144], [145],

[146]

[68], [72], [105], [106], [26],

[115], [116], [118], [120], [126],

[133], [134], [141],

[1], [2], [3], [28], [103]

[112], [117], [127], [128], [65],

[129], [130], [131], [132], [147],

[87], [90], [114], [124]

Control Parameterization

Control Sequence Stabilizing Feedback Gains Affine Disturbance Feedback Parameterization Control Policy

[1], [2], [59], [68], [86],

[88], [90], [95], [103], [26],

[112], [114], [115], [116], [117],

[118], [121], [124], [125], [126],

[127], [128], [65], [141], [147],

[32], [89], [97], [98], [99],

[100], [101], [102], [104], [136],

[137], [138], [144], [148], [146],

[19], [72], [111], [120], [129],

[130], [131], [132], [134],

[91], [107], [108], [109], [135],

[147]

Robust Constraints

Constraint Tightening

via Tube

Constraint Tightening

via Lipschitz Bound
Positive Invariance and LMIs

Admissible Sets

Explicit Solution

[1], [2], [3], [28], [103],

[112], [117], [127], [128], [65],

[129], [130], [131], [132], [147],

[59], [68], [86], [90], [110]

[111], [133], [141],

[32], [88], [89], [98], [99],

[100], [101], [114], [124], [136],

[138], [145], [146],

[19], [91], [95], [69], [105],

[106], [107], [108], [109], [115],

[116], [118], [120], [121], [125],

[135], [142], [143], [126], [134],

Complexity of simulation example

No example 1-2 State 3-4 State 5 or more states

[59], [91], [69], [105], [107]

[109], [111], [114], [120],

[134], [138],

[1], [3], [19], [28], [32],

[68], [87] [88], [89], [90],

[95], [100], [101], [103], [104],

[106], [26], [108], [110], [112],

[115], [116], [117], [121], [125],

[126], [127], [65], [129], [130],

[131], [132], [133], [135], [138],

[141], [142], [143], [147], [149],

[2], [87], [89], [95], [97],

[98], [99], [100], [101], [102],

[119], [122], [136], [144], [145],

[146],

[104], [112], [118], [119] [124],

TABLE III: An overview of RMPC approaches, via a group of selected papers.

IV. STOCHASTIC APPROACH TO ROBUSTNESS IN MPC

The second direction in establishing robustness properties of the closed-loop systems is established by

considering the uncertainties as stochastic variables, see, e.g., [159] or [160] as two main contributions.

In the early days of predictive control, within the GPC framework ([6], [161]) the stochastic opti-

mization problem is transformed into a deterministic optimization problem by the expectation operator

on the cost function, E{J(xk,u,ζ )}. Similarly, we distinguish the approaches to SMPC problems with

respect to the treatment of stochastic variables, how the uncertain functions are mapped to deterministic

counterparts. There are three inherently different methods to reformulate stochastic cost and constraint
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functions as deterministic functions;

1) Considering the (centralized) moments of the variables/functions through the expectation operators.

2) Considering probabilistic (chance) constraints on the functions, utilizing known pdfs,

3) Considering finite number of uncertainty scenarios and casting the RMPC problem w.r.t. these

scenarios while using the min-max, (ensamble) moments or probabilistic reasoning.

Throughout this section, we assume that each realization of the uncertain variables is independent from

another, with known pdf for each variable wk,vk,δk for k ∈ Z≥0.

A. Moment Based MPC Problems

The moment based optimization is possibly the most frequently used methodology in optimization

problems with stochastic elements due to its relatively easy modeling and low complexity implementation,

see Table I. The (centralized) moments provide inherent statistical information, such as the mean, variance,

skewness or kurtosis which indicate the average magnitude, the spread, the asymmetry or the fat-tailedness

of the predicted trajectories, all of which are desired to be controlled.

In the moment based approach, one maps the uncertain optimization problem by considering (linear

combinations of) the (centralized) moments of the cost and the constraint functions. Here we only report

the cases with first two (centralized) moments.

a) Mean MPC: The expectation of uncertain functions can be easily and analytically expressed

for several classes of random variables, which reduces the computational need, while providing a more

realistic performance measure than the worst-case cost ([9]).

In its simplest form of mean MPC (M-MPC), one evaluates the mean of the cost and constraints as,

PM :





min
u[0,Np−1]|k

E

{
Np−1

∑
j=0

x>j|kQx j|k +u>j|kRu j|k + x>Np|kQ f xNp|k

}
,

st. x j+1|k = A(δ j|k)x j|k +B(δ j|k)u j|k +Fw j|k,

y j|k =C(δ j|k)x j|k +D(δ j|k)v j|k,

E{ci j(x j|k,u j|k,ζ j|k,y j|k)} ≤ 0,

i = 1, . . . ,N j
c , j = 0, . . . ,Np, x0|k = xk,

(12)

hence

Rcost
M (J(ζ ) := Eζ{J(ζ )}, Rconst

M (ci j(ζ )) := Eζ{ci j(ζ )}.

Performance wise one needs to distinguish two aspects of M-MPC, (i) the cost reduces to, in general,

the nominal cost function under linearity, however (ii) for the robust constraint satisfaction, the effect of

uncertainty in constraints of PM is disregarded by the expectation operator. This does not imply any
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quantitative robustness guarantees for some realizations of uncertainty, see Table I. Providing quantitative

robustness arguments for the closed-loop performance of the nominal MPC, or the M-MPC, is yet to be

discussed further in the MPC literature, see also the discussion in [23]. To improve the robust constraint

satisfaction properties, one can introduce variance terms, which effectively backs off the operating point

such that the constraints are satisfied with a higher probability.

b) Mean-Variance MPC: Variance operator indicates the spread of the uncertainty realizations, hence

if the variance of cost and constraint functions are evaluated, one can quantitatively include the spread

(of state predictions) information into the MPC control action. This MPC formulation is called here as

the mean-variance MPC (MV-MPC) and an example is given in Equation (13),

PMV :





min
u[0,Np−1]|k

E
{

J(x j|k,u j|k,ζ j|k)
}
+λ0D

{
J(x j|k,u j|k,ζ j|k)

}

st. x j+1|k = A(δ j|k)x j|k +B(δ j|k)u j|k +Fw j|k,

y j|k =C(δ j|k)x j|k +D(δ j|k)u j|k + v j|k,

E{ci j(x j|k,u j|k,ζ j|k,y j|k)+λi, jD{ci j(x j|k,u j|k,ζ j|k,y j|k)} ≤ 0,

i = 1, . . . ,Nc j
i
, j = 0, . . . ,Np, x0|k = xk,

(13)

where D{·} is the variance operator and λi, j (also λ0) are positive weights, related to the risk aversion

of the designer. This yields the risk mappings

Rcost
MV (J(ζ ) := Eζ{J(ζ )}+λ0Dζ{J(ζ )}, Rconst

MV (ci j(ζ )) := Eζ{ci j(ζ )}+λi, jDζ{ci j(ζ )}.

Regarding the performance aspects, ([162]), through including the D{·} term into the cost function, one

introduces the effect of uncertainty in the control actions, as λ0 gets larger, the controller acts to reduce

the spread of the cost function. For robust constraint satisfaction, which depends on the weights λi, j,

the resulting operating point is backed off, as the feasible set is tightened by increasing λi, j or D{·}. If

λi, j are large then the constraints are tightened substantially, hence allowing many realizations of ζ to

occur without violating the constraints. However guaranteeing constraint satisfaction with certainty is not

possible upto a large value of λi, j for bounded domain ζ , see Table I.

Yet another aspect is the asymmetry in the distribution functions of the constraints or cost. The

deviation-measure term on the cost or constraint functions (here taken as the variance) is not necessarily

distinguishing the ‘good’ and ‘bad’ realizations of the uncertainty, see Figure. 1a. Some realizations are

steering the operation out of the feasible region, called as the ‘bad’ realizations, while some realizations

push the operating point further inside the constrained region, called as the ‘good’ realizations (the

good-bad aspect reverses, in general, from the performance point of view). If the risk-neutral approach

i.e. the symmetric evaluation of uncertainty realizations, such as the variance, is taken, then the control
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performance might reduce for a longer (skewness) or fatter (kurtosis) ‘good’ realization tail, see also

Section IV-D or ([38], [163]).

Computationally, moment based MPC problems are divided into two distinct phases. During the

offline phase the moments of the cost and constraint functions are calculated (or approximated through

histograms) and during the online stage an uncertainty-free (computationally equivalent to the nominal)

MPC problem is solved. Expressions of the moments E{J(·)} (or E{ci j(·)}) or D{J(·)} (or D{ci j(·)})
are easily obtained for linear systems, while for nonlinear systems computationally cheap methods exists,

see [164], [165]. This is a huge improvement in comparison to the other RMPC or SMPC methods

(WC-MPC or probabilistic MPC), see Table I.

B. Probabilistic Approaches to MPC Problems

The second approach to transform SMPC problems is using the probabilistic constraints, also called as

the chance constraints. This type of MPC problems are called as chance-constrained MPC (CC-MPC).

In this setting, one finds the control actions to reduce the frequency of constraint violations according to

predefined probability levels αi j, see [166] and also Table I. This provide quantitative ways of selecting the

reliability of constraint satisfaction, an additional degree of freedom to reduce the conservatism induced

by robustness. Indeed in the limiting case satisfying a constraint with probability one is equivalent to

min-max formulation. However if one allows a sufficiently small margin of not satisfying the constraints

(for the infrequent tail events), this tolerance can improve the closed-loop performance a lot while the

system is robustified against frequently observed realizations. One possible CC-MPC problem can be

provided as

PCC :





min
u[0,Np−1]|k,γ

γ

st. P

{
Np−1

∑
j=0

x>j|kQx j|k +u>j|kRu j|k + x>Np|kQ f xNp|k ≤ γ

}
≥ α0

x j+1|k = A(δ j|k)x j|k +B(δ j|k)u j|k +Fw j|k,

y j|k =C(δ j|k)x j|k +D(δ j|k)v j|k,

P{ci j(x j|k,u j|k,ζ j|k,y j|k)≤ 0} ≥ αi j,

i = 1, . . . ,Nc j
i
, j = 0, . . . ,Np, x0|k = xk.

(14)

In this case the associated risk mappings Rcost
CC and Rconst

CC are defined as

Rcost
CC (J(ζ ) := P

{
Np−1

∑
j=0

x>j|kQx j|k +u>j|kRu j|k + x>Np|kQ f xNp|k ≤ γ

}
≥ α0,

Rconst
CC (ci j(ζ )) := P{ci j(x j|k,u j|k,ζ j|k,y j|k)≤ 0} ≥ αi j.
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The problem PCC in Equation (14) expresses the constraints ci j(·) ≤ 0 as chance constraints with

probability levels of αi j, the constraint violation margins, which are design parameters selected from

the interval [0,1]. The cost term in Equation (14) is also chance constrained by a new decision variable

γ . In this way, one finds the regions in the uncertainty space for which the probability of obtaining a

cost less than or equal to γ is larger than α0, while satisfying the constraints with probability αi j.

Closed-loop performance aspects of CC-MPC is yet to be established rigorously, though improvements

in closed-loop performance compared to WC-MPC are already reported in the literature ([167]). Regarding

the constraint satisfaction, the violation margins αi j determine exactly the allowed frequency of violations.

The correlations between the constraints, if the constraints are to be satisfied jointly, i.e.,

P
{

ci j(x j|k,u j|k,ζ j|k)≤ 0, i = 1, . . . ,N j
c , j = 0, . . . ,Np

}
≥ α,

is generally a source of conservatism. For using the individual constraints, the computationally more

efficient case, the approximations of the joint constraints are required. These approximation methods are

heuristic and generally highly conservative. See [168] or [169] for the exactness of these relaxations.

The robust stability aspect is slightly vague in comparison to the WC-MPC formulations. The main

problem is establishing the stochastic stability within the MPC context, while the implications of em-

ploying a specific stability approach is still open to discussion7.

The possible reduction in conservatism comes with a price. In general the chance constraints are non-

convex functions, see Table I, hence computational problems should be expected. Furthermore it is an

inherently difficult task to optimize w.r.t the joint pdfs of uncertain functions, since the probability levels

after propagation of pdf through the dynamics and the gradients of constraints over these pdfs are required

to be calculated. This induces severe computational problems for nonlinear dynamical systems. Another

point is related to the modeling aspect of the uncertainties. Modeling the exact pdf is an impossible task,

while in PCC one necessarily assumes this information. To overcome this drawback, some methods are

introduced to guarantee robustness with respect to a class of pdfs, [171], instead of only one pdf.

C. Randomized or Scenario Based MPC

Sampling the uncertainty space and conducting the optimization problem with respect to the selected

realizations is a recently appreciated technique, in MPC domain, for solving uncertain optimization prob-

lems ([172]), also see the Monte Carlo sampling methods ([173], [174]). Although providing increasingly

good approximating solutions to the WC-MPC problem, due to the requirement of ‘excessive’ number

of scenarios, the scenario based methods were not popular until recently in the MPC community.

7For an elegant discussion on various different formulations of stochastic stability, we refer to [170].
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Similar to previous methods, the randomized MPC techniques consists of two steps, constructing (or

sampling) the uncertain space and establishing robustness properties of MPC towards them. By extracting

(or generating) a number of scenarios, one samples the uncertain space. This projects the uncertainty

to deterministic values for which the MPC problem can be robustified easily. A great effort has been

directed to a-priori guarantees (for convex problems) and a-posterior guarantees on the probability levels

of constraint satisfaction for all uncertainties through the finitely many generated scenarios, see Table I.

Here we construct the randomized MPC, for the worst case formulation, as

PrandWC :





min
u[0,Np−1|k,γ

γ,

st. xs
j+1|k = A(δ s

j|k)x
s
j|k +B(δ s

j|k)u j|k +Fws
j|k,

ys
j|k =C(δ s

j|k)x j|k +D(δ s
j|k)v

s
j|k,

Np−1
∑
j=0

(xs
j|k)
>Qxs

j|k +u>j|kRu j|k +(xs
Np|k)

>Qxs
Np|k ≤ γ,

ci j(xs
j|k,u j|k,ζ s

j|k,y
s
j|k)≤ 0,

i = 1, . . . ,N j
c , j = 0, . . . ,Np, s = 1, . . . ,Ns, xs

0|k = xk,

(15)

where s ∈ Z[1,Ns] is the index running over the selected samples of uncertainty ζ s
j|k for j ∈ Z[0,Np] and Ns

is the total number of scenarios. Here the risk mappings are taken as

Rcost
rand(J(ζ )) :=

Np−1
∑
j=0

(xs
j|k)
>Qxs

j|k +u>j|kRu j|k +(xs
Np|k)

>Qxs
Np|k,

Rconst
rand (ci j(ζ )) := ci(xs

j|k,u j|k,ζ s
j|k,y

s
j|k)≤ 0,s = 1, . . . ,Ns.

This problem both guarantees the robustness w.r.t. Ns selected scenarios and provides a probabilistic

bound on the violation of constraints for unconsidered scenarios, i.e.,

P(PrandWC,ε) := P{P{ci(x j|k,u
∗
j|k,ζ j|k)≥ 0,ζ ∈ ∆, i = 0,1, . . . ,Nci , j = 0, . . . ,Np}> ε}.

The ε−constraint violation probability P(PrandWC,ε) is bounded from above and below as, [175],

(1− ε)Ns ≤ P(PrandWC,ε)≤ β (Ns,ε), (16)

where the upper bound β (Ns,ε) is a random variable with the Bernoulli distribution, i.e.;

β (Ns,ε) :=
Ns−1

∑
j=0

(
Ns

j

)
ε

j(1− ε)Ns− j.

In this formulation β (Ns,ε) is the design parameter to set the probability of constraint violation, ε . For

small values of β (Ns,ε), Ns has a logarithmic growth and as Ns gets larger β (ε) tends to zero.

Relatively recently the scenario based optimization formulation is also discussed in the context of

non-convex problems and also reducing the conservatism in the provided violation probability bounds

β in [176], with similar discussion also reported in [177], [178], [179]. One remarkable extension that
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scenario based approach provides is the relatively easy incorporation of various type of uncertainties

effecting the dynamical system. Once the scenarios are constructed, the problem PrandWC in Equation

(15) becomes a nominal MPC problem, with a large number of constraints, increasing the applicability

with the current solvers, see Table I. Furthermore, similar to the randomized worst case approach ([180]),

one can cast the chance constrained MPC problems in randomized fashion ([181]), where the randomized

MPC problem has a similar structure.

D. Risk and Deviation Metrics

The so-called coherent risk measures are raising considerable attention in operations research and

in economics communities, while incorporation into SMPC is already reported in [163]. Following the

previous SMPC constructions, one can observe that; (i) in the moment MPC, the constraints in PM

or PMV are formulated as risk-natural, not considering asymmetries of the pdfs of constraint functions,

hence leading to a possible performance decrease; (ii) the chance constraints are computationally difficult

to calculate, due to the non-convexity properties. The use of various other reformulations being developed

in the risk theory area, such as semi-deviations or conditional expectations, which can improve both the

closed-loop performance and the computational aspects of the resulting SMPC problem.

In [182], the equivalence between chance constraints and a risk indicator, the notion of value at risk

(VaR), is established. The VaRα(ci j(ζ )) is defined, for a risk level of α as

VaRα(ci j(ζ )) := min{γ ∈ R|P{ci j(ζ )> γ} ≤ 1−α}.

The VaR values consider one side of the (cost or constraint) pdf, so they are not risk-neutral. Same

authors have shown that the conditional VaR (CVaR), also called as integrated chance constraints, are

behaving far better than the VaR constraints in the optimization problems since; (i) the feasible set is

convex, see [183], and (ii) the CVaR values are relatively easy to calculate through scenarios. The α-level

CVaR of an uncertain function ci j(ζ ) is defined as,

CVaRα(ci j(ζ )) :=
1

1−α

1∫

1−α

VaRβ (ci j(ζ ))dβ .

In [182], the authors provide different algorithms for expressing CVaR. One drawback is that integrated

chance constraints are more conservative than chance constraint formulations, since CVaRα(ci j(ζ )) ≥
VaRα(ci j(ζ )) for the positive tail of the pdf, see Figure 6. However this implies that the constraint

satisfaction guarantees for CVaRα(ci j(ζ )) are also valid for the chance constraints (VaR constraints)

with the violation level of α . Similar to replacing the chance constraints (or moment formulations) with
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Fig. 6: Various risk and deviation metrics, taken from [48].

integrated chance (CVaR) constrains, one can make use of other risk or deviation measures such as a

re-formulation of PMV ,

PRisk :





min
u[0,Np−1]|k

Ẽ
{

J(x j|k,u j|k,ζ j|k)
}
+λ0D̃

{
J(x j|k,u j|k,ζ j|k)

}

st. x j+1|k = A(δ j|k)x j|k +B(δ j|k)u j|k +Fw j|k,

y j|k =C(δ j|k)x j|k +D(δ j|k)v j|k,

Ẽ{ci(x j|k,u j|k,ζ j|k,y j|k)+λi, jD̃{ci(x j|k,u j|k,ζ j|k,y j|k)} ≤ 0,

i = 1, . . . ,Nci , j = 0, . . . ,Np,

(17)

where Ẽ{·} and D̃{·} are generalized risk metric and generalized deviation metric, respectively, instead

of expectation or variance operators. Rigorous definitions of generalized risk and deviation metrics are

provided in [47], [184], while some examples of these metrics from the literature can be given as,

Entropic VaR: EVaRα := min
γ

{
γ ∈ R>0| ln(

M
ζ
(γ)

1−α
)

γ

}
,

Semideviations: σ2
+ := E

{
max{ζ −E{ζ},0}2

}
,

σ2
− := E

{
max{E{ζ}−ζ ,0}2

}
,

Maximum Deviations: ρ+ := max
ζ

ζ −E{ζ},

ρ− := max
ζ

E{ζ}−ζ ,

Mean Absolute Deviation: MAD(ζ ) :=
∫
Ξ

|ζ −E{ζ}|dζ .

(18)
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Since the numerically better behaving risk and deviation indicators will be in use, one can overcome

the computational burden while improving the closed-loop performance of robust MPC applications by

using the non-standard risk metrics.

E. Contributions From SMPC Literature

In this section we present and classify various relevant entries from the SMPC literature. Similar to the

WC-MPC case and following a similar classification with [31], in Table IV we distinguish the publications

with respect to the underlying system class (linearity), type of uncertainties effecting the dynamics, how

uncertainties are treated or integrated, control parameterization, how the robust counterparts of constraints

are expressed and lastly the complexity of simulation examples provided in these papers.

System Dynamics and

Control Implementation

Linear Nonlinear

State Feedback Output Feedback

The majority of the papers [133], [185], [186], [187], [188],

[189], [190], [191]

State Feedback Output Feedback

[192], [193], [194], [195], [196],

[197], [198], [199], [200], [201]

[202],

Uncertainty types

Additive External Multiplicative External Multiplicative Time invariant

[162], [181], [185], [186], [189],

[190], [191], [194], [197], [198],

[200], [201], [202], [203], [204],

[205], [206], [207], [208], [209],

[210], [211], [212], [213], [214],

[215], [216], [217], [218], [219],

[220], [221], [222], [223], [224],

[225], [226]

[163], [192], [194], [195], [196],

[199], [200], [201], [213], [221],

[227], [228], [229], [230], [231],

[232], [233], [234]

[187], [235], [236]

Uncertainty Treatment

Integration/Expectation Scenario Probabilistic Other

[185], [186], [187], [188], [189],

[190], [192], [199], [203], [204],

[205], [206], [208], [209], [210],

[211], [212], [213], [214], [215],

[216], [223], [224], [225], [227],

[232], [236], [237],

[162], [163], [176], [178], [179],

[181], [190], [193], [194], [195],

[196], [200], [201], [202], [217],

[218], [219], [221], [228], [229],

[230], [233], [234],

[198] [197], [207], [222], [238],

Control Parameterization

Control Sequence
Affine Disturbance

Feedback Parameterization
Control Policy

[162], [188], [190], [192], [193],

[194], [196], [197], [198], [200],

[201], [208], [209], [214], [217],

[218], [220], [225], [228], [229],

[230], [233], [234],

[181], [189], [191], [202], [203],

[205], [206], [211], [212], [213],

[215], [216], [217], [218], [221],

[222], [223], [224], [226], [227],

[232], [239], [240], [237], [231],

[185], [186], [190], [191], [195],

[199], [207], [219], [238],

Constraints

Chance Constraints

via Relaxations

Chance Constraints

via Moments

Worst Case Constraints

via Samples

Chance Constraints

via Samples
Other

[181], [203], [210], [211], [212],

[214], [222], [223], [225], [227],

[231], [232], [237],

[187], [188], [192], [193], [202],

[209], [210], [223], [226], [240],

[194], [206], [217], [220], [228],

[230],

[162], [208], [218], [219], [229]

[234],

[163], [185], [186], [189], [190],

[191], [195], [196], [197], [198],

[199], [204], [205], [207], [216],

[221], [233], [236], [238],

Complexity of simulation example

No example 1-2 State 3-4 State 5 or more states

[189], [193], [199], [225] [162], [163], [181], [185], [186],

[192], [198], [201], [203], [205],

[207], [208], [211], [213], [215],

[216], [220], [221], [224], [226],

[227], [228], [229], [230], [231],

[232], [233], [234], [237], [238],

[239], [240],

[191], [194], [197], [209], [212],

[217], [218], [223], [236],

[187], [188], [200], [202], [206],

[210], [214], [219],

TABLE IV: An overview of SMPC approaches, via a group of selected papers.

As mentioned above, the extensions of SMPC methods to nonlinear systems are difficult to achieve,

since moments (for PM or PMV ) and pdf calculations (for PCC) are quite difficult to evaluate. Scenario
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based methods dominate the cases where it is difficult to obtain the pdfs to treat the uncertainty in the

optimization problems. Lastly how constraints should be treated and, similar to the RMPC case, the

closed-loop performance aspects to practical examples are still yet to be investigated further.

Next we point out some specific contributions outside of the SMPC research area. The expectation

and/or variance of the cost functions are discussed in [241], [242], [243], [46] with or without chance

constraints. The chance constrained programming (CCP) approach is primarily discussed in [244] and

[245]. The CCP algorithms gather attention for optimal design or operation problems also, see [167],

[246], [247] for an elegant discussion and implementation considering nonlinear chemical systems. One

of the large scale implementations for SMPC is presented in [214] which, uniquely, considers a linear

DAE system with chance constraints.

The randomized algorithms are discussed in depth in [248] or [179], [176]. In order to further improve

the bounds or decrease the number Ns of scenarios, one can refine the selection method to sample

scenarios, which is not discussed here. One such method is presented in [249], other than the well known

techniques such as Latin hypercube or Metropolis-Hastings sampling methods ([167]). Furthermore,

scenario based MPC is used for linear parameter varying systems in [219], for a vehicle scheduling

study in [195], for finance and econometrics areas in [250], [196], [221], for electricity grids in [251],

and lastly for the automotive industry in [220].

V. SIMULATION EXAMPLES ON ROBUST MODEL PREDICTIVE CONTROLLERS

In this section, we implement the robust and stochastic MPC algorithms detailed in previous sections to

compare their closed-loop and computational performances. The examples are selected mainly from the

literature and demonstrate the effect of different risk mappings discussed in Chapter 2. The first example

considers a batch process of a reaction, where the moment and worst case based MPC methods show

opposite closed-loop behaviour. In the second example we consider an operating point change for a CSTR

system and discuss the differences in between transient responses of closed-loop systems controlled with

different robust (or stochastic) MPC algorithms. Last two examples, a mass-spring system and a MIMO

debutanizer system, demonstrate the effect of tuning variables in moment and worst case risk mappings

respectively.

For all of the simulation examples, the optimization routines are implemented via YALMIP ([74]), in

Matlab 2015b environment on a computer with 32GB of RAM. The (averaged) computational time, in

seconds, are provided in Table V for the simulation examples. The results in Table V are consistent with

the theoretical expectations which are summarized Table I. The moment based robustness evaluations

(PM and PMV ) yield much simpler optimization problems to be solved at each iteration in comparison
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Mean MPC Mean-Variance MPC

Chance

Constrained

MPC

Worst-case MPC
Budgetted

Worst-case MPC

Semi-batch

Reaction
9.3904(s) 14.5054(s) - 4345.1(s) 3682.6(s)

van der Vusse

Reaction
10.6251(s) 12.7974(s) 9.6846(s) 2134.2(s) 1482.5(s)

MSD

System
7.3677(s) 7.5501(s) 7.9003(s) 20.3868(s) 19.9146(s)

Debutanizer

System
12.3937(s) 12.9231(s) 1266.6(s) 3950.8(s) 3973.6(s)

TABLE V: Computational times for different examples

to the chance constrained (due to non-convexity) and set based techniques, i.e., (budgeted) worst case

MPC. This is due to computational requirements of the CC-MPC or WC-MPC, caused either by the

uncertainty scenarios being in excessive size or explicit maximization of cost or constraint functions with

respect to uncertainties.

A. Predictive Control of a Simple Batch Reaction

In this example, we consider a simple exothermic chemical reaction, A→ P. The reaction is controlled

through a cooling action. Cooling the reaction temperature is slowing down the reaction rate (exothermic

reaction) hence increasing the final time of the batch. Therefore, extensive use of control is not desired.

We assume that the reaction dynamics are not known exactly and the uncertain effects are modeled as

additive disturbances, with i.i.d Gaussian characteristics (N (0, I2)). Since the purpose of this process is

to finalize the reaction as fast as possible, a batch-time minimization problem, while operating within

the allowable temperature levels, the pessimistic nature of deterministic MPC constructions can be easily

observed. We implement the mean (M), mean-variance (MV), worst-case (WC), and budgeted-robust

(BWC) MPC controllers for this example. The reaction dynamics are taken from [252] as

ċA =−r, ċP = r,

ρ c̄Ṫ = −∆hRr+ UW AW
VR

(TC−T )+ f2w2,

r = cAk300 exp(E
R

( 1
300 − 1

T

)
+ f1w1),

(19)

where cA is the reactant concentration, cP is the product concentration, T is the reactor temperature

and the TC is the control input, the cooling temperature. The initial values of states are taken as x>0 =[
5000 0 40

]
. The parameter values are given in Table VI. For the set-based methods, we consider

bounded support for the uncertainty wk ⊂ W (·), k ∈ Z≥0. For WC-MPC case, the disturbances assume
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VR = 6.28 [m3] AW = 10 [m2]

UW = 500 [W/m2/K] ρ = 1000 [kg/m3]

c̄ = 2 [kJ/kgK] ∆hR = −105 [kJ/kmol]

E = 40000 [kJ/kmol] R = 8.314 kJ/kmolK

k300 = 0.125 [1/h]

TABLE VI: Semi-batch Reaction Parameters

values from the interval W WC = [−3,3]× [−3,3], which is equal to 6 standard deviations. For the BWC-

MPC case the disturbance set is shrunk to W BWC = [−1,1]× [−1,1], since this set incorporates many

of the observed realizations already. Furthermore, for the MV-MPC, we set λ0 to 2.5, which is tuned

to improve the distinction from mean case, while λi j, i = 1, . . . ,N j
c , j = 1, . . .Np, values are set to zero,

hence no constraint tightening is imposed for MV-MPC formulation. The prediction model is set as the

linearized and discretized (with sampling time of 5 seconds) dynamics over an operating trajectory, i.e.,

a high level deterministic dynamic optimization problem with the nonlinear model is solved to provide

the operating conditions which minimize the cost function

J1 =

0.75∫

0

αaca(t)+αT T 2
C (t)dt,

where ca and TC are state variables, αa = 1 and αT = 0.001 are the state and input weighting terms

in the optimization problem, respectively. The result of the high-level optimization problem is used as

the operating points, hence the linearized dynamics are known to the MPC controllers. The prediction

horizon for the MPC problem is taken as 5 time steps to discard the possible effects of linearization and

mismatch in the operating points. The optimization problem for the MPC algorithm is taken as,

min
u[0,Np−1]|k

Ri{∑Np−1
j=0 xT

j|kQx j|k +uT
j|kIu j|k},

s.t. ∆x j+1|k = A j|k∆x j|k +B j|k∆u j|k +Fj|kw j|k,
xk+ j

uk+ j


 ∈


X
U


 ,

where the state constraints are taken as X := {(x1, x2, x3)| 0≤ x1 ≤ 5000,0≤ x2 ≤ 5000,−10≤ x3 ≤ 350} ,
the input constraints are taken as U := {u| 0 ≤ u ≤ 100},. Lastly the weighting matrix Q is taken

as diag(1,0,104). In Figure 7a, we visualize the performance for the RMPC solutions without any

disturbance effects, i.e., wi(t) = 0 for i = 1,2 and t ∈ [0, t f ] where t f is the final time of the reaction. The

results indicate the structural differences between the RMPC techniques; the min-max based techniques

resulting in longer batch final times, compared to Mean-MPC case, due to the control action cooling
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down the reaction not to exceed the temperature constraints. Totally opposite behaviour is observed in

the MV-MPC case, which greatly speeds up the reaction. This is due to the instability of the system,

the variance term dominates the cost function, hence the controller acts aggressively to compensate the

actions induced from uncertain perturbations in prediction stages. We also provide the results for the case

where disturbances are not set to zero in Figure 7b, which demonstrates that the reactor temperature is

kept in allowable bounds, in almost all cases. Similar to the uncertainty-free case, WC-MPC and BWC-

MPC react similar to Mean-MPC case at the start of the simulation, but as the state constraints start to

be effective, the controllers slow down the reaction, which leads to longer total batch time compared

to M-MPC case, while the MV-MPC, again, speeds up the reaction. This behaviour leads to higher

temperatures over the reaction trajectory, in one case a violation of temperature constraint is observed.

This is an expected result since for the moment MPC formulations, the constraints are allowed to be

violated.
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RMPC controllers with the effect of disturbances.
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B. Control of CSTR with Changing Operation Point

As a second example, we consider the van der Vusse reaction, taken from [70],

Ċa = −k1(T )Ca− k2(T )C2
a +(Cin−Ca)u1,

Ċb = k1(T )(Ca−Cb)−Cbu1,

Ṫ = − freact +α(Tc−T )+(Tin−T )u1,

Ṫc = β (T −Tc)+ γu2,

freact = δ (k1(T )(CaHab +CbHbc)+ k2(T )C2
aHad),

(20)

where the states are the concentration of substance A (Ca), the concentration of substance B (Cb), the

temperature of reactor (T ) and temperature of cooling jacket (Tc). The inputs are the flow rate to the

reactor (u1) and the cooling power (u2). The parameter values are given in Table VII. We construct a

α = 30.8285 [1/h] β = 86.688 [1/h]

γ = 0.1 [K/kJ] δ = 0.3556 [Kl/kJ]

E1 = 9758.3 [ ] E2 = 8560.03[ ]

k10 = 1.287∗1012 [l/h] k20 = 9.043∗109 l/(mol*h)

hAB = 4.2 [kJ/mol] hBC = -11 [kJ/mol]

hAD = -41.85 [kJ/mol]

TABLE VII: Van der Vusse Reaction Parameters

scenario where the known disturbances, the inflow rate Cin and the inlet temperature Tin, are assumed

to change over to a different operating point after the first hour of the reaction. Before and after the

switching we regulate the state trajectories to the known operating points, ρ1 and ρ2; which are assumed

as,
ρ>1 =

[
Cin(1) Tin(1) ueq

1 (1) ueq
2 (1) xeq

1 (1) xeq
2 (1) xeq

3 (1) xeq
4 (1)

]
,

=
[
5.1 104.9 4.19 −1113.5 1.2639 0.9049 109.2881 108.0037

]
,

ρ>2 =
[
1.1 109.9 4.19 −1113.5 0.4216 0.2530 101.6720 100.3875

]
,

(21)

Furthermore we assume i.i.d. Gaussian additive uncertainties effecting the dynamics with the covariance

matrix being equal to Σ := diag(.1, .1, 5, 5), 10% error rate for the concentration and 2.5% for the

temperature variables. The cost functional is selected as quadratic cost function with weighting terms

Q = 10 I4, R =


1 0

0 10−6


 , Q f = 0.

The state and input constraints are selected as polytopes and defined by 0≤ x1 ≤ 1.6, 0≤ x2 ≤ 1.6, 80≤
x3 ≤ 130, 80≤ x4 ≤ 130, and 3≤ u1 ≤ 35, −9000≤ u2 ≤ 0.
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With these information, first we demonstrate the results obtained from the disturbance free case, where

we set the uncertainty equal to zero for all time instants, see Figure 8. All robustness methods yield
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(d) Cooling temperature trajectories.

Fig. 8: The state trajectories for CSTR simulation without disturbances

similar performances, since the constraints allow for a sufficiently large operating window for the MPC

controllers. If one shrinks the constraint set, first the WC-MPC, then BWC-MPC and CC-MPC turn

infeasible. Also we observe the change of chance constrained MPC behaviour (green trajectories in

Figure 8) in the case of unstable equilibrium, the operating point ρ1, which leads to a slow convergence

to the equilibrium and for the case of the stable equilibrium, operating point ρ2, CC-MPC leads to

fast convergence, due to reduced spread of uncertainties. Similar to the previous example, MV-MPC

controlled system acts slightly faster than the Mean-MPC case, due to the increased aggressiveness of

the controller induced from variance terms; while the budgeting MPC leads to a higher performance in

comparison to the WC-MPC, due to smaller set of possible uncertain realizations. Secondly we present
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100 different realizations of the perturbed states trajectories with different disturbance sequences for the

mentioned RMPC controllers in Figure 9. Lastly we visualize in Figure 10 two sets of state trajectory
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(c) Reaction temperature trajectories.
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(d) Cooling temperature trajectories.

Fig. 9: The state trajectories for CSTR simulation with disturbances

histograms for two time instants. The first time instant is the 59th minute of operation, in which the

steady state responses are reported before the switching from one operating point to the second one

occurs, and the second one is at the 75th minute of the reaction which is demonstrating the transient

behaviour after the switching. From the histograms we observe two distinct characteristics of different

robustness techniques. Firstly, both before and after the operating point change from unstable to stable

equilibrium, the set based robust MPCs (WC and BWC) cause (unnecessarily) pessimistic closed-loop

trajectories, while the chance constrained MPC allows for aggressive control actions, hence drives the

state trajectories towards the constraints during and after the operating point transition, similar to the

case in Figure 1a and Figure 1b. Secondly, the moment based techniques yield comparable trajectories
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Fig. 10: The state (x1 and x3) histograms for CSTR simulation at two different time instants.

in both operating points, indicating necessity for further research on the tuning of λ0 variable. Rigorous

analysis for tuning the λ0 variable for MV-MPC is left as a future study.

C. A Two Mass and Spring System

In this example we make use of a mass-spring system, similar to the case in [89], which consists of

two masses connected with a spring. The disturbance corrupted control action is effective on one of the

masses and the control goal is to effectively stabilize the system. The dynamics of the process is taken

as follows;

xk+1 = Axk +B(uk +wk),

A =




1 0 0.1 0

0 1 0 0.1

− K
m1

0.1 K
m1

1 0
K
m2

−0.1 K
m2

0 1




B =




0

0

0.1 1
m1

0



,

(22)

where the parameters, the spring constant K and the masses m1 and m2 are taken as; K = 1, m1 =

0.5, m2 = 2. We present two sets of solutions, the first case showing the differences between the closed-

loop responses of different predictive controllers (Mean, MV, WC and BWC), in which we skipped the

CC-MPC, since the results are almost comparable with the other moment based formulations. The second

study demonstrates the aggressiveness of MV-MPC for different λ0 values. In both of the simulations we

have used the same state and input weighting matrices, such as

Q = 5I4, R = I1, Q f = 0.
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For the first simulation study, we make use of following state and input constraints,

X1 = {x|−1≤ x1 ≤ 1.5,−1≤ x2 ≤ 1.5,−0.5≤ x3 ≤ 0.5,−0.5≤ x4 ≤ 0.5.} ,
U1 = {u|−0.5≤ u≤ 0.5} ,

while we initialized the state at x>0 =
[
0.5 1 −0.1 0.1

]
. For comparison purposes, we force the

disturbance variables to zero, while the MV-MPC controller assumes that the input disturbance has a

standard deviation of 0.15, the WC-MPC and BWC-MPC robustifies the closed-loop system for all of

the disturbance realizations between wWC
k ∈

[
−0.45 0.45

]
, and wBWC

k ∈
[
−0.15 0.15

]
, respectively.

The simulated trajectories are visualized in Figure 11a. The deterministically robust MPC controllers

(WC-MPC and BWC-MPC) are almost inactive during the whole simulation, hence leading to much

larger settling times in comparison to the Mean-MPC or the MV-MPC. The second simulation study
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Fig. 11: Simulation results for a two mass-spring system.

demonstrates the effect of tuning parameter λ0 for the MV-MPC construction. For this case we reshape

the constraints as; X2 = {x|−1.1≤ x1 ≤ 1.1,−1.1≤ x2 ≤ 1.1,−0.4≤ x3 ≤ 0.4,−0.4≤ x4 ≤ 0.4} , U2 =

{u|−0.3≤ u≤ 0.3} , while the λ0 value assumes values from the set {0.2, 0.4, 0.6, 0.8}. The constraints

are tightened, via the parameter λi j which is set to 1 for all of the constraints. The simulated trajectories

are visualized in Figure 11b. For the first three values of λ0, we observe that the responses are similar to
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each other, although as the parameter λ0 increases, the control action is growing in magnitude, and hence

causing slight improvements in the state trajectories. The critical change occurs for the case of λ0 = 0.8.

In this case the optimal input signal differs from the other cases at the initial phase of the simulation,

leading to slightly faster response due to the larger effect of variance term in the MPC problem, see also

the discussion related to Figure 1b.

D. Debutanizer System and Budgets for Uncertainty

Lastly we provide a comparison study, comparing the achievable closed-loop performances for different

uncertainty sets, on a debutanizer system. The simulation example, taken from [102], considers a 2-input

2-output MIMO system, with the transfer function given as

G(s) =




−0.2949
64.02s2+61.66s+1

0.1310
854.75s2+88.03s+1

0.1287
168.25s2+15s+1

−0.1434
32s2+17.76s+1


 , Y (s) = G(s)(U(s)+W (s)).

We first represent this transfer function in state-space from and then apply discretization with a sampling

time of 1.8 minutes. We pose hard input and output constraints on a zero initial condition such as

Y= {y|−1≤ y1 ≤ 1,−1≤ y2 ≤ 1,} , U= {u|−15≤ u1 ≤ 15,−15≤ u2 ≤ 15}. The goal of the process

is to reach set point yi = 1, i = 1,2, while due to the constraint, the RMPC controllers back-off the

transient trajectories and the final operating point, see also the discussion related to Figure 1a. The cost

function is taken as a quadratic form of shifted nominal outputs (towards the desired operating point)

and inputs, with the weighting matrices taken as Q = 107I2, R = 0.1I2 and the prediction horizon set

to Np = 10. We compare the responses for different selection of uncertainty sets, such as the disturbance

set is set to W WC = {−50,50}, and for the BWC cases we scale this set with ten different values, i.e.,

W αBWC = α · {−50,50},α = 0,1, . . . ,9, as visualized in Figure 12. As can be seen from the second

output trajectories, the WC-MPC and BWC-MPC with budget level of 0.9W hit the tightened constraints

during the transition between t ∈ [75,90], while for the other uncertainty sets, the MPC controllers never

reach to the tightened constraint levels for the second output. Regarding the first output, we can observe

that 0.1-BWC MPC and nominal MPC are acting exactly same with with each other, hence meaning

that Mean MPC is already providing robustified operation for additive uncertainties belonging to the set

W 0.1BWC = [−5,5]. Furthermore, one can clearly observe the pessimistic results of WC or BWC MPCs

with a large assumed set of uncertain effects, since the settling value for the first output deteriorates as

the α increases in α-BWC MPC constructions.

The simulation examples studying the different robust MPC constructions introduced in previous

sections for the debutanizer system have confirmed the fact that the performance of deterministically

robust MPC approaches (WC-MPC and BWC-MPC) is overly conservative and responds cautiously
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Fig. 12: Differences within the closed-loop responses of Mean, WC and different BWC-MPC controllers

for different ∆̄ sets.

resulting in larger settling times in comparison to SMPC approaches. SPMC methods, on the other hand,

have a tendency of providing aggressive control actions leading to constraint violations in some cases.

VI. CONCLUSIONS

In this work, we present and compare the methods used in the robust and stochastic MPC literature

regarding the optimal operation under uncertainty. The vast literature and terminological or conceptual

differences between the different branches of robust and stochastic MPC necessitates extensive time and

effort for an understanding of current RMPC or SMPC algorithms. This induces a divergence between
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industrial and academic perspectives on guaranteeing robust operation with MPC controllers. In this

paper we discuss various MPC paradigms from the closed-loop pessimism and required computational

power perspectives. We present connections between the robust optimization and RMPC, while similar

connections between the (coherent) risk theory and SMPC are also mentioned. We state and classify

contributions from the RMPC and SMPC literature, according to different approaches and the properties

associated with these approaches. Furthermore, we apply these methods to four different examples namely,

a simple batch reaction, a CSTR example, a two mass system coupled with a spring and lastly a MIMO

debutanizer system, to compare the computational requirements and closed-loop performance.

The research resulting in this paper indicates that for uncertain MPC problems controlling uncertain

dynamics, the practitioner should concentrate on the following topics before proceeding with any desired

solution method;

Modeling the process dynamics: Already the nominal prediction model complexity radically effects

the quality of future predictions versus the computational complexity trade-off. Additionally, the resulting

closed-loop pessimism due to uncertainty, price paid for robustness, depends also on how the uncertainty

is evolving in the dynamics. Since the large-scale rigorous models provide better predictions, one would

expect to use larger and more complex models in RMPC and SMPC algorithms over time. However these

models are demanding severe computational requirements for industrial processes. The trade-off lies in

between the improvement in the realistic prediction quality, generally corresponding to a more complex

model, and the resulting computational complexity for incorporating uncertain effects.

Modeling the uncertainty set: It is extremely important to choose an uncertainty model which

resembles only the true process unknowns. Many of the uncertainty models lead to unrealistic state

predictions while increasing the required computational power and the resulting in pessimism in control.

To circumvent this problem, the general tendency is to employ feedback gains to the controller, pre-

compensate the process, which can be a challenging task for large-scale nonlinear systems. Currently

we still miss detailed results where the optimal inputs start to be dominated by the unknowns of the

dynamics. The hierarchical decomposition of control goals, cancelling the uncertain effects via (robust)

feedback control techniques, while using MPC essentially as a trajectory optimizer is not necessarily

valid for many processes, since in many cases uncertain effects can be helpful for the dynamical flow.

Scenario based MPC might be a key approach related to this aspect, since one can effectively incorporate

only the realistic uncertain realizations, bypassing the unnecessary conservatism.

Modeling the cost and constraints and quantification of uncertainty: The decision on how the cost

and the constraint functions are treated effects the resulting computational power requirement and also the

closed-loop performance. To improve the response, one should re-evaluate the allocated uncertainty budget
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for each constraint. If constraint violations are practically allowable, one should prefer chance or moment

constraints rather than the deterministic guarantees. Similar issues are also valid for cost functions. It

is not straightforward which cost function to minimize (or maximize) for the best performance. The

connections between the expected cost function and the nominal cost needs further discussion, while

there might be better candidates from the theory of risk, thus justifying the treatment of uncertainty in

the MPC problems according to a risk metric.

In conclusion the dynamics of the process, the uncertainty attached to it and (risk-based) adjustment

of the specifications (cost-constraint functions) are crucial in effecting the closed-loop performance, and

hence should be tailored according to the final goal of the MPC problem. The theoretical dilemma between

the predicted uncertain effect in the future and the causal optimal control to reduce adverse effects of

it is inherently leading to a process/specification based construction, hence further separating practical

applicability of developed methods.
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[122] J. Löfberg, “Approximations of closed-loop minimax mpc,” in Proceedings of the 2003 IEEE 43rd Annual Conference

on Decision and Control (CDC), vol. 2. IEEE, 2003, pp. 1438–1442.

[123] E. C. Kerrigan and J. M. Maciejowski, “Robustly stable feedback min-max model predictive control,” in Proceedings of

the 2003 American Control Conference (ACC), vol. 4. IEEE, 2003, pp. 3490–3495.

[124] T. Tran, K.-V. Ling, and J. M. Maciejowski, “Model predictive control via quadratic dissipativity constraint,” in

Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014, pp. 6689–6694.

[125] N. Kakalis, V. Dua, V. Sakizlis, J. Perkins, and E. Pistikopoulos, “A parametric optimisation approach for robust mpc,”

in Proceedings of 15th IFAC World Congress, 2002.

[126] V. Sakizlis, N. M. Kakalis, V. Dua, J. D. Perkins, and E. N. Pistikopoulos, “Design of robust model-based controllers via

parametric programming,” Automatica, vol. 40, no. 2, pp. 189–201, 2004.
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[131] S. V. Raković, B. Kouvaritakis, M. Cannon, C. Panos, and R. Findeisen, “Parameterized tube model predictive control,”

IEEE Transactions on Automatic Control, vol. 57, no. 11, pp. 2746–2761, 2012.

[132] B. Kouvaritakis, M. Cannon, and R. Yadlin, “On the centres and scalings of robust and stochastic tubes,” in UKACC

International Conference on Control 2010. IET, 2010, pp. 1–6.

[133] D. Van Hessem and O. Bosgra, “A conic reformulation of model predictive control including bounded and stochastic

disturbances under state and input constraints,” in Decision and Control, 2002, Proceedings of the 41st IEEE Conference

on, vol. 4. IEEE, 2002, pp. 4643–4648.

[134] P. J. Goulart and E. C. Kerrigan, “Relationships between affine feedback policies for robust control with constraints,”

IFAC Proceedings Volumes, vol. 38, no. 1, pp. 608–613, 2005.

[135] M. Diehl and J. Bjornberg, “Robust dynamic programming for min-max model predictive control of constrained uncertain

systems,” IEEE Transactions on Automatic Control, vol. 49, no. 12, pp. 2253–2257, 2004.

[136] Z. Wan and M. V. Kothare, “Efficient robust constrained model predictive control with a time varying terminal constraint

set,” Systems & Control Letters, vol. 48, no. 5, pp. 375–383, 2003.

[137] Z. Wan, B. Pluymers, M. V. Kothare, and B. De Moor, “Comments on: efficient robust constrained model predictive

50



control with a time varying terminal constraint set by wan and kothare,” Systems & Control Letters, vol. 55, no. 7, pp.

618–621, 2006.

[138] B. Pluymers, J. A. Suykens, and B. De Moor, “Min–max feedback mpc using a time-varying terminal constraint set and

comments on efficient robust constrained model predictive control with a time-varying terminal constraint set,” Systems

& Control Letters, vol. 54, no. 12, pp. 1143–1148, 2005.

[139] B. Pluymers, J. A. Rossiter, J. A. K. Suykens, and B. De Moor, “A simple algorithm for robust mpc,” in Proceedings of

the 16th IFAC World Congress, 2005.

[140] J. H. Lee and Z. Yu, “Worst-case formulations of model predictive control for systems with bounded parameters,”

Automatica, vol. 33, no. 5, pp. 763–781, 1997.

[141] K. I. Kouramas, C. Panos, N. P. Faı́sca, and E. N. Pistikopoulos, “An algorithm for robust explicit/multi-parametric model

predictive control,” Automatica, vol. 49, no. 2, pp. 381–389, 2013.

[142] D. la Pena, D. Munoz, T. Alamo, and A. Bemporad, “A decomposition algorithm for feedback min-max model predictive

control,” in Proceedings of the 2005 44th IEEE Conference on Decision and Control, and 2005 European Control

Conference. CDC-ECC’05. IEEE, 2005, pp. 5126–5131.

[143] G. Pannocchia, “Robust model predictive control with guaranteed setpoint tracking,” Journal of Process Control, vol. 14,

no. 8, pp. 927–937, 2004.
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[149] S. Raković, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, “Invariant approximations of the minimal robust positively

invariant set,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 406–410, 2005.

[150] Y. Lu and Y. Arkun, “Quasi-min-max mpc algorithms for lpv systems,” Automatica, vol. 36, no. 4, pp. 527–540, 2000.

[151] J.-H. Park, T.-H. Kim, and T. Sugie, “Output feedback model predictive control for lpv systems based on quasi-min–max

algorithm,” Automatica, vol. 47, no. 9, pp. 2052–2058, 2011.

[152] J. B. Cruz Jr, M. Simaan, A. Gacic, and Y. Liu, “Moving horizon game theoretic approaches for control strategies in a

military operation,” in Proceedings of the 2001 IEEE 40th Annual Conference on Decision and Control (CDC), vol. 1.

IEEE, 2001, pp. 628–633.

[153] J. B. Cruz Jr, M. A. Simaan, A. Gacic, and Y. Liu, “Moving horizon nash strategies for a military air operation,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 38, no. 3, pp. 989–999, 2002.

[154] D. Jia and B. Krogh, “Min-max feedback model predictive control for distributed control with communication,” in

Proceedings of the 2002 American Control Conference (ACC), vol. 6. IEEE, 2002, pp. 4507–4512.

[155] L. Ji, J. B. Rawlings, W. Hu, A. Wynn, and M. Diehl, “Robust stability of moving horizon estimation under bounded

disturbances,” IEEE Transactions on Automatic Control, vol. PP, no. 99, pp. 1–1, 2016.

51



[156] D. Bernardini and A. Bemporad, “Energy-aware robust model predictive control based on noisy wireless sensors,”

Automatica, vol. 48, no. 1, pp. 36–44, 2012.

[157] A. Alessio and A. Bemporad, “A survey on explicit model predictive control,” in Nonlinear model predictive control.

Springer, 2009, pp. 345–369.

[158] S. Olaru and D. Dumur, “A parameterized polyhedra approach for the explicit robust model predictive control,” in

Informatics in Control, Automation and Robotics II. Springer, 2007, pp. 217–226.

[159] R. Bellman, “Dynamic programming and stochastic control processes,” Information and Control, vol. 1, no. 3, pp. 228–

239, 1958.

[160] D. P. Bertsekas, Dynamic programming and optimal control. Athena Scientific, Belmont, MA, 1995, vol. 1, no. 2.

[161] D. W. Clarke and C. Mohtadi, “Properties of generalized predictive control,” Automatica, vol. 25, no. 6, pp. 859–875,

1989.

[162] L. Blackmore, A. Bektassov, M. Ono, and B. C. Williams, “Robust, optimal predictive control of jump markov linear

systems using particles,” in Hybrid Systems: Computation and Control. Springer, 2007, pp. 104–117.

[163] Y.-L. Chow and M. Pavone, “A framework for time-consistent, risk-averse model predictive control: Theory and

algorithms,” in Proceedings of the 2014 American Control Conference (ACC). IEEE, 2014, pp. 4204–4211.

[164] D. Telen, M. Vallerio, L. Cabianca, B. Houska, J. Van Impe, and F. Logist, “Approximate robust optimization of nonlinear

systems under parametric uncertainty and process noise,” Journal of Process Control, vol. 33, pp. 140–154, 2015.

[165] B. Srinivasan, D. Bonvin, E. Visser, and S. Palanki, “Dynamic optimization of batch processes: II. role of measurements

in handling uncertainty,” Computers & chemical engineering, vol. 27, no. 1, pp. 27–44, 2003.

[166] A. Charnes and W. W. Cooper, “Chance-constrained programming,” Management science, vol. 6, no. 1, pp. 73–79, 1959.

[167] H. Arellano-Garcia, “Chance constrained optimization of process systems under uncertainty,” Ph.D. dissertation, Technis-

che Universität Berlin, 2006.

[168] A. Nemirovski and A. Shapiro, “Convex approximations of chance constrained programs,” SIAM Journal on Optimization,

vol. 17, no. 4, pp. 969–996, 2006.

[169] S. Zymler, D. Kuhn, and B. Rustem, “Distributionally robust joint chance constraints with second-order moment

information,” Mathematical Programming, vol. 137, no. 1-2, pp. 167–198, 2013.

[170] F. Kozin, “A survey of stability of stochastic systems,” Automatica, vol. 5, no. 1, pp. 95–112, 1969.

[171] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen, “Robust solutions of optimization problems

affected by uncertain probabilities,” Management Science, vol. 59, no. 2, pp. 341–357, 2013.

[172] M. C. Campi, “Why is resorting to fate wise? a critical look at randomized algorithms in systems and control,” European

Journal of Control, vol. 16, no. 5, pp. 419–430, 2010.

[173] A. Shapiro, “Monte carlo sampling methods,” Handbooks in operations research and management science, vol. 10, pp.

353–425, 2003.

[174] L. R. Ray and R. F. Stengel, “A monte carlo approach to the analysis of control system robustness,” Automatica, vol. 29,

no. 1, pp. 229–236, 1993.

[175] G. C. Calafiore and M. C. Campi, “The scenario approach to robust control design,” IEEE Transactions on Automatic

Control, vol. 51, no. 5, pp. 742–753, 2006.

[176] M. Campi and S. Garatti, “Wait-and-judge scenario optimization,” Mathematical Programming, pp. 1–35, 2016.

[177] X. Zhang, S. Grammatico, G. Schildbach, P. Goulart, and J. Lygeros, “On the sample size of random convex programs

with structured dependence on the uncertainty,” Automatica, vol. 60, pp. 182–188, 2015.

52



[178] S. Grammatico, X. Zhang, K. Margellos, P. Goulart, and J. Lygeros, “A scenario approach for non-convex control design,”

IEEE Transactions on Automatic Control, vol. 61, no. 2, pp. 334–345, 2016.

[179] Y. A. Guzman, L. R. Matthews, and C. A. Floudas, “New a priori and a posteriori probabilistic bounds for robust

counterpart optimization: I. unknown probability distributions,” Computers & Chemical Engineering, vol. 84, pp. 568–

598, 2016.

[180] G. C. Calafiore, “Random convex programs,” SIAM Journal on Optimization, vol. 20, no. 6, pp. 3427–3464, 2010.

[181] G. Schildbach, G. C. Calafiore, L. Fagiano, and M. Morari, “Randomized model predictive control for stochastic linear

systems,” in Proceedings of the 2012 American Control Conference (ACC). IEEE, 2012, pp. 417–422.

[182] R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-at-risk,” Journal of Risk, vol. 2, pp. 21–42, 2000.

[183] D. P. Bertsekas, “Stochastic optimization problems with nondifferentiable cost functionals,” Journal of Optimization

Theory and Applications, vol. 12, no. 2, pp. 218–231, 1973.

[184] R. T. Rockafellar, S. Uryasev, and M. Zabarankin, “Generalized deviations in risk analysis,” Finance and Stochastics,

vol. 10, no. 1, pp. 51–74, 2006.
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